
Building C/C++ Projects with (Modern) CMake
Powerful Cross Platform Build Process Management

Alexander Dahl

http://www.lespocky.de/

2018-10-22

Alexander Dahl (lespocky.de) CMake 2018-10-22 1 / 25

http://www.lespocky.de/

Who?

Me
Yet another free software developer . . .

Background

I using Free Software since ≈ 2001
I contributing to Free Software since ≈ 2003
I diploma in engineering (mechatronics)
I working as Embedded Linux developer
I member of Netz39 Hackerspace

Projects

I fli4l
I buildroot
I ptxdist
I libcgi
I Freifunk

Alexander Dahl (lespocky.de) CMake 2018-10-22 2 / 25

http://www.netz39.de/
https://www.fli4l.de/
https://buildroot.org/
https://ptxdist.org/
https://github.com/rafaelsteil/libcgi
https://freifunk.net/

Who?

Me
Yet another free software developer . . .

Background

I using Free Software since ≈ 2001
I contributing to Free Software since ≈ 2003
I diploma in engineering (mechatronics)
I working as Embedded Linux developer
I member of Netz39 Hackerspace

Projects

I fli4l
I buildroot
I ptxdist
I libcgi
I Freifunk

Alexander Dahl (lespocky.de) CMake 2018-10-22 2 / 25

http://www.netz39.de/
https://www.fli4l.de/
https://buildroot.org/
https://ptxdist.org/
https://github.com/rafaelsteil/libcgi
https://freifunk.net/

CMake for Users

CMake

I Build C/C++ projects
I Compiler independent
I Cross platform
I Together with native

build environment
I Simple configuration with

CMakeLists.txt files
I Out-of-source builds
I Free Software
I And more . . .

cmake_minimum_required (VERSION 3.1)
project (MyProject

VERSION 1.0
DESCRIPTION "Very nice project "
LANGUAGES CXX

)

Alexander Dahl (lespocky.de) CMake 2018-10-22 3 / 25

CMake for Users

Getting Started

Installation
I Linux: Use your package manager
I Windows, MacOS: Download from https://cmake.org/
I From Source with your favorite C++ Compiler

Documentation
I CMake comes well documented

I https://cmake.org/documentation
I man 7 cmake-*

I on the world wide web
I look out for “Modern CMake”
I beware of examples showing old way to do things

Alexander Dahl (lespocky.de) CMake 2018-10-22 4 / 25

https://cmake.org/
https://cmake.org/documentation

CMake for Users

Getting Started

Installation
I Linux: Use your package manager
I Windows, MacOS: Download from https://cmake.org/
I From Source with your favorite C++ Compiler

Documentation
I CMake comes well documented

I https://cmake.org/documentation
I man 7 cmake-*

I on the world wide web
I look out for “Modern CMake”
I beware of examples showing old way to do things

Alexander Dahl (lespocky.de) CMake 2018-10-22 4 / 25

https://cmake.org/
https://cmake.org/documentation

CMake for Users

Usage

I Use out of tree builds

Command Line
~/ path/to/your/src $ mkdir build
~/ path/to/your/src $ cd build
~/ path/to/your/src/build $ cmake ..
~/ path/to/your/src/build $ make

I first call to cmake is special, sets generator and compiler
I pre-set options with -D

I you can overwrite options again later
I useful when building from some external build system

(like buildroot, ptxdist, . . .)

Alexander Dahl (lespocky.de) CMake 2018-10-22 5 / 25

CMake for Users

GUI

Alexander Dahl (lespocky.de) CMake 2018-10-22 6 / 25

CMake for Users

Generators

I Makefiles
I Borland
I MSYS
I MinGW
I NMake
I Unix
I . . .

I Ninja
I Visual Studio
I Xcode
I . . .

Help
cmake-generators(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 7 / 25

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html

CMake for Users

Compilers

I AppleClang
I Clang
I GNU (GCC)
I MSVC (Visual Studio)
I SunPro
I Intel
I XL (IBM)
I . . .

Help
cmake-compile-features(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 8 / 25

https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html

CMake for Developers Syntax

Syntax

First Command
Copyright 2018 Jon Doe
cmake_minimum_required (VERSION 3.1)

Second Command
project (foo

VERSION 1.0
DESCRIPTION "Very nice project "
LANGUAGES CXX

)

I One or multiple files
called CMakeLists.txt

I Commands are
documented

I Syntax straight forward
I Whitespace does

not matter
I Comments start with

’#’ and go to
end of line

I Variable expansion
with ${VARNAME}

Example Command
message (STATUS " foo_VERSION : ${ foo_VERSION }")

Alexander Dahl (lespocky.de) CMake 2018-10-22 9 / 25

CMake for Developers Variables

Variables

I Set variables with set()
I Use ALL_CAPS for variable names
I Access variables with ${MY_VARIABLE}
I Other commands may modify variables
I Beware of spaces, if not quoted, that can create lists
I Always enclose paths in spaces "${MY_PATH}"
I Scope is function or directory, not parent (by default)
I Variables can be cached across multiple runs
I Special global CMake variables exist

Help
cmake-language(7), cmake-variables(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 10 / 25

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html
https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html

CMake for Developers Variables

Cache and Globals

Cache
I Cached variables can be listed and manipulated in GUI
I Command ’option()’ is syntactic sugar for cached boolean variables
I Cache is a text file in build directory

Globals
I CMAKE_BUILD_TYPE

I Debug, Release, RelWithDebInfo, . . .
I CMAKE_INSTALL_PREFIX

I defaults to /usr/local, like prefix

I BUILD_SHARED_LIBS

Alexander Dahl (lespocky.de) CMake 2018-10-22 11 / 25

CMake for Developers Variables

Cache and Globals

Cache
I Cached variables can be listed and manipulated in GUI
I Command ’option()’ is syntactic sugar for cached boolean variables
I Cache is a text file in build directory

Globals
I CMAKE_BUILD_TYPE

I Debug, Release, RelWithDebInfo, . . .
I CMAKE_INSTALL_PREFIX

I defaults to /usr/local, like prefix

I BUILD_SHARED_LIBS

Alexander Dahl (lespocky.de) CMake 2018-10-22 11 / 25

CMake for Developers Targets

Targets

Modern CMake
Think in targets!

Simple Executable

add_executable (one
two.cpp
three.h

)
target_link_libraries (one

two :: two
)

I Target names
I one
I two::two

Alexander Dahl (lespocky.de) CMake 2018-10-22 12 / 25

CMake for Developers Targets

Targets

Modern CMake
Think in targets!

Simple Executable

add_executable (one
two.cpp
three.h

)
target_link_libraries (one

two :: two
)

I Target names
I one
I two::two

Alexander Dahl (lespocky.de) CMake 2018-10-22 12 / 25

CMake for Developers Targets

More Targets

Simple Library

add_library (two STATIC
two.cpp
three.h

)
add_library (two :: two ALIAS two)

I Omit STATIC and let BUILD_SHARED_LIBS decide
I Use INTERFACE for header only libraries

Help
cmake-commands(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 13 / 25

https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html

CMake for Developers Targets

Add Build Information

Properties
set_target_properties (two PROPERTIES

SOVERSION ${ PROJECT_VERSION_MAJOR }
VERSION ${ PROJECT_VERSION }
C_STANDARD 99

)

I See cmake-properties(7)

Include Directories
target_include_directories (two

PUBLIC
$< BUILD_INTERFACE :${ PROJECT_SOURCE_DIR }/ include >
$< INSTALL_INTERFACE :${ CMAKE_INSTALL_INCLUDEDIR }>

)

Alexander Dahl (lespocky.de) CMake 2018-10-22 14 / 25

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html

CMake for Developers Targets

Add Build Information

Properties
set_target_properties (two PROPERTIES

SOVERSION ${ PROJECT_VERSION_MAJOR }
VERSION ${ PROJECT_VERSION }
C_STANDARD 99

)

I See cmake-properties(7)

Include Directories
target_include_directories (two

PUBLIC
$< BUILD_INTERFACE :${ PROJECT_SOURCE_DIR }/ include >
$< INSTALL_INTERFACE :${ CMAKE_INSTALL_INCLUDEDIR }>

)

Alexander Dahl (lespocky.de) CMake 2018-10-22 14 / 25

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html

CMake for Developers Targets

Glue It Together
The Most Powerful CMake Command
target_link_libraries (one

PUBLIC
two :: two

PRIVATE
${ THREE_LIBRARIES }

)

Link Items
I A library target name
I A full path to a library file
I A plain library name
I A link flag
I A generator expression

Alexander Dahl (lespocky.de) CMake 2018-10-22 15 / 25

CMake for Developers Targets

Glue It Together
The Most Powerful CMake Command
target_link_libraries (one

PUBLIC
two :: two

PRIVATE
${ THREE_LIBRARIES }

)

Link Items
I A library target name
I A full path to a library file
I A plain library name
I A link flag
I A generator expression

Alexander Dahl (lespocky.de) CMake 2018-10-22 15 / 25

CMake for Developers Targets

Chain Your Targets
I Use target names as link items

I Use namespaces, to avoid accidentally wrong interpretation of link items
I Use PUBLIC, PRIVATE, INTERFACE to not propagate non necessary

dependencies
I Possible are all kinds of targets

(even targets, which don’t lead to actually calling a linker)
I CMake generates dependency tree
I Build is done in the right order automatically
I Use imported targets for external dependencies
I Export your own library targets (relocatable packages)

Alexander Dahl (lespocky.de) CMake 2018-10-22 16 / 25

CMake for Developers Patterns

Antipatterns

Avoid functions with global scope!

I e. g. link_directories(), include_libraries()

Do not set compiler flags in CMakeLists.txt

I Breaks portability between different compilers

Alternatives
I Require language standards (e. g. C99, C++11, . . .)

I Meta compiler features (CMake 3.8+)
I Compiler features (CMake 3.1+)
I Per target properties (CXX_STANDARD, . . .)

I Manually override compiler flags from “outside” (e. g. CMake Cache)
I Make use of CMAKE_BUILD_TYPE

Alexander Dahl (lespocky.de) CMake 2018-10-22 17 / 25

CMake for Developers Patterns

Antipatterns

Avoid functions with global scope!

I e. g. link_directories(), include_libraries()

Do not set compiler flags in CMakeLists.txt

I Breaks portability between different compilers

Alternatives
I Require language standards (e. g. C99, C++11, . . .)

I Meta compiler features (CMake 3.8+)
I Compiler features (CMake 3.1+)
I Per target properties (CXX_STANDARD, . . .)

I Manually override compiler flags from “outside” (e. g. CMake Cache)
I Make use of CMAKE_BUILD_TYPE

Alexander Dahl (lespocky.de) CMake 2018-10-22 17 / 25

CMake for Developers Patterns

Antipatterns

Avoid functions with global scope!

I e. g. link_directories(), include_libraries()

Do not set compiler flags in CMakeLists.txt

I Breaks portability between different compilers

Alternatives
I Require language standards (e. g. C99, C++11, . . .)

I Meta compiler features (CMake 3.8+)
I Compiler features (CMake 3.1+)
I Per target properties (CXX_STANDARD, . . .)

I Manually override compiler flags from “outside” (e. g. CMake Cache)
I Make use of CMAKE_BUILD_TYPE

Alexander Dahl (lespocky.de) CMake 2018-10-22 17 / 25

CMake for Developers Patterns

Best Practices

I Define everything per target
I Treat your CMakeLists.txt as code

I Readable
I Well documented
I Put CMakeLists.txt in version control

I Think in targets
I Export your targets
I Make alias targets (aka namespaces for target names)

I Make use of add_subdirectory() and find_package() consistent
I Ensure target_link_libraries() uses a target

I lower_case function names
I UPPER_CASE variable names

Alexander Dahl (lespocky.de) CMake 2018-10-22 18 / 25

CMake for Developers Imported/Exported Targets and CMake Packages

Imported Targets

I CMake looks for CMake Packages with exported targets first
I Modern find_package() modules provide IMPORTED targets

I e. g. OpenSSL::SSL, see cmake-modules(7)

find_package (OpenSSL)
target_link_libraries (two

PUBLIC
OpenSSL :: Crypto

)

I Use find_package(PkgConfig) and pkg_check_modules() with
option IMPORTED_TARGET

I Create IMPORTED targets with add_library() for your own
FindFoo.cmake modules

Alexander Dahl (lespocky.de) CMake 2018-10-22 19 / 25

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

CMake for Developers Imported/Exported Targets and CMake Packages

Export Library Targets

include (GNUInstallDirs) # cmake 2.8.5

install (TARGETS two
EXPORT two - targets
LIBRARY DESTINATION "${ CMAKE_INSTALL_LIBDIR }"
ARCHIVE DESTINATION "${ CMAKE_INSTALL_LIBDIR }"

)

install (EXPORT two - targets
NAMESPACE two ::
DESTINATION "${ CMAKE_INSTALL_LIBDIR }/ cmake/two"

)

Help
cmake-packages(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 20 / 25

https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html

CMake for Developers Imported/Exported Targets and CMake Packages

Create (Relocatable) CMake Packages
include (CMakePackageConfigHelpers) # cmake 2.8.8

configure_package_config_file (two - config .cmake.in
"${ CMAKE_CURRENT_BINARY_DIR }/two - config .cmake"
INSTALL_DESTINATION "${ CMAKE_INSTALL_LIBDIR }/ cmake/two"
PATH_VARS CMAKE_INSTALL_INCLUDEDIR
NO_CHECK_REQUIRED_COMPONENTS_MACRO

)
write_basic_package_version_file (

"${ CMAKE_CURRENT_BINARY_DIR }/two -config - version .cmake"
COMPATIBILITY SameMajorVersion

)
install (FILES

"${ CMAKE_CURRENT_BINARY_DIR }/two - config .cmake"
"${ CMAKE_CURRENT_BINARY_DIR }/two -config - version .cmake"
DESTINATION "${ CMAKE_INSTALL_LIBDIR }/ cmake/two"

)

Alexander Dahl (lespocky.de) CMake 2018-10-22 21 / 25

CMake for Developers Imported/Exported Targets and CMake Packages

CMake Package Config File

@PACKAGE_INIT@

get_filename_component (two_CMAKE_DIR
"${ CMAKE_CURRENT_LIST_FILE }" PATH

)
include (CMakeFindDependencyMacro)

find_dependency (OpenSSL REQUIRED)

if(NOT TARGET two :: two)
include ("${ two_CMAKE_DIR }/two - targets .cmake ")

endif ()

Help
cmake-packages(7)

Alexander Dahl (lespocky.de) CMake 2018-10-22 22 / 25

https://cmake.org/cmake/help/latest/manual/cmake-packages.7.html

CMake for Developers Miscellaneous Tips and Tricks

Generate Things at Build Time

configure_file()

I Create version.h from version.h.in
I Substitute placeholders with contents of CMake variables
I Set Preprocessor switches from CMake options with #cmakedefine
I configure_package_config_file() uses the same mechanism

Custom Targets and Custom Commands

I add_custom_command() to call external tools generating things
I add_custom_target() for always to built targets
I Functions, macros, and programming directives

Alexander Dahl (lespocky.de) CMake 2018-10-22 23 / 25

CMake for Developers Miscellaneous Tips and Tricks

Generate Things at Build Time

configure_file()

I Create version.h from version.h.in
I Substitute placeholders with contents of CMake variables
I Set Preprocessor switches from CMake options with #cmakedefine
I configure_package_config_file() uses the same mechanism

Custom Targets and Custom Commands

I add_custom_command() to call external tools generating things
I add_custom_target() for always to built targets
I Functions, macros, and programming directives

Alexander Dahl (lespocky.de) CMake 2018-10-22 23 / 25

CMake for Developers Miscellaneous Tips and Tricks

Related Tools
I CTest

I Test driver for your unit tests
I enable_testing() and add_test()

I CPack
I Tarballs
I Debian-Packages
I Installers (may need external Tools)
I . . .

I CDash
I Web-based software testing server
I CTest can report to CDash
I Runs valgrind, coverage tools, . . .

Alexander Dahl (lespocky.de) CMake 2018-10-22 24 / 25

https://www.cdash.org/

What else?

The Last Slide

Contact Me

E-Mail post@lespocky.de
WWW lespocky.de or blog.antiblau.de
Twitter @LeSpocky

Slides
I hg clone https://bitbucket.org/lespocky/talks

License
These slides are licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. (CC BY-SA 4.0)
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

Alexander Dahl (lespocky.de) CMake 2018-10-22 25 / 25

mailto:post@lespocky.de
http://www.lespocky.de/
http://blog.antiblau.de/
https://twitter.com/LeSpocky
http://creativecommons.org/licenses/by-sa/4.0/

	CMake for Users
	CMake for Developers
	Syntax
	Variables
	Targets
	Patterns
	Imported/Exported Targets and CMake Packages
	Miscellaneous Tips and Tricks

