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Problem: smoothing a function

Given a function f : {−1, 1}n → [−1, 1],
we want a smoothed version g : {−1, 1}n → [−1, 1]

1 Values of g should depend linearly on values of f

2 E[g] = E[f ]
3 g should vary less than f

4 g(x) should depend on values of f near x
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Global properties from local ones

g : {−1, 1}n → [−1, 1]

Suppose we are able to control local variation
Energy(g) = 1

2 Ex∼y
[
(g(x)− g(y))2

]
What can we say about the

variance?
Var(g) = E

[(
g −E[g]

)2]
Poincaré

Var(g) ≤ n
2 Energy(g)

What can we say about the
entropy?

Ent(g) = E
[
g ln g−E[g] ln E[g]

]
Log-Sobolev [Gross]

Ent(g2) ≤ nEnergy(g)
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Some candidates for g

g(x) = f(x)2 ?
I Not linear

g(x) = 1
2f(x) ?

I Shrinks everything
I Changes the expectation

g(x) = E[f ] ?
I Very lossy

g(x) = Ey near x[f(y)] ?
I Like a blur kernel in graphics
I Hmm. . .
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The Bonami-Gross-Beckner operator

For any ρ ∈ [0, 1],

Tρ[f ](x1, . . . , xn) = E[f(y1, . . . , yn)]

where

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

e.g., T0[f ](x) = E[f ] T1[f ](x) = f(x)

P. Biswal (UW) Hypercontractivity 2010-02-10 6 / 23



The Bonami-Gross-Beckner operator

For any ρ ∈ [0, 1],

Tρ[f ](x1, . . . , xn) = E[f(y1, . . . , yn)]

where

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

e.g., T0[f ](x) = E[f ]

T1[f ](x) = f(x)

P. Biswal (UW) Hypercontractivity 2010-02-10 6 / 23



The Bonami-Gross-Beckner operator

For any ρ ∈ [0, 1],

Tρ[f ](x1, . . . , xn) = E[f(y1, . . . , yn)]

where

yi =

{
xi with probability 1+ρ

2

−xi with probability 1−ρ
2

e.g., T0[f ](x) = E[f ] T1[f ](x) = f(x)

P. Biswal (UW) Hypercontractivity 2010-02-10 6 / 23



p-norms

For any f : {−1, 1}n → [−1, 1]

‖f‖p = E
[
|f |p

]1/p 1 ≤ p <∞
‖f‖∞ = lim

p→∞
‖f‖p = max f

‖f‖1 ≤ ‖f‖2 ≤ · · · ≤ ‖f‖∞

Lower norms pay more attention to the average
Higher norms pay more attention to spikes

Intuition

Noise spreads out the mass of f from its spikes,
so we should be able to bound the higher norms of Tρ[f ]
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Hypercontractivity for {−1, 1}n [Gross]

For any function f : {−1, 1}n → [−1, 1] and 1 ≤ p ≤ q, 0 ≤ ρ ≤ 1,

ρ ≤
√
p− 1
q − 1

implies ‖Tρ[f ]‖q ≤ ‖f‖p

Application

For any unbiased boolean function f(x1, . . . , xn) there is an index xi
such that f(. . . , xi, . . . ) 6= f(. . . ,−xi, . . . ) at least Ω( logn

n ) ·Var(f)
of the time. [Kahn, Kalai, Linial]
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Hypercontractivity in other spaces

More generally, if X has notions of probability and distance

We can define Energy(f) = 1
2 Ex near y[(f(x)− f(y))2]

If we can prove a Log-Sobolev inequality Ent(f2) ≤ C ·Energy(f)
Then we can define a smoothing operator Tρ for 0 ≤ ρ ≤ 1
Such that for any f : X → [−1, 1] and 1 ≤ p ≤ q,
we can give an explicit ρ = ρ(p, q, C) such that ‖Tρ f‖q ≤ ‖f‖q

e.g., R with Gaussian measure:

Energy(f) = 1
2 E[(f ′)2]

Ent(f2) ≤ Energy(f)

Tρ[f ](x) = Ey∼N (0,1)

[
f
(
ρx+ (1− ρ2)1/2y

)]
‖Tρ[f ]‖q ≤ ‖f‖p when ρ <

√
(q − 1)/(p− 1)
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Applications of HC in other spaces

Gaussian
Strong isoperimetric inequality for Gaussian space, leading to fast
algorithms for graph partitioning [Sherman]

Schreier graphs
Every monotone function from {−1, 1}n is (1

2 −Ω( logn
n ))-close to one

of {0, 1, x1, . . . , xn,Maj(x)}. [O’Donnell-Wimmer]
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Dictatorship testing

Given a function f : {−1, 1}n → {−1, 1},

query it at 3 points x, y, z ∈ {−1, 1}n chosen non-adaptively and then

1 if f is a dictator
I i.e., it only depends on only one of its input coordinates
I you must accept with probability ≥ c

2 f is quasirandom
I i.e., it is far from every small junta
I you must accept with probability ≤ s
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Quasirandomness and Fourier analysis

Every function f : {−1, 1}n → R can be written as
a multilinear polynomial, e.g. f(x) = 3

4x1 − 1
2x3x4

For any set S ⊆ [n], the coefficient of
∏
i∈S xi is denoted f̂(S)

If g = Tρ[f ], then ĝ(S) = ρ|S|f̂(S)

f is said to be (ε, δ)-quasirandom if |f̂(S)| ≤ ε whenever |S| ≥ 1/δ,

Testing with perfect completeness [O’Donnell-Wu]

For every 0 < δ < 1/8, there is a 3-query nonadaptive test that accepts
any dictator with probability 1 but accepts any (δ, δ

log(1/δ))-quasirandom

function with probability ≤ 5
8 +O(

√
δ).
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log(1/δ))-quasirandom

function with probability ≤ 5
8 +O(

√
δ).
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The test

For each 1 ≤ i ≤ n, sample (xi, yi, yi) as follows:

x1 . . . xi . . . xn
y1 . . . yi . . . yn
z1 . . . zi . . . zn

I with probability 1− δ,
pick xi, yi, zi uniformly from the subset that satisfies xiyizi = −1

I with probability δ,
pick xi = yi = zi uniformly between {−1, 1}

Query f(x), f(y), f(z).

If exactly two of the values are −1, then reject. Otherwise accept.
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Analysis: completeness

(xi, yi, zi) ∈
{(−1, 1, 1), (1,−1, 1), (1, 1,−1)}︸ ︷︷ ︸

xiyizi=−1

∪{(−1,−1,−1), (1, 1, 1)}︸ ︷︷ ︸
xi=yi=zi

Zero, one, or three occurences of −1!

So if f(x) = xi, our test would pass it. (c = 1)
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Analysis: soundness

a −1 −1 −1 −1 1 1 1 1
b −1 −1 1 1 −1 −1 1 1
c −1 1 −1 1 −1 1 −1 1

NTW(a, b, c) 1 0 0 1 0 1 1 1

NTW(a, b, c) = 5
8 + 1

8(a+ b+ c) + 1
8(ab+ bc+ ca)− 3

8abc

Pr[accept f ] = E[NTW(f(x), f(y), f(z)]
= 5

8 + 3
8 E[f(x)] + 3

8 E[f(x)f(y)]− 3
8 E[f(x)f(y)f(z)]

Proceed using
I linearity of expectation
I Plancherel’s theorem: E[f2] =

∑
S f̂(S)2

I elementary algebra

Need to bound −3
8 E[f(x)f(y)f(z)]
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The cubic term

The contribution due to each A ⊆ [n] can be bounded by

4(1− δ)|A|
(
|f̂(A)|3 + ‖T√δ gA‖

3
3

)
where gA : {−1, 1}[n]\A → R is given by

ĝA(X) =

{
0 X = ∅
f̂(A ∪X) otherwise

∑
|A|≤ 1

δ
log 1

δ

(1− δ)|A||f̂(A)|3 ≤
√
δ

∑
|A|> 1

δ
log 1

δ

(1− δ)|A||f̂(A)|3 ≤ (1− δ)1/δ ≤ O(δ)
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ĝA(X) =

{
0 X = ∅
f̂(A ∪X) otherwise

∑
|A|≤ 1

δ
log 1

δ

(1− δ)|A||f̂(A)|3 ≤
√
δ

∑
|A|> 1

δ
log 1

δ

(1− δ)|A||f̂(A)|3 ≤ (1− δ)1/δ ≤ O(δ)

P. Biswal (UW) Hypercontractivity 2010-02-10 16 / 23



The cubic term

Goal: bound
∑

A(1− δ)|A|‖T√δ gA‖
3
3

Using a slight variation of the hypercontractive inequality,
we have for λ = 1/ log2(1/δ) < 1/3 that

‖T√δ gA‖
3
3 ≤ ‖T√δ gA‖

3−3λ
2 ‖gA‖3λ2

Plancherel: ‖gA‖3λ2 ≤ 1
Algebraic manipulation:

‖T√δ gA‖
3−3λ
2 ≤ O(

√
δ)

∑
∅6=B⊆A

δ|B|f̂(A ∪B)2
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The cubic term

∑
A

(1− δ)|A|‖T√δgA‖
3
3 ≤ O(

√
δ)
∑
A

(1− δ)|A|δ|B|f̂(A ∪B)2

Contribution due to each A ∪B is∑
(1− δ)|A|δ|B| = 1 (Binomial sum)

Total of all f̂(A ∪B)2 contributions is ≤ 1 (Plancherel)
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Thank You!
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Unique Games

Label Cover: Given a set V of variables over a domain L and
weighted constraints on each pair, assign values to maximize the
fraction of satisfied constraints.

Unique Label Cover: As above, but every constraint is a bijection: a
constraint on the pair u, v ∈ V takes the form of a permutation
π : L→ L.

Example: Linear equations of the form xu − xv = r (mod p)
Hardness

I Easy when there exists a perfect solution
I But if there exists a solution satisfying 99% of the constraints, we

don’t even know how to find a 1% satisfying solution

Unique Games Conjecture
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An SDP for ULC

maximize Ee{u,v}
∑

i∈L〈ui, vπe(i)〉
subject to 〈ui, vj〉 ≥ 0 ∀u, v ∈ V,∀i, j ∈ L∑

i∈L〈vi, vi〉 = 1 ∀v ∈ V
〈
∑

i∈L ui,
∑

j∈L vj〉 = 1 ∀u, v ∈ L
〈vi, vj〉 = 0 ∀v ∈ V,∀i 6= j ∈ L

Integrality gap [Khot-Vishnoi]

For domain size 2k and any value 0 < η < 1
2 , there is a ULC instance

whose integer optimum is ≤ 2−kη but whose SDP admits solutions of
value ≥ 1− η.
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Gap instance

Take V = all functions f : {−1, 1}n → {−1, 1}
Take L = all monomials

∏
i∈S xi

Hard constraints:
I If f = gχ for some monomial χ,

then Label(f) = Label(g)χ must hold

Fix one f from each group tied by hard constraints

Soft constraints
I Weight = Prh,h′ [{f, g} = {h, h′}] where h, h′ are (1− 2η)-correlated

I Permutation:
Label(fχ)

χ
=

Label(gψ)
ψ
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Soundness

Objective value is precisely Pr[Label(h) = Label(h′)]
Let φ : V → {0, 1} indicate the set that received some label χ

Pr[Label(h) = Label(h′) = χ]

= E[φ(h)φ(h′)] = E[h,T1−2η h] = ‖T√1−2ηh‖22

By hypercontractivity, ≤ ‖h‖22(1−η) = 1/2
k

1+η
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