
Mkpic: how Perl can help TEX

Wybo Dekker
wybo@dekkerdocumenten.nl

February 21, 2015

Abstract
Perl may be an easy interface to TEX when it comes
to repetitive tasks, like writing letters, creating reports
from databases, and many more. This article shows how
Perl can be used to generate many similar pictures via
the mfpic style

Keywords: perl, mfpic, mkpic

1 Introduction
I recently had to produce about 40 pictures for insertion
into a book on elementary mathematics. I decided that
the mfpic would suite most of my needs. But writing
mfpic commands is not easy. Figure 1, for example, can
be constructed using the following mfpic commands:

1 \mftitle{parabola}
\setlength{\mfpicunit}{1mm}
\begin{mfpic}[16][5.45]{0}{4}{-6}{5}
\axes

5 \hatchwd{2}
\tlabel[bc](0,5.54){y}
\tlabel[cl](4.21,0){x}
\tlabel[tc](2,-0.18){\strut 2}
\tlabel[bc](3,0.18){\strut 3}

10 \tlabel[cr](-0.07,-5){\strut -5}
\tlabel[cr](-0.07,0){\strut 0}
\tlabel[cr](-0.07,4){\strut 4}
\rhatch\lclosed\connect
\lines{(0,0),(0,4)}

15 \function{0,3,.05}{4-x*x}
\lines{(3,-5),(3,0)}
\endconnect
\function{0,3.2,.05}{4-x*x}
\dotted\arrow\lines{(3,-5),(0,-5)}

20 \dotted\arrow\lines{(3,-5),(3,0)}
\tlabel[bc](3,4){\parbox[b]{60mm}{%

\center $f(x)=4-x^2$}}
\arrow\lines{(3,3.46),(1.7,1.1)}
\tlabel[bc](2,5){\parbox[b]{60mm}{%

25 \center Area O_1}}
\arrow\lines{(2,4.46),(1,2)}
\tlabel[bc](4,2){\parbox[b]{60mm}{%

\center Area O_2}}
\arrow\lines{(4,1.46),(2.8,-2)}

30 \end{mfpic}

As you can see, this implies a lot of typing and one
has to type many nested [], {}, and () pairs. Also, several
floating point numbers, such as those in lines 6–12, de-
pend on the scaling factors defined in line 3. They have

�
y

x
2

3

−5

0

4 f (x) = 4 − x2

Area O1

Area O2

Figure 1: parabola

to be calculated manually, and changing the scale will
imply recalculation of those values. The scale itself is
set in line 3: I wanted the picture to be 64 mm wide, so
I had to calculate 64/(4 − 0) = 16 for the scaling factor
in the x-direction. It would be much easier if one could
type something like:

1 begin parabola 64 64 0 -6 4 5 x y
xmark 2
Xmark 3
ymark -5 0 4

5 bhat
lines 0 0 0 4
func 0 3 .05 4-x*x
lines 3 -5 3 0
ehat

10 func 0 3.2 .05 4-x*x
xydrop 3 -5
arrow 3 4 1.7 1.1 $f(x)=4-x^2$
arrow 2 5 1 2 Area O_1
arrow 4 2 2.8 -2 Area O_2

15 end

Here we see no brackets, braces or parentheses any-
more, width and height are set straightforwardly to
64 mm and the labels along the axes are redefined as
xmarks and ymarks, for which nothing has to be given
but the x- and y-values, respectively. The corresponding
y- and x-values are supposed to be calculated automati-

1

Mkpic: how Perl can help TEX 2

cally.
Another construction that frequently occurs in my

pictures is a label with an arrow starting from the cen-
ter of its baseline, such as the one in lines 21–23 in the
long listing. This is replaced in the short listing with line
12, where the starting position of the arrow is supposed
to be calculated automatically. As a result, if I want to
move the label, the arrow is moved with it automatically.

All this is possible by using a Perl interface that con-
verts the short command file into an mfpic source file.

2 The Perl interface
In the Perl script mkpic, the available commands are
all defined in the subroutine parse_input. My initial
version defined only a few commands, and while us-
ing the script, new commands were inserted when they
were needed. It’s easy to insert your own new com-
mands here, just look at what’s already there and create
new commands by analogy. The __DATA__ section of
the script contains the picture needed for this documen-
tation (and some more).

The first was the begin command, of course, which
has also the most complex definition, as it defines
many scale-dependent variables and TEX commands
that might be useful for any command defined later.

2.1 How to use mkpic

First of all, read the manpage of the Perl-script, gener-
ated from the script using pod2latex, which is shown in
section 4.

The easiest way to use the script is to append your
own commands to the __DATA__ section of the script,
maybe after removing what’s already there, and run
it. This will produce a file mkpic.sty, which provides
LATEX-commands named \Fig<name>, where <name>
stands for every name you use in the begin command.
Finally, you can use those \Fig<name> commands in a
LATEX document.

3 Some more examples
Here are a few more examples illustrating some features
of the mkpic script:

The following commands will produce figure 2:

1 begin droparrows 64 64 0 3 12 8 x y
xmark a 2 x_1 4 x_2 8 b 10
ydrop 2 4.414
ydrop 4 5

5 ydrop 8 5.828
ydrop 10 6.162
label cc 4 4 $f(x_1)$
label cc 8 4 $f(x_2)$
label cc 7 8 $f(x)$ increases on $[a,b]$

10 label cc 7 7.5 $x_1<x_2\Rightarrow f(x_1)<F(x_2)$
func 1 11 .1 x**(.5)+3
end

�
y

x
a x1 x2 b

f (x1) f (x2)

f (x) increasing on [a, b]

x1 < x2 ⇒ f (x1) < F(x2)

Figure 2: droparrows

These commands illustrate how valid mfpic com-
mands can be interspersed between mkpic commands
(see figure 3:

1 begin asymptotes 64 64 0 0 10 10 x y
curve 1 1 2 3 4 5.7 7 8.1 9 9
\shift{(-.05,.05)}
point 2 3 4 5.7 7 8.1

5 \shift{(-.05,.05)}
func 1.4 2.6 .1 1.65*x-.3
func 3.2 4.8 .1 1.025*x+1.6
func 6.1 7.9 .1 .62*x+3.76
label cl 9.5 9 $f(x)$

10 label tl 5 5 $f^\prime(x)>0$
label tl 5 4 $f^\prime(x)$ decreasing
end

�
y

x

f (x)

f ′(x) > 0

f ′(x) decreasing

Figure 3: asymptotes

Figure 4 is produced by:

Mkpic: how Perl can help TEX 3

1 begin inflections 64 64 -.85 -1.5 1.5 5 x y
func -.6 1.5 .05 6*(x**4)-8*(x**3)+1
lines -.2 1 .2 1
label cr -.25 1 horizontal

5 arrow .5 2 0 1 inflection point
arrow .8 1 .65 0 inflection point
arrow 1 5 1.5 4.375 $f(x)=6x^4-8x^3+1$
Xmark 1
ymark \raisebox{-3.5mm}{0} 0 -1

10 xydrop 1 -1
end

�
y

x

horizontal

inflection point

inflection point

f (x) = 6x4 − 8x3 + 1

1
0

−1

Figure 4: inflections

And here is an elaborate quasi 3D picture. It shows
how comments can be inserted. Standard axes are sup-
pressed because they need special treatment (see fig-
ure 5):

1 begin paraboloid 64 64 -4 -4 4 4 - -
\dashed
lines -4 0 0 0 0 0 0 -4 # neg z and neg y
\dashed

5 lines 0 0 3 1.73 # neg x
\arrow
lines 0 0 0 4 # pos y
\arrow[5]
lines 0 0 4 0 # pos z

10 \arrow[5]
lines 0 0 -3 -1.73 # pos x
\dotted
lines -1 4 -1 0 -4 -1.73 # intersections y=-1 plane
\dotted

15 lines -1 -.577 -4 -.577 # intersection x=2 plane with xy-plane
% extra helplines
\dotted
lines -2 .423 -2 -.577 0 0 0 1 -2 .423
Ymark 3

20 % end of extras
\dotted
lines 0 3 -1 3 -4 1.27
\dashed\sclosed
curve -3 2.42 -1.5 2.711 -1 2.42 -2.5 2.134

25 label bc 0 \yhi z
label cl \xhi 0 y
label tr -3.1 -1.8 x
label cl -.85 -.577 2

label tc 0 5.5 $f(x,y)=x^2-4x+2y^2+4y+7$
30 xmark -1

Ymark 1
\shift{(-2,.42)}
\dashed
func 0 .5 .1 9*x*x

35 func -.5 0 .1 7*x*x
\dashed
func -1 0 .1 2*x*x
func 0 1 .1 2*x*x
end

�
3

z

y

x

2

f (x, y) = x2 − 4x + 2y2 + 4y + 7

−1

1

Figure 5: paraboloid

Mkpic: how Perl can help TEX 4

4 The mkpic manpage

mkpic - interface for making pictures with mfpic

Synopsis
mkpic [options] [picfile]

options:

--clean remove all but input file and die
--pdfsample create pdf file with sample images
--font= set default font for labels
--[no]box produce framed boxes
--version report version number and die
--help display help info and die
--[no]debug display debugging information
--log=<logfile> file for warning messages

commands:

begin name xl yl xmin ymin xmax ymax xlabel ylabel
end
stop
<var>=<value>
comment

arccst xcenter ycenter xstart ystart theta
arcset xstart ystart xend yend theta
arccrtt xcenter ycenter radius theta1 theta2
arc3 x1 y1 x2 y2 x3 y3

xmark [label1] x1 [label2] x2 ...
Xmark [label1] x1 [label2] x2 ...
ymark [label1] y1 [label2] y2 ...
Ymark [label1] y1 [label2] y2 ...

xdrop x y
ydrop x y
xydrop x y

arrow x1 y1 x2 y2 label
label YX x y label
xlabels YX x y dx label ...
ylabels YX x y dy label ...

point x1 y1 x2 y2 ...
dpoint x1 y1 dx1 dy1 ...
lines x1 y1 x2 y2 ...
dlines x1 y1 dx1 dy1 ...
curve x1 y1 x2 y2 ...
dcurve x1 y1 dx1 dy1 ...

rect x1 y1 x2 y2
drect x y dx dy
dcrect x y dx dy
crect x1 y1 x2 y2
arect xc yc width height theta
bar x xdev height

func xmin xmax step expression-in-x

grid dx dy xgap ygap
hatch
bhat
ehat

Mkpic: how Perl can help TEX 5

Description
mkpic provides an easy interface for making small pictures with mfpic. To this end you create an input file has to be created
consisting of commands, one per line, with space separated parameters (or you modify the __DATA__ section of the mkpic
script, which is used if you run it without an input file). mkpic produces two files. Assuming an input file named picfile
defaulting to mkpic these are:

picfile.mac a macro file which will contain TeX commands for every picture

picfile.sty a style file for latex, defining the same TeX commands for every picture.

With the –pdfsample option, two other files are produced:

picfile.pdf a PDF file containing all pictures. This lets you easily check the results of your designs.

picfile.tex the TeX source used for creating this PDF file.

In LaTeX, you have to include \usepackage{picfile} and to include commands like \Fig<name> in your source, where
name is the name you gave one of your pictures in an mkpic begin command.

In TeX and ConTeXt, you have to \input picfile.mac and to include commands like \Fig<name> in your source, where
name is the name you gave one of your pictures in an mkpic begin command.

In TeX, you must use the \bye command (not \end to finish your TeX source
See the RUNNING section for how to run mkpic and TeX/LaTeX/ConTeXt.

COMMANDS
The source is set up so that it is easy to add your own commands,

Currently the following commands have been implemented:

begin end Every picture begins with the begin command and ends with the end command. The begin command defines a
name for the picture and defines a tex command with that name, prefixed with ’Fig’. The resulting command is written to
a .mac file. Thus the command

begin aa ...

starts writing \def\Figaa{... to the .mac file, and the picture can be reproduced in a TeX document by importing the
.mac file and using the \Figaa command.
xl and yl are the lengths of the x- and y-axes. xlabel and ylabel are the label that are placed at the ends of those axes. Use
a space to suppress labeling, or "-" to suppress drawing the axes at all.

stop stops further reading of the input. Useful if you have many pictures, but want to see only the first few for testing purposes.

var=value sets the variable var to value. This variable, or an expression containing it, can be used instead of any numerical
parameter. Variable names may contain lower and uppercase letters, digits or underscores, with the restriction that they
must start with a letter and may not end in an underscore.

denotes a comment

xmark ymark Xmark Ymark These commands place one or more labels along the x- or y-axes, either below (xmark and
ymark) of above (Xmark and Ymark) the axis.
For the [xXyY]mark commands a parameter containing any character other than [-.0-9] is interpreted as the label (this
implies that you cannot use expressions here!) to be placed and its position is expected in the next parameter. If a
parameter is just a number, it is placed at that x-position. If you want a number to be interpreted as a label, put it in braces:
{1950}.

arccst (Mnemonic: center start theta.) Draws an arc with its center in xcenter,ycenter, starting in xstart,ystart and with an arc
length of theta degrees.

arcset (Mnemonic: start end theta.) Draws an arc starting in xstart,ystartend ending in xend,yend and with an arc length of
theta degrees.

arccrtt (Mnemonic: center radius theta1 theta2.) Draws an arc with its center in xcenter,ycenter, a radius radius starting at
theta1 degrees Ãęnd ending at theta2 degrees.

arc3 (Mnemonic: 3 points.) Draws an arc starting at (x1,y1), through (x2,y2) and ending in (x3,y3).

xdrop ydrop xydrop These commands draw dotted arrows perpendicularly to the x-axis, the y-axis and both axes, respec-
tively, ending on the axes with the arrow head.

arrow draws an arrow from (x1,y1) to (x2,y2) labeled on its tail with label

label draws a label at (x,y). YX tells how it will be adjusted: for Y=t,b,c (x,y) will be, in the y-direction, on top, bottom or
center of the label respectively, for X=l,r,c it will be, in the x-direction, left, right or center adjusted on (x,y). Thus

label tl 0 0 Hello World!

Mkpic: how Perl can help TEX 6

will draw the string "Hello World" with its lower left corner at (0,0)
xlabels draws many labels, starting at (x,y), and incrementing x with dx after every label. YX: see label. Labels may not contain

spaces; if you need spaces, use ˜ instead.
ylabels Same as xlabels, but incrementing y with dy instead.
point draws points (dots) at (x1,y1), (x2,y2) et cetera.
dpoint draws points (dots) starting at (x1,y1) and then moving by (dx1,dy1), (dx2,dy2) et cetera.
lines draws line segments from (x1,y1) to (x2,y2), (x3,y3) et cetera.
dlines draws line segments starting at (x1,y1) and then moving by (dx1,dy1), (dx2,dy2) et cetera.
curve draws a bezier curve from (x1,y1) to (x2,y2), (x3,y3) et cetera.
dcurve draws a bezier curve starting at (x1,y1) and then moving by (dx1,dy1), (dx2,dy2) et cetera.
rect draws a rectangle with diagonal points at (x1,y1) and (x2,y2).
drect draws a rectangle with diagonal points at (x,y) and (x+dx,y+dy).
crect clears a rectangle with diagonal points at (x1,y1) and (x2,y2).
dcrect clears a rectangle with diagonal points at (x,y) and (x+dx,y+dy).
arect draws a rectangle with a widdh width and Ãę height height; the middle of the bottom is at (xc,yc) and the centerline

through (xc,yc) makes an angle theta with the x-axis.
bar draws a equivalent with rect x-xdev 0 x+xdev height
func draws the function given by expression-in-x between xmin and xmax, stepping with step units in the x-direction. Note

that the expression-in-x will be evaluated by metafont, so you will have to use metafont syntax.
grid draw dotted grid lines at distances dx and dy in the x- and y directions; the gaps between the dots are set to xgap an ygap

respectively. For an esthetic appearance, be sure to use integer dx/xgap Ãęnd dy/ygap ratios.
hatch hatch the closed curve that follows.
bhat starts a path that will eventually be closed, and then hatched.
ehat ends a path started with bhat, closes it and then hatches it.
anything else will be inserted as is in the macro file, and therefore should be a valid mfpic statement. You use this when you

need such a statement only once, or a few times and therefore see no need to define a proper command for it.

Running mkpic/TeX
The difficult way

The effect of running mkpic picfile is the creation of picfile.mac, which you can \input into a TeX or ConTeXt source, and
picfile.sty which can be input into a LaTeX source using the \usepackage command.

After running TeX (or LaTeX or ConTeXt), you will find a file picfile.mf and you will have to run metafont on it, which
(assuming you configured TeX for 600 dpi) produces picfile.600gf. This file will have to be converted to a pk file with gftopk.
Finally, you need to run TeX again. So the sequence is:

$ mkpic picfile
$ tex file.tex
$ mf picfile
$ gftopk picfile.600gf
$ tex file

The easy way

You can also include this line into your TeX or ConTeXt source (before \inputing picfile.mac) or into your LaTeX source
(before \usepackage{picfile}:
\immediate\write18{mkpic picfile}
and TeX (LaTeX, ConTeXt) will do everything for you, except that you will have to run TeX at least twice. You need,

however, to 1) finish your texjob with \bye, not \end, and 2) enable the \write18 command by setting, in texmf.cnf, the
shell_escape variable to true (t) (or ask your system administrator to do so).

Bug
Currently only up to 256 pictures can be generated. In the future this problem will probably be solved by introducing more than
one font and generating tex-command names that have the font name in front.

Author
Wybo Dekker (wybo@dekkerdocumenten.nl)

