Hypercontractivity and its Applications

Punyashloka Biswal
Advisors: James Lee and Paul Beame
University of Washington

February 10, 2010

Theory

- Problem: smoothing a function
- Log-Sobolev inequality
- Hypercontractivity

Applications

- Dictatorship testing with perfect completeness
- Integrality gap for Unique Games

Problem: smoothing a function

Given a function $f:\{-1,1\}^{n} \rightarrow[-1,1]$, we want a smoothed version $g:\{-1,1\}^{n} \rightarrow[-1,1]$

Problem: smoothing a function

Given a function $f:\{-1,1\}^{n} \rightarrow[-1,1]$, we want a smoothed version $g:\{-1,1\}^{n} \rightarrow[-1,1]$
(1) Values of g should depend linearly on values of f

Problem: smoothing a function

Given a function $f:\{-1,1\}^{n} \rightarrow[-1,1]$, we want a smoothed version $g:\{-1,1\}^{n} \rightarrow[-1,1]$
(1) Values of g should depend linearly on values of f
(2) $\mathbf{E}[g]=\mathbf{E}[f]$

Problem: smoothing a function

Given a function $f:\{-1,1\}^{n} \rightarrow[-1,1]$, we want a smoothed version $g:\{-1,1\}^{n} \rightarrow[-1,1]$
(1) Values of g should depend linearly on values of f
(2) $\mathbf{E}[g]=\mathbf{E}[f]$
(3) g should vary less than f

Problem: smoothing a function

Given a function $f:\{-1,1\}^{n} \rightarrow[-1,1]$, we want a smoothed version $g:\{-1,1\}^{n} \rightarrow[-1,1]$
(1) Values of g should depend linearly on values of f
(2) $\mathbf{E}[g]=\mathbf{E}[f]$
(3) g should vary less than f
(9) $g(x)$ should depend on values of f near x

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Suppose we are able to control local variation $\operatorname{Energy}(g)=\frac{1}{2} \mathbf{E}_{x \sim y}\left[(g(x)-g(y))^{2}\right]$

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Suppose we are able to control local variation

$$
\operatorname{Energy}(g)=\frac{1}{2} \mathbf{E}_{x \sim y}\left[(g(x)-g(y))^{2}\right]
$$

What can we say about the variance?
$\operatorname{Var}(g)=\mathbf{E}\left[(g-\mathbf{E}[g])^{2}\right]$

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Suppose we are able to control local variation

$$
\operatorname{Energy}(g)=\frac{1}{2} \mathbf{E}_{x \sim y}\left[(g(x)-g(y))^{2}\right]
$$

What can we say about the variance?
$\operatorname{Var}(g)=\mathbf{E}\left[(g-\mathbf{E}[g])^{2}\right]$

Poincaré

$\operatorname{Var}(g) \leq \frac{n}{2} \operatorname{Energy}(g)$

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Suppose we are able to control local variation

$$
\operatorname{Energy}(g)=\frac{1}{2} \mathbf{E}_{x \sim y}\left[(g(x)-g(y))^{2}\right]
$$

What can we say about the variance?
$\operatorname{Var}(g)=\mathbf{E}\left[(g-\mathbf{E}[g])^{2}\right]$

What can we say about the entropy?
$\operatorname{Ent}(g)=\mathbf{E}[g \ln g-\mathbf{E}[g] \ln \mathbf{E}[g]]$

Poincaré

$\operatorname{Var}(g) \leq \frac{n}{2} \operatorname{Energy}(g)$

Global properties from local ones

$$
g:\{-1,1\}^{n} \rightarrow[-1,1]
$$

Suppose we are able to control local variation

$$
\operatorname{Energy}(g)=\frac{1}{2} \mathbf{E}_{x \sim y}\left[(g(x)-g(y))^{2}\right]
$$

What can we say about the variance?
$\operatorname{Var}(g)=\mathbf{E}\left[(g-\mathbf{E}[g])^{2}\right]$

Poincaré

$\operatorname{Var}(g) \leq \frac{n}{2} \operatorname{Energy}(g)$

What can we say about the entropy?
$\operatorname{Ent}(g)=\mathbf{E}[g \ln g-\mathbf{E}[g] \ln \mathbf{E}[g]]$
[Gross]
$\operatorname{Ent}\left(g^{2}\right) \leq n \operatorname{Energy}(g)$

Some candidates for g

- $g(x)=f(x)^{2}$?
- Not linear

Some candidates for g

- $g(x)=f(x)^{2}$?
- Not linear
- $g(x)=\frac{1}{2} f(x)$?
- Shrinks everything
- Changes the expectation

Some candidates for g

- $g(x)=f(x)^{2}$?
- Not linear
- $g(x)=\frac{1}{2} f(x)$?
- Shrinks everything
- Changes the expectation

Some candidates for g

- $g(x)=f(x)^{2}$?
- Not linear
- $g(x)=\frac{1}{2} f(x)$?
- Shrinks everything
- Changes the expectation
- $g(x)=\mathbf{E}[f]$?
- Very lossy
- $g(x)=\mathbf{E}_{y \text { near } x}[f(y)]$?
- Like a blur kernel in graphics
- Hmm...

The Bonami-Gross-Beckner operator

$$
\begin{gathered}
\text { For any } \rho \in[0,1], \\
\mathbf{T}_{\rho}[f]\left(x_{1}, \ldots, x_{n}\right)=\mathbf{E}\left[f\left(y_{1}, \ldots, y_{n}\right)\right] \\
\text { where } \\
y_{i}= \begin{cases}x_{i} & \text { with probability } \frac{1+\rho}{2} \\
-x_{i} & \text { with probability } \frac{1-\rho}{2}\end{cases}
\end{gathered}
$$

The Bonami-Gross-Beckner operator

$$
\begin{gathered}
\text { For any } \rho \in[0,1], \\
\mathbf{T}_{\rho}[f]\left(x_{1}, \ldots, x_{n}\right)=\mathbf{E}\left[f\left(y_{1}, \ldots, y_{n}\right)\right] \\
\text { where } \\
y_{i}= \begin{cases}x_{i} & \text { with probability } \frac{1+\rho}{2} \\
-x_{i} & \text { with probability } \frac{1-\rho}{2}\end{cases} \\
\text { e.g., } \quad \mathbf{T}_{0}[f](x)=\mathbf{E}[f]
\end{gathered}
$$

The Bonami-Gross-Beckner operator

$$
\begin{gathered}
\text { For any } \rho \in[0,1], \\
\mathbf{T}_{\rho}[f]\left(x_{1}, \ldots, x_{n}\right)=\mathbf{E}\left[f\left(y_{1}, \ldots, y_{n}\right)\right] \\
\text { where } \\
y_{i}= \begin{cases}x_{i} & \text { with probability } \frac{1+\rho}{2} \\
-x_{i} & \text { with probability } \frac{1-\rho}{2}\end{cases}
\end{gathered}
$$

$$
\text { e.g., } \quad \mathbf{T}_{0}[f](x)=\mathbf{E}[f] \quad \mathbf{T}_{1}[f](x)=f(x)
$$

p-norms

- For any $f:\{-1,1\}^{n} \rightarrow[-1,1]$

$$
\begin{array}{ll}
\|f\|_{p}=\mathbf{E}\left[|f|^{p}\right]^{1 / p} & 1 \leq p<\infty \\
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}=\max f &
\end{array}
$$

p-norms

- For any $f:\{-1,1\}^{n} \rightarrow[-1,1]$

$$
\begin{array}{ll}
\|f\|_{p}=\mathbf{E}\left[|f|^{p}\right]^{1 / p} & 1 \leq p<\infty \\
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}=\max f &
\end{array}
$$

- $\|f\|_{1} \leq\|f\|_{2} \leq \cdots \leq\|f\|_{\infty}$
- Lower norms pay more attention to the average Higher norms pay more attention to spikes

p-norms

- For any $f:\{-1,1\}^{n} \rightarrow[-1,1]$

$$
\begin{array}{ll}
\|f\|_{p}=\mathbf{E}\left[|f|^{p}\right]^{1 / p} & 1 \leq p<\infty \\
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}=\max f &
\end{array}
$$

- $\|f\|_{1} \leq\|f\|_{2} \leq \cdots \leq\|f\|_{\infty}$
- Lower norms pay more attention to the average Higher norms pay more attention to spikes

Intuition

Noise spreads out the mass of f from its spikes, so we should be able to bound the higher norms of $\mathbf{T}_{\rho}[f]$

Hypercontractivity for $\{-1,1\}^{n}$
[Gross]
For any function $f:\{-1,1\}^{n} \rightarrow[-1,1]$ and $1 \leq p \leq q, 0 \leq \rho \leq 1$,

$$
\rho \leq \sqrt{\frac{p-1}{q-1}} \text { implies }\left\|\mathbf{T}_{\rho}[f]\right\|_{q} \leq\|f\|_{p}
$$

Hypercontractivity for $\{-1,1\}^{n}$

[Gross]
For any function $f:\{-1,1\}^{n} \rightarrow[-1,1]$ and $1 \leq p \leq q, 0 \leq \rho \leq 1$,

$$
\rho \leq \sqrt{\frac{p-1}{q-1}} \text { implies }\left\|\mathbf{T}_{\rho}[f]\right\|_{q} \leq\|f\|_{p}
$$

Application

- For any unbiased boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ there is an index x_{i} such that $f\left(\ldots, x_{i}, \ldots\right) \neq f\left(\ldots,-x_{i}, \ldots\right)$ at least $\Omega\left(\frac{\log n}{n}\right) \cdot \operatorname{Var}(f)$ of the time.
[Kahn, Kalai, Linial]

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define $\operatorname{Energy}(f)=\frac{1}{2} \mathbf{E}_{x \text { near } y}\left[(f(x)-f(y))^{2}\right]$

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define Energy $(f)=\frac{1}{2} \mathbf{E}_{x \text { near } y}\left[(f(x)-f(y))^{2}\right]$
- If we can prove a Log-Sobolev inequality $\operatorname{Ent}\left(f^{2}\right) \leq C \cdot \operatorname{Energy}(f)$

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define $\operatorname{Energy}(f)=\frac{1}{2} \mathbf{E}_{x}$ near $y\left[(f(x)-f(y))^{2}\right]$
- If we can prove a Log-Sobolev inequality $\operatorname{Ent}\left(f^{2}\right) \leq C \cdot \operatorname{Energy}(f)$
- Then we can define a smoothing operator \mathbf{T}_{ρ} for $0 \leq \rho \leq 1$

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define $\operatorname{Energy}(f)=\frac{1}{2} \mathbf{E}_{x \text { near } y}\left[(f(x)-f(y))^{2}\right]$
- If we can prove a Log-Sobolev inequality $\operatorname{Ent}\left(f^{2}\right) \leq C \cdot \operatorname{Energy}(f)$
- Then we can define a smoothing operator \mathbf{T}_{ρ} for $0 \leq \rho \leq 1$
- Such that for any $f: X \rightarrow[-1,1]$ and $1 \leq p \leq q$, we can give an explicit $\rho=\rho(p, q, C)$ such that $\left\|\mathbf{T}_{\rho} f\right\|_{q} \leq\|f\|_{q}$

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define $\operatorname{Energy}(f)=\frac{1}{2} \mathbf{E}_{x \text { near } y}\left[(f(x)-f(y))^{2}\right]$
- If we can prove a Log-Sobolev inequality $\operatorname{Ent}\left(f^{2}\right) \leq C \cdot \mathbf{E n e r g y}(f)$
- Then we can define a smoothing operator \mathbf{T}_{ρ} for $0 \leq \rho \leq 1$
- Such that for any $f: X \rightarrow[-1,1]$ and $1 \leq p \leq q$, we can give an explicit $\rho=\rho(p, q, C)$ such that $\left\|\mathbf{T}_{\rho} f\right\|_{q} \leq\|f\|_{q}$
- e.g., \mathbb{R} with Gaussian measure:

$$
\begin{aligned}
\operatorname{Energy}(f) & =\frac{1}{2} \mathbf{E}\left[\left(f^{\prime}\right)^{2}\right] \\
\operatorname{Ent}\left(f^{2}\right) & \leq \operatorname{Energy}(f)
\end{aligned}
$$

Hypercontractivity in other spaces

- More generally, if X has notions of probability and distance
- We can define Energy $(f)=\frac{1}{2} \mathbf{E}_{x \text { near } y}\left[(f(x)-f(y))^{2}\right]$
- If we can prove a Log-Sobolev inequality $\operatorname{Ent}\left(f^{2}\right) \leq C \cdot \operatorname{Energy}(f)$
- Then we can define a smoothing operator \mathbf{T}_{ρ} for $0 \leq \rho \leq 1$
- Such that for any $f: X \rightarrow[-1,1]$ and $1 \leq p \leq q$, we can give an explicit $\rho=\rho(p, q, C)$ such that $\left\|\mathbf{T}_{\rho} f\right\|_{q} \leq\|f\|_{q}$
- e.g., \mathbb{R} with Gaussian measure:

$$
\begin{aligned}
\operatorname{Energy}(f) & =\frac{1}{2} \mathbf{E}\left[\left(f^{\prime}\right)^{2}\right] \\
\operatorname{Ent}\left(f^{2}\right) & \leq \operatorname{Energy}(f)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{T}_{\rho}[f](x) & =\mathbf{E}_{y \sim \mathcal{N}(0,1)}\left[f\left(\rho x+\left(1-\rho^{2}\right)^{1 / 2} y\right)\right] \\
\left\|\mathbf{T}_{\rho}[f]\right\|_{q} & \leq\|f\|_{p} \text { when } \rho<\sqrt{(q-1) /(p-1)}
\end{aligned}
$$

Applications of HC in other spaces

- Gaussian

Strong isoperimetric inequality for Gaussian space, leading to fast algorithms for graph partitioning
[Sherman]

Applications of HC in other spaces

- Gaussian

Strong isoperimetric inequality for Gaussian space, leading to fast algorithms for graph partitioning
[Sherman]

- Schreier graphs

Every monotone function from $\{-1,1\}^{n}$ is $\left(\frac{1}{2}-\Omega\left(\frac{\log n}{n}\right)\right)$-close to one of $\left\{0,1, x_{1}, \ldots, x_{n}, \operatorname{Maj}(x)\right\}$.
[O'Donnell-Wimmer]

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$,

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then
(1) if f is a dictator

- i.e., it only depends on only one of its input coordinates

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then
(1) if f is a dictator

- i.e., it only depends on only one of its input coordinates
- you must accept with probability $\geq c$

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then
(1) if f is a dictator

- i.e., it only depends on only one of its input coordinates
- you must accept with probability $\geq c$
(2) f is quasirandom
- i.e., it is far from every small junta

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then
(1) if f is a dictator

- i.e., it only depends on only one of its input coordinates
- you must accept with probability $\geq c$
(2) f is quasirandom
- i.e., it is far from every small junta
- you must accept with probability $\leq s$

Dictatorship testing

Given a function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, query it at 3 points $x, y, z \in\{-1,1\}^{n}$ chosen non-adaptively and then
(1) if f is a dictator

- i.e., it only depends on only one of its input coordinates
- you must accept with probability $\geq c$
(2) f is quasirandom
- i.e., it is far from every small junta
- you must accept with probability $\leq s$

Quasirandomness and Fourier analysis

- Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ can be written as a multilinear polynomial, e.g. $f(x)=\frac{3}{4} x_{1}-\frac{1}{2} x_{3} x_{4}$

Quasirandomness and Fourier analysis

- Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ can be written as a multilinear polynomial, e.g. $f(x)=\frac{3}{4} x_{1}-\frac{1}{2} x_{3} x_{4}$
- For any set $S \subseteq[n]$, the coefficient of $\prod_{i \in S} x_{i}$ is denoted $\hat{f}(S)$

Quasirandomness and Fourier analysis

- Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ can be written as a multilinear polynomial, e.g. $f(x)=\frac{3}{4} x_{1}-\frac{1}{2} x_{3} x_{4}$
- For any set $S \subseteq[n]$, the coefficient of $\prod_{i \in S} x_{i}$ is denoted $\hat{f}(S)$
- If $g=\mathbf{T}_{\rho}[f]$, then $\hat{g}(S)=\rho^{|S|} \hat{f}(S)$

Quasirandomness and Fourier analysis

- Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ can be written as a multilinear polynomial, e.g. $f(x)=\frac{3}{4} x_{1}-\frac{1}{2} x_{3} x_{4}$
- For any set $S \subseteq[n]$, the coefficient of $\prod_{i \in S} x_{i}$ is denoted $\hat{f}(S)$
- If $g=\mathbf{T}_{\rho}[f]$, then $\hat{g}(S)=\rho^{|S|} \hat{f}(S)$
- f is said to be (ϵ, δ)-quasirandom if $|\hat{f}(S)| \leq \epsilon$ whenever $|S| \geq 1 / \delta$,

Quasirandomness and Fourier analysis

- Every function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ can be written as a multilinear polynomial, e.g. $f(x)=\frac{3}{4} x_{1}-\frac{1}{2} x_{3} x_{4}$
- For any set $S \subseteq[n]$, the coefficient of $\prod_{i \in S} x_{i}$ is denoted $\hat{f}(S)$
- If $g=\mathbf{T}_{\rho}[f]$, then $\hat{g}(S)=\rho^{|S|} \hat{f}(S)$
- f is said to be (ϵ, δ)-quasirandom if $|\hat{f}(S)| \leq \epsilon$ whenever $|S| \geq 1 / \delta$,

Testing with perfect completeness

[O'Donnell-Wu]
For every $0<\delta<1 / 8$, there is a 3 -query nonadaptive test that accepts any dictator with probability 1 but accepts any $\left(\delta, \frac{\delta}{\log (1 / \delta)}\right)$-quasirandom function with probability $\leq \frac{5}{8}+O(\sqrt{\delta})$.

The test

- For each $1 \leq i \leq n$, sample $\left(x_{i}, y_{i}, y_{i}\right)$ as follows:

x_{1}	\ldots	x_{i}	\ldots	x_{n}
y_{1}	\ldots	y_{i}	\ldots	y_{n}
z_{1}	\ldots	z_{i}	\ldots	z_{n}

The test

- For each $1 \leq i \leq n$, sample $\left(x_{i}, y_{i}, y_{i}\right)$ as follows:

x_{1}	\ldots	x_{i}	\ldots	x_{n}
y_{1}	\ldots	y_{i}	\ldots	y_{n}
z_{1}	\ldots	z_{i}	\ldots	z_{n}

- with probability $1-\delta$, pick x_{i}, y_{i}, z_{i} uniformly from the subset that satisfies $x_{i} y_{i} z_{i}=-1$

The test

- For each $1 \leq i \leq n$, sample $\left(x_{i}, y_{i}, y_{i}\right)$ as follows:

x_{1}	\ldots	x_{i}	\ldots	x_{n}
y_{1}	\ldots	y_{i}	\ldots	y_{n}
z_{1}	\ldots	z_{i}	\ldots	z_{n}

- with probability $1-\delta$, pick x_{i}, y_{i}, z_{i} uniformly from the subset that satisfies $x_{i} y_{i} z_{i}=-1$
- with probability δ, pick $x_{i}=y_{i}=z_{i}$ uniformly between $\{-1,1\}$

The test

- For each $1 \leq i \leq n$, sample $\left(x_{i}, y_{i}, y_{i}\right)$ as follows:

x_{1}	\ldots	x_{i}	\ldots	x_{n}
y_{1}	\ldots	y_{i}	\ldots	y_{n}
z_{1}	\ldots	z_{i}	\ldots	z_{n}

- with probability $1-\delta$, pick x_{i}, y_{i}, z_{i} uniformly from the subset that satisfies $x_{i} y_{i} z_{i}=-1$
- with probability δ, pick $x_{i}=y_{i}=z_{i}$ uniformly between $\{-1,1\}$
- Query $f(x), f(y), f(z)$.
- If exactly two of the values are -1 , then reject. Otherwise accept.

Analysis: completeness

- $\left(x_{i}, y_{i}, z_{i}\right) \in$ $\underbrace{\{(-1,1,1),(1,-1,1),(1,1,-1)\}}_{x_{i} y_{i} z_{i}=-1} \cup \underbrace{\{(-1,-1,-1),(1,1,1)\}}_{x_{i}=y_{i}=z_{i}}$
- Zero, one, or three occurences of -1 !
- So if $f(x)=x_{i}$, our test would pass it. $(c=1)$

Analysis: soundness

$$
\begin{array}{rrrrrrrrr}
a & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
b & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
c & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
\hline \operatorname{NTW}(a, b, c) & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

Analysis: soundness

$$
\begin{array}{rrrrrrrrr}
a & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
b & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
c & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
\hline \operatorname{NTW}(a, b, c) & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

- $\operatorname{NTW}(a, b, c)=\frac{5}{8}+\frac{1}{8}(a+b+c)+\frac{1}{8}(a b+b c+c a)-\frac{3}{8} a b c$

Analysis: soundness

$$
\begin{array}{rrrrrrrrr}
a & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\
b & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
c & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\
\hline \operatorname{NTW}(a, b, c) & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

- $\operatorname{NTW}(a, b, c)=\frac{5}{8}+\frac{1}{8}(a+b+c)+\frac{1}{8}(a b+b c+c a)-\frac{3}{8} a b c$

$$
\begin{aligned}
\operatorname{Pr}[\text { accept } f] & =\mathbf{E}[\operatorname{NTW}(f(x), f(y), f(z)] \\
& =\frac{5}{8}+\frac{3}{8} \mathbf{E}[f(x)]+\frac{3}{8} \mathbf{E}[f(x) f(y)]-\frac{3}{8} \mathbf{E}[f(x) f(y) f(z)]
\end{aligned}
$$

Analysis: soundness

a	-1	-1	-1	-1	1	1	1	1
b	-1	-1	1	1	-1	-1	1	1
c	-1	1	-1	1	-1	1	-1	1
$\operatorname{NTW}(a, b, c)$	1	0	0	1	0	1	1	1

- $\operatorname{NTW}(a, b, c)=\frac{5}{8}+\frac{1}{8}(a+b+c)+\frac{1}{8}(a b+b c+c a)-\frac{3}{8} a b c$

$$
\begin{aligned}
\operatorname{Pr}[\text { accept } f] & =\mathbf{E}[\operatorname{NTW}(f(x), f(y), f(z)] \\
& =\frac{5}{8}+\frac{3}{8} \mathbf{E}[f(x)]+\frac{3}{8} \mathbf{E}[f(x) f(y)]-\frac{3}{8} \mathbf{E}[f(x) f(y) f(z)]
\end{aligned}
$$

- Proceed using
- linearity of expectation
- Plancherel's theorem: $\mathbf{E}\left[f^{2}\right]=\sum_{S} \hat{f}(S)^{2}$
- elementary algebra

Analysis: soundness

a	-1	-1	-1	-1	1	1	1	1
b	-1	-1	1	1	-1	-1	1	1
c	-1	1	-1	1	-1	1	-1	1
$\operatorname{NTW}(a, b, c)$	1	0	0	1	0	1	1	1

- $\operatorname{NTW}(a, b, c)=\frac{5}{8}+\frac{1}{8}(a+b+c)+\frac{1}{8}(a b+b c+c a)-\frac{3}{8} a b c$

$$
\begin{aligned}
\operatorname{Pr}[\text { accept } f] & =\mathbf{E}[\operatorname{NTW}(f(x), f(y), f(z)] \\
& =\frac{5}{8}+\frac{3}{8} \mathbf{E}[f(x)]+\frac{3}{8} \mathbf{E}[f(x) f(y)]-\frac{3}{8} \mathbf{E}[f(x) f(y) f(z)]
\end{aligned}
$$

- Proceed using
- linearity of expectation
- Plancherel's theorem: $\mathbf{E}\left[f^{2}\right]=\sum_{S} \hat{f}(S)^{2}$
- elementary algebra
- Need to bound $-\frac{3}{8} \mathbf{E}[f(x) f(y) f(z)]$

The cubic term

- The contribution due to each $A \subseteq[n]$ can be bounded by

$$
4(1-\delta)^{|A|}\left(|\hat{f}(A)|^{3}+\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}\right)
$$

where $g_{A}:\{-1,1\}^{[n] \backslash A} \rightarrow \mathbb{R}$ is given by

$$
\hat{g}_{A}(X)= \begin{cases}0 & X=\emptyset \\ \hat{f}(A \cup X) & \text { otherwise }\end{cases}
$$

The cubic term

- The contribution due to each $A \subseteq[n]$ can be bounded by

$$
4(1-\delta)^{|A|}\left(|\hat{f}(A)|^{3}+\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}\right)
$$

where $g_{A}:\{-1,1\}^{[n] \backslash A} \rightarrow \mathbb{R}$ is given by

$$
\hat{g}_{A}(X)= \begin{cases}0 & X=\emptyset \\ \hat{f}(A \cup X) & \text { otherwise }\end{cases}
$$

- $\quad \sum$

$$
(1-\delta)^{|A|}|\hat{f}(A)|^{3} \leq \sqrt{\delta}
$$

$|A| \leq \frac{1}{\delta} \log \frac{1}{\delta}$

The cubic term

- The contribution due to each $A \subseteq[n]$ can be bounded by

$$
4(1-\delta)^{|A|}\left(|\hat{f}(A)|^{3}+\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}\right)
$$

where $g_{A}:\{-1,1\}^{[n] \backslash A} \rightarrow \mathbb{R}$ is given by

$$
\hat{g}_{A}(X)= \begin{cases}0 & X=\emptyset \\ \hat{f}(A \cup X) & \text { otherwise }\end{cases}
$$

- $\quad \sum$

$$
(1-\delta)^{|A|}|\hat{f}(A)|^{3} \leq \sqrt{\delta}
$$

$|A| \leq \frac{1}{\delta} \log \frac{1}{\delta}$

- $\sum_{|A|>\frac{1}{\delta} \log \frac{1}{\delta}}(1-\delta)^{|A|}|\hat{f}(A)|^{3} \leq(1-\delta)^{1 / \delta} \leq O(\delta)$

The cubic term

- Goal: bound $\sum_{A}(1-\delta)^{|A|}\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}$
- Using a slight variation of the hypercontractive inequality, we have for $\lambda=1 / \log _{2}(1 / \delta)<1 / 3$ that

$$
\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{2}^{3-3 \lambda}\left\|g_{A}\right\|_{2}^{3 \lambda}
$$

The cubic term

- Goal: bound $\sum_{A}(1-\delta)^{|A|}\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}$
- Using a slight variation of the hypercontractive inequality, we have for $\lambda=1 / \log _{2}(1 / \delta)<1 / 3$ that

$$
\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{2}^{3-3 \lambda}\left\|g_{A}\right\|_{2}^{3 \lambda}
$$

- Plancherel: $\left\|g_{A}\right\|_{2}^{3 \lambda} \leq 1$

The cubic term

- Goal: bound $\sum_{A}(1-\delta)^{|A|}\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3}$
- Using a slight variation of the hypercontractive inequality, we have for $\lambda=1 / \log _{2}(1 / \delta)<1 / 3$ that

$$
\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{2}^{3-3 \lambda}\left\|g_{A}\right\|_{2}^{3 \lambda}
$$

- Plancherel: $\left\|g_{A}\right\|_{2}^{3 \lambda} \leq 1$
- Algebraic manipulation:

$$
\left\|\mathbf{T}_{\sqrt{\delta}} g_{A}\right\|_{2}^{3-3 \lambda} \leq O(\sqrt{\delta}) \sum_{\emptyset \neq B \subseteq \bar{A}} \delta^{|B|} \hat{f}(A \cup B)^{2}
$$

The cubic term

$$
\sum_{A}(1-\delta)^{|A|}\left\|T_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq O(\sqrt{\delta}) \sum_{A}(1-\delta)^{|A|} \delta^{|B|} \hat{f}(A \cup B)^{2}
$$

The cubic term

$$
\sum_{A}(1-\delta)^{|A|}\left\|T_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq O(\sqrt{\delta}) \sum_{A}(1-\delta)^{|A|} \delta^{|B|} \hat{f}(A \cup B)^{2}
$$

- Contribution due to each $A \cup B$ is $\sum(1-\delta)^{|A|} \delta^{|B|}=1$ (Binomial sum)

The cubic term

$$
\sum_{A}(1-\delta)^{|A|}\left\|T_{\sqrt{\delta}} g_{A}\right\|_{3}^{3} \leq O(\sqrt{\delta}) \sum_{A}(1-\delta)^{|A|} \delta^{|B|} \hat{f}(A \cup B)^{2}
$$

- Contribution due to each $A \cup B$ is $\sum(1-\delta)^{|A|} \delta^{|B|}=1$ (Binomial sum)
- Total of all $\hat{f}(A \cup B)^{2}$ contributions is ≤ 1 (Plancherel)

Thank You!

Unique Games

- Label Cover: Given a set V of variables over a domain L and weighted constraints on each pair, assign values to maximize the fraction of satisfied constraints.

Unique Games

- Label Cover: Given a set V of variables over a domain L and weighted constraints on each pair, assign values to maximize the fraction of satisfied constraints.
- Unique Label Cover: As above, but every constraint is a bijection: a constraint on the pair $u, v \in V$ takes the form of a permutation $\pi: L \rightarrow L$.

Unique Games

- Label Cover: Given a set V of variables over a domain L and weighted constraints on each pair, assign values to maximize the fraction of satisfied constraints.
- Unique Label Cover: As above, but every constraint is a bijection: a constraint on the pair $u, v \in V$ takes the form of a permutation $\pi: L \rightarrow L$.
- Example: Linear equations of the form $x_{u}-x_{v}=r(\bmod p)$

Unique Games

- Label Cover: Given a set V of variables over a domain L and weighted constraints on each pair, assign values to maximize the fraction of satisfied constraints.
- Unique Label Cover: As above, but every constraint is a bijection: a constraint on the pair $u, v \in V$ takes the form of a permutation $\pi: L \rightarrow L$.
- Example: Linear equations of the form $x_{u}-x_{v}=r(\bmod p)$
- Hardness
- Easy when there exists a perfect solution
- But if there exists a solution satisfying 99% of the constraints, we don't even know how to find a 1% satisfying solution

Unique Games

- Label Cover: Given a set V of variables over a domain L and weighted constraints on each pair, assign values to maximize the fraction of satisfied constraints.
- Unique Label Cover: As above, but every constraint is a bijection: a constraint on the pair $u, v \in V$ takes the form of a permutation $\pi: L \rightarrow L$.
- Example: Linear equations of the form $x_{u}-x_{v}=r(\bmod p)$
- Hardness
- Easy when there exists a perfect solution
- But if there exists a solution satisfying 99% of the constraints, we don't even know how to find a 1% satisfying solution
- Unique Games Conjecture

An SDP for ULC

$$
\begin{aligned}
\operatorname{maximize} & \mathbf{E}_{e\{u, v\}} \sum_{i \in L}\left\langle u_{i}, v_{\pi_{e}(i)}\right\rangle \\
\text { subject to } & \left\langle u_{i}, v_{j}\right\rangle \geq 0 \\
& \left.\sum_{i \in L} v_{i}, v_{i}\right\rangle=1 \\
& \left\langle\sum_{i \in L} u_{i}, \sum_{j \in L} v_{j}\right\rangle=1 \\
& \left\langle v_{i}, v_{j}\right\rangle=0
\end{aligned}
$$

An SDP for ULC

$$
\begin{array}{rrr}
\operatorname{maximize} & \mathbf{E}_{e\{u, v\}} \sum_{i \in L}\left\langle u_{i}, v_{\pi_{e}(i)}\right\rangle & \\
\text { subject to } & \left\langle u_{i}, v_{j}\right\rangle \geq 0 & \forall u, v \in V, \forall i, j \in L \\
& \sum_{i \in L}\left\langle v_{i}, v_{i}\right\rangle=1 & \forall v \in V \\
& \left\langle\sum_{i \in L} u_{i}, \sum_{j \in L} v_{j}\right\rangle=1 & \forall u, v \in L \\
& \left\langle v_{i}, v_{j}\right\rangle=0 & \forall v \in V, \forall i \neq j \in L
\end{array}
$$

Integrality gap

[Khot-Vishnoi]
For domain size 2^{k} and any value $0<\eta<\frac{1}{2}$, there is a ULC instance whose integer optimum is $\leq 2^{-k \eta}$ but whose SDP admits solutions of value $\geq 1-\eta$.

Gap instance

- Take $V=$ all functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$
- Take $L=$ all monomials $\prod_{i \in S} x_{i}$
- Hard constraints:
- If $f=g \chi$ for some monomial χ, then $\operatorname{Label}(f)=\operatorname{Label}(g) \chi$ must hold
- Fix one f from each group tied by hard constraints

Gap instance

- Take $V=$ all functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$
- Take $L=$ all monomials $\prod_{i \in S} x_{i}$
- Hard constraints:
- If $f=g \chi$ for some monomial χ, then $\operatorname{Label}(f)=\operatorname{Label}(g) \chi$ must hold
- Fix one f from each group tied by hard constraints
- Soft constraints
- Weight $=\operatorname{Pr}_{h, h^{\prime}}\left[\{f, g\}=\left\{h, h^{\prime}\right\}\right]$ where h, h^{\prime} are $(1-2 \eta)$-correlated
- Permutation: $\frac{\operatorname{Label}(f \chi)}{\chi}=\frac{\operatorname{Label}(g \psi)}{\psi}$

Soundness

- Objective value is precisely $\operatorname{Pr}\left[\operatorname{Label}(h)=\mathbf{L a b e l}\left(h^{\prime}\right)\right]$
- Let $\phi: V \rightarrow\{0,1\}$ indicate the set that received some label χ

Soundness

- Objective value is precisely $\operatorname{Pr}\left[\operatorname{Label}(h)=\mathbf{L a b e l}\left(h^{\prime}\right)\right]$
- Let $\phi: V \rightarrow\{0,1\}$ indicate the set that received some label χ

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{Label}(h)=\mathbf{L a b e l}\left(h^{\prime}\right)=\chi\right] \\
& \quad=\mathbf{E}\left[\phi(h) \phi\left(h^{\prime}\right)\right]=\mathbf{E}\left[h, \mathbf{T}_{1-2 \eta} h\right]=\left\|T_{\sqrt{1-2 \eta}} h\right\|_{2}^{2}
\end{aligned}
$$

Soundness

- Objective value is precisely $\operatorname{Pr}\left[\operatorname{Label}(h)=\mathbf{L a b e l}\left(h^{\prime}\right)\right]$
- Let $\phi: V \rightarrow\{0,1\}$ indicate the set that received some label χ

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{Label}(h)=\mathbf{L a b e l}\left(h^{\prime}\right)=\chi\right] \\
& \quad=\mathbf{E}\left[\phi(h) \phi\left(h^{\prime}\right)\right]=\mathbf{E}\left[h, \mathbf{T}_{1-2 \eta} h\right]=\left\|T_{\sqrt{1-2 \eta}} h\right\|_{2}^{2}
\end{aligned}
$$

- By hypercontractivity, $\leq\|h\|_{2(1-\eta)}^{2}=1 / 2^{\frac{k}{1+\eta}}$

