
YAP3: IMPROVED DETECTION OF SIMILARITIES
IN COMPUTER PROGRAM AND OTHER TEXTS

Michael J. Wise

Department of Computer Science,

University of Sydney, Australia

michaelw@cs.su. oz.au

ABSTRACT

In spite of years of effort, plagiarism in student assignment

submissions still causes considerable difficulties for course

designers; if students’ work is not their own, how can

anyone be certain they have learnt anything? YAP is a

system for detecting suspected plagiarism in computer

programs and other texts submitted by students. The paper

reviews YAP3, the third version of YAP, focusing on its

novel underlying algorlthm - Running-K arp-Rabin

Greedy-String-Tiling (or RKS-GST), whose development

arose from the observation with YAP and other systems

that students shuffle independent code segments. YAP3 is

able to detect transposed subsequences, and is less

perturbed by spurious additional statements. The paper

concludes with a discussion of recent extension of YAP to

English texts, further illustrating the flexibility of the YAP

approach.

1. INTRODUCTION

The first version of YAP, a structure-metric system for

detecting suspected plagiarism in computer program texts

is described in [9]. That paper also reviews other.
counting-metric systems described In the literature, and a

structure-metric system similar to YAP, Plague [8]. A

companion paper to this, [7], reports on an extensive

comparison between the current version of YAP, YAP3,

and reconstructions of two systems reported in the

literature: Grier’s Accuse system [3] and Faldhi and

Robinson’s system [1].

This paper reviews YAP3, the thmd version of YAP.

focusing on Its novel underlying algorithm - Running-

Kurp-Rabin Greedy-String-Tiling (or RKS-GST), whose

development arose from experience with YAP which
indicated that, not only are students adept at breaking u-

Permiaaion to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the titte of the

publication and its date appear, and notice Ls given that copying is by
permission of the Association for Computing Machinery. To copy
othetvvise or to repubtish, rsquiraa a fee snd/or spesific permission.
SIGCSE ’96 2/96 Philadelphia, PA USA
@l996 ACM O-S9791-757JUWOO0 2....$3.50

line code into functions (and vice versa), but they are also

adept at shuffling independent code segments. Consider

the segment of C code below, which comes from the main

function of a program implementing simple operations on

a queue:

while (fgets (line, MAXLINE, stdi.n) ! =NULL)

t
if (sscanf (line, “%s”, word) !=1)

continue;

switch (word [O])

case’ r’:

printf (“Removed: %d\n” , remove_item ()) ;

break;

case’ a’:

if(sscanf (line, “%*s%d”, &value) !=1)

(

fprintf (stderrr “readof item fails\n”) ;

continue;

)

add_item (value) ;

break;

case’ p’:

print_ queue () ; ;

break;

default:

fprintf (stderr, “unknown% c\nl’ , word [o]) ;

}
print_queue () ;

}

It is trivial for a student to change the while to a for, to

break single printf statements into multiple
statements or to add a break in the default case. It is

also trivial to swap the cases in the switch,

YAP3, as with YAP, works in two phases. In the first,

the source texts are used to generate token sequences. This

phase. which is largely the same as in YAP, Involves:

●

✎

●

130

Removing comments and string-constants

Translating upper-case letters to lower case

Mapping of synonyms to a common form, e.g.

strncmp is mapped to strcmp, and function is

mapped to procedure.

Reordering the functions into their calling order. In the

process, the first call to each function is expanded to its

full token sequence; Subsequent calls are replaced by

the token FUN. Notice, however, that expanding

functions (as also done by Plague) exacerbates the effect

of transpositions as illustrated above

Removing all tokens that are not from the lexlcon of the

target language, i.e. any token that is not a reserved

word, built-in function, etc.

While there have been some improvements to the

tokenizers described in [9], they are largely unchanged

except that from YAP3 onwards, the tokens are numerical

rather than being strings.

What distinguishes the three versions of YAP are the

algorithms used in the second, comparison phase. where

each token string is (non-redundantly) compared with all

the others. There are also differences in the

implementation techniques.

As reported in [9], the comparison phase of the original

version of YAP is based on the UNIX utdity sdiff, whose

underlying algorithm is the dynamic programming solution

to the Longest Common Subsequence problem. Apart

from the fact that YAP is implemented as a Bourne Shell

script, and therefore rather slow, a major problem is that,

in the dynamic programming solution to the LCS, a

translocation of a block of tokens from one part of a string

to another may be missed entirely or regarded as a series of

individual transpositions rather than a single block move.

An alternate forrnrrlatlon of the problem as the Levenshtein

metric – or minimum edit distance, the minimal sequence

of single token insertions and deletions required to

transform one string into the other [6] – has essentially the

same problem. The problem arises because both the

Levenshtein metric and the LCS algorithm are order

preserwng so both algorithms deal with single token

differences by either sigralling an insertion/deletion

(Levenshtein) or by skipping over the extraneous elements

(LCS). Tbls problem has been noted previously by Heckel

[4], who proposes an alternate algorithm. Plague offers a

variant on the LCS algorithm as one of its metrics.

YAP2, implemented in Per-l and distributed since the

end of 1992, uses Heckel’s algorithm [4] (which IS also

offered by Plague). Heckel’s algorithm was designed to

work with text files In this algorithm, instances of umque

lines common to two files are notionally joined. Then,

lines above the joined lines are examined: if they are the

same these lines are joined, until a non-match is found.
The process is repeated for lines below the joined hnes.

Thus blocks are formed, the total length of which can serve

as a measure of similarity. Although Heckel’s algorithm

requires several passes, its overall complexity is linear.

Furthermore, it 1s also able to deal effectively with

transposed code segments. However, the problem exists of

finding the initial set of unique. common lines because

Heckel’s “lines” are, in this case. simply {okens drawn

from an alphabet whose usage is highly skewed. 1 To

overcome this problem, tokens may be rewritten as

overlapping groups of three, i.e. first, second, third in tlhe

first group, second, third and fourth in the second group,

and so on. However, this is only a partial solution because

there may fail to be any unique tokens or token-groups in

two otherwise identical strings. There is another

significant problem: because of the way blocks are formed,

Heckel’s algorithm tends to produce a small number of

long blocks (substnngs). These long substrings are

trivially broken by the introduction of a small number of

spurious tokens, e.g. extra print statements or the

decomposition of a compound assignment-statement into

several simpler ones. However, once such a break has

occurred it is often the case that no further blocks can be

formed from the remaining portions of the strings because

there are no umque token-groups to anchor the blocks.

What one therefore sees is a steep decline In the extent to

which two strings are believed to match.

2, YAP3

Given the difficulties faced by the well-known algorithms

in detecting similarities in the presence of block-moves, a

total new algorithm, Running-Karp-Rabm Greedy-String-

Tihng (RKR-GST), was devised as the basis for the third
version of YAP.

The RKR-GST algorithm is based on the notion of a tile,

which is an indisoluable, one-to-one pairing of a substring

from one string (arbitrarily called P, the pcztterrr) and a

substring from the second string (T, the te.~t); once a token

becomes part of a tile, it is said to marked. There is also

the notion of a maximal match, which, llke tiles, IS a

pairing of substrings, but in this case the pairing may only

be temporary. Finally, there is the notion of a rninimu~z-

match-length, which is the minimum length of tiles being

sought; potential tiles below this length are ignored as

possible artefacts of the matching process. (The default

minimum-match-length is 3.)

Ideally what is being sought by the new algorithm

is a maximal tiling of P and T, i.e. a coverage of non-

1 Although the kxlcons may be large(wound 550 for C, when all the
libraries are included, md 350 for LMp), usage staustlcs for the tokens

are h]ghly skewed, the top four tokens by usage can account for more

than 50% of occurrences. In pm-tlcular, there cm be long sequences of
the same token. notably = (as dlstmct from =) m C or = m Pascal

131

overlapping substrings of T with non-overlapping

substrings of P which, bearing in mind the

minimum-match-length, maximises the number of

tokens that have been covered by tiles.

Unfortunately, an algorithm which produces a

maximal tiling and computes in polynomial time is

an open problem. Part of the difficulty lies in the

possibility that several small tiles could collectively

cover more tokens than a smaller number of larger

tiles.

To motivate the transition to a computationally

more reasonable measure of similarity it is worth

observing that longer tiles are preferable to shorter

ones because long tiles are more likely to reflect

significant, similar regions in the source texts rather

than chance similarities. With this in mind, the

following greedy algorithm is proposed. The

algorithm involves multiple passes, each pass having

two phases. In the first phase, called scanpattern, all

maximal-matches of a certain size or greater are collected.

This size is called the search length. In the second phase,

called markstrings, maximal-matches are taken, one at a

time starting with the longest and tested to see whether

they have been occluded by a sibling tile (i.e. part of the

maximal-match is already marked). If not. a tile is created

by marking the two substrings. When all the maximal-
matches have been dealt with, a new, smaller search length

is chosen. The top-level algorithm is:

search-length s := initial-search-length;

stop := false

Repeat

/*L. ~~Xis size of largest maximal-matches from this scan*/
L mm := scanpattern(s);
/*If very long string no tiles marked. Iterate with larger s*/

if L “lax >2 xs then s := Lmax

else
/* Create tiles from matches taken from list of queues*/

markstrings(s);

If s > 2x minimum_ match_length then s := s div 2
else ifs > minimum_ match_ length then

s := minimum_match_length
else stop := true

until stop

So far, what has been described relates solely to Greedy
String-Tiling. It is in the algorithm for scanpattern

that Running Karp-Rabin matching [5] N used to find all

the maximal matches above a certain size. (The version of

the recurrence relation used in this work is due to Gonnet

and Baeza-Yates [2].) Runmng Karp-Rabin matching

extends Karp-Rabin matching in the following ways:

Firstly, instead of having a single hash-value for the

entire pattern string, a hash-value IS created for each

(unmarked) substring of length s of the pattern string, i.e.

for the substrings P,, . . . PP+$_ ~, p in the range

1 IPI –s Hash-values are similarly created for each

(unmarked) substrmg of the length s of the text string.

Secondly, each of the hash-values for the pattern string is

then compared with the hash-values for text string and for

those pairs of pattern and text hash-values found to be

equal, there are possible matches between the

corresponding pattern and text substrings. A hash-table of

the text-string Karp-Rabin hash-values is used to reduce

the otherwise O(n 2, cost of this comparison. That is,

rather than having to scan the entire text string for the

matching hash-value corresponding to a particular pattern

substring, the pattern Karp-Rabin hash-value is itself

hashed and a hash-table search returns the starting

positions of all text substrings (of length s) with the same

Karp-Rabin hash-value. Note that after a successful match

of both the Karp-Rabin hash-values and the actual

substrings, the element-by-element matching continues

until two elements fail to match or until a marked element

or end-of-string are found. In this way, the matches are

converted to maximal-matches. (In other words, length s

is the minimum match-length being sought during one

iteration.) The algorithm for scanpattern (s) – s the

current search-length – is:

starting at the first unmarked token of T,
for each unmarked T, do

if distance to next tile <s then
move tto first unmarked token after next tile

else
create KR hash-value for substring T,.. Tt+, _l

add to hashtable

Starting at the first unmarked token of P,
for each unmarked PP do

if distance to next tile ss then
move p to first unmarked token after next tile

else
create KR hash-value for substring P,, .. PP+, _ ~

check hashtable for PP. .PP +, _, KR hash-value
for each hit m hash-table do

k:=s

/*Extend match until non-match or element marked*/

while P,, +k = Tt+h

AND unmarked(P{, +.)
AND unmarked(T, +~) do

k:=k+l
ifk>2xs then
/*abandon scan. Will restart withs = k*l

return(k)
else record new maximal-match

return(length of longest maximal-match)

The structure used to record the maximal matches is a

132

doubly-linked-list of queues, where each queue records

maximal-matches of the same length and the Ilst of queues

is ordered by decreasing length. A pointer is also kept to

the queue onto which the most recent maximal-match was

appended because there is a high probability that the next

maximal-match will be similar in length to the last and

therefore will be appended to the same queue or one that E,

close by. marks trings also has the parameter S, the

search-length.

starting with the top-queue do
if current queue is empty then drop to next queue
/*corresponds to smaller maximal-matches */

else with queue of maximal-matches length L do
remove match(p, t, L) from queue
if match not occluded then

if forallj:O.. s–l, PP+, =T, +, then
/* IE match is not hash artefact */

forj:=Oto L-ldo
mark_token(PP.,)
mark_token(T, +,)
count_tokens tiled := count_tokens_tiled + L

else if L–L,,,C[,{d,d–>s then
replace unmarked portion on list of queues

Note that the test of whether maximal-match is really a

match has been deferred from s canpat t ern – where It

normally would reside – to marks trings. (Remember

that all putative matches found due to hashing must be

tested element-by-element because equivalence of hash-

values does not guarantee that the corresponding strings

are equal. However, it has been observed that KR-hashing

appears to fail so rarely that deferring the component-wise

test to marks trings turns out to be far more efficient

[10].)

The question arises as to what is an appropriate value for

the parameter s passed to scanpattern and

marks trings. More precisely, what is to be its initial

value and how is that value to be decremented’? While one

might consider half the length of P as an appropriate

starmng value for s, it turns out in practice that a much

smaller value will suffice. There are two reasons for this.

Firstly, very long maximal-matches are rare, so in general

a large initial value for s would generate a number empty

sweeps by scanpattern until a match is finally found.

Secondly, if a long maximal-match is found (“long

maximal-match” defined to be where k, the maximal-

match length is 2 xs) the creation of a tile from this string

will absorb a sigmficant number of the pattern and text

tokens. It is therefore worthwhile stopping the current

scan and restarting with the larger initial value of s= k for

this special case. This Implies that the initial search-length
can be set to a small constant value (lt is currently 20),

rather than being dependent on the string lengths.

Finally, in [10] it is argued that although the worst-case

complexity is O(H3) – n the sum of the lengths of the input

strings – the circumstances where that arises are entirely

pathological and using curve-fitting a complexity of

o(t7 ‘ ‘2) is shown experimentally, i.e. close to linear.

3. COMPARING THE YAP VERSIONS

To illustrate the increased performance provided by YAP3

compared to its predecessors, YAP2 and YAP, two

versions of the previous small example (run as a completed

program, Q.c) have been compared. In version Q1 .c,

all that has been done is to reorder the cases in the

switch statement so that case ‘a’ is followed by

case ‘p’ and then case ‘r’; the rest is the same. In

Q2.c, the other functions are the same but main has

been altered as follows:

while (fgets (line, MAXLINE, stdin) ! =NULI,)

i
if (sscanf (line, “%s”, word) !=1)

continue;

switch (ch=word [O])

case’ r’:

value = remove_ item() ;

printf (“Removed: %d\n’i , value) ;

break;

case’ a’:

if(sscanf (line, “%*s%d”, &value) ==1)

{
add_item (value) ;

break;

)
fprintf (stderr, “readof item fails\n”) ;

continue;

case’ p’:

print_queue () ;

break;

default :

fprintf (stderr, “unknown% c\n” , word [O]) ;

)
The percent-match values are:

I Q/Ql I Q/Q2 Q1/Q2

Yap 1 73 55 6fl

Yap. 33 is YAP3 with minimum-match-length set to 3;
m Yap, 3 ~ it is set to 2 via a command-line argument.

The latter is justified in shorter token sequences (tlms

133

one is around 60) because there is a greater tendency

for the string to be broken into unplaceable

fragments, and each will have a disproportionate

effect. In reading the above table, specific values are

not important; rather note the effect text alterations

have on the final value.

4. TOKENIZING ENGLISH

The strength of the YAP approach is that is does not

attempt a full parse of the target language, as does Plague,

but rather compares token strings made up of keywords

drawn from the target language’s lexicon. This greatly

simplifies the task of porting the system to new computer

languages, especially for relatively complex languages

such as C (versus Pascal). However, in the case of
English, obtaining a full parse would be practically

impossible and it is here that the YAP approach becomes

invaluable. What has been done is to create a tokenizer-

generator, whose first pass across a number of texts

determines the lexicon which is then used to generate the

token strings. The first, lexicon-generating, pass

eliminates numbers, instances of the 150 most common

English words, words consisting of one or two letters and

proper nouns. The remaining words are stemmed using the

PC- Kimmo (Version 1.08) recognize (slightly modified

for this purpose) and the Englex 10 rule and lexicon sets.?

The tokenizer-generator and the resulting tokenizer were

applied with YAP3 to a set of short essays submitted in a

Operating Systems class. While serviceable token strings

were generated, no signlticant plagiarism was reported.

This may have something to do with the fact that YAP3

had been applied to two earlier assignments, resulting in

some students not being awarded any marks for those

assignments. Nonetheless, the ability to generate

tokemzers on-the-fly and then to use the YAP3 comparison

phase unaltered, illustrates the flexibility of the YAP

approach. Indeed, the underlying algorithm is the basis for

Neweyes, a system for aligning nucleotide or amino acid

sequences [1 1].

5. REFERENCES

[1] FAIDHI, J. A. W. AND S. K. ROBINSON, “An

Empirical Approach for Detecting Program Similarity

within a University Programming Environment”,

Computers and Education 11(1), pp. 11- 19(1987).

.
Both PC-Kimmo and the Englex 10 rule and IexIcon sets are available
from the Consoruum for Lexical Research, clr.nmsu edu. A Postscript
catalogue off all tools held by CLR is at CLR/cataiog ps

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

GONNET, G. H. AND R. BAEZA-YATES, Handbook of

Algorithms and Data Structures (Second Edition),

Addison-Wesley (1991).

GRIER, SAM, “A Tool that Detects Plagiarism in

Pascal Programs”, Twelfth SIGCSE Technical

Symposium, St Louis, Missouri, pp. 15–20 (February

26-27, 1981) (SIGCSE Bulletin Vol. 13, No. 1,

February 1981).

HECKEL, PAUL, “A Technique for Isolating

Differences Between Files”, Communications of the

ACM 21(4), pp, 264-268 (April 1978).

KARP, RICHARD M. AND MICHAEL 0, RABIN,

“Efficient Randomized Pattern-Matching
Algorithms’ ‘, IBM Journal of Research and

Development 31(2), pp. 249-260 (March 1987).

KRUSKAL, JOSEPH B., “An Overview of Sequence

Comparison”, Time Warps, String Edits and

Macromolecules: The Theory and Practice of

Sequence Comparison, ed. David Sankoff and Joseph

B. Kruskal, pp. 1-44, Addison Wesley (1983)

(Chapter 1).

VERCO, KRISTINA L. AND MICHAEL J. WISE, “A

Comparison of Structure-Metric and Counting Metric

Plagiarism Detection Systems”, Twenty-Seventh

SIGCSE Technical Symposium, Philadelphia, U.S.A.

(February 15-17, 1996) (Submitted to conference).

WHALE, G., “Identification of Program Similarity in

Large Populations”, The Computer Journal

33(2), pp. 140-146 (1990).

WISE, MICHAEL J, “Detection of Similarities in

Student Programs: YAP’ ing may be Preferable to

Plague’ ing”, Twenty-Third SIGCSE Technical

Symposium, Kansas City, USA, pp. 268–27 1 (March

5-6, 1992).

WISE, MICHAEL J, “Running Karp–Rabin Matching

and Greedy String Tiling”, Basser Department of

Computer Science Technical Report, Sydney

University (1994)

(ftp://ftp.cs.su. oz.au/michaelw/rkr_gst.ps Revises

Basser Technical Report 463, March 1993).

WISE, MICHAEL J, “Neweyes! A System for
Comparing Biological Sequences Using the Running

Karp-Rabin Greedy String-Tiling Algorithm”, Third

International Conference on Intelligent Systems for

Molecular Biology, Cambridge,
England., pp. 393-401 (July 16-19, 1995).

134

