
cgmdode 

A C library for coarse-grained macromolecular dynamics
with Open Dynamics Engine

User Manual

version 0.3

Bertrand Caré 
bertrand.care@gmail.com

http://bitbucket.org/bcare/cgmdode-hg

Copyright 2014-2015 B. Caré

http://bitbucket.org/bcare/cgmdode-hg


Table of Contents

I - Introduction............................................................................................................................................................. 3

I.1 - Origins of cgmdode......................................................................................................................................... 3

I.2 - What is cgmdode's purpose ?......................................................................................................................... 3

I.3 - Overview of cgmdode design.......................................................................................................................... 3

I.4 - Should I use cgmdode for my simulation ?.....................................................................................................4

I.5 - License........................................................................................................................................................... 5

II - Installation.............................................................................................................................................................. 6

II.1 - Requirements................................................................................................................................................ 6

II.2 - Installation from sources................................................................................................................................ 6

III - Building a simulation............................................................................................................................................. 7

III.1 - Importing cgmdode into your code................................................................................................................7

III.2 - cgmdode initialization sequence................................................................................................................... 7

III.3 - Creating physical objects.............................................................................................................................. 9

III.4 - Assigning interaction sites to physical objects............................................................................................10

III.5 - Assigning physical objects to thermostats...................................................................................................12

III.6 - Linking physical objects using mechanical joints........................................................................................15

III.7 - Running the simulation............................................................................................................................... 18

III.8 - Cleaning up................................................................................................................................................. 18

IV - API Reference.................................................................................................................................................... 19

IV.1 - Basic data types......................................................................................................................................... 19

IV.2 - Simparameters functions............................................................................................................................ 19

IV.3 - Simcontext functions................................................................................................................................... 22

IV.4 - Geometry data functions............................................................................................................................. 22

IV.5 - Physobject functions................................................................................................................................... 24

IV.6 - Interaction class functions.......................................................................................................................... 27

IV.7 - Thermostat class functions......................................................................................................................... 28

IV.8 - Articulation functions................................................................................................................................... 29

IV.9 - Additionnal features.................................................................................................................................... 30



I - Introduction

I.1 - Origins of cgmdode
The  development  of  cgmdode  started  in  the  Theoretical  Physics  of  Condensed  Matter  lab  in  Paris,  by  the
Multiscale Modelling of Living Matter group. It was initially intended as a way to facilitate reusability and centralize
the different coarse-grained simulation codes produced by the group.  The library stemmed from the simulations of
single  molecule  experiments  with  DNA  and  optic/magnetic  tweezers,  and  the  simulations  of  biological
macromolecular assemblies such as microtubules and capsids. Among the models and simulation tools for this
type of  systems, there is "scale gap" :  very performant tools exist for the microscopic scale,  mainly full-atom,
molecular  dynamics software,  but  they consume a lot  of  computing resources.  At  the macroscopic  scale,  the
physical properties of such systems is generally abstracted away in mean-field analytical models, whereas these
properties might be crucial. The coarse-graining approach is aimed at filling this gap with a mesoscopic scale.  At
this scale, the behavior of large biological systems composed of thousands of dynamically self-assembling large
subunits can be somewhat efficiently simulated. cgmdode is aimed at facilitating the development of simulations of
such models.

The other reason for cgmdode's creation is that the coarse-grained simulations of biological systems developped
by the M3V group typically outsourced the physics to the rigid body dynamics engine ODE. The consequence was
that there was a lot of boilerplate code required to implement the simulation softwares that needed to be rewritten
for every new biological system simulated. So I (Bertrand Caré) decided to write a library that does this once and
for all that was really simple to use, and hopefully fast.

I.2 - Coarse-graining using a rigid body dynamics engine
cgmdode, or  Coarse-Grained Macromolecular  Dynamics with Open Dynamics Engine,  is  a C library aimed at
providing  data  structures  and  functions  for  simulating  populations  of  macromolecules.  In  cgmdode,  a
macromolecule is represented as a rigid body with an arbitrary geometry and a distribution of interaction sites that
attract/repulse sites of neighbouring macromolecules. cgmdode also allow the user to define statistical physics
thermostats : they determine how the macromolecules positions fluctuate. In other words, cgmdode is a coarse-
grained molecular dynamics engine.

The fundamental principle behind cgmdode is that in order to build a coarse-grain model of a macromolecule, the
distribution of mass and the distribution of interacting sites can be decoupled and treated separately (this principle
is developped in the Concepts section). In addition, the general process of building a coarse-grained model can
also be separated between what is model-dependent and what is model-independent (this is also developped in
the Concepts section). For instance, the shape, mass, and distributions of interaction sites of your macromolecule
all depend on the model you came up with, on what you decided to include in your coarse-grained model or not.
Similarily,  the  nature  of  the  interaction  potentials  between  the  interaction  sites  you  defined  are  also  model-
dependent.  But  there are parts  of  your  simulation that  will  always  follow the same routine,  regardless of  the
interaction potentials  you chose or  the positions of  the interaction sites in your  macromolecule :  you have to
compute the force applied by one interaction site on each other site that it interacts with, you have to integrate the
laws of motion, compute collisions, and so on. cgmdode also allows the user to define mechanical joints between
rigid bodies, which was originally needed for models DNA developped by the M3V group. 

So what is the aim of cgmdode ? the aim of cgmdode is not to provide a collection of built-in interaction potentials
and thermostats (which are model-dependent), but rather to take care of everything that is model-independent.
Basically, you tell cgmdode the shape, mass, distribution and nature of interaction sites of your macromolecules,
the interaction potentials, the kind of thermostat you need -- but you have to write all of these components yourself !
--  and  cgmdode  takes  care  of  what  is  common  to  every  coarse-grained  simulation  :  calculating  forces  and
integrating the law of motions according to the components you wrote.

I.3 - Overview of cgmdode design
cgmdode is essentially a wrapper for Open Dynamics Engine with a builtin simulation loop that includes a generic
interface for  long-distance interaction computations and statistical  mechanics thermostats.  The following figure
compares the generic design of a simulation where a client program uses a physics engine (like ODE) with a
simulation where the client program uses cgmdode.



Fig. 1 - (left) an example of simulation where a client program uses a physics engine to model a system. (right) the
same simulation when using cgmdode as the interface with the physics engine.

I.4 - Should I use cgmdode ?
Numerous excellent coarse-grained molecular dynamics engines already exist (ESPResSO MD, OpenMD, 
LAMMPS, DLPOLY ...) and may also fit your needs if you are interested in using cgmdode. The answer to wether 
or not you should use cgmdode depends on several considerations.

• What kind of geometrical shapes do you need to simulate ? 
If you just need individual spheres, then cgmdode is probably not for you (but it might !). One particularity of
cgmdode is that objects can be of any shape (including trimeshes). However if you need cylinders, boxes, or
complex solid geometrical shapes, then cgmdode might suit your needs.

• Do you need articulated joints and holonomic constraints ? How do you want collisions between rigid 
bodies to be treated ?
In ODE, and therefore in cgmdode, collisions are treated as mechanical constraints and solved at each time step
to find a separating force between two colliding objects. If  you just need hard sphere potentials to recreate
excluded volume, you can have them in cgmdode if you write them yourself, but other libraries might have them
built-in and might be easier to use. However, in cgmdode, built-in mechanical joints are available. So you can
create ball-in-socket, universal, hinge, and many other joints very easily, which might not present in classical
coarse-graining libraries.

• Do you need full-atom models ?
If yes, then cgmdode is probably not made for you. The core principle of cgmdode is that the mass distribution
(i.e. distributions of atoms) of a molecule and its interaction sites (e.g. distribution of charges) can be decoupled
and coarse-grained separately without losing (too much) physical relevance. In full-atoms simulations, both the
distribution of atoms and charges (and other physico-chemical properties) are tightly coupled. We recommend
other tools with already-implemented force fields, potentials, and standard thermostats, as none are shipped with
cgmdode.

• Do you need a ready-to-use executable or do you need to an API ?
cgmdode does not provide scripting capabilities nor any out-of-the-box executable that produces output :  it's a
library. You have to write your own program and load your own parameters, using functions and data structures
provided by cgmdode and linking against it. cgmdode just makes the process of writing such a program easier. 



• Do  you  need  an  additional  layer  of  complexity  above  the  physics  of  your  system  ?      
If  yes,  you might be interested in cgmdode. It  was originally made for simulating biological  macromolecular
systems, that is, living systems. The API was therefore written with the idea in mind that cgmdode should provide
the  user  with  the  freedom to  implement  complex interaction  rules.  These  rules  can  even  possibly  change
throughout the evolution of the simulated system. This is why cgmdode gives you a generic interface for writing
thermostats and interaction potentials, and no builtin for these objects. cgmdode might be particularly suitable for
models where the evolution of the system does not solely depend on its initial conditions.

I.5 - License
cgmdode is licensed under the LGPL v3 (https://www.gnu.org/copyleft/lesser.html)

cgmdode uses Open Dynamics Engine (http://ode-wiki.org) which is released under the LGPL v2.

cgmdode uses SGLIB (http://http://sglib.sourceforge.net/).

cgmdode uses the GNU Scientific Library (https://www.gnu.org/software/gsl/) released under the GPL v3.



II - Installation

II.1 - Requirements
cgmdode is designed to run on a GNU/Linux-like distribution. To install it, you will need :

GNU Scientific Library >= 1.15

http://www.gnu.org/software/gsl/

ODE >= 0.13 

http://ode-wiki.org/

GNU build system (Autotools) and pkg-config.

They are generally available as the packages autotools-dev and pkg-config for major GNU/Linux distributions.

II.2 - Installation from sources
You will also require a C compiler (we recommend gcc).

You can get the sources from the Bitbucket repository : http://bitbucket.org/bcare/cgmdode-hg

Or in your terminal console if you have mercurial :

$> hg clone https://bitbucket.org/bcare/cgmdode-hg

Then in the source folder :

$> ./autogen.sh 
$> ./configure 
$> make 
$> make install 

./autogen.sh needs to be run once, generally just after having fetched the sources. It creates the autotools files 
required for installation depending on your system.

If you chose to install cgmdode system-wide, you will  need administrator rights for the make install command.

You can use ./configure --help to see what compilation and installation options are available.

http://bitbucket.org/bcare/cgmdode-hg
http://ode-wiki.org/
http://www.gnu.org/software/gsl/


III - Building a simulation
This section takes you through the basic steps of building a cgmdode simulation. This simple tutorial was written so
that  people  less  familiar  with  physics  engine  libraries,  statistical  physics  or  simulation  techniques should  still
understand how to use cgmdode. Therefore, we will not review here the advanced aspects of scientific rigid bodies
simulations, statistical  mechanics, or structural biology. This is a quick start  tutorial  that should be suitable for
anyone with a significant grasp of basic geometry and the C language (for example undergrad students). The most
advanced programming concept required for using cgmdode is function pointers.

What are the basic steps for creating a simulation with cgmdode ? First you will have to import cgmdode into your
code and set the compilation options in order to link against cgmdode. Then you may begin writing your simulation
program. In order to use cgmdode, your program will have to initialize cgmdode internal data. Next, you will have to
create simulated objects, or "physical objects", decorate these objects with interaction sites, and attribute them to
thermostats. Once these steps are done, you will be able to actually start the simulation loop and let cgmode take
care of the computations. 

III.1 - Importing cgmdode into your code
Include cgmdode depending on your installation options. For a standard installation, your C program should include
:

#include <cgmdode/cgmdode.h>

When compiling your program, you must specify to the compiler and the linker where to find cgmdode. For a
standard installation and gcc, it should looks like this in a terminal console :

$> gcc -I/installation_prefix/include  myprogram.c -o myprogram.out 
-L/installation_prefix/lib -lcgmdode -lode -lgsl -lgslcblas -lm

installation_prefix is the prefix you provided when you called ./configure during cgmdode installation. If you
did the standard installation ( ./configure ; make ; sudo make install ) without changing the default options,
the compilation command should be :

$> gcc myprogram.c -o myprogram.out  -lcgmdode -lode -lgsl -lgslcblas -lm

Note that the options will also depend on where the GNU Scientific Library and ODE are installed on your system. 

With the pkg-config command,  you can get all the required compilation options :

$> pkg-config --cflags cgmdode   # required include folders
$> pkg-config --libs cgmdode     # required libs

III.2 - cgmdode initialization sequence
In every program using cgmdode, you first need to execute a few steps in a precise order before actually creating
physical objects and defining interactions and thermostats. cgmdode first has to initialize its internal objects and
data according to the parameters you provide, then it has to initialize the physics engine, i.e. ODE. Simulation
parameters such as the simulation timestep, the size of the world, and parameters of the physics engine are stored
in a  simparameters data structure. cgmdode uses a context design pattern for the interface between the user
program and cgmdode internal data. This context is a simcontext data structure.

Every cgmdode simulation starts with creating a simparameters object and a simcontext object. The sequence
is :

• Allocate memory for a simcontext and a simparameters data structure.
• Create the simparameters structure with simparams_create.

◦ set the random number generator seed (see section IV.10.C ).
◦ set ODE-specific parameters (solver type, collision parameters, etc.)
◦ set the simulated medium parameters (size, boundary conditions, etc.)

• Create  the  simcontext object  and  attach  the  simparameters  object  to  the  simcontext  object  using
simcontext_create.



• Initialize the simulation context using simcontext_init.

Here is the code of a standard initialization sequence  :

/* 
Allocate memory for a simparameters struct. 

*/
simparameters * simparams = malloc(sizeof(*simparams));

/*
Allocate memory for a simcontext struct.

*/
simcontext * simcon = malloc(sizeof(*simcon));

/*
Initialize simparams :

*/
simparams_create(simparams);
simparams_set_seed(simparams, prng_seed);
simparams_set_ode_params(simparams,

qstep_nbiters,  /* nb of iterations for ODE quickstep solver */
qstep_w,        /* relaxation paramater for the quickstep solver */
erp_glob,       /* Error Reduction Parameter (ERP) */
cfm_glob,       /* Constraint Force Mixing parameter (CFM) */
ode_step,       /* simulation timestep */
lin_damp,       /* linear velocity damping */
ang_damp,       /* angular velocity damping */
max_corrvel,    /* maximum collision correction velocity */
max_avel,       /* maximum angular velocity */
max_contacts,   /* maximum collision contact points */
contact_mode,   /* collision parameters */
contact_mu,     /* contact friction coefficient (tangent) */
contact_mu2,    /*contact friction coefficient (normal) */
contact_bounce, /* collision restitution parameter */
contact_bounce_vel, /* minimum collision relative velocity threshold */
stepper_type,       /* solver type */
min_object_size,    /* minimum simulated object size */
max_object_size);   /* maximum simulated object size */

simparams_set_medium_params(simparams, 
boundary_type,    /* boundary conditions */
world_Lx,         /* world size along x axis */
world_Ly,         /* world size along y axis */
world_Lz,         /* world size along x axis */
max_grid_size,    /* maximum nb of cells in space discretization grid */
min_cell_size);   /* minimum size of cell in space discretization grid */

/*
Initialize simcon :

*/

simcontext_create(simcon, simparams, some_user_defined_data_pointer);
simcontext_init(simcon);

/*
That's it !
You are all set, you can now define 
physical objects, interaction classes,
thermostats and so on from here !

-- your  code below --
*/

This set of instructions is required for any program using cgmdode, and must be executed in this precise order (the
variable  values  may  vary  of  course).  You  may  want  to  refer  to  the  API  reference  (section  IV )  for  detailed
information about these functions' parameters, in particular for simparams_set_ode_params.



Please note that you must not modify simparams once initialization has been done.

An other important notice : parameters of physics simulations are generally scaled before being used in the 
program, so that their numerical values are comparable, and ideally around 1. It is up to the user to scale the 
physical quantities fed to cgmdode.

III.3 - Creating physical objects
Physical objects (physobject) are created by calling the function physobject_create. This function sets up the
internal representation of the physical object in cgmdode and attaches data to the specified simulation context.  A
physical object is the combination of two things : a rigid body (i.e. a mass distribution attached to a local referential)
and optionally a geometric shape determining the volume occupied by the physical object.

In cgmdode, a physical object can be either :

• Just a rigid body with no geometry or  volume 
( forces act on the object, but it can pass through other objects)

• Just a geometric shape with no mass distribution 
(an immobile obstacle unaffacted by external forces, but it collide with other objects)

• The combination of a rigid body (forces act on the object) and a geometric shape (it collides with other
objects).

In  either  cases,  before  creating  the  physical  object,  you  need  to  instantiate  an  intermediary  data  structure
determining the geometry data of the object. Even if you don't plan on allowing collisions for the object, and even if
the rigid body you want to create will be a punctual mass, the geometry data will be used by cgmdode to determine
the mass distribution of your object. So geometry data is always required.

So how do you instantiate the geometry data ? cgmdode provides a set of functions to create basic geometric
primitives plus the possibility to load triangular meshes (see API reference section IV.5).

For example, to create a box of size 10x5x2.5, you need to allocate memory for a geometry_data structure, then
initialize the geometry_data object with the sizes of the box.

geometry_data* box_geomdata = malloc(sizeof(*box_geomdata));

geomdata_create_box(box_geomdata,
10.0,      /* box size along the local referential x axis */ 
5.0,       /* box size along the local referential y axis */ 
2.5);      /* box size along the local referential z axis */ 

Then you need to allocate memory for the physobject that will represent your simulated box, and instantiate it
using the geometry data object for the box.

physobject*  pobj1 = malloc(sizeof(*pobj1));

physobject_create(pobj1, 
42,             /* the user-defined ID of the object */
box_geomdata,   /* the geometry_data of the object */
0x0,            /* some pointer to user-defined additional data (here none) */
simcon);        /* the simcontext object to which the object will be attached */

/*
Note: You can create several instances of a physobject 
using the same geometry_data object. 
Once the physobjects are created, the original geometry_data object 
is no longer required (it has been copied internally). 
You have to free the geometry_data object you created 
(but internal copies created by cgmdode will be freed 
by cgmdode, you don't have to worry about it).

*/
free(box_geomdata); /* it was copied into pobj1 */



At this stage, the box was just attached to the simulation context, and its internal representation initialized.  If you
want your box to react to forces applied onto it and obey Newton's laws,  you must initialize its dynamical properties
(as a body e.g. a mass distribution). The following code initializes the inertia matrix of an object so that its total
mass is equal to 13.0 mass units :

t_real box_mass = 13.0;
physobject_init_body(pobj1, box_mass, INIT_MASS_TOTAL);

/*
If instead of the total mass of the body,
you want to initialize the mass using the volume of the object
and a density (so that total_mass = Volume x density), you may use :

t_real box_density = 1.0 ;
physobject_init_body(pobj1, box_density, INIT_MASS_DENSITY);

The volume is automatically determined by cgmdode using the 
geometry_data you provided when creating the physobject.

*/

The function computes the inertia matrix based on the geometry data specified when physobject_create was 
called. 

Independently, if you want an object to be able to collide with other objects, and prevent these others objects to
penetrate it, you must initialize its geometrical properties (i.e. the volume occupied by the object that cannot be
occupied by another object) :

physobject_init_geometry(pobj1);

In cgmdode, a physical object can have a body and/or a geometry, but not necessarily both. This is determined by
whether or not you called physobject_init_body,  physobject_init_geometry, or both. But you have to call at
least one of the two.

If you initialize the geometry but not the dynamical body of an object, then externals forces will have no effect on
the object, but it will still collide with other moving objects (it will act as an immobile obstacle). 
If you initialize the dynamical body but not the geometry of an object, it will be able to move around and interact
with other objects through interaction sites, but it will never collide with anything (it will pass through other objects).
If you intialize both properties, then external forces will affect the object's trajectory, and so will collisions with other
objects.

Only after a physobject has been properly created and initialized can you assign arbitrary forces on it, or
set its position and velocity, or assign interaction sites and thermostats to it.

III.4 - Assigning interaction sites to physical objects
You can add punctual interaction sites to your physobjects by using the interaction_class / interaction_site
system. The first step is to create an interaction_class object. You must create one interaction_class object
for each type of interaction you need in your simulation. Only interaction sites belonging to the same interaction
class will interact.

III.4.A - Creating an interaction class

This object will store data common to all interaction_site objects that belong to the interaction_class : the
external parameters and the function that gives the amplitude of the interaction force between two interaction sites
of the same class depending on their distance. This force is assumed to be reciprocal : if two sites isite1 and isite2
interact with each other, then the amplitude of force applied by 2 on 1 is the opposite of the amplitude of the force
applied by 1 on 2.  By convention,  a negative  amplitude gives an attractive force (interaction sites are pulled
together), and a positive amplitude a repulsive force (sites are pushed away).



At each time step, for each pair of interaction sites of the same interaction class, cgmdode will  take the force
amplitude function you defined and use it to compute the interaction force between the pair of interaction sites, and
apply this  force on the bodies to which the interaction sites belong.  So you will  never  have to  call  the force
amplitude function yourself : cgmdode will do it for you automatically, but you do have to write it and tell cgmdode
where to find it with a function pointer.

Force amplitude function

So first  you need to create a force amplitude function.  This function gives the amplitude of  the force that  an
interaction site  isite1 applies to an interaction site  isite2 that belong to the same class as  isite1. All force
amplitude functions must have a specific prototype so that cgmdode can use them. In cgmdode you need to write
your own force amplitude function, there are no default function.

This prototype is :

t_real force_amplitude(t_real ,
interaction_site* ,
interaction_site* ,
interaction_class* );

Here is an example of force amplitude function :

t_real force_coulomb(t_real distance, interaction_site* isite1, interaction_site* isite2, 
interaction_class* iclass)
{

t_real force_amplitude_1_on_2 = 0.0;

/*
compute a force_amplitude that isite1
applies on isite2 depending on :
* the distance between isite1 and isite2 
* the parameters of the interaction sites and
* the parameters of the class these sites belong to

*/

force_amplitude_1_on_2 = (isite1->params[0]*isite2->params[0]) \
/ (iclass->params[0]*distance*distance) ;

return force_amplitude_1_on_2;
}

Within the code of your function, you have access to various data so that you can define precisely your interaction 
force. In particular :

data type description

distance t_real  the euclidean distance between the two interaction sites isite1 and isite2.

isite1->params

isite2->params
t_real* The parameters that are specific of the interaction site {1,2} 

(«internal» parameters) 

iclass->params t_real* The parameters that are specific of the interaction class to which the interaction 
sites belong («external» parameters)

In  the  example  function  above,  you  can  think  of  the  function  as  the  Coulomb  Force  interaction,  where  
isite1->params[0] is the electrical charge of isite1, isite2->params[0] is the electrical charge of isite2, and
iclass->params[0] is 4πε0.

In addition to this data, you also have access to the data that you set as the userdata field of both  isite1 and
isite2, as well as iclass, when you created them. You can use them in the force amplitude functions you define
to create any interaction behavior you desire. 



Note that you can also access the physobjects containing isite1 and isite2 within the amplitude function, using
the  isite1->physobj and  isite2->physobj pointers.  You can call  cgmdode functions on these physobjects,
although  you must not modifiy  their  position or  their  orientation.  A lot  of  behaviors  are  available  for  the
amplitude function, as you may for instance return 0.0 for the force amplitude, and decide to apply forces and/or
torques yourself. This allows for a lot more behaviors than simply applying forces on the interaction sites.

Interaction class initialization

To create an interaction_class object, you must use the interclass_create function. For example, to create
the Coulomb interaction force reusing the force amplitude function we defined earlier, and attach it to a  simcon
simulation context :

interaction_class* iclass_coulomb = malloc(sizeof(*iclass_coulomb));

t_real* coulomb_params = malloc(1*sizeof(*coulomb_params));
coulomb_params = 4.0 * 3.14159 * 8.85e-12 ; // 4*pi*eps_0

interclass_create(iclass_coulomb,
17, // int : user-defined id of the interaction class
coulomb_params, // t_real* : array of parameters of the class
1, // uint : nb of parameters in coulomb_params
&force_coulomb, // void* : function pointer to the force amplitude function
0x0, // void* : userdata pointer
simcon); // simcontext* : simulation context

free(coulomb_params); // no longer need as parameters are copied internally.

III.4.B - Adding interaction sites to a physobject

Once you have your interaction_class object, you can add interaction sites belonging to this interaction class to
a given physobject by invoking physobject_add_intersite :
/*
 parameters specific to the site
 just one : its electrical charge
/*
t_real* isite_params = malloc(1*sizeof(*isite_params)); 
isite_params[0] = 1e-2 ;
  
physobject_add_intersite(obj, // physobject* : the target physobject

0, // int : id of the interaction_site 
iclass_coulomb, // interaction_class* : interaction class of the site 
0., 0., 0., // t_real : x,y,z of the site in the local physobject referential
1, // uint : size of isite_params
isite_params, // t_real* : array containing the intersite parameters
0x0); // void* : userdata pointer

free(isite_params);

The  example  above  add  an  interaction  site  to  the  obj  physobject  that  corresponds  to  an  electrical  charge
(undergoing Coulomb forces applied by neighboring electrical  charges)  at  the center of  the physobject's  local
referential.

If you want to be able to remove / add interaction sites on-the-fly during the simulation, be sure to assign a unique
id for each interaction site that belongs to the same physobject since the function physobject_remove_intersite
doesn't work properly with duplicate ids. Note however that cgmdode completely ignores user-specified ids and
uses its own independent indexing method during simulation.
 

III.5 - Assigning physical objects to thermostats
In a typical statistical mechanics simulation, a thermostat ensures that the temperature of the simulated system,
that is the average kinetic energy of particles, remains constant. This is achieved by correcting the velocity of all
particles at each timestep, according to one among many available algorithms. cgmdode generalizes this concept
for coarse-grained objects. You can define rules that dictates the dynamics of each object at each timestep, i.e.
how the motion of the object will  change. For example, the rules could be "at each time step, slow down the
translational velocity of all objects proportionally to a friction coefficient, and apply a random force to each object".



The role of the thermostat_class / thermostat_data system is to provide you with a simple way to create any 
thermostat, and is similar to the interaction_class / interaction_site system. 

III.5.A - Creating a thermostat class

A thermostat class is mainly defined by the following components :

• a thermostat function that will be applied to each physobject assigned to the thermostat class at each time 
step

• external parameters that are common to all physobjects assigned to the same thermostat class.

In order to create a thermostat_class, you first need to define its thermostat function.

Thermostat function

All thermostat functions must match the following prototype :
void therm_function(physobject* , thermostat_data* , thermostat_class* );

At each time step, this function will be called for all physobjects assigned to the thermostat class. Your code will
never have to call this function itself explicitly, cgmdode will do it automatically. But you do have to write the function
and tell cgmdode where to find it with a function pointer. 

Here is an example of thermostat function :



void thermfunc_friction_fluctuation(physobject* pobj,
thermostat_data* thermdata,
thermostat_class* thermclass)

{
/*

This thermostat function simply applies
a correction force on pobj that depends on  
a translational drag and a translational fluctuation
(non-specific so defined in thermclass)
and also a coefficient defined specifically for pobj
(specific so defined in thermdata)

fetch pobj's current linear velocity :
lvel[0] : x velocity in world referential
lvel[1] : y velocity in world referential
lvel[2] : z velocity in world referential

*/
  t_real lvel[3];
  physobject_get_linear_vel(po,lvel);
  

/*
fetch the thermostat class parameters :

*/
t_real friction = thermclass->params[0];
t_real fluctuation = thermclass->params[1];

  

/*
fetch the coefficient that 
is specific of pobj (stored in thermdata)

*/
t_real coeff = thermdata->params[0];

/*
create a random vector
whose components are drawn
in a N(0,1) normal distribution

*/
t_real ranvec[3];
ranvec[0] = ran_gaussian(0.0, 1.0);
ranvec[1] = ran_gaussian(0.0, 1.0);
ranvec[2] = ran_gaussian(0.0, 1.0);

/*
apply the correction force to pobj

*/
physobject_add_force(pobj,

-friction*coeff*lvel[0] + coeff*fluctuation*ranvec[0],
-friction*coeff*lvel[1] + coeff*fluctuation*ranvec[1],
-friction*coeff*lvel[2] + coeff*fluctuation*ranvec[2]);

}

Within  the  function,  you  have  access  to  thermostat  parameters  that  are  specific  to  the  physobject  through
thermdata,  and  access  to  parameters  that  are  non-specific  and  common to  all  physobjects  assigned  to  the
thermostat class through thermclass.

Thermostat class initialization

Now that you have your thermostat function, you can create the thermostat class :



/*
non-specific parameters 
thermclass_params[0] : friction
thermclass_params[1] : fluctuation

*/
t_real* thermclass_params = malloc(2*sizeof(*thermclass_params));
thermclass_params[0] =1.0;
thermclass_params[1] =2.0;

thermostat_class* example_therm = malloc(sizeof(*example_therm));
thermclass_create(example_therm,

21, // int : thermostat class user-defined id
&thermfunc_friction_fluctuation, // void* : function pointer 
2, // uint : nb of thermclass params
thermclass_params, // t_real* : thermostat class params
0x0, // void* : userdata pointer
simcon); // simcontext* : simulation context

free(thermclass_params); // copied internally, no longer needed.

III.5.B - Setting a physobject's thermostat data

You can assign a pobj physobject to a thermostat class thermclass_example by using 
physobject_set_thermdata :

/*
thermostat parameters that
are specific of pobj 

*/
t_real* thermdata_params = malloc(1*sizeof(*thermdata_params));
thermdata_params[0] = 0.5; /* coeff in thermfunc_friction_fluctuation  */

physobject_set_thermdata(pobj, /* physobject* : the object                    */
thermclass_example, /* thermostat_class* : destination thermclass  */
1, /* uint : nb of thermdata params             */  
thermdata_params, /* t_real* : thermdata params                  */ 
0x0); /* void* : userdata pointer                    */

free(thermdata_params); /* copied internally, no longer needed. */

III.6 - Linking physical objects using mechanical joints.
cgmdode provides a way to bind physobjects with mechanical joints. These joints restrict the relative motion of two
connected physobjects. Depending on the joint type and parameters, cgmdode (through ODE) will automatically
apply  the  corrections  so  that  the  motion  of  connected  physobjects  satisfies  the  constraint  imposed  by  their
connecting joint. Such joints are manipulated in cgmdode using articulation objects. The complete specifications
are detailed in section IV.9. In this example, we will attach two already existing cylindric physobjects with a hinge
joint parallel to their main axis.

III.6.A - Creating an articulation between two physobjects

Every joint you want to create requires its own  articulation object. The two connected physobjects must be
properly created and placed in the correct relative orientation / postion before you attach them with an articulation.
Here we will demonstrate how to create two cylinders linked by a hinge. The two cylinders will be placed on top of
each other, their flat faces touching and their main axes aligned. The hinge will be set so that the two cylinders will
remain parallel and their relative distance will stay the same, but they will be able to rotate freely around their
common aligned axis.

So let's first create an articulation named hinge_art into the simcon simulation context :



articulation* hinge_art = malloc(sizeof(*hinge_art));

articulation_create(hinge_art,       /* articulation* : the articulation object */
1,      /* int : user-defined articulation id      */ 
JOINT_HINGE,     /* int : cgmdode joint type                */
0x0,             /* void* : callback function pointer       */
0x0,             /* void* : userdata pointer                */
simcon);         /* simcontext* : simulation context        */

The callback function pointer lets you set a callback to a function that will be called at each timestep for this 
articulation. See API reference section IV.9 for more details. We don't need one here.

The next step is to attach the physobjects with the articulation. It  must be done before setting the articulation
parameters. In the following snippet we will create to cylinders as physobjects and attach them with hinge_art.

So let's create the cylinders :

t_real cylinder_radius = 1.0 ;
t_real cylinder_length = 5.0 ;
t_real cylinder_mass = 1.0 ;

/*
Creates two identical cylinders. 
We'll use the same geometry_data
for the cylinders.

*/

geometry_data* cylinder_shape = malloc(sizeof(*cylinder_shape));
geomdata_create_cylinder(cylinder_shape, cylinder_radius, cylinder_length);

physobject* cylinder_1 = malloc(sizeof(*cylinder_1));
physobject* cylinder_2 = malloc(sizeof(*cylinder_2));

physobject_create(cylinder_1, 1, cylinder_shape, 0x0, simcon);
physobject_create(cylinder_2, 2, cylinder_shape, 0x0, simcon);

/*
For the joint to work, the cylinders' dynamical properties
must be initialized :

*/
physobject_init_body(cylinder_1, cylinder_mass, INIT_MASS_TOTAL);
physobject_init_body(cylinder_2, cylinder_mass, INIT_MASS_TOTAL);

Then let's place them in the right orientation and position and bind them with the hinge :



/*
We want to create a hinge joint between these two objects.
We will set the hinge so that the two cylinders main axes
are parallel (their local z-axis).
We will place cylinder_1 on top of cylinder_2,
and make the joint so that they freely rotate 
around their main axis.

By default, when cgmdode creates a cylinder,
its main axis is the local z-axis of the physobject reference frame,
and it is aligned with the z-axis of the world reference frame.
The origin of the local frame of reference is
at the center of the cylinder.

So if we set the position of cylinder_1 at (0,0,0),
and the position of cylinder_2 at (0,0,cylinder_length),
they will be in the correct relative orientation and position.

*/

physobject_set_position(cylinder_1, 0.0 , 0.0 , 0.0);
physobject_set_position(cylinder_2, 0.0 , 0.0 , cylinder_length);

/*
We attach the physobjects :

*/

articulation_attach_physobjects(hinge_art, cylinder_1, cylinder_2);

III.6.B - Setting articulation parameters

Now we need to set the joint parameters. A hinge joint requires two parameters : the coordinates of an anchor, and
the vector determining the axis of free rotation. 

The anchor is given as an (x,y,z) world coordinates. When it is set, cgmdode computes the coordinates of this
same global anchor point in the local reference frames of both physobjects. When the joint is created, the distance
between the two resulting local anchor points is 0. cgmdode will make sure during the simulation that this distance
remains 0 by applying corrections on the physobjects trajectory.

The hinge axis is also given in world coordinates. These two parameters combined will create a hinge at the anchor
point, aligned along the hinge axis, between the two cylinders.

How do you set joint parameters in cgmdode ? Although there are several types of joints each having different
kinds of parameters, a single cgmdode function fulfill this role : articulation_set_params. See section IV.9.C on
how to use it. The first argument is the articulation. The second is a constant stating the kind of parameter, usually
named  ART_PARAM_<parameter name>. The third argument is an array of  t_real containing the values of the
parameter to be set. See API reference section IV.9.C for more details. 

For our example, this gives :
/* the anchor point in world coords */
t_real anchor_coords[3];
anchor_coords[0] = 0.0 ; // x
anchor_coords[1] = 0.0 ; // y
anchor_coords[2] = 2.5 ; // z

/* the hinge axis vector */
t_real hinge_axis[3]; 
hinge_axis[0] = 0.0 ;  // x
hinge_axis[1] = 0.0 ;  // y
hinge_axis[2] = 1.0 ;  // z

articulation_set_params(hinge_art, ART_PARAM_ANCHOR, anchor_coords);
articulation_set_params(hinge_art, ART_PARAM_AXIS, hinge_axis);



III.7 - Running the simulation
Once you have created all the physical objects you need, set their interaction sites, assigned them to thermostat
classes, and connected them with articulations, you can advance the simulation by calling :

simulation_step(simcon);

That's it. Time will be incremented by the value ode_step you specified, interactions will be computed and resulting
forces  applied,  thermostats  will  be  applied,  collisions  will  be  detected  and  the  trajectories  of  all  physobjects
corrected accordingly. Constraints imposed by articulations will also be solved and physobjects trajectories affected
accordingly.  If  you required periodic boundary conditions,  physobjects positions will  be updated and corrected
accordingly. 

Between two time steps you can :

• modify physobjects positions.

• modify physobjects velocities (although ODE manual recommends not to do it)

• add and/or remove articulations between physobjects.

• add and/or remove physobjects from the simulations

• add and/or remove interaction sites

• apply forces and torques on physobjects.

• forbid / allow collisions between two specific individual physobjects 

• forbid / allow interactions between two specific individual physobjects

If you destroy an interaction class, you must first be sure to destroy all interaction sites that belong to this 
class. Same thing for thermostat classes and thermostat data.

Also remember that simparameters must not be modified after the initialization sequence.

III.8 - Cleaning up

Most cgmdode data type has its destructor. You have to free the memory you allocated :

• you manage the memory for physobject, geometry_data, thermostat_class, interaction_class, 
articulation, simcontext and simparameters objects.

• cgmdode manages the memory for interaction_site and thermostat_data objects.

If you want to clean up everything at once, just call :

simcontext_destroy(simcon);
simparams_destroy(simparams);

free(simcon);
free(simparams);

The order matters ! You must not destroy simparams before simcon. The main reason behind this is that you
might want to reuse the same simparameters object for another, fresh simcontext object, so there is no reason to
destroy  simparams when destroy  simcon.  The other reason is that  simcontext_destroy needs  simparams to
know what needs to be cleaned.



IV - API Reference

IV.1 - Basic data types
The following types are wrappers for ODE data types and/or directly imported from ODE that are used in cgmdode :

#define t_real dReal
/* 

dReal 
the floating point type of your ODE installation,
either float or double) 

*/

#define t_matrix3x3 dMatrix3
/*

dMatrix3 is dReal[3*4]
row-major order, 
the last column is ignored and is here for alignment

*/

#define t_vec3 dVector3
/*

dVector3 is the ODE type dReal[4],
the last cell is here for alignment

*/

/*
dMass : mass data for ODE bodies
(directly imported from ODE)

*/
typedef struct dMass 
{

dReal mass; //total mass of the rigid body
dVector3 c; //center of gravity position in body frame (x,y,z)
dMatrix3 I; //3x3 inertia tensor in body frame, about POR

}dMass;

typedef dReal[4] dQuaternion ;
/* 

quaternion (w,x,y,z) 
defined in ODE

*/

IV.2 - Complex data types
The  internal  fields  of  cgmdode  objects  should  generally  not  be  accessed  or  modified  directly,  apart  a  few
exceptions described below that may be useful.  There are other complex data structures used internally,  they
should never be used by the user. 

The complete structure types are declared in the <install prefix>/include/cgmdode/cgmdode_simobjects.h
headers. 

IV.2.A - Stored user-defined ids and data

The physobject, articulation, interaction_class, interaction_site, and thermostat_class structures all 
have a int id field and a void* userdata field that can be set by the user when the object is created. These fields 
also can be directly read and written. The id field of an interaction_site should be treated carefully though : 
when the user removes an interaction site with the function physobject_remove_intersite, cgmdode searches 
for the interaction site using the id.

The simcontext structure and the simparameters structure have a userdata field that can be set by the user 
when they are created, and can also be directly modified or read during the simulation.



IV.2.B - Encapsulated ODE objects

The field  b_id of a  physobject structure is the  dBodyID of the physobject.  The field  g_id of the  physobject
structure corresponds to its dGeomID. They are 0 if the ODE body / geom initialization was not required by the user
(see section IV.6.B). 

Important : the proper functioning of cgmdode requires that the userdata field of dGeomID g_id is not 
modified during the simulation. We recommend to use the userdata field of the physobject structure 
instead.

The simcontext structure field world_id is a dWorldID giving access to ODE's world object. The simcontext 
structure field space_id is a dSpaceID giving access to ODE's collision space object.

IV.3 - Simparameters functions
Simulation parameters are stored by cgmdode using a simparameters object.

IV.3.A - Creation / destruction

void simparams_create(simparameters* simparams);

void simparams_destroy(simparameters* simparams);

IV.3.B - Setting engine parameters

void simparams_set_seed(simparameters* simparams, unsigned long seed);

simparams_set_seed saves  the  user-defined  seed that  will  be  used  to  initialize  the  pseudo random number
generator (PRNG) shipped with cgmdode (see section IV.10.C ). This function does not initialize the PRNG, the
function  simcontext_init does  it.  This  means  that  PRNG-related  functions  are  only  available  after
simcontext_init has been called.

void simparams_set_ode_params(simparameters* simparams,
int qstep_nbiters,
t_real qstep_w,
t_real erp_glob,
t_real cfm_glob,
t_real ode_step,
t_real lin_damp,
t_real ang_damp,
t_real max_corrvel,
t_real max_avel,
int max_contacts,
int contact_mode,
t_real contact_mu,
t_real contact_mu2,
t_real contact_bounce,
t_real contact_bounce_vel,
int stepper_type,
t_real min_object_size,
t_real max_object_size);

simparams_set_ode_params sets the parameters of ODE, the physics engine used by cgmdode. All parameters 
must be provided, even if they will not be used given the user-defined options (such as the stepper type or the 
contact mode). 

Here is a table giving the type, description, and range of all parameters :



type and name description range

int qstep_nbiters number of ODE's SOR constraint solver iterations 
(used if stepper_type == USER_STEP_QUICK) >= 1

t_real qstep_w relaxation parameter for ODE's SOR constraint solver
(used if stepper_type == USER_STEP_QUICK) > 1.0 

t_real erp_glob Error reduction parameter. See ODE User Manual, 
rule of thumb : between 0.2 and 0.8. [ 0.0 ; 1.0 ]

t_real cfm_glob
Constraint force mixing parameter. see ODE User 
Manual, rule of thumb : 1e-10 if double precision float,
1e-5 if single precision float.

>= 0.0

t_real ode_step time step of ODE numerical integrator for motion. > 0.0

t_real lin_damp Linear damping. All linear velocities will be multiplied 
by (1 - lin_damp) at each time step. real

t_real ang_damp Angular damping. Same as linear damping but with 
angular velocities.

real

t_real max_corrvel Maximum velocity that contacts (collisions) are able to
generate on objects.

>= 0.0

t_real max_avel Maximum angular velocity that objects can reach. >= 0.0

int max_contacts Maximum number of contact joints that two colliding 
objects can generate.

>= 0

int contact_mode Physical approximation used when handling 
collisions.

!= 0, see * below

t_real contact_mu Friction coefficient on the tangent direction when two 
objects are colliding.

>= 0.0

t_real contact_mu2
Friction coefficient on the normal direction when two 
objects are colliding (only used if dContactMu2 is set 
in contact_mode)

>= 0.0

t_real contact_bounce Restitution parameter for bouncy collisions. >= 0.0

t_real contact_bounce_vel Relative velocity above which two colliding objects wil 
bounce away from each other. 

>= 0.0

int stepper_type Type of constraint solver and numerical integrator 
used in ODE.

!= 0, see ** below

t_real min_object_size Size of the smallest object you plan on simulating. > 0.0 ***

t_real max_object_size Size of the biggest object you plan on simulating. > min_object_size ***

* must a combination of at least one among : dContactMu2, dContactFDir1, dContactBounce, 
dContactSoftERP, dContactSoftCFM, dContactMotion1, dContactMotion2, dContactSlip1, 
dContactSlip2, dContactApprox1_1, dContactApprox1_2, dContactApprox1. See ODE User Manual for 
details. A good minimal working default is dContactBounce (elastic collisions depending on parameter 
contact_bounce).

** must be either USER_STEP_QUICK (cgmdode will use ODE's SOR constraint solver with dWorldQuickStep) or 
USER_STEP_NORMAL (cgmdode will use ODE's LCP constraint solver with dWorldStep). See ODE User Manual for 
details on these methods.

*** In cgmdode, collision detection is done by ODE using a mutli-resolution hash table (see Hash Space in ODE 
Manual). min_object_size and max_object_size are respectively used to set the minimum hash level and 
maximum hash level of the hash table. You must ensure that all colliding physobjects you plan on simulating will 
have sizes between min_object_size and max_object_size.



IV.3.C - Settings medium parameters

void simparams_set_medium_params(simparameters* simparams, 
 int boundary_type, 
 t_real world_Lx, 
 t_real world_Ly, 
 t_real world_Lz,
 unsigned int max_grid_size,
 t_real min_cell_size);

simparams_set_medium_params sets the parameters of the medium in which your simulation takes place. Here are
the parameter descriptions and expected values :

parameter description range

int boundary_type
The type of boundary condition. If you 
choose periodic boundary conditions, you 
should avoid using articulations.

INIT_BOUNDARY_PERIODIC or 
INIT_BOUNDARY_NONE or 
INIT_BOUNDARY_WALLS

t_real world_Lx Size of medium along the x axis. > 0.0

t_real world_Ly Size of medium along the y axis. > 0.0

t_real world_Lz Size of medium along the z axis. > 0.0

unsigned int max_grid_size Maximum width of the spatial grid used. >= 2

t_real min_cell_size Minimum size that cgmdode can use for a 
spatal grid cell.

>= 0.0

cgmdode discretizes  the  medium into  a  grid  of  rectangular  cells  in  which  physobjects  will  be  placed.   Each
physobject  is  assigned  a  cell  of  the  spatial  grid  that  corresponds  to  where  it  is  located.  When  calling
simparams_set_medium_params, the function will compute automatically the largest size of the spatial grid  so that
it's smaller or equal to max_grid_size (max_grid_size3 cells total), but with cells of size at least min_cell_size. In
order to compute the interaction forces acting on a given physobject pobj, cgmdode looks for interaction sites of
other physobjects located in the 26 neighbouring cells (+1 / -1 on each direction x,y,z ) + the cell  pobj currently
occupies. The consequence is that interaction sites of two physobjects only see each other if the physobjects are in
adjacent cells.

Therefore you must choose min_cell_size and max_grid_size depending on two factors : 
• the maximum range for any interaction you want to create in your simulation (max_inter_range) 
• the size of the biggest object you need to simulate (max_obj_size).

Setting min_cell_size > 2 x (max_inter_range + max_obj_size) guarantees that all pairs of interaction sites
located closer than max_inter_range will be treated.

If you don't want to set an effective maximum range for interactions, then you need to set max_grid_size to 2 : all
available space will  be discretized in 2x2x2 cells,  which are all  adjacent to each other.  That way all  possible
interactions are guaranteed to be treated at each time step.

You  can  impose  the  spatial  grid  size  by  setting  min_cell_size at  0.0.  By  doing  so,  the  function  will  take
max_grid_size as the spatial grid size.

This spatial  grid is used for computing interactions and virtual  images when periodic boundary conditions are
required. It is not used for collision detection.

See section IV.10.D for important notes on periodic boundary conditions and reflective boundary conditions.

IV.4 - Simcontext functions

IV.4.A - Creation / destruction / Initialization

void simcontext_create(simcontext* simcon, simparameters* simparams, void* userdata);

void simcontext_destroy(simcontext* simcon);

Memory for simcon and simparams must be allocated beforehand. simparams must have been created and filled 



with parameters. userdata lets the user attach arbitrary data to simcon. 

void simcontext_init(simcontext* simcon);

IV.4.B - Simulation execution

void simulation_step(simcontext* simcon);

simulation_step advances the simulation by a time increment ode_step specified when 
simparams_set_ode_params was called.

IV.4.C - Convenience functions

interaction_class* simcontext_get_from_userid_interclass(simcontext* simcon, int userid);

This function returns the pointer to the interaction class that was given the id userid by the user.

IV.5 - Geometry data functions

IV.5.A - Simple geometric primitives

void geomdata_create_point(geometry_data* gdata);

void geomdata_create_sphere(geometry_data* gdata, t_real radius);

void geomdata_create_box(geometry_data* gdata, t_real lx, t_real ly, t_real lz);

void geomdata_create_cylinder(geometry_data* gdata, t_real radius, t_real length);

void geomdata_create_plane(geometry_data* gdata, 
t_real a, t_real b, t_real c, t_real d);

void geomdata_destroy(geometry_data* gdata)

gdata must be already allocated by the user. These functions initialize  gdata properly. It can be then passed to
physobject_create. All shapes are created so that the origin of the local referential is the center of mass of the
corresponding volume as if  it  were a  homogeneous solid  body.  geomdata_create_cylinder creates a z-axis
aligned  cylinder  by  default  (if  you  want  to  change  the  axis,  you  will  need  to  rotate  the  physobject).
geomdata_create_plane creates geometry data for a plane of equation a*x + b*y + c*z = d in world coordinates.

IV.5.B - Trimesh geometry

These functions allow the creation of trimesh collision shapes.

void geomdata_create_trimesh(geometry_data* gdata,
t_real* vertices_coords, 
unsigned int nb_vertices, 
unsigned int* faces_indices, 
unsigned int nb_faces);

geomdata_create_trimesh creates the internal representation for a trimesh given a set of vertices and triplets of
indices describing the faces. The parameters must follow this scheme :

vertices_coords is an array of t_real storing the coordinates of each vertex : [ v1_x, v1_y, v1_z, ..., vi_x, vi_y,
vi_z, ... ] . So coordinates x,y,z of the vertex i are respectively given by :

 vertices_coords[3*i+0] // (= coord x of vertex i)
 vertices_coords[3*i+1] // (= coord y of vertex i)
 vertices_coords[3*i+2] // (= coord z of vertex i)

faces_indices is an array of unsigned int giving the indices of vertices of a given face. So each face j is stored as
the triplet : 

faces_indices[3*j+0] // (= index of vertex m)
faces_indices[3*j+1] // (= index of vertex n)
faces_indices[3*j+2] // (= index of vertex p)

Each item of the triplet contains the index of one vertex constituting the face (corresponding to the index i in the
vertices_coords array). 



cgmdode outsources the computation the trimesh mass properties to ODE. This computation only works if all of the
normals to the trimesh's faces point outward the trimesh. The orientation of the face (outward/inward the trimesh) is
determined by the order of the vertices indices in the face triplet. 

Within a face triplet, vertex indices must be ordered following the counter-clockwise convention., aka the
Right Hand Rule :

Let M, N and P be the vector coordinates of the vertices m, n and p. MN is the vector from M to N and MP the
vector from M to P. By cgmdode convetion, the vector given by the cross product MN x MP points towards the
outside of the face.

void geomdata_trimesh_center_on_com(geometry_data* gdata, t_real* translation);

void geomdata_trimesh_align_principal_axes(geometry_data* gdata, 
t_matrix3x3 rotation_matrix);

geomdata_trimesh_center_on_com computes  the  coordinates  of  the  center  of  mass  of  the  trimesh  (as  if  it
represents a solid object with homogeneous mass density), and then translates the trimesh vertices so that the
center of mass is at (0,0,0).

You can only use geomdata_trimesh_align_principal_axes on trimeshes that are already centered on their
center of mass (i.e. you should call geomdata_trimesh_center_on_com beforehand). 

geomdata_trimesh_align_principal_axes computes the inertia moments of the trimesh (as if it  represents a
solid object with homogeneous mass density), and then rotates the trimesh vertices so that the inertia moments are
aligned on the x, y and z axes. The moment of inertia tensor of the resulting physobject body will therefore be a
diagonal matrix (actually with close-to-zero off-diagonal terms).

geomdata_trimesh_align_principal_axes writes the rotation matrix it  used to rotate the original trimesh into
rotation_matrix, so the user can examine it afterwards. 

IV.5.C - Utility functions

void geomdata_copy(geometry_data* from, geometry_data* to);

t_real geomdata_distance_of_farthest_point(geometry_data* geomdata);

void geomdata_scale_lengths(geometry_data* geomdata, t_real scale_l);

geomdata_copy creates an independent copy of a geometry data (memory must be allocated for to).

geomdata_distance_of_farthest_point returns the euclidean distance of the farthest point from the local origin
contained in the volume defined by a geometry data (note that it also works for trimeshes).

geomdata_scale_lengths scales the geometry data by scale_l in place (i.e. it divides all lengths of the geometry
data by scale_l).

IV.6 - Physobject functions

IV.6.A - Creation / destruction

void physobject_create(physobject* physobj, 
int id, 
geometry_data* geomdata, 
void* userdata, 
simcontext* simcon); 

void physobject_destroy(physobject* physobj);

Memory for physobj must be allocated before calling  physobject_create (and freed when no longer needed).
geomdata must be an already allocated and properly created geometry data  object.  id is a user-defined id not
used by cgmdode internally. userdata is a pointer to user-defined data, a null pointer can be passed if this is not
required.



IV.6.B - Initializing dynamical et geometrical properties

void physobject_init_body(physobject* physobj, t_real mass_val, int init_type); 

void physobject_init_body_custom_mass(physobject* physobj, dMass * custom_mass); 

physobject_init_body initializes internal objects representing the mass distribution of the physical object. It uses
the geometry data provided when  physobject_create was called. If  init_type is  INIT_MASS_TOTAL, then the
function  assigns  an  inertia  matrix  to  the  object  so  that  its  total  mass  equals  mass_val.  If  init_type is
INIT_MASS_DENSITY, then the functions assigns an inertia matrix to the object so that its density equals mass_val. 

physobject_init_body_custom_mass let the user assign a custom, arbitrary dMass object to the physobject (you
may refer to ODE manual to know how to build a valid ODE dMass object.)

void physobject_init_geometry(physobject* physobj); 

physobject_init_geometry initializes internal collision objects representing the geometry of physobj as specified
by the geometry data provided when created with physobject_create.

IV.6.C - Getting position, orientation, velocities and mass

const t_real* physobject_get_position(physobject* physobj);

const t_real* physobject_get_rotation_matrix(physobject* physobj);

These functions return a pointer to the internal objects storing the physobject* position and rotation matrix, so 
they cannot not be modified.

void physobject_get_quaternion(physobject* physobj, t_real* res); 

void physobject_get_linear_vel(physobject* physobj, t_real* res); 

void physobject_get_angular_vel(physobject* physobj, t_real* res);

void physobject_get_angular_vel_relative(physobject* physobj, t_real* res); 

res must be properly allocated beforehand, as these functions copy the quaternion /  linear velocity 3-vector /
angular velocity 3-vector into it.  physobject_get_angular_vel_relative returns the angular velocity expressed
in the physobject frame of reference.

void physobject_get_mass(physobject* physobj, dMass * res_mass); 

physobject_get_mass copies the dMass object associated with the physobject* into res_mass, which must be 
allocated beforehand.

IV.6.D - Transforming coordinates

void physobject_from_world_pos_to_relative(physobject* physobj, t_real px, 
t_real py, t_real pz, t_real* res); 

void physobject_from_relative_pos_to_world(physobject* physobj, t_real px, t_real py, t_real 
pz, t_real* res); 

These functions transform the coordinates of a point between the world referential and a physobject local 
referential.

void physobject_from_world_vector_to_relative(physobject*  physobj, t_real vx, 
t_real vy, t_real vz, t_real* res); 

void physobject_from_relative_vector_to_world(physobject*  physobj, t_real vx, 
t_real vy, t_real vz, t_real* res); 

These functions transform a vector expressed in the world referential to a physobject local referential (and 
reciprocally).
 



IV.6.E - Setting position, orientation, velocities

void physobject_set_position(physobject* physobj, t_real x, t_real y, t_real z);

void physobject_set_quaternion(physobject* physobj, dQuaternion q); 

void physobject_set_rotation_matrix(physobject* physobj, const t_matrix3x3 R); 

void physobject_set_linear_vel(physobject* physobj, 
t_real lvel_x, 
t_real lvel_y,
t_real lvel_z);

void physobject_set_angular_vel(physobject* physobj,  
t_real avel_x,
t_real avel_y,
t_real avel_z);

Most of these functions are in fact wrappers for ODE's rigid body functions and have the same form. They do 
handle the special cases of physobjects without a body or without a geometry. Velocity setters have no effect on 
bodiless physobjects.

IV.6.F - Adding forces and torques

void physobject_add_force(physobject* physobj, t_real fx, t_real fy,
t_real fz); 
void physobject_add_relative_force(physobject* physobj, t_real fx, t_real fy, 
t_real fz);

void physobject_add_force_at_relative_point(physobject* physobj, 
t_real fx, t_real fy, t_real fz,
t_real px, t_real py, t_real pz);

void physobject_add_force_at_point(physobject* physobj, 
t_real fx, t_real fy, t_real fz,
t_real px, t_real py, t_real pz); 

void physobject_add_relative_force_at_relative_point(physobject* physobj, 
t_real fx, t_real fy, t_real fz,  
t_real px, t_real py, t_real pz); 

void physobject_add_relative_force_at_point(physobject* physobj, 
t_real fx, t_real fy, t_real fz,
t_real px, t_real py, t_real pz); 

void physobject_add_torque(physobject* physobj, t_real tx, t_real ty, t_real tz); 

void physobject_add_relative_torque(physobject* physobj, t_real tx, t_real ty, t_real tz);

In these function names the prefix relative means that the coordinates/components are expressed in the body
local referential, otherwise they are expressed in the world referential (this applies to point as well as force and
torque). These functions have no effect on bodiless physobjects.

IV.6.G - Adding and removing interaction sites

void physobject_add_intersite(physobject*  physobj,
 int id,
 interaction_class* interclass,
 t_real relcx, t_real relcy, t_real relcz,
 unsigned int nb_params,
 t_real* params, 
 void* userdata); 

int physobject_remove_intersite(physobject* physobj, int id);

void physobject_destroy_all_intersites(physobject* physobj); 



physobject_add_intersite adds an interaction site  of  the specified  interclass interaction_class,  at  the
coordinates (relcx,  relcy,  relcz)  expressed in the body local referential.  id must be specified and must be
unique : in a given physobject, two interaction sites must not have the same  id value. The function copies the
contents of params (which must be a t_real[nb_params] array) internally, so the original params array is not longer
required once the interaction site has been created.

physobject_remove_intersite destroys all internal data related to the interaction site identified by id belonging
to physobj. The function returns 0 if no interaction site with the specified id was found, a non-null value otherwise.
If several interaction sites have the same id within physobj, one of them is removed (but it cannot be determined
which one). This function does not delete data pointed by userdata.

physobject_destroy_all_intersites destroys all the interaction sites of a physobject.

IV.6.H - Setting thermostat data

void physobject_set_thermdata(physobject* physobj, 
thermostat_class* thermclass,
unsigned int nb_params,
t_real* params,
void* userdata); 

physobject_set_thermdata sets  the  thermostat  data  associated  with  physobj.  The  contents  of  the
t_real[nb_params]  array  params will  be copied internally so that  params can be freed after having called the
function. If previous thermostat data was already assigned to physobj, it will be lost.

IV.6.I - Detailed collision / interaction management

These functions will enable/disable the effects of collisions between two physobjects, or between one physobjects
and  every  other  one  (including  world  boundaries).  All  collisions  are  enabled  by  default,  so
physobject_allow_collision_between is not required when creating new physobjects. 

void physobject_forbid_collision_between(physobject* pobj1, physobject* pobj2);

void physobject_allow_collision_between(physobject* pobj1, physobject* pobj2); 

void physobject_allow_all_collisions(physobject* physobj); 

Note that if you specified a custom collision callback (see section IV.10.B), cgmdode will not know whether
a collision should be ignored of treated. Therefore these functions will have no effect if you use a custom
collision callback.

void physobject_forbid_interaction_between(physobject* pobj1, physobject* pobj2); 

void physobject_allow_interaction_between(physobject* pobj1, physobject* pobj2); 

void physobject_allow_all_interactions(physobject* physobj);

Same but for interactions (defined by interaction sites / interaction classes).

IV.7 - Interaction class functions

IV.7.A - Creation / destruction

void interclass_create(interaction_class* interclass,
int id,
t_real* params,
unsigned int nb_params,
void* interaction_amplitude,
void* userdata,
simcontext* simcon);

void interclass_destroy(interaction_class* interclass);



params is an array of  t_real containing external parameters : parameters that are common to every interaction
sites of this class.  nb_params gives the number of such parameters. These are copied internally, so the  params
array can be freed right after avec created the interaction class object.

IV.7.B - Interaction amplitude function

In order to create an interaction_class object, you also need to provide a pointer interaction_amplitude to a
function that will give the amplitude of the interaction force between two interaction sites of the same class. This
function must have the prototype : 

t_real interaction_amplitude(t_real , 
interaction_site* ,
interaction_site* ,
interaction_class* );

You have to write the code of this function yourself. This function is called whenever two physobjects containing
interaction sites of  this class are close (the maximum distance is  determined by  min_cell_size,  see section
IV.3.C). This function must return the amplitude of the force that will be applied by cgmdode on both interacting
physobjects. The force will be applied on the rigid bodies at the coordinate of the interaction sites (not at the center
of  mass).  The  force  applied  on  the  first  physobject  will  be  the  opposite  of  the  force  applied  on  the  second
physobject. It's up to you to write the code that gives the amplitude of the force.

Inside the interaction amplitude function, you have access to the function arguments determined by the prototype  : 

t_real distance : the euclidean distance between interaction sites 
when the function was called

interaction_site* isite1 the interaction_site object on the first physobject

interaction_site* isite2 the interaction_site object on the first physobject

interaction_class* iclass the interaction_class object corresponding to isite1
and isite2

Through these arguments, you have indirectly access to :

isite1->physobj and 
isite2->physobj the physobjects containing the interaction sites

iclass->simcon the whole simcontext object

iclass->params the external parameters of the interaction 
(e.g. physical constants, etc.)

isite1->params and
isite2->params

the internal parameters of the interaction (e.g. 
charge, polarity, etc.)

Additionnally, you have access to any userdata pointer you specified when creating any of these objects. Finally,
you can call cgmdode functions inside the interaction_amplitude code, provided that you do not modify the
position of the physobjects and that you do not destroy the interaction sites. Note however that you may do
so between two simulation_step calls.

Therefore, you can use all these elements inside the interaction_amplitude function to precisely describe the
behavior you expect when two physobjects interacts with eachother through interaction sites. For instance, you
may decide that  interaction_amplitude always return 0.0, so no force will be applied on the physobjects, but
instead the function might itself apply a torque on the physobjects, set a trigger, modify user-specified data, change
the physobjects masses, etc.



IV.8 - Thermostat class functions

IV.8.A - Creation / destruction

void thermclass_create(thermostat_class* thermclass,
int id,
void* therm_function,
unsigned int nb_params,
t_real* params,
void* userdata,
simcontext* simcon);

void thermclass_destroy(thermostat_class* thermclass);

params is an array of t_real containing external parameters : parameters that are common to the dynamics of all
physobjects that will be assigned this thermostat class.  nb_params gives the number of such parameters. These
are copied internally, so the params array can be freed right after having created the thermostat class object.

IV.8.B - Thermostat function

A thermostat class requires a pointer fo a function that determines what happens to physobjects assigned to the 
thermostat class at each timestep. This function must follow the prototype :

void therm_function(physobject* , thermostat_data* , thermostat_class* );

This function will be called on every physobject assigned to the corresponding thermostat class, at every timestep.
You have to write the code yourself. Inside the thermostat function, you have access through its arguments to : 

physobject* pobj : the physobject currently acted on.

thermostat_data* thermdata : the thermostat data assigned to pboj by 
physobject_set_thermdata.

thermostat_class* thermclass : the thermostat class object.

These objects also indirectly give you access to :

thermclass->params : thermostat parameters common to all physobjects assigned 
to the thermostat (e.g. medium viscosity, temperature, etc.)

thermdata->params : thermostat parameters specific to pobj 
(e.g. translational rotation friction, etc.)

pboj->simcon or 
thermclass->simcon

the whole simcontext object.

Unlike the interaction amplitude function system, cgmdode does not take the return value of the thermostat function
to affect the physobjects (since the thermostat function return type is void). The thermostat function itself must call
the  cgmdode  functions  that  will  affect  the  physobjects  (for  instance  physobject_add_force and
physobject_add_torque). 

IV.9 - Articulation functions

IV.9.A - Creation / destruction

void articulation_create(articulation* artobj,
int id,
int type,
void* userdata,
void* callback,
simcontext* simcon);

void articulation_destroy(articulation* artobj);



Articulation types available for the argument type (see ODE manual and below for articulation parameters ) :

JOINT_FIXED Fixed joint : the relative orientation and position of 
the two attached physobjects will remain the same.

JOINT_BALL Ball-in-socket joint

JOINT_HINGE Hinge joint

JOINT_HINGE2 Double hinge joint : two hinges (with different axes) 
connected in series.

JOINT_UNIVERSAL Universal joint : two perpendicular rotation axes.

JOINT_PRISMROT Prismatic-rotoïd joint :  one slider axis + one rotation
axis

JOINT_DBALL
Double ball-in-socket : maintains a fixed distance 
between two points on two different bodies, no 
constraint on their relative rotation.

the callback function pointer can be used to make cgmdode call a user-defined function at each time step. If you 
don't need a callback, pass a null pointer. The prototype of the callback function must be :

void callback(articulation* );

The callback will be called at each timestep, passing the articulation object to the callback using the 
articulation* artobj argument. Through this object,  you have access to :

artobj->obj1 the first physobject attached to the articulation

artobj->obj2 the second physobject attached to the articulation

artobj->userdata pointer to user-defined data

artobj->simcon the whole simcontext object.

IV.9.B - Physobject attribution

These functions attach and detach physobjects using an already created articulation object. 

void articulation_attach_physobjects(articulation* artobj,
physobject* pobj1,
physobject* pobj2);

void articulation_detach_physobject(articulation* artobj, physobject* physobj);

You may attach two physobjects together, or attach one physobject "with the world". To do the latter, you can pass
a null pointer as pobj2. Attaching the physobjects does not sets the internal data required for maintenance of the
joint yet. You will  still  need to use  articulation_set_params to enable the joint (see below). You do need to
attach the physobjects with the joint before setting the joint parameters.

IV.9.C - Articulation parameters setting

There is only one function to set the parameters for any joint type. 

void articulation_set_params(articulation* artobj,  int param_type, t_real* params);

Important : physobjects must already have been placed in the correct relative orientation and position, and
attach to the articulation, before setting the anchors and axes of articulations.

Each joint requires specific parameters. For instance, a ball-in-socket joint only requires an anchor coordinate, but
a hinge joint requires the triplet describing the axis around which rotation is allowed. The following table sums the
different joint parameters and how to set them using articulation_set_params :



Articulation type int param_type t_real* params

JOINT_FIXED ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

JOINT_BALL ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

JOINT_HINGE

ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

ART_PARAM_AXIS or 
ART_PARAM_AXIS_1 [a1x, a1y, a1z] : axis 1 in world coordinates

JOINT_HINGE2

ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

ART_PARAM_AXIS_1 [a1x, a1y, a1z] : axis 1 in world coordinates

ART_PARAM_AXIS_2 [a2x, a2y, a2z] : axis 2 in world coordinates

JOINT_UNIVERSAL

ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

ART_PARAM_AXIS_1 [a1x, a1y, a1z] : axis 1 in world coordinates

ART_PARAM_AXIS_2 [a2x, a2y, a2z] : axis 2 in world coordinates

JOINT_PRISMROT

ART_PARAM_ANCHOR [x, y, z] : anchor position in world coordinates

ART_PARAM_AXIS_1 [a1x, a1y, a1z] : slider axis in world coordinates

ART_PARAM_AXIS_2 [a2x, a2y, a2z] : rotation axis in world coordinates

JOINT_DBALL

ART_PARAM_ANCHOR_1 [x,y,z] : anchor in body1 in world coordinates

ART_PARAM_ANCHOR_2 [x,y,z] : anchor in body2 in world coordinates

ART_PARAM_DISTANCE set the distance to be kept between anchors 
manually (instead of the distance at initialization)

Common to all 
types (optional)

ART_PARAM_ERP [erp_value] : error reduction parameter for the 
joint  (see ODE manual)

ARP_PARAM_CFM [cfm_value] : constraint force mixing for the joint 
(see ODE manual)

ART_PARAM_CFM and  ART_PARAM_ERP have by  default  the values specified by simparams_set_ode_params. All
other parameters have the default values specified by ODE (see ODE manual).

For  instance,  to  properly  set  a  hinge  articulation,  you  will  need  two  successive  calls  of
articulation_set_params :  

articulation_set_params(artobj,  ART_PARAM_ANCHOR, anchor_coords);
articulation_set_params(artobj,  ART_PARAM_AXIS,   axis_vector);

IV.10 - Additionnal features

IV.10.A - Geometry helpers

These functions are available to perform basic geometric operations on vectors, matrices and quaternions.

Basic vector operations :

t_real vector_norm(t_real* vec);

void vector_lincomb_3d(t_real a, t_real* vec1, t_real b, t_real* vec2, t_real* res);

void cross_product_3d(t_real* res, t_real* vec1,t_real* vec2);

t_real dot_product_3d(t_real* vec1, t_real* vec2);

Rotation functions :



void rotate_vector_using_matrix(t_real* res, t_real* rotmat, t_real* vect);

void rotate_vector_using_quaternion(t_real* vec, t_real* quat, t_real* res);

t_real angle_between_vectors_3d(t_real* vec1, t_real* vec2);

The two following functions can be used to express coordinates from/to the world from/to a specific relative frame 
of reference :

void world_to_relative_using_quaternion(t_real* neworigin, 
t_real* quat, 
t_real x, t_real y, t_real z, 
t_real* res);

void relative_to_world_using_quaternion(t_real* obj_pos, 
t_real* obj_quat, 
t_real x, t_real y, t_real z, 
t_real* res);

IV.10.B - Custom collision management

cgmdode has a default, builtin interface with the ODE collision system, i.e. a collision callback called by ODE's 
function dSpaceCollide when two geometries are close to eachother. However, if you are familiar with the ODE 
collision system, cgmdode gives you a way to write your own ODE collision callback. Beware though that it might 
be cumbersome.

You can set it using the following function :

void simcontext_set_custom_collision_callback(simcontext* simcon, 
void* custom_callback);

The custom_callback should point to a function complying with ODE specifications (see the collision section of the
ODE manual and the nearCallback function). The prototype of the callback should be : 

void collision_callback(void* data, dGeomID geom1, dGeomID geom2);

cgmdode will pass the simcontext object pointer cast to void* using the data argument. The userdata field of the 
geom1 and geom2 objects are automatically set by cgmdode to the corresponding physobject* pobj1 and pobj2 
pointers. You can use ODE's dGeomGetData(geom1) and cast the result to physobject* to access them. Once you 
have proper physobject* pointers, you can access ODE's objects using pobj1->b_id for the dBodyID and 
pobj1->g_id for the dGeomID (idem for pobj2).

Additionnally, you can cast the data pointer to simcontext* to acces the simcontext object. Through this 
simcontext* pointer, you can access the ODE dynamic world using ((simcontext*)(data))->world_id (which 
is a dWorldID object). You can also access the collision hashspace ((simcontext*)(data))->space_id 
(which is a dSpaceID object). 

You also have access to cgmdode's simulation parameters using ((simcontext*)(simcon))->simparams (this 
internal data structure stores the ODE parameters you specified using simparams_set_ode_params).

Here is a snippet to sum it up :



/* custom callback */
void collision_callback(void* data, dGeomID geom1, dGeomID geom2)
{

/* fetch cgmdode objects :*/

simcontext* simcon = (simcontext*)data;
simparameters* simparams = simcon->simparams;

physobject* pobj1 = (physobject*)dGeomGetData(geom1);
physobject* pobj2 = (physobject*)dGeomGetData(geom2);

/* ODE objects :*/

dSpaceID ode_space = simcon->space_id;
dWorldID ode_world = simcon->world_id;

dBodyID body1 = pobj1->b_id;
dBodyID body2 = pboj2->b_id;

/* the rest of your callback ... */

}

Note that if you write your own collision callback, you will need to find a way to keep track of the contact joints 
created during the simulation, because you must destroy them after each time step. cgmdode keeps track of 
contact joints using a dJointGroupID object in the simcontext structure named contact_joints. You can use 
simcon->contact_joints to keep track of the contact joints. If you do so, cgmdode will automatically destroy the 
contact_joints group after each timestep, you won't have to do it yourself.

To get more details on how to write your callback, look at the function collision_callback_generic in the source
file cgmdode_dynamics.c  

IV.10.C - Random number generation

cgmdode  uses  the  GNU  Scientific  Library  (GSL)  pseudorandom  number  functions.  The  core  pseudorandom
number generator is the Mersenne Twister gsl_mt_19937. It is initialized by simcontext_init, which also requires
that simparams_set_seed was called beforehand. After those two steps are executed, random number generation
is available. You are free to use your own random number generation code.

unsigned int ran_int(unsigned long max);

t_real ran_uniform(t_real min, t_real max);

t_real ran_gaussian_01();

t_real ran_gaussian(t_real mean, t_real sigma);

ran_uniform computes a t_real uniform variate in the interval [min ; max] using the GSL function ran_gsl_flat.
ran_gaussian_01 computes  a  t_real Gaussian  variate  of  standard  deviation  1  and  mean 0.  ran_gaussian
computes a  t_real Gaussian variate of standard deviation  sigma and mean  mean. Both functions use the GSL
ran_gsl_ziggurat function, i.e. the Marsaglia-Tsang ziggurat method.

IV.10.D - Caveats regarding boundary conditions

cgmdode automatically manages different boundary conditions at the limit of your simulation box. These are set
when  you  call  simparams_set_medium_params (see  section  IV.3.C).  There  are  a  few  caveats  regarding  the
INIT_BOUNDARY_<boundary type> options.

Articulations should not be used with periodic boundary conditions

With  periodic  boundary  conditions,  cgmdode  ensure  that  a  physobject  crossing  the  world's  boundaries  will
automatically reappear on the symmetric, opposite boundary. Interactions at distance between two physobjects
located close of two opposites sides of the simulation box are computed and executed. Collisions between two
physobjects located close to two opposites sides are also treated. cgmdode achieves this feature by maintaining
virtual copies of physobjects that are close to the simulation box boundaries. This process is transparent for the
user, the same simulation can run with any boundary conditions without having to change a single line of code,
except the simparams_set_medium_params arguments.



However, the case of a physobject connected to another one by an articulation that crosses a boundary whereas its
jointed counterpart does not is not treated by cgmdode. 

This means that when periodic boundary conditions are enabled, you must not use articulations in your
simulation. 

If  you still  do it anyway, the simulation will  probably explode if  a physobject connected to another crosses the
boundary.  This  is  because  cgmdode  will  correct  the  position  of  the  boundary-crossing  physobject  so  that  it
reappears at the other side, but will not modify the position of the other non-crossing physobject. This will introduce
a huge error in the joint, and therefore ODE will try to make right with a tremendous correction force that will almost
certainly result in an kinetic explosion.

The spatial discretization grid when the simulation box is limitless.

Here is a note regarding INIT_BOUNDARY_NONE. With this option, the physobjects of your simulation may go as
far  away  from  their  starting  position  and  from  eachother.  However,  when  you  invoke
simparams_set_medium_params,  cgmdode  asks  for  explicit  spatial  boundaries  for  the  simulation.  Besides,
cgmdode uses a finite spatial discretization grid to speed up the computation of interactions at distance, even in the
case where INIT_BOUNDARY_NONE is  set.  So what happens when physobjects get  very far  away from the
(0,0,0) point of your simulation ? 

The spatial discretization grid is centered at (0,0,0). The grid has discrete sizes Ci, Cj, Ck (number of cells)  in the
three  spatial  dimensions.  The  sizes  (Ci,  Cj,  Ck)  are  set  by  simparams_set_medium_params,  using  the
max_grid_size and min_cell_size that you specified to compute grid sizes that maximize the number of cells.
Regardless of the boundary condition, cgmdode automatically adds an outer layer of cells around the spatial grid
(so the actual grid sizes are (Ci+2, Cj+2, Ck+2) ). This outer layer is the virtual space in which virtual copies are set
when periodic boundary conditions are enabled. But when no boundary conditions are set, any physobject going
further than the spatial limits you specified is assigned to the outer layer of the spatial discretization grid. This
ensures that the spatial discretization grid covers a virtually infinite volume, but computing interactions is still fast
near the (0,0,0) point.


	I - Introduction
	I.1 - Origins of cgmdode
	I.2 - Coarse-graining using a rigid body dynamics engine
	I.3 - Overview of cgmdode design
	I.4 - Should I use cgmdode ?
	I.5 - License

	II - Installation
	II.1 - Requirements
	II.2 - Installation from sources

	III - Building a simulation
	III.1 - Importing cgmdode into your code
	III.2 - cgmdode initialization sequence
	III.3 - Creating physical objects
	III.4 - Assigning interaction sites to physical objects
	III.4.A - Creating an interaction class
	Force amplitude function
	Interaction class initialization

	III.4.B - Adding interaction sites to a physobject

	III.5 - Assigning physical objects to thermostats
	III.5.A - Creating a thermostat class
	Thermostat function
	Thermostat class initialization

	III.5.B - Setting a physobject's thermostat data

	III.6 - Linking physical objects using mechanical joints.
	III.6.A - Creating an articulation between two physobjects
	III.6.B - Setting articulation parameters

	III.7 - Running the simulation
	III.8 - Cleaning up

	IV - API Reference
	IV.1 - Basic data types
	IV.2 - Complex data types
	IV.2.A - Stored user-defined ids and data
	IV.2.B - Encapsulated ODE objects

	IV.3 - Simparameters functions
	IV.3.A - Creation / destruction
	IV.3.B - Setting engine parameters
	IV.3.C - Settings medium parameters

	IV.4 - Simcontext functions
	IV.4.A - Creation / destruction / Initialization
	IV.4.B - Simulation execution
	IV.4.C - Convenience functions

	IV.5 - Geometry data functions
	IV.5.A - Simple geometric primitives
	IV.5.B - Trimesh geometry
	IV.5.C - Utility functions

	IV.6 - Physobject functions
	IV.6.A - Creation / destruction
	IV.6.B - Initializing dynamical et geometrical properties
	IV.6.C - Getting position, orientation, velocities and mass
	IV.6.D - Transforming coordinates
	IV.6.E - Setting position, orientation, velocities
	IV.6.F - Adding forces and torques
	IV.6.G - Adding and removing interaction sites
	IV.6.H - Setting thermostat data
	IV.6.I - Detailed collision / interaction management

	IV.7 - Interaction class functions
	IV.7.A - Creation / destruction
	IV.7.B - Interaction amplitude function

	IV.8 - Thermostat class functions
	IV.8.A - Creation / destruction
	IV.8.B - Thermostat function

	IV.9 - Articulation functions
	IV.9.A - Creation / destruction
	IV.9.B - Physobject attribution
	IV.9.C - Articulation parameters setting

	IV.10 - Additionnal features
	IV.10.A - Geometry helpers
	IV.10.B - Custom collision management
	IV.10.C - Random number generation
	IV.10.D - Caveats regarding boundary conditions
	Articulations should not be used with periodic boundary conditions
	The spatial discretization grid when the simulation box is limitless.




