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Learning with Errors

Definition (Learning with Errors)

I Let n ≥ 1, m > n, q odd, χ be a probability distribution on Zq and s
be a secret vector in Zn

q.

I Let e←$ χ
m, A←$ U(Zm×n

q ). We denote by L
(n)
s,χ the distribution

on Zm×n
q × Zm

q produced as (A,A× s + e).

I Decision-LWE is the problem of deciding if

A, c←$ L
(n)
s,χ (i.e. c = A× s + e where e is “small”) or

A, c←$ U(Zm×n
q × Zm

q ) (i.e. c is sampled uniformly random).
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Small??

I We represent elements
in Zq as integers in
[−b q2 c, b

q
2 c].

I By “size” we mean |x |
for x ∈ Zq in this
representation.

I Typically, χ is a discrete
Gaussian distribution
over Z considered
modulo q with small
standard deviation.
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Learning with Errors with Matrices

We can generalise this slightly. Given (A,C) with C ∈ Zm×`
q , A ∈ Zm×n

q ,

S ∈ Zn×`
q and E ∈ Zm×`

q do we have

← ` →

C


=



← n →

A


×

 S

+



← ` →

E


or C←$ U(Zm×`

q ).



Applications

I Public-Key Encryption, Digital Signature Schemes

I Identity-based Encryption: encrypting to an identity (e-mail address
. . . ) instead of key

I Fully-homomorphic encryption: computing with encrypted data

I . . .



Asymptotic Security

Reduction of worst-case hard lattice problems such as Shortest Vector
Problem (SVP) to average-case LWE.

Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé.
Classical hardness of Learning with Errors.
In STOC ’13, pages 575–584, New York, 2013. ACM.

For cryptosystems we need the hardness of concrete instances:

Given m, n, q and χ how many operations does it take to solve
Decision-LWE?
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Solving Strategies

Given A, c with c = A× s + e or c←$ U(Zn
q)

I solve the Bounded-Distance Decoding (BDD) problem in the primal
lattice: Find s′ such that

‖y − c‖ is minimised, for y = A× s′.

I Solve the Short-Integer-Solutions (SIS) problem in the scaled dual
lattice. Find a short y such that

y × A = 0 and check if 〈y, c〉 = y × (A× s + e) = 〈y, e〉 is short.

In this talk

1. we solve SIS

2. we use combinatorial techniques and

3. we put no bound on m.
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Gaussian elimination I
Asume there is no error, we hence want to decide whether there is a
solution s such that C = A× S. We may apply Gaussian elimination to
the matrix:

[A | C] =


a11 a12 . . . a1n c11 . . . c1`

a21 a22 . . . a2n c21 . . . c2`

...
...

. . .
...

...
. . .

...
am1 am2 . . . amn cm1 . . . cm`


to recover

[Ã | C̃] =



a11 a12 . . . a1n c11 . . . c1`

0 ã22 . . . ã2n c̃21 . . . c̃2`

...
...

. . .
...

...
. . .

...
0 0 . . . ãrn c̃r1 . . . c̃r`
...

...
. . .

...
...

. . .
...

0 0 . . . 0 c̃m1 . . . c̃m`


If and only if c̃r+1,1, . . . , c̃m,` are all zero, the system is consistent.



Gaussian elimination II

A C



Gaussian elimination III



Gaussian elimination IV



Gaussian elimination V

zero?
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BKW Algorithm I

The BKW algorithm was first proposed for the Learning Parity with Noise
(LPN) problem which can be viewed as a special case of LWE over Z2.

Avrim Blum, Adam Kalai, and Hal Wasserman.
Noise-tolerant learning, the parity problem, and the statistical query
model.
J. ACM, 50(4):506–519, 2003.



BKW Algorithm II

Goal in noise-free case:

zero?



BKW Algorithm III

Goal over Z2 (LPN):

sparse?



BKW Algorithm IV

Goal over Zq (LWE):

small?



BKW Algorithm V

We revisit Gaussian elimination:
a11 a12 a13 · · · a1n c1

a21 a22 a23 · · · a2n c2

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



?
=


a11 a12 a13 · · · a1n 〈a1, s〉+ e1

a21 a22 a23 · · · a2n 〈a2, s〉+ e2

...
...

. . .
...

...
am1 am2 am3 · · · amn 〈am, s〉+ em





BKW Algorithm VI

⇒


a11 a12 a13 · · · a1n 〈a1, s〉+ e1

0 ã22 ã23 · · · ã2n 〈ã2, s〉+ e2 − a21
a11

e1
...

...
. . .

...
...

0 ãm2 ãm3 · · · ãmn 〈ãm, s〉+ em − am1

a11
e1


I ai1

a11
is essentially a random element in Zq, hence c̃i ←$ U(Zq).

I Even if ai1
a11

is 1 the variance of the noise doubles at every level
because of the addition.



BKW Algorithm VII

The Problem and its Solution

I Problem:
I additions increase density
I multiplications increase size

⇒ noise of c̃ij values increases rapidly

I Strategy: exploit that we have many rows: m� n.



BKW Algorithm VIII

Condition over Z2 (LPN):

sparse

sparse?



BKW Algorithm IX

Condition over Zq (LWE):

small
(& sparse)

small?



BKW Algorithm X

We considering a ≈ log n ‘blocks’ of b elements each.
a11 a12 a13 · · · a1n c0

a21 a22 a23 · · · a2n c1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm





BKW Algorithm XI

For each block we build a table of all qb possible values indexed by Zb
q.

T 0 =


−b q2 c −b

q
2 c t13 · · · t1n ct,0

−b q2 c −b
q
2 c+ 1 t23 · · · t2n ct,1

...
...

. . .
...

...
b q2 c b q2 c tq23 · · · tq2n ct,q2


For each z ∈ Zb

q we try to find a row in A such that it contains z as a
subvector at the target indices.



BKW Algorithm XII

We use these tables to eliminate b entries in other rows. Assume
(a21, a22) = (b q2 c, b

q
2 c+ 1), then:


a11 a12 a13 · · · a1n c0

a21 a22 a23 · · · a2n c1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



+


−b q2 c −b

q
2 c t13 · · · t1n ct,0

−b q2c −b
q
2c+ 1 t23 · · · t2n ct,1

...
...

. . .
...

...
b q2 c b q2 c tq23 · · · tq2n ct,q2



⇒


a11 a12 a13 · · · a1n c0

0 0 ã23 · · · ã2n c̃1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm





BKW Algorithm XIII

A C

T This is similar to Gaussian
elimination with Gray code
tables. There we construct
the table T to reduce the
number of vector additions.
However, in the BKW case
we find the table T in our
matrix A instead of
computing it by linear
combinations of rows in A.

One addition and no multiplications for clearing b columns.



BKW Algorithm XIV

This gives a memory requirement of

≈ qb

2
· a · (n + 1)

and a time complexity of

≈ (a2n) · qb

2
.

A detailed analysis of the algorithm for LWE is available as:

Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert
Fitzpatrick and Ludovic Perret
On the Complexity of the BKW Algorithm on LWE
ePrint Report 2012/636, 2012.
to appear in Designs, Codes and Cryptography.
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The Setting

Assume s←$ U(Zn
2), i.e. all entries in secret s are very small.

This is a common setting in cryptography for performance reasons and
because this allows to realise some advanced schemes. In particular, a
technique called ‘modulus switching’ can be used to improve the
performance of homomorphic encryption schemes.

Zvika Brakerski and Vinod Vaikuntanathan.
Efficient fully homomorphic encryption from (standard) LWE.
In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pages 97–106. IEEE,
2011.



Modulus Reduction I

Given a sample (a, c) where c = 〈a, s〉+ e and some p < q we may
consider (⌊

p

q
· a
⌉
,

⌊
p

q
· c
⌉)

with⌊
p

q
· c
⌉

=

⌊〈
p

q
· a, s

〉
+

p

q
· e
⌉

=

⌊〈⌊
p

q
· a
⌉
, s

〉
+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
+

p

q
· e
⌉

=

〈⌊
p

q
· a
⌉
, s

〉
+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
+

p

q
· e ± [0, 0.5]

=

〈⌊
p

q
· a
⌉
, s

〉
+ e′′.



Modulus Reduction II

Example

p, q = 10, 20

a = (8,−2, 0, 4, 2,−7),

s = (0, 1, 0, 0, 1, 1),

〈a, s〉 = −7,

c = −6

a′ =

⌊
p

q
· a
⌉

= (4,−1, 0, 2, 1,−4)

〈a′, s〉 = −4,⌊
p

q
· c
⌉

= −4.



Modulus Reduction III

Typically, we would choose

p ≈ q ·
√

n · Var(U([−0.5, 0.5])) · σ2
s /σ = q ·

√
n/12σs/σ

where σs is the standard deviation of elements in s.

If s is small then e′′ is small and we may compute with the smaller
‘precision’ p at the cost of a slight increase of the noise rate.

The complexity hence drops to

≈ (a2n) · pb

2

with a usually is unchanged.



Lazy Modulus Switching I
For simplicity assume p = 2κ and consider the LWE matrix

[A | c] =


a1,1 a1,2 . . . a1,n c1

a2,1 a2,2 . . . a2,n c2

...
...

. . .
...

...
am,1 am,2 . . . am,n cm


as

[A | c] =


ah1,1 al1,1 ah1,2 al1,2 . . . ah1,n al1,n c1

ah2,1 al2,1 ah2,2 al2,2 . . . ah2,n al2,n c2

...
...

...
...

. . .
...

...
...

ahm,1 alm,1 ahm,2 alm,2 . . . ahm,n alm,n cm


where ahi,j and ali,j denote high and low order bits:

I ahi,j corresponds to bp/q · ai,je and

I ali,j corresponds to bp/q · ai,je − p/q · ai,j , the rounding error.



Lazy Modulus Switching II

In order to clear the most significant bits in every component of the ai ,
we run the BKW algorithm on the matrix [A | c] but only consider

[A, c]h :=


ah1,1 ah1,2 . . . ah1,n c1

ah2,1 ah2,2 . . . ah2,n c2

...
...

. . .
...

...
ahm,1 ahm,2 . . . ahm,n cm

 ,

i.e. the “higher order bits”, when searching for collisions.

We only manage elimination tables for the most significant κ bits.
All arithmetic is performed in Zq but collisions are searched for in Zp.



Lazy Modulus Switching III

Example

Let q, p = 16, 8 and let a = (−3, 2, 4) ∈ Z3
q.

Instead of searching for a vector v = (±3, ·, ·) we ignore the least
significant bit.

Hence, both (±3, ·, ·) and (±2, ·, ·) will do.

As a consequence we don’t necessarily produce a vector (0, ·, ·) after
elimination, but one of (0, ·, ·) or (1, ·, ·), i.e. the first component is small.

Analogy

An analogy would be linear algebra with floating point numbers, where
we define a tolerance when a small number counts as zero. We don’t
check x == 0 but abs(x) < tolerance. The smaller p the bigger this
tolerance.



Lazy Modulus Switching IV

BKW without lazy modulus switching:

A C

×
−1

=

small
(& sparse)

small?

0



Lazy Modulus Switching V

BKW with lazy modulus switching (Ã× S + Ẽ = C̃):

A C

×
−1

=

small
(& sparse)

small small?

Ã C̃



Lazy Modulus Switching VI

Difference to one-shot modulus reduction, i.e. rounding:

I We do not apply modulus reduction in one shot, but only when
needed. We compute with high precision but compare with low
precision.

I As a consequence rounding errors accumulate not as fast: they only
start to accumulate when we branch on a component.

We may reduce p by an additional factor of
√

a/2.



Complexity I

BKW

O
(
2cn · n log2

2 n
)



Complexity II

BKW + naive modulus switching

O
(

2

(
c+

log2 d
log2 n

)
n · n log2

2 n

)
where 0 < d ≤ 1 is a small constant (so log d < 0).



Complexity III

BKW + lazy modulus switching

O
(

2

(
c+

log2 d− 1
2 log2 log2 n

log2 n

)
n · n log2

2 n

)
where 0 < d ≤ 1 is a small constant.
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The Problem I

We use the entries in Table T 0 to make the first b components “small”.
However, as the algorithm proceeds we add up vectors with those small
first b components producing vectors where the first b components are
not that small any more.



The Problem II

A C

T0



The Problem III

A C

T0



The Problem IV

A C

T1



The Problem V

A C

T1

si
ze

in
cr

ea
se

d



The Problem VI

Lemma

Let n ≥ 1 be the dimension of the LWE secret vector, q be a modulus,
b ∈ Z with 1 ≤ b ≤ n. Let also σr be the standard deviation of uniformly
random elements in Zbq/pe. Assuming all samples are independent, the
components of ã = a− a′ returned by Bs,χ(b, `, p) satisfy:

Var(ã(i)) = 2`−bi/bcσ2
r , for 0 ≤ bi/bc ≤ `

and Var
(
U(Zq)

)
for bi/bc > `.

(
ã1 . . . ãb ãb+1 . . . ã2b . . . ãab−b . . . ãn=ab c

)



Unnatural Selection I

A C

T1

pick vectors with this small

Finding vectors by chance with the first bi − b components unusually
small to populate T i is easier than finding vectors where the first i
components are unusally small.



Impact I

We keep sampling and pick that candidate vector a for index z in T1

where the first b components are unusually small.

⇒ We need to establish how much we can expect the size to drop if we
sample a given number of times.



Impact II

Assumption (Cowboy)

Let the vectors x0, . . . , xn−1 ∈ Zτq be sampled from some distribution D
such that σ2 = Var(xi,(j)) where D is any distribution on (sub-)vectors
observable in our algorithm. Let x∗ = minabs (x0, . . . , xn−1) where minabs

picks that vector x∗ with
∑b·`−1

j=0 |x∗(j)| minimal. The standard deviation

σn =
√

Var(x∗(0)) = · · · =
√

Var(x∗(τ−1)) of components in x∗ satisfies

σ/σn ≥ cτ
τ
√

n + (1− cτ )

with

cτ ≈
1

5

√
τ +

1

3
.



Impact III

0 200 400
0

100

200

n

σ
/
σ
n

τ = 1

observed data

0.41 x + 0.59

0 200 400
0

5

10

15

n

σ
/σ

n
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observed data
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√

x + 0.31

0 200 400
0

2

4

6

n

σ
/σ

n
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observed data

0.79 3√n + 0.21

0 200 400
1
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1.1

n

σ
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n
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2.65 128√n − 1.65
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BKW Variants I

BKW + Mod. Switch
n log Z2 log mem log Z2 log mem

128 97.6 90.0 89.6 81.2
256 182.1 174.2 164.0 156.7
512 361.0 352.8 305.6 297.9

1024 705.5 697.0 580.2 572.2
2048 1388.7 1379.9 1153.6 1145.3

This Work (1) This Work (2)
n log Z2 log mem log Z2 log mem

128 78.2 70.8 74.2 46.3
256 142.7 134.9 132.5 67.1
512 251.2 243.1 241.8 180.0

1024 494.8 486.5 485.0 407.5
2048 916.4 907.9 853.2 758.9

Table : Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ
variants where q and σ are chosen as in Regev’s scheme and s←$ U(Zn

2)
“logZ2” gives the number of “bit operations” and “logmem” the memory
requirement of Zq elements. All logarithms are base 2.



BKW Variants II

5 6 7 8 9 10 11
0

0.5

1

1.5

log2 n

lo
g

2
sp

ee
d

u
p

w
rt

B
K

W
log2 Z2 for s←$ U({0, 1})n

BKW

BKW w/ modulus switching

this work w/o unnatural selection

this work w/ unnatural selection



. . . and Previous Work I

MITM guess the two halfes of the secret and search for a collision

BKZ solve SIS using the BKZ algorithm with
log2 Tsec = 1.8/ log2 δ0 − 110.

BKZ 2 solve SIS using the BKZ algorithm with
log2 Tsec = 0.009/ log2

2 δ0 − 27.

Yuanmi Chen and Phong Q. Nguyen.
BKZ 2.0: better lattice security estimates.
In Advances in Cryptology - ASIACRYPT 2011, volume 7073 of
Lecture Notes in Computer Science, pages 1–20, Berlin, Heidelberg,
2011. Springer Verlag.

Richard Lindner and Chris Peikert.
Better key sizes (and attacks) for LWE-based encryption.
In Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture
Notes in Computer Science, pages 319–339, Berlin, Heidelberg, New
York, 2011. Springer Verlag.



. . . and Previous Work II
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. . . and Previous Work III
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Fun and Useful Problems

1. BKW (and the most effective lattice attacks) need more samples
than what LWE-based cryptosystems offer. We can attempt to deal
with this by forming new samples from old samples at the cost of
increasing the noise slightly. However, this means our samples are
not independent any more. What is the effect of this?

2. The main obstacle to running BKW “in practice” is its demand for
memory. With modulus switching and unnatural selection we have a
strategy to trade running time for memory to some extend. Can we
find configurations where it becomes feasible to run BKW on
instances other than very small toy instances?

3. In O
(
2cn · n log2

2 n
)

the n log2
2 n factor is displeasing and makes a

difference for small instances. Can we get rid of it?



Fin

Questions?

https://bitbucket.org/malb/bkw-lwe

https://bitbucket.org/malb/bkw-lwe
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