

 1

DEPARTMENT OF COMPUTER SCIENCE

ASSESSMENT DESCRIPTION 2013/14 (EXAM TESTS AND COURSEWORK)

MODULE DETAILS:

Module Number:

08981
Semester:

 1

Module Title:

Component Based Architecture

Lecturer:

Dr DJ Grey

COURSEWORK DETAILS:

Assessment Number: 2 of 2

Title of Assessment:

Simple Virtual Machine

Format:

 Program Demonstration Report

Method of Working:

 Individual

Workload Guidance: Typically, you should
expect to spend between

50 and 100
hours on this
assessment

Length of
Submission:

This assessment should be no
more than:
(over length submissions will be
penalised as per University policy
– see below)

1000 words
(excluding diagrams, appendices,

references, code)

PUBLICATION:

Date of issue:

Monday 4 November 2013

SUBMISSION:

ONE copy of this
assessment should
be handed in via:

 E-Bridge
If Other

(state method)

Time and date for
submission:

Time 9:30am Date

Thurs 12 December
2013

If multiple hand–ins
please provide
details:

Will submission be
scanned via TurnitIn?

 No

If this requires a separate
TurnItIn submission,
please provide
instructions:

Late submissions will be penalised as per university policy

The assessment must be submitted no later than the time and date shown above, unless an
extension has been authorised on a Request for an Extension for an Assessment form which is
available from the Departmental Office (RB-308) or
http://intra.net.dcs.hull.ac.uk/student/exam/Advice%20regarding%20resits%20in%20modules%20
passed%20by%20compe/Forms/AllItems.aspx.

http://intra.net.dcs.hull.ac.uk/student/exam/Advice%20regarding%20resits%20in%20modules%20passed%20by%20compe/Forms/AllItems.aspx
http://intra.net.dcs.hull.ac.uk/student/exam/Advice%20regarding%20resits%20in%20modules%20passed%20by%20compe/Forms/AllItems.aspx

 2

If Turnitin is taking a long time to produce its analysis you must still submit your work, albeit initially
without the Turnitin analysis. A delay at Turnitin cannot be used to excuse a late submission.

MARKING:

Marking will be by:

 Student Name

COURSEWORK COVERSHEET:

BEFORE submission, you must ensure you
complete the correct departmental ACW cover
sheet (if required) and attach it to your work.
The coversheets are available from:
http://intra.net.dcs.hull.ac.uk/student/ACW%20C
over%20Sheets/Forms/AllItems.aspx

 NO coversheet required

ASSESSMENT:

The assessment is
marked out of:

100
and is
worth

 50
% of the
module
marks

N.B If multiple hand-ins please indicate the marks and % apportioned to each stage above (i.e.
Stage 1 – 50, Stage 2 – 50). It is these marks that will be presented to the exam board.

ASSESSMENT STRATEGY AND LEARNING OUTCOMES:
The overall assessment strategy is designed to evaluate the student’s achievement of the module
learning outcomes, and is subdivided as follows:

LO Learning Outcome Method of Assessment
{e.g. report, demo}

1

2

3

Identify the key components of a virtual machine
used as a runtime environment for a
contemporary managed programming language
and describe with comprehension their function
in detail.

Show evidence of a systematic and
comprehensive understanding of the role, design
and implementation of intermediate languages.

Demonstrate research, selection and
assessment of component-based software
architectures and implementation techniques.
Adapt approaches including some at the forefront
of the discipline and identify possibilities for
originality or creativity

Report, Demo

Demo

Demo

Assessment Criteria Contributes to
Learning Outcome

Mark

Task 1 – Program Compilation
Dynamic type instantiation
Case-insensitive search
Identification of types implementing
IInstruction

3
5
5
5

Task 2 – Program Execution 1, 2, 3

http://intra.net.dcs.hull.ac.uk/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx
http://intra.net.dcs.hull.ac.uk/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx

 3

Execution of SML Program
Execution mechanism

5
5

Task 3 – Adding Core SML Instruction
Incr instruction
Decr instruction

3
5
5

Task 4 – Unit Tests 3 10

Task 5 – Extending the SML Instruction
Set
Identification of assemblies
Loading of assemblies
Error handling
Minimisation of memory footprint

3

5
5
5
10

Task 6 – Conditionals
Branch instruction implementation
Label handling

1, 2, 3
5
10

Task 7 – Looping
SML program demonstrating loops

3
5

Task 8 – Report 1, 2, 3 10

FEEDBACK

Feedback will be
given via:

 Verbal (via demonstration)
Feedback will
be given via:

 N/A

Exemption
(staff to explain
why)

Feedback will be provided no later than 4 ‘semester weeks’ after the submission date.

This assessment is set in the context of the learning outcomes for the module and does not by
itself constitute a definitive specification of the assessment. If you are in any doubt as to the
relationship between what you have been asked to do and the module content you should take this
matter up with the member of staff who set the assessment as soon as possible.

You are advised to read the NOTES regarding late penalties, over-length assignments, unfair
means and quality assurance in your student handbook, also available on the department’s
student intranet at:

 http://intra.net.dcs.hull.ac.uk/student/ug/Handbooks/Forms/AllItems.aspx (for undergraduate
students)

 http://intra.net.dcs.hull.ac.uk/student/pgt/Student%20Handbook/Forms/AllItems.aspx (for
postgraduate taught students).

In particular, please be aware that:

 Your work will be awarded zero if submitted more than 7 days after the published deadline.

 The overlength penalty applies to your written report (which includes bullet points, and lists
of text you have disguided as a table. It does not include contents page, graphs, data
tables and appendices). Your mark will be awarded zero if you exceed the word count by
more than 10%.

Please be reminded that you are responsible for reading the University Code of Practice on the
use of Unfair means (http://student.hull.ac.uk/handbook/academic/unfair.html) and must
understand that unfair means is defined as any conduct by a candidate which may gain an
illegitimate advantage or benefit for him/herself or another which may create a disadvantage or
loss for another. You must therefore be certain that the work you are submitting contains no

http://intra.net.dcs.hull.ac.uk/student/ug/Handbooks/Forms/AllItems.aspx
http://intra.net.dcs.hull.ac.uk/student/pgt/Student%20Handbook/Forms/AllItems.aspx
http://student.hull.ac.uk/handbook/academic/unfair.html

 4

section copied in whole or in part from any other source unless where explicitly acknowledged by
means of proper citation. In addition, please note that if one student gives their solution to
another student who submits it as their own work, BOTH students are breaking the unfair means
regulations, and will be investigated.

In case of any subsequent dispute, query, or appeal regarding your coursework, you are reminded
that it is your responsibility, not the Department’s, to produce the assignment in question.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 5

The Simple Virtual Machine

INTRODUCTION

In this assessed coursework exercise you are required to work with and extend a partial

implementation of a simplistic virtual machine and its machine language. The goal of the

exercise is to make you more familiar with virtual machine concepts and aspects of managed

environments, such as metadata and reflection, which support component-based systems.

The exercise consists of seven tasks. You do not need to complete all of these tasks to pass

the assignment but you should attempt all of the tasks to maximize the marks that you score.

THE SIMPLE VIRTUAL MACHINE

The Simple Virtual Machine (SVM) is, unsurprisingly, a simplistic implementation of a

stack-based virtual machine. The SVM compiles and executes programs written in its Simple

Machine Language (SML) format. SML is described further in the following section.

SML programs are assumed to be stored in files with a .sml extension and are executed

using a command line of the following form

svm <program filename>.sml

SML programs are expressed in a textual form. The virtual machine loads the textual

representation of the SML program, transforms it into an executable form and then executes

it.

Internally the virtual machine consists of several important components

 Stack – this holds all the data required by the running program. SML instructions

take their operands from the stack and leave return values upon the stack

 Program – the program is represented as a list of instructions in executable form.

The program is executed by stepping through the list and triggering the execution of

each instruction in turn

 Program Counter – an index into the Instruction List which indicates the index of

the instruction that is currently executing. When an instruction completes, the

program counter is updated to indicate the next instruction that should be executed.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 6

THE SIMPLE MACHINE LANGUAGE

The software specification of the Simple Virtual Machine required that it had a core

instruction set which was easily extensible by third-party developers. Simple Machine

Language (SML) is the core instruction set of the Simple Virtual Machine.

As the SVM is a stack-based virtual machine, all of the instructions in the SML operate

against the stack. Any type of data can be placed on the stack but the instructions are typed;

that is, they expect to work with a particular type of data (e.g. integer) and check that the

values they retrieve from the stack are of the correct type before the instruction is executed.

Most instructions do not take any operands but simply retrieve the data they need to operate

on from the stack. Some instructions do require operands and a valid SML instruction may

have up to two operands. However, instructions in the core SML instruction set have zero or

one operand only.

SML consists of the following limited set of instructions:

Instruction Action

loadint integer loads the supplied integer onto the stack

loadstring string loads the supplied string onto the stack

add pops the top two numbers off the stack, adds them and
pushes the result on the stack

subtract pops the top two numbers off the stack, subtracting the first
from the second, and pushes the result back on the stack

writestring pops the top value from the stack and writes a string
representation of it to the console

Table 1: The core SML instruction set

The skeleton Visual Studio solution supplied with this coursework exercise contains a simple

sample SML program in a file called sample.sml. This program is listed below.

loadstring "Calculating (2 + 3) - 1"

writestring

loadint 2

loadint 3

add

loadint 1

subtract

loadstring "The result is"

writestring

writestring

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 7

When this program is executed it produces the following output

Figure 1 : Output from sample.sml

A valid SML program is a text file, with a .sml extension, which contains SML instructions

and their operands. Each instruction must exist on a separate line within the source file.

SML INSTRUCTION IMPLEMENTATION

Within the virtual machine, SML instructions are implemented as C# classes which

implement the IInstruction interface. Any class in any namespace which implements

IInstruction is considered a valid SML instruction. SVM also defines an

IInstructionWithOperand interface that inherits from IInstruction. Any C# class

which implements IInstructionWithOperand is considered to be a valid SML

instruction that takes one or more operands.

Instruction classes have to provide an Execute() method. The code within this method

performs the operation defined by the instruction. In carrying out this operation it may be

necessary for the instruction to access the stack or other properties of the virtual machine.

All instruction classes must therefore provide a VirtualMachine property; when this

instruction is executed a reference to the virtual machine executing the instruction is

assigned to its VirtualMachine property, and the instruction can use this property to

access the Stack of the virtual machine.

To simplify the implementation of instruction types, SVM provides an Instruction

abstract class and an InstructionWithOperand abstract class which implement the

IInstruction and IInstructionWithOperand interfaces respectively. Instruction

classes can be created by inheriting from the appropriate Instruction or

InstructionWithOperand classes as appropriate and overriding the Execute() method

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 8

to give the desired behaviour. All of the other properties, etc are implemented by the

Instruction and InstructionWithOperand classes.

THE SKELETON VISUAL STUDIO SOLUTION

The majority of the SVM has been implemented and is provided for you to work with in a

skeleton Visual Studio solution which can be downloaded from the Assessments (Tests &

ACW’s) section of the module SharePoint site.

In this assessment there are six programming tasks that you need to complete and these

require you to work with different aspects of the SVM source code. The areas of the source

code that you need to work with are clearly marked with C# #region/#endregion

statements (e.g. #region Task 1 – To be implemented by the student). You

should add or modify code within these regions as necessary to accomplish the task. Code

outside of these regions should not be modified or deleted, although you may add code to

existing files or additional code files as you see fit. For example, you may choose to add an

additional property to the SvmVirtualMachine class but you should not remove any

existing code outside the marked regions even if it is unused by your solution.

TASK 1- PROGRAM COMPILATION

The implementation supplied in the skeleton Visual Studio solution contains all the code

necessary to process the command line and to load up and parse a .sml file. The

SvmVirtualMachine.Compile()method is responsible for reading the .sml file and uses

the SvmVirtualMachine.ParseInstruction() method to parse an individual SML

instruction. The SvmVirtualMachine.ParseInstruction() method in turn makes use

of the CompileInstruction() methods of the JITCompiler class to transform a textual

SML instruction into an executable equivalent. The methods of the JITCompiler class have

not been implemented. In this task you need to add code to these methods to convert a

textual SML instruction into an executable equivalent.

A textual instruction is converted into an executable equivalent by Reflection. Using

reflection you should examine each of the loaded assemblies and the types within those

assemblies, searching for a type that implements IInstruction and which has the same

name as the SML opcode. SML opcodes are not case sensitive, so in matching opcodes to C#

type names you should ignore case. If no matching type can be found an

SvmCompilationException should be thrown to indicate that an invalid SML instruction

has been found in the SML source.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 9

When a C# type matching an SML opcode is found, the search should terminate and an

instance of the C# type should be created. This type instance should be returned as the

return value of the CompileInstruction() method. If the SML instruction has operands

then the Operands property of the newly created type instance should be used to assign the

operands for that instruction.

TASK 2 – PROGRAM EXECUTION

The SvmVirtualMachine class defines a program field which is of type

List<IInstruction>. This simply contains a list of IInstruction instances which

implement the SML instructions read from the SML source file, in the order that they were

read from the file. The SML program can be executed by moving through this list of

instructions in the appropriate order and calling Execute() on each IInstruction

instance.

The virtual machine triggers execution of the SML program by calling the

SvmVirtualMachine.Execute() method. This method is not implemented in the

skeleton solution. For this task you need to add the necessary code to the

SvmVirtualMachine.Execute() method to move through the list of instruction in the

program field and call Execute() on them.

Running the SVM project in Visual Studio will cause the SVM virtual machine to start and to

compile and execute the sample.sml source file. You can verify your implementation by

checking that the SML program executes without error and the output that is produced is the

same as that shown in Figure 1.

TASK 3 – ADDING CORE SML INSTRUCTIONS

The core SML instruction set defined in Table 1 is somewhat limited in its functionality. In

this task you are required to create the C# classes necessary to implement the following two

SML instructions.

Instruction Action

incr Increments the integer value stored on top of the stack, leaving the
result on the stack. An SvmRuntimeException should be

generated if the value on top of the stack is not an integer.

decr Decrements the integer value stored on top of the stack, leaving the
result on the stack. An SvmRuntimeException should be

generated if the value on top of the stack is not an integer.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 10

The classes that implement these instructions should be added to the

SimpleMachineLanguage folder of the SVM Visual Studio project. Test your modification

by creating a simple .sml program which loads an integer value on the stack, increments

and/or decrements it and prints out the result.

TASK 4 – UNIT TESTING THE ADDITIONAL SML INSTRUCTIONS

When developing software it is good practice to write unit tests for each class and method

implemented to ensure that each specific unit of functionality operates in the expected

manner and is fit for use. Each test case should be independent from the others and modules

should be tested in isolation, which requires the use of test harnesses and, in many cases,

mock objects.

Create an interface called IVirtualMachine in the VirtualMachine folder of the SVM

project. This interface should define the core public behaviours of a virtual machine. You

should also refactor the SvmVirtualMachine class such that this it implements the

IVirtualMachine interface and replace references to SvmVirtualMachine in the

IInstruction and Instruction types with references to IVirtualMachine.

Add a unit test project to your solution and add to this project a sufficient set of unit tests for

the classes that implement the SML incr and decr operations. Your unit tests should not

require the instantiation of the SvmVirtualMachine class or the loading, parsing and

execution of an SML program.

Hint: An SML instruction implementation has a VirtualMachine property which is set

when the instruction is executed. This IVirtualMachine instance referenced by this

property allows the instruction to access the stack and program counter of a virtual machine.

If you cannot instantiate an actual instance of SvmVirtualMachine and store this in the

VirtualMachine property of the instruction under test you will need to provide an

alternative implementation of IVirtualMachine.

TASK 5 – EXTENDING THE SML INSTRUCTION SET

The software specification for the SVM required that the instruction set of the virtual

machine be extensible in an unrestricted manner. To achieve this, the virtual machine should

look not only in the set of loaded assemblies for C# types implementing SML instructions,

but also in any DLL found in the directory in which the SVM executable is located (this

directory can be identified by calling System.Environment.CurrentDirectory).

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 11

There are two parts to this task. Firstly, you should modify the code of the

JITCompiler.CompileInstruction()methods that you implemented for Task 1 to

search for C# types implementing SML instructions in any DLL found in the directory in

which the SVM executable is located. Your code should account for the fact that not all DLL’s

contain .NET assemblies. For maximum marks you should only load into memory those

assemblies containing SML instructions that are used by the SML program being compiled.

The SVM stack can store any type of data. For the second part of this task you should add

implementations of the following two instructions to the SML Extensions project in the

Visual Studio solution. The Visual Studio solution has been configured to automatically copy

this assembly built by this project into the directory containing the SVM executable when the

solution is built. Test your modification by creating a simple SML program that loads an

image on to the stack and displays it on the screen.

Instruction Action

loadimage imagepath Loads the image found at the file path specified by the
imagepath string operand on to the stack. An
SvmRuntimeException should be generated if the file

does not exist or is not a valid image.

Displayimage Displays, on screen, the image loaded on top of the stack. An
SvmRuntimeException should be generated if the value

on top of the stack is not an image.

You are also required to implement appropriate unit tests for the loadimage instruction in

your test project.

TASK 6 –CONDITIONALS

The SML instruction set does not support conditional (i.e. branch) instructions. The aim of

this task is to add support for the following conditional instructions

Instruction Action

equint value branch_location Jumps to the SML instruction labelled by the
branch_location if the value operand is

equal to the integer value on top of the stack.
An SvmRuntimeException should be

generated if the value on top of the stack is
not an integer.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 12

bgrint value branch_location Jumps to the SML instruction labelled by the
branch_location if the value operand is

greater than the integer value on top of the
stack. An SvmRuntimeException should

be generated if the value on top of the stack
is not an integer.

bltint value branch_location Jumps to the SML instruction labelled by
the branch_location if the value

operand is less than the integer value on
top of the stack. An
SvmRuntimeException should be

generated if the value on top of the stack is
not an integer.

In order to make these conditional instructions work you will need to modify the virtual

machine implementation to support labeling of instructions. For example, an SML program

that uses a branch instruction may look like

%addOne% incr

bltint 5 addOne

where %addOne% is a label applied to the incr instruction (Note: that labels must start and

end with % delimiters, but the % is not part of the label name). If the value on the stack is

less than 5 when the bltint instruction is executed, program execution should jump to the

instruction associated with the addOne label (i.e. the incr instruction). Labels must always

precede the opcode in the source file and labels must be terminated by a colon (:).

You will need to introduce a mechanism to identify the instruction associated with a label

when the program is executing and to force this instruction to become the next one executed.

This may require you to introduce additional data structures and change your

implementation of the SvmVirtualMachine.Execute() method.

HINT: You may find the lineNumber variable maintained by the

SvmVirtualMachine.Compile() useful.

You are also required to implement appropriate unit tests for the equint, bgrint, and

bltint instructions in your test project.

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 13

TASK 7 – LOOPING

This task does not require you to write any C# code. Instead, you should demonstrate the

branching capabilities of your modified virtual machine by writing and executing an SML

program which implements behaviour equivalent to the following C# code.

 int count = 0;
 while (count < 5)
 {
 count++;
 }
 Console.WriteLine("Count =");
 Console.WriteLine(count);

TASK 8 – REPORT

You are required to write a brief report on your implementation and modification of the

Simple Virtual Machine which

 briefly describes your algorithm for identifying a C# type which matches an SML

opcode and discusses how Reflection has been used

 briefly describes your algorithm for the SvmVirtualMachine.Execute()method

implemented for Task 2

 outlines your mechanism for searching in additional DLL’s for SML instruction

implementations and only loading assemblies containing instructions that are used

into memory

 discusses why it make sense to refactor the SvmVirtualMachine class and

introduce an IVirtualMachine interface

 describes how you provided an IVirtualMachine instance to the incr and decr

instructions during unit testing

 includes a screenshot of the Visual Studio Test Explorer or Test Results window

showing all of the unit tests in your solution and the red/green pass/fail status for

each test

 outlines your mechanism for maintaining labels for instructions, finding an

instruction with a specific label and making this the next instruction to be executed

08981 COMPONENT BASED ARCHITECTURE

Assessed Coursework 14

 lists your SML source code for the solution to Task 7, along with a screen capture

showing the output produced by this program when it is executed

 identifies ways in which your virtual machine implantation could be optimized, in

terms of improving compilation and execution speed and minimizing the amount of

memory used

SUBMISSION INFORMATION

This coursework is to be submitted via e-Bridge. To submit your coursework, you should ZIP

up your Visual Studio solution and an electronic copy of your report into a single ZIP file.

This ZIP file should then be submitted via e-Bridge.

