
Openmag User’s Guide

Sean D’Epagnier
1

Copyright (C) 2007, 2008, 2009 Sean D’Epagnier

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

Published by Sean D’Epagnier

i

Table of Contents

1 Software . 1
1.1 Installation . 1
1.2 DataClient . 1

1.2.1 Example Session . 2
1.2.2 Host Side Commands . 3

1.3 DataViewer . 3

2 Configuration . 4

3 Calibration . 5
3.1 Fast Calibration . 5
3.2 StillPoints . 5
3.3 Verifying Calibration . 6
3.4 Alignment . 7

4 Emulation . 8

Chapter 1: Software 1

1 Software

1.1 Installation

The DUSIv2 uses the FTDI chip for usb communications. Drivers are available for all
operating systems from ftdi.com once configured, it should function as a virtual comm
port, the baud rate is 38400. Onces configured it should function as a virtual comm port
just as the other devices. For DUSIv1 and magnetometer mouse, see below.

1. Windows OS – There is a binary distribution for windows. This is a zip (open-
mag win32.zip) which contains all programs and drivers. The magnetometer mouse
can only function as one of: mouse, joystick, or cdc device. The best I can offer is to
choose one device at a time due to bugs in the windows operating system. The cdc de-
vice is used for configuration, to force this mode, hold the second (right) button down
when plugging in the device. This is only for the magnetometer mouse, DUSIv1 is
always in cdc mode. Windows will prompt for a driver the first time. Manually specify
the downloaded folder containing the file OpenMag.inf. Once the driver is installed,
you will be able to communicate via serial to the device.

Hyperterminal Setup – Normally you will use the dataclient, but if you want to use
hyperterminal for some reason: go to File->Properties, click on Settings, then ASCII
Setup. Check “Send line ends with line feeds” and “Echo typed characters locally”

2. Mac OSX – Mac OS has builtin drivers already. For cdc mode, a new file named
/dev/tty.usbmodemXXXX where XXXX is anything is created when cdc mode is en-
abled (hold key 2 down on the pointer model when plugging in usb)

To communicate without installing any software, from a console type: “screen
/dev/tty.usbmodemXXXX” with the right name for XXXX. This gives you a dumb
console, run the dataclient for a nicer interface.

3. Other OS – Most common OS’s support usb mouse, joystick, and cdc devices. This
means you do not need to do anything special and no special driver is needed. For the se-
rial device you should get a virtual comm port device, on linux it is /dev/ttyACM0 (the
kernel module is cdc-acm) (or /dev/ttyUSB0 for DUSIv2), on freebsd it is /dev/ttyU0
(the kernel module is umodem). You will need Qt 4.3.0 or better to run DataViewer.

1.2 DataClient

Once configured the device will show up as a comm port. This means you can communicate
to the device with any terminal program (eg hyperterminal)

The dataclient is the console version of the interface to device. The gui version is
dataviewer in the next section. The dataclient program provides a more interactive user
interface than a basic serial terminal. The main features are lineediting and completion via
readline, data and reply separation (stdout and stderr), and the ability to change directories
using cd, as well as see the directory via pwd.

The datainterface that the dataclient provides direct access to has two important con-
cepts:

• operators – commands that operate on accessors, eg: get, set, clear, ls, ops ...

• accessors – data on the device which can be accessed eg: softwareversion

Chapter 1: Software 2

1.2.1 Example Session

To connect to a device, fifo or file:

./dataclient <file>

To connect to a server

./dataclient <host:port>

Once successfully connected you should see the prompt

$->

To autodetect the device, run the dataclient with no arguments.

It is now possible to execute commands and query data. Many of the commands are
similar to unix commands. To list all possible commands issue “allops”

$-> allops

type ops ls allops mem get set values clear

Note: operators may be added or removed depending on software version

To list the accessors, issue “ls”

$-> ls

mouse/ joystick/ softwareversion settings/ stats/ calc/ calibration/ sensors/

Items with a trailing / are directories. To list their contents, you may either cd into
them, or ls them

$-> ls stats

freeram runtime mainloopfreq watchdog_resets

It should be apparent that “stats” is an accessor as is “stats/runtime”. For example you
may “get stats/runtime”.

$-> get stats/runtime

51.81s

$-> cd stats/

stats/ $-> get runtime

54.54s

$-> get sensors/mag/output

-14349 -14980 -23731

Not all accessors support all operators. To see which operators are supported, use the
ops operator which is always supported

$-> ops softwareversion

type mem ops get

This means it is valid to replace “ops” with any of the valid operators in the above
command. Notice that you cannot “set” softwareversion.

Whenever the sensors are set up to automatically output data, this streaming data
appears on stderr from dataclient.

For example, you may log data

sean@sun ~ $./dataclient 2> log

$-> set sensors/accel/outputrate 10

$-> [ctrl-D to exit]

sean@sun ~ $ cat log

Chapter 1: Software 3

accel: 201 58 1273

accel: 204 65 1273

accel: 202 65 1271

...

This interface includes additional host side operators which work with the dataclient

program, they will not work with a console program.

1.2.2 Host Side Commands

1. cd – change to a given directory if it exists, relative paths are supported, "cd ../../info"
Lastdir is supported as well eg: "cd -"

2. pwd – display the current directory

It is recommended to run “dataclient --help” to show all the capabilites of dataclient.

1.3 DataViewer

The DataViewer is a graphical application used to query and interact with the device while
it is running. When it is first run, you should see a tree view, and below it a console and
an output window.

Hit populate to automatically completely query the device. This may take a few seconds.
Now it is possible to view all of the data stored on the device. If you press “Get Values”, it
will re-request just the values. This is useful because many of the values update continuously.
You may also check certain values and only request those values. It is possible to modify
certain values. The ones marked “write only” or “read/write” can be modified. For values
with only certain possible settings, a dropdown is provided.

The Console window displays the actual data being sent and received to the device.
The dataclient is actually running and doing all of the communication with the device, the
dataviewer communicates with the dataclient. There may be operations that can only be
performed from the console, for this you will have to run the dataclient.

The Output window displays streaming data comming from the device.

Chapter 2: Configuration 4

2 Configuration

There are many settings which can easily be modified with serial communication. Some key
settings are configuring the magnetometer. The bandwidth and range can be set.

For use in most areas away from magnetic distortions, the a range of 1.6 can be used (it
is the default):

set settings/mag/range 1.6

When working near metal or other distortions, a range of 3.2 or 6.4 might be more
suitable to avoid saturation. In some parts of the world (near the equator mostly) a range
of 0.8 can be used without saturation. The smaller range gives lower noise sensor data.

Another important setting is bandwidth. There are 3 settings: slow – 4.5hz medium –
13hz (default for dusi) fast – 63hz (default for pointer)

The fast bandwidth while able to read from the sensors faster has much higher noise.
The slow or medium rates should be used for applications concerned with accuracy. These
settings should be applied before calibration takes place. The fast bandwidth is needed for
pointer movement and high-bandwidth applications.

Chapter 3: Calibration 5

3 Calibration

One of the key features is autocalibration. The device may not come pre-calibrated, so for
precise measurements, the user should understand how to perform calibration. If you are
interested in how the calibration works, see the Calibration document. The device computes
the unknown calibration coefficients needed to deliver useful data.

3.1 Fast Calibration

The fast calibration is performed continuously and automatically. The accuracy is not very
good, but there are a number of uses which still work fine, and this calibration is much
easier to make use of. To enable output whenever the fast calibration is updated:

$-> set calibration/fastdebugging true

Now you will see:

accelfast bias: (-1e+02 -1e+01 1e+02)

accelfast magnitude: 1e+03

...

The device will only get new updates when it is moved to new positions.

You can of also read the calibration directly

$-> get calibration/accelfast

accelfast bias: (40.921 -244.21 -135.27)

accelfast magnitude: 945.64

$-> get calibration/magfast

magfast bias: (21699 13887 -13836)

magfast magnitude: 76213

The fast calibration is used to compute pitch, roll, and yaw when the deviation for the
accel or magnetometer calibration is zero. If you clear this calibration and don’t recompute
it (see next section) then the fast calibration is used:

clear calibration/accel

clear calibration/mag

clear calibration/magalign

3.2 StillPoints

For accurate calibration the device uses stillpoints. What this means, is it can detect when
it is not moving by looking at sensor noise levels. Once the unit is “still” the raw sensor
data can be stored into a tabl. It is essential to place the device in various orientations
and hold it perfectly still for 1-3 seconds. It is important to cover all possible orientations.
To make it easier to make sure you do it correctly, I recommend each of the 6 sides in 2-3
rotations on each side. 10 positions is minimum, 12-15 positions will give better results.

Note: With the DUSI model it is possible to perform and validate all calibration using
the menu system.

Chapter 3: Calibration 6

3.3 Verifying Calibration

To enable debugging output for the normal calibration and to calibrate the accelerometer:

$-> set calibration/debugging true

$-> clear calibration/accel

You will be notified whenever a stillpoint is added with:

stillpoint added: 23076.941000 14773.721000 28749.383000 nan nan nan

It is also possible to query the stillpoints with:

$-> get calibration/stillpoints

The still points are the raw data for the magnetometer followed by the accelerometer.
If joint still points is disabled, it is possible to have a stillpoint for only one sensor, in that
case the other sensor can have values of “nan”

When enough stillpoints are aquired, you can “apply” the stillpoints to the accel cali-
bration:

$-> apply calibration/stillpoints accel

$-> accel bias: (-136.67 -8.5935 135.41)

accel magnitude: 1311.7

accel magnitude ratios: [0.992 0.995]

accel cross coupling: {0.00217545 0.00549039 0.00179621}

accel second order terms: <5.8745e-07 1.7386e-06 4.0053e-07>

accel third order terms: <6.316e-11 2.3483e-09 1.775e-09>

accel dev: 0.022264

accel bias: (-133.19 -8.4023 133.13)

accel magnitude: 1325.4

accel magnitude ratios: [0.993 0.996]

accel cross coupling: {0.00212276 0.00534561 0.00174033}

accel second order terms: <5.1716e-07 1.6266e-06 1.3047e-06>

accel third order terms: <6.7473e-11 2.3116e-09 1.7148e-09>

accel dev: 0.002142

accel bias: (-133.11 -8.3985 133.09)

accel magnitude: 1325.5

accel magnitude ratios: [0.993 0.996]

accel cross coupling: {0.00212184 0.00534325 0.00173963}

accel second order terms: <5.1596e-07 1.6241e-06 1.3229e-06>

accel third order terms: <6.6307e-11 2.3128e-09 1.7109e-09>

accel dev: 0.002136

The calibration takes a few seconds, and will only output if debugging is set to true.
You can see that the second and third order terms are quite small. The magnitude ratios
are also small as well because the accelerometer is high quality.

The accelerometer calibration must be applied first because the magalign calibration
(computed when mag is calibrate) depends on it.

The magnetometer uses the same process to calibrate, but calibration for both the mag,
and magalign is performed. The mag calibration is just for the magnetometer. The magalign
calibration is the alignment between the accelerometer and magnetometer. Make sure the
data is read away from distortions when calibrating.

Chapter 3: Calibration 7

$-> apply calibration/stillpoints mag

The closer the deviation is to zero, the more correct the calibration is, a deviation of .01
or better is normally acceptable.

The stillpoints are lost on power reset, but they can also be cleared manually:

$-> clear calibration/stillpoints

3.4 Alignment

Once calibration for the sensors is performed, accelerometer and magnetometer vectors
are available in the sensor coordinate system. This coordinate system typically has some
arbitrary rotation away from the desired coordinate system.

There are two alignments performed. One rotates from sensor coordinates into box
coordinates. Box coordinates are used to calculate pitch, roll, yaw and dip (the current
measured inclination). The other rotation rotates into laser coordinates. Unlike box coor-
dinates, laser coordinates do not havfe a concept of roll since the alignment is to an axis
(laser or sight). Laser coordinates provide incline and azimuth which are like pitch and yaw
except they use laser coordinates not box coordinates.

You may perform alignments external to the device with your own software and not use
this feature, in this case you might as well read from the sensors directly.

To set the box alignment there are two options.

• if you know magnetic north, place the device level and facing magnetic north:

set boxalignment 1

Now the boxalignment is set

• If you do not know magnetic north, then place the device level:

set boxalignment 2

Next place the device pointed straight up (against a wall should work):

set boxalignment 3

If you want to reset boxalignment to no rotation.

clear boxalignment

The laser alignment has separate alignments for the accelerometer and magnetometer.
Mathematically speaking, these alignments are identical, but in practice they are not. Sim-
ilar results for the two alignments indicate good calibration.

To set the laser alignment, you have to take shots around an axis. Typically this axis
has a laser pointer. To take a shot, align through the laser axis to a known point and:

set laseralignment 1

repeat this command for at least 5 shots, or until the error is low enough.

If you make a bad shot, you will need to reset and start over. To reset the laser alignment:

clear laseralignment

Chapter 4: Emulation 8

4 Emulation

Emulation allows you to run the calibration algorithms, and the menu system on a pc
computer rather than the device. If you had an embedded system running a regular OS
talking to the device, it would be possible to run the algorithms on that system therefore
offloading the floating point computations.

Note: Currently Emulation does not compile on win32.

The program “calibrationhost” can be run which runs a tcp server. Connect to this
server using the dataclient.

./calibrationhost -q /dev/ttyACM0 &

[1] 12351

Listening on port 7029 for connections from telnet or dataclient

./dataclient localhost:7029

$-> ls

calc/ sensors/

The emulation provides the exact same interface. The device (/dev/ttyACM0) should
previously be configured to output accel, mag, and temperature data. There is a script
“runcalibrationhost.sh” which runs the calibrationhost program and sets up the device to
output raw data correctly.

It is also possible to relay the data as a server:

./dataclient -p 3000 -q

Listening on port 3000 for connections from telnet or dataclient

$->

You may then connect to this dataclient with other dataclients from remote hosts on
port 3000. These dataclients may in turn run as servers as well.

It is also possible to run the menu interface if you have opengl. This program “menuhost”
automatically runs the calibration algorithms, so it is equivilant to calibrationhost, with
the addition of the menu system.

	Software
	Installation
	DataClient
	Example Session
	Host Side Commands

	DataViewer

	Configuration
	Calibration
	Fast Calibration
	StillPoints
	Verifying Calibration
	Alignment

	Emulation

