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Abstract

Hypercontractive inequalities are a useful tool in dealing with extremal questions in the
geometry of high-dimensional discrete and continuous spaces. In this survey we trace a few
connections between different ways of stating hypercontractivity, and also present some relatively
recent applications of these techniques in computer science.

1 Preliminaries and notation

Fourier analysis on the hypercube. The uniform probability measure on the Boolean cube
{—=1,1}" gives rise to a natural inner product (f,g) = E, f(x)g(x) on functions f,g: {—1,1}" —
R. The multilinear polynomials xs(z) = [[,cq2; (Where S ranges over subsets of [n]) form an
orthogonal basis under this inner product; they are called the Fourier basis. Thus, for any function
foA{=1,1}" — R, we have f = > gcp, f(S)xs(z), where the Fourier coefficients f(S) = (f, xs)

obey Plancherel’s relation ST F(S)2 = 1. Tt is easy to verify that E, f(z) = f(0) and Var, f(z) =
>sz0.f(9)%.

Norms. For 1 < p < oo, define the £, norm || f||l, = (E. |f(2)|?)'/?. These norms are monotone
in p: for every function f, p > ¢ implies |[f[|, > [|f|ls. For a linear operator M carrying func-
tions f: {—1,1}" — R to functions M f = ¢g: {—1,1}" — R, we define the p-to-¢ operator norm
M |lp—q = sups[[Mfllg/[|fllq- M is said to be a contraction from £, to £, when [[M|,—, < 1.
Because of the monotonicity of norms, a contraction from ¢, to ¢, is automatically a contraction
from ¢, to ¢, for any ¢ < p. When ¢ > p and ||M||,—q < 1, then M is said to be hypercontractive.

Convolution operators. The convolution (fx*g)(z) = E, f(x)g(zy) of two functions f,g: {-1,1}" —
R defines a linear operator f — f % g, where xy is the coordinate-wise product. Convolution is
commutative and associative, and the Fourier coeflicients of a convolution satisfy the useful prop-
erty m = f g. We shall be particularly interested in the convolution properties of the following
functions

e The Dirac delta §: {—1,1}" — R, given by §(1,...,1) = 1 and §(z) = 0 otherwise. It is the
identity for convolution and has 0(S) =1 for all S C [n].



e The edge functions h;: {—1,1}" — R given by

1/2 z=(1,...,1)
hi(z) = =1/2 xi=—Lapp\g = (1,...,1)
0 otherwise.

fzi(S ) is 1 or 0 according as S contains or does not contain i, respectively. For any function
f{-11}" =R, (f xh;)(z) = (f(x) — f(y))/2, where y is obtained from z by flipping just
the ith bit. Convolution with h; acts as an orthogonal projection (as we can easily see in the
Fourier domain), so for any functions f,g: {—1,1}" — R, we have (f x h;,g) = (f,h; x g) =

(f * hi,g*h;)

e The Bonami-Gross-Beckner noise functions BG,: {-1,1}" — R for 0 < p < 1, where

EGP(S) = pl%l and we define 0° = 1. These operators form a semigroup, because BG * BG, =
BG,, and BG; = 6. Note that BG,(z) = Y ¢ pl¥lxs(x) = [[;(1 + pz;). We define the noise
operator T, acting on functions on the discrete cube by T,f = BG,*f. In combinatorial
terms, (T,,f)(x) is the expected value of f(y), where y is obtained from z by independently
flipping each bit of z with probability 1 — p.

Lemma 1. d%BGp = %BGp*Zhi

Proof. This is easy in the Fourier basis:

By Sy S|-1 _ . BG
BG, = () = |S|pl " = ZhiT”. O
i€[n]

2 The Bonami-Gross-Beckner Inequality

2.1 Poincaré and Log-Sobolev inequalities

The Poincaré and logarithmic Sobolev inequalities both relate how far a function f: {—1,1}" — R
is from constant to how fast it changes “locally”. The amount of local change is quantified by the
energy D(f, f), where the Dirichlet form D is defined as

D(f,9) =35 E (f(z)— f(y)(g(z) —g(y))

zyelE

(E is the set of pairs x,y that differ in a single coordinate). In terms of the edge functions h;,
observe that D(f,g) = 2 3°.(f * hi, g * hi).

In the case of the Poincaré inequality, we measure the distance of f to a constant by its variance
Var(f) = E(f —E f)?2 = Ef? — (E f)?. Then the Poincaré constant (of the discrete cube) is the
largest A such that the inequality

D(f, f) > A Var(f)

holds for all f: {—1,1}" — R. This quantity is also the smallest nonzero eigenvalue of the Laplacian
of the discrete cube, viewed as a graph (i.e., its spectral expansion).

Another way of measuring the non-constantness of a function is to consider its entropy Ent(f) =
E[f log ]E—ff] (where we assume f > 0 and use the convention that 0log 0 = 0). Note that Ent(cf) =
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cEnt(f) for any ¢ > 0, so the entropy is homogenous of degree 1 in its argument. Because we are
comparing the entropy with the energy (which is homogenous of degree 2) we use the entropy of the
square of the function to define the Log-Sobolev constant: the largest « such that the inequality

D(f, f) > aEnt(f?)

holds for all f: {—1,1}" — R. For the discrete cube {—1,1}", we have A\ = 2/n and o = 1/n,
as we shall see below. It is interesting to ask how these quantities are related when we consider
other probability spaces equipped with a suitable Dirichlet form (for example, d-regular graphs
with D(f, 9) = Eayer(f(z) — f(v))(9(x) — g(y)), where the expectation is taken over all edges). Set
f =1+ eg for a sufficiently small € and observe that Var(f) = €2 Var(g) and D(f, f) = €2D(g, g),
whereas

Ent(f2) =FE [(1 + 69)2(2 log(1 + eg) — log E[(1 + 69)2])]
= 262 Var(g) + O(€%)

This shows that o < \/2, which is tight in the case of the cube. However, for constant-degree ex-
pander families (in particular, for random d-regular graphs with high probability) we have | ,
Example 4.2] A = Q(1) but o = O(loglogn/logn) < A.

2.2 Hypercontractivity and the log-Sobolev inequality

When p € [0, 1], the noise operator T, is easily seen to contract fo: for any f: {—1,1}" — R, we
have | T,f[13 = S¢p¥1f(S)? < 3¢ £(S)? = ||f]3. Now consider its behavior from f to ¢, for
some ¢ > 2. When p = 1, we have Ty f = f; in particular, for g(z) = (14 21)/2, |lgll, = 1/2"/7 >
1/2'/2 = ||g|l2. On the other hand, Tof = E £, so ||[Toflly = |E f| < || E £2||'/2. By the intermediate
value theorem, there must be some p € (0,1) such that ||Tp||2—q = 1. A theorem of Gross | ]
connects this critical p with the Log-Sobolev constant a of the underlying space (we shall use the
language of | |, which is more convenient in the finite setting):
Theorem 2. ||T},—q < 1 if and only if p=29™ > %.

Stated differently, |T1—cf|lq < ||f]l2 when ¢ < (1 —€)™? + 1 ~ 2 + 2¢. Thus to prove hypercon-
tractive inequalities on the discrete cube, it suffices to bound the log-Sobolev constant. We shall
prove this claim for p = 2, which turns out to imply the general version.

Proof. We shall prove that ||T,f|l; < ||fll2 for ¢ = 1+ p~2°"; the remainder of the theorem can
be shown using similar techniques. As we observed before, this inequality is tight when p = 1, so
it suffices to show that d%HTprq > 0 for 0 < p < 1. For notational convenience, let G = ||T,f||.
Then

T, £l = (G9) = g 2GMD7 (4G’ - ¢'Glog G) .

Now we use the fact that G = E(T},f)? to get
G' = qE [(T,f)*H(T,f)'] + 4 E[(T,f) log(T,f)] -

Applying Lemma 3 and simplifying, we get

2
4G’ — ¢'Glog G = ¢ Ent (T, f)7) + % D ((T,£)5", T, f) .



We use Lemma 4 to handle the second term, and plug in ¢ = 1 + p~2°" to get

4G’ — q'Glog G = np " D((T,f)* (T,1)*"*) — Ent (T,£)")].
whose positivity we are guaranteed by the log-Sobolev inequality applied to (7}, f )(qfl)/ 2, O
Lemma 3. For any f,g: {-1,1}" — R, (g, dip(Tpf» = ;—pD(g,Tpf).

Proof. Recalling Lemma 1 and the projection property of the h;s, we have

(9, (T,£)) = (9.BGl xf) = <g, ~BG Zh@-> = 23 lg B wf) = 3o Dl Tyf). O

Lemma 4. For any f: {—1,1}" — R and ¢ > 2, D(f, f9!) > %D (fq/Q,f‘I/Q).

Proof. Tt suffices to show that (a9~! — b7 1)(a — b) > %(aq/2 —b4/2)2 for all a > b > 0 and
q > 2. But observe that
b 2 4
</ tq/21dt) _ qu(aq/Q _ bf}/2)2

b b 1
/ t972dt / dt = = 1(aq—1 — b Y (a—0)

and the inequality between the integrals follows from convexity. O

2.3 Tensoring property
Let au, be the log-Sobolev constant for an n-dimensional cube. Then
Theorem 5. ag, = a,/2

When n is a power of 2, we can conclude inductively that «,, = «a1/n; a proof along similar
lines works for arbitrary n as well.

Proof. For any f: {—1,1}" x{—1,1}" — R, set g(x) = || f(x,)||]2. Then by the conditional entropy
formula,

Ene(f?) < Ent(g?) + EEnt(f(z,5)?) < (B(g) + ED,(f(r,))/an
and by convexity,

E[(f(z,9) = F(a,9)*] = ED(f(-,))

Y

where x, 2’ range over edges of{—1,1}". Taken together, these give

Ent(fQ) < E, D(f($7 )) +Ey D(f('vy)) < 2D(f) D(f)

an, ~ an an/2

as claimed. O



2.4 Two-point inequality

It remains to show that the log-Sobolev inequality holds for the uniform distribution on the two-
point space {—1,1} with a = 2. Without loss of generality, consider f(z) =1+ sx. Then

Ent(f?) = (1 + s)?log(1 + s)* + (1 — 5)?log(1 — 5)* — (1 + s%) log(1 + s?)

and D(f, f) = 2s2. We shall show that ¢(s) = D(f, f) — a Ent(f?) is non-negative for —1 < s < 1.
By symmetry it suffices to consider s > 0. But ¢(0) = 0 and

¢'(s5) = 4s + 2slog(1 4 s%) +2(1 — s) log(1 — s) — 2(1 + s) log(1 + s),
which is non-negative because ¢'(0) = 0 and

452 1+ 52
21
52+1+ og

> 0.

#'(s) = o

2.5 Non-product groups

We have kept the exposition simple and self-contained by stating our definitions in terms of the
hypercube {—1,1}" equipped with Hamming edges and the uniform distribution. The relationship
between logarithmic Sobolev inequalities and hypercontractive noise operator subgroups, as stated
by Gross | ], holds for a much wider class of spaces. Diaconis and Saloff-Coste | ]
explored an intermediate between these two extremes of specialization to give improved mixing
time results for Markov chains on various graphs.

One of the first discrete applications of hypercontractivity was a celebrated theorem of Kahn,
Kalai and Linial | | relating the maximum influence of a function on the hypercube to its
variance. In recent work [ |, O'Donnell and Wimmer have generalized the KKL theorem
to apply to the wider class of Schreier graphs associated with group actions (defined below). An
action of a group G on a set X is a homomorphism from G to the group of bijections on X, and
we write 29 for the image of  under the bijection for g. If S is a set of generators for G, then
the Schreier graph Sch(G, S, X) has vertex set X and edges (z,z9) for all z € X and g € S. It
is known that every regular graph can be obtained in this way. The definition of the Dirichlet
form I generalizes without change, but to be able to derive a log-Sobolev inequality for this space,
we must define the noise operator T}, in an appropriate fashion to satisfy the claim of Lemma 1:

<gv dip(Tpf» X %D(%Tpf)

3 Boolean-Valued Functions

3.1 Influences

Write x_; for the collection of random variables {z1,...,2,}\{z;}. The influence of the ith coordi-
nate on a function f: {—1,1}" — Ris given by Inf;(f) = E,_, Vary, f(z) = E,_, [Eq, f(2)* — (Es, f(2))?].
When f is Boolean-valued, this quantity is just the probability that changing x; changes f(z). Writ-
ing f in the Fourier basis, we have E, ,E,, f(z)? = E, f(z)? = > g f(9)% and E,_,(E,, f(z))? =
>S5 F(S)2, so that Inf;(f) = Y S5i F(S)2 = E(f % h;)2. In addition, we define the total influence

Inf(f) = 3, Infi(f) = L5 |S1£(5)”.



3.2 Structural results

Boolean functions are natural combinatorial objects, but they were first studied from an analytical
viewpoint in work on voting and social choice. In this setting, a function f: {—1,1}" — {-1,1}
is viewed as a way to combine the preferences of n voters to yield the result of the election.
This explains the notions of dictator or junta functions, which depend on only one or a few of their
coordinates, respectively. In this context it is also natural to consider functions where no coordinate
(“voter”) has a very large influence. Kahn, Kalai, and Linial | ] first introduced the Fourier
analysis of Boolean functions as a technique in computer science. Their theorem establishes that if
a function is far from a constant (i.e., has super-constant variance), then it must have a variable of
influence Q(log") We state a strengthening of their original inequality due to Talagrand | ]:

Theorem 6 ([ , ). For any f: {—1, 1} — {-1,1},

Inf,(
> Q1) - V. .
Z log(1/ Inf ) (1) - Var(f)
We can compare this to the Poincaré inequality on the cube, which can be stated as

mei(f) > Q(1) - Var(f)

(i.e., there exists a variable of influence Q(%) .) The KKL theorem is a stronger result of the same
form: it is a comparison between a local and a global measure of variation. The proofs of KKL and
Talagrand used the hypercontractivity of the cube, but we present here a more recent proof due to
Rossignol that uses the log-Sobolev inequality instead. For simplicity we’ll just show the weaker

statement that the maximum influence is Q(b’% ")

Proof. Write f —E f = fi +--- + fn, where f; = ZS:maxS:j f(S)XS. For each f;, the log-Sobolev
inequality states that D(f;, f;) > aEnt(ij) = %Ent(ff) By writing D(fj, fj) in terms of the
Fourier coefficients f(S), we can check that D(f, f) = > i—oD(fj, fj), so that we can sum all these
inequalities to obtain

D(f.f) = Y Ent(f?) = S E[f log(f2)] + Y E f?log Elfz :
j J J ’

A B
In order to bound B, we begin by noting that
Ef? = Z £(9) gz (f * hy)?
S:max S=j S3j

where the hjs are the edge functions we defined earlier. Letting M(f) = max; E(f x hj)? =
max; Inf;(f), we have

B:Z:IEf-zlogL > ZEleogL :Var(f)logé

R = 2R ) M)

where we have used the orthogonality of the f;s and the fact that Var(f) = > g f(9)2.



To bound A, we split it up further:
A=Y B[ fF10g(])  Lppa| + DB | flog(f]) 1y -
J J

A1 A2

For 0 <t < 1/e?, we have that /tlog v/t is a nonpositive decreasing function and therefore,

A= QZE [Ifjlloglfj\ ' |fj|1f]2§t} > 2x/¥log\/¥ZE\fj Apgl > \/flothElfjl-
J J J

By comparing Fourier coefficients, it is easy to verify that f; = Ey, , 4, (f * h;j). Therefore, by
convexity, E |f;| < E|f * hjl.

Until now, the proof has made no use of the fact that f takes on only Boolean values. Now
we argue that because f(z) € {—1,1}, we must have (f * hj)(x) € {—1,0,1}, so that E|f x h;| =
E(f = hj)%. Plugging this into our bound for A4; yields

A1 > Vilogt Y E(f xhy)’ = 5 Vilogt - D(f. ).
J

For Ay, note that log(-) is increasing, so

Ay >logty E f? =logt Var f.
J

Summing all these bounds gives us

1
nD(f, f) 2 log g Var(f) + 5 Vilogt - D(f, f) +logt - Var({).
By the Poincaré inequality, D(f, f) > 2 Var(f), so we can set t = (%&%)2 < 1/e%. With this
substitution, the above inequality becomes
) t1+1/e

—— > log .

eVt M(f)
INCOMPLETE O

We are now in a position to state the recent result of O’'Donnell and Wimmer | | gener-

alizing the KKL theorem to Schreier graphs satisfying a certain technical property.

Theorem 7 ([ ). Let G be a group acting on a set X, U C X be a union of conjugacy classes
that generates G, and a be the log-Sobolev constant of Sch(G, X,U). Then for any f: X — {—1,1},

Sy Infu () .
loa(1/may Int, (7)) = 1 V)

In particular, there is some w € U such that Inf, (f) > Q(plog %) Var(f).

For an Abelian group such as Z§ (the cube), every group element is in a conjugacy class by
itself, so the extra condition on U is vacuous. Using a = Q(%) for the cube, we recover the
original KKL: theorem. O’Donnell et al. apply the generalized result to the non-Abelian group
Sy, of permutations on [n], generated by transpositions and acting on the family ([Z]) of k-subsets
of [n]. By viewing these families as sets of n-bit strings, they recover a “rigidity” version of the
Kruskal-Katona theorem that states (roughly) that if a subset of a layer of a cube has a small

expansion to the layer above it, then it must be correlated to some dictator function.



Coding theoretic interpretation. In the long code, an integer i € [n] is encoded as the dictator
function (z1,...,x,) — x;. By using many more bits (n rather than logn) of redundant storage,
we hope to be able to recover from corruptions in the data. The theorem tells us that as long as the
corrupted version of an encoding is far from a constant function, it can be decoded to a coordinate
whose influence is Q(logn) times the average influence. Clearly there can be only O(logn) such
coordinates, so we have a “small” set of candidate long codes to which we might decode the word.
To complete this picture, we’d like to understand how far the word can be from functions that
depend only on these coordinates; the following two theorems of Friedgut, which we state without
proof, furnish this information.

Theorem 8 (] ). For every f: {—1,1}" — {—1,1} and 0 < € < 1, there is a function
g: {—1,1}" — {—1,1} depending on at most Inf(f)/e variables such that E|f — g| <e.

If f:{=1,1}" — {=1,1} has the property that 3 g, f(S8)? < e, then there is a function
g: {—1,1}" — {—1,1} depending on at most one variable such that E|f — g| < e.

4 Gaussian isoperimetry and an algorithmic application

Hypercontractive inequalities were first investigated in the context of Gaussian probability spaces,
for their applications to quantum field theory. The following simple proof reduces the continuous
Gaussian hypercontractive inequality to its discrete counterpart on the cube.

4.1 From the central limit theorem to Gaussian hypercontractivity

Theorem 9 ([ ). Let x € R be normally distributed, i.e.,

Prlz € A] = \/12? /Aexp <—”;> da.

Then for a smooth function f: R — R, the random variable F = f(x) satisfies
D(F, F) > a Ent(F?)

with o = 1 and

dF dG

Proof. We shall approximate the Gaussian distribution by a weighted sum of Bernoulli variables.
Let y € {—1,1}* be uniformly distributed, and set g(y) = % By the log-Sobolev inequality

applied to f o g(y), we have D (f o g(y), fog(y)) > Ent(f o g(y)?). By the central limit theorem,
the right side converges to Ent(f(x)?) = Ent(F?) as k — oo, so it remains to show that the left
side converges to D(F, F) as well. Let y|,,—¢ be the value obtained by replacing the ith coordinate
of y with the value ¢, and observe that g(y|y,=1) — g(y|y,=—1) = 2/Vk. Then, using the smoothness
of f, we have

[(hi* (fog)) (y)| = % |fog(yly=1) = fog(yly=—1)| = \}E [f'og(y)] +o (&) )

so that

D(fog(y),fogw) =E|>_ (hix(fo9) ()

2

=E[f'o 9(y)* +o(1)] .




The second term vanishes as k — oo, and the first term converges to D(F, F') by the Central Limit
Theorem. O

The tensoring property of log-Sobolev inequalities lets us extend this result to Gaussian dis-
tributions over R?. We are also interested in the corresponding noise operator S,, given by
S,f(z) = E, f(y), where y € R? is a Gaussian random variable that is p-correlated with x (it is
called the Ornstein-Uhlenbeck operator). By the analog of Theorem 2 in this setting, we conclude
that every function f: R? — R satisfies || T, |l < ||f|l, where ¢ > p>1and p=* > (p—1)/(g—1).

4.2 Reverse hypercontractivity and isoperimetry

In 1982, Borell showed a reversed inequality of a similar form when ¢ < p < 1:

Theorem 10 (Reverse hypercontractivity, | e Fiz g <p<1andp >0 such that p~* >
(p—1)/(g—1). Then for any positive-valued function f: R? — RT, we have | T,fllq > I f|p-

Note that the expressions || - ||, are not norms when p < 1; in particular, they are not convex.
However, this theorem can be proved by means similar to our proof for the Gaussian log-Sobolev
inequality: we start with a base result for the 2-point space, proceed by tensoring to the hypercube,
and use the central limit theorem to cover Gaussian space.

As an application of Borell’s result, consider the following strong isoperimetry theorem for
Gaussian space (due to Sherman).

Theorem 11 (Gaussian isoperimetry, | D). Let u,u’ € R% be p-correlated Gaussian random
variables. Then for any set A C R% and any 7 > 0, we have

Pr [P,r[u’ € Al < ’7':| <

Proof. When u(A) < 7179, there is nothing to prove. Otherwise, let f be the indicator function of
A and observe that Pr, v € A] = S, f(u). Therefore, for ¢ =1—1/p < 0, we have

u

P [Plr[u' €Al < T] — Pr[S, f(u) < 7]

by an application of Markov’s inequality. But E,(S,f(u))? is just ||S,f||Z, and we know by Borell’s
theorem that ||S,f|q > || fllp for p =1 — p. Thus

q A)a/p A=p\1/P 1-p
w [J[“ €4 =< T} R 4 1(A) ~ w(A)

where we have used the facts that ¢ < 0 and p < 1. O




4.3 Fast graph partitioning and the constructive Big Core Theorem

Problem and SDP rounding algorithm. In the c-balanced separator problem, we are given a
graph G on n vertices and asked to find the smallest set of edges such that their removal disconnects
the graph into pieces of size at most c¢n. The problem is NP-hard, and the best known approximation
ratio' is ©(y/Iogn).

The first algorithm to achieve this bound was based on a semidefinite program that assigns a
unit vector to each vertex and minimizes the total embedded squared length of the edges subject
to the constraint that every large (compared to cn) set of vertices is spread out, and that the
squared distances between the points form a metric. To round this SDP, Arora, Rao and Vazirani
[ | pick a random direction u and project all the points along u. They then define sets A
and B consisting of points x whose projections are sufficiently large, i.e., A = {z | (z,u) < —K}
and similarly B = {z | (x,u) > K}, where K is chosen to make A and B have size O(n) with
high probability. Next, they discard points a € A,b € B such that |ja — b|| is much smaller than
expected for a pair whose projections are > 2K apart. Finally, if the resulting pruned sets A’ C A
and B’ C B are large enough, they show that greedily growing A yields a good cut.

Matchings and cores. The key step in making this argument work is to ensure that not too
many pairs (a,b) are removed in the pruning step. To bound the probability of this bad event, we
consider the possibility that for a large fraction § = Q(1) of directions u, there exists a matching of
points M,, such that each pair (a,b) € M, is short (i.e., |ja — b|]| < £ = O(1/y/logn)) but stretched
along u (i.e., [{a —b,u)] > o = Q(1)). Such a set of points is called a (0,9, £)-core. The big core
theorem (first proved with optimal parameters by Lee [ ]) asserts that this situation can’t
arise: for a fixed o,d, and ¢, we must have n > exp(c®/¢*log?(1/6)), which is a contradiction for
our chosen values of 7,9, £.

In order to prove the big core theorem, Lee concatenates pairs that share a point and belong in
matchings for nearby directions. The existence of a long chain of such concatenations is what leads
to a contradiction: if we consider the endpoints a, b of a chain of length p, the projection |(a — b, u)|
grows linearly in p whereas the distance ||a — b|| grows only as ,/p (recall that the SDP constrained
the squared distances to form a metric).

Boosting. The matching chaining argument we have just presented in its simple form doesn’t
work, for the following reason. At each chaining step, the fraction of nearby directions available for
our use reduces by roughly 1 —¢ (by a union bound) so that we are rapidly left with no direction to
move in. To remedy this situation, we need to boost the fraction of usable directions at each step,
say from 0/2 to 1—6/2, so that we can carry on chaining in spite of a 1 —§ loss. Lee’s proof uses the
standard isoperimetric inequality for the sphere to show that this boosting can be performed with
no change in ¢ and a very small penalty in o. In other words, we take advantage of the fact that
a very small dilation of a set of constant measure (i.e., the set of available directions) has measure
close to 1.

Faster algorithms. Lee’s big core theorem is non-constructive in the sense that it only shows
the ezistence of such a long chain of matched pairs in order to give a contradiction. While this

!For technical reasons, it is actually a pseudo-approximation: the algorithm’s output for ¢ is compared to the
optimal value for ¢’ # c.
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form suffices to bound the approximation ratio of the ARV rounding scheme, other variants of their
technique require a way to efficiently sample long chains, not just show their existence. Sherman
shows how to perform this sampling in a way that is oblivious to the point set, and uses it to obtain
the fastest known algorithm for sparsest cut and graph partitioning.

Theorem 12 (Constructive big core | ). For any 1 < R < O(y/logn), there is P >
O(R?/logn) and an efficiently sampleable distribution p over (RSP such that: for any (o,d,£)-
core M, if the string of directions is sampled from p, the expected number of chains whose endpoints
are > Pl apart is at least exp(—O(P?)n).

We sketch some of the ideas of the proof here. Sherman constructs two sequences of Gaussian
directions u1,...,up and wq,...,wp. Each w; is an independent Gaussian vector, whereas each
u; for ¢ > 1 is a Gaussian vector p-correlated with u;_;. Finally, the distribution y is given by
randomly shuffling together the u; and wj;, picking a uniformly random R between 1 and P, and
returning the first R elements of the shuffled sequence. The correlated directions u; correspond to
the steps in which Lee’s proof chained pairs from similar directions, whereas the independent w;
correspond to the region-growing steps necessary for boosting. By randomly interleaving these two
types of moves, Sherman’s sampling algorithm can be oblivious to the actual point set it is acting
on.

5 Complexity theoretic applications

5.1 Dictatorship testing with perfect completeness

Definitions. A function f: {—1,1}" — R is said to be (e, §)-quasirandom if f(S) < e whenever
|S| < 1/6. In order to show that a given problem is hard to approximate, we often need to design
a test that

e performs ¢ queries on a black-box function f,

e accepts every dictator function with probability > ¢ (the completeness probability), and

e accepts every (e, 0)-quasirandom function with probability < s (the soundness probability).
A test is said to be adaptive if each query is allowed to depend on the result of the queries so far.

While dictatorship tests for the ¢ < 1 setting have been known for over a decade (first from
the work of Hastad and more recently via the Unique Games Conjecture of Khote), there were no
nontrivial bounds for ¢ = 1 until some recent results of O’'Donnell and Wu. Their analysis, which
we show below, relies heavily on the hypercontractive inequality.

Theorem 13 (| ). For every n > 0, there is a 3-query non-adaptive test that accepts
every dictator function (xi,...,x,) +— x; with probability ¢ = 1 but accepts any (J,d/log(1/0))-
quasirandom odd function f: {—1,1}" — [~1,1] with probability < s = 5/8 + O(/3).

The proof uses the following strengthening of the hypercontractive inequality for restricted
parameter values.

Lemma 14. If0< p<1,q¢>1, and 0 < X\ < 1 satisfy p* < 1/\/q— 1, then for all f: {—1,1}" —
R, | T,fllq < I1Tpf I3 F1I3-
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Proof.

ITpfllg = 1T AT FI7
= 1T, f13
—lef JPEVIf(5)P

(1-X)
= I, £15" AR

Proof of Theorem 13. Define the “not-two” predicate NTW: {—1,1}% — {—1,1} as follows: NTW(a, b, c) =
1 if exactly two of a, b, c equal —1, and NTW(a, b, ¢) = —1 otherwise. Explicitly,

a -1 -1 -1 -1 1 1 1 1
b -1 -1 1 1 -1 -1 1 1
c -1 1 -1 1 -1 1 -1 1
NTW(a,b,c) —1 1 1 —1 1 —1 -1 -1

Let ¢ € [0,1] be a parameter to be fixed later. For i = 1,...,n, we pick bits z;,y;,2; € {—1,1} as
follows:

e with probability 1 — §: we choose x;, y; uniformly and independently, then set z; = —x;y;;

e with probability §: we choose x; uniformly, then set y; = z; = z;.
Note that for ¢ # j, (z4,yi, 2;) is independent of (z;,y;, ;). We accept if NTW(f(x), f(v), f(2)) = —1.
It is immediate from the construction of z;, y;, z; that NTW(z;, y;, z;) = —1fori = 1,...,n. Therefore,
if f is a dictator function, it follows that NTW(f(x), f(y), f(2)) must also equal —1.

Soundness. It remains to analyze the test when f is pseudorandom. We begin by writing NTW

in the Fourier basis: NTW = —xg — 3(X{1} + xq23 + X31) — 1(X(1.2 + Xg2.3} + X{1,3}) + x{1.2.3}-
Therefore, by symmetry,

E NTW(f(z), f(y), f(2)) = —F —

x?y?’z

Ef(@)—3E f@)f@)+§ E f@)f)f(2)

z,y z,Y,2

[0
N[M]

We shall systematically rewrite the right-hand side in terms of the Fourier coefficients of f. By
our assumption that f is odd, we have f(S) = 0 whenever S has even cardinality. Therefore

E f(z) = f(0) = 0. Also,
=Y F(9A(T) E xs(@)xr(y).
.y
S, T
Consider a summand where S # T', and without loss of generality fix i € S\ T. It is easy to see

that the contributions due to x; = £1 cancel each other. Thus, the only terms that remain are of
the form S =T, i.e.,

. S|
=> f(9)? E xs(x Zf (xE l‘z?/i) = Zf(S) 51,
S i

S

where we have used the fact that E(z;y;) = (1 —6)-0+6-1=4. But £(S) is nonzero only for |S|
odd, and )¢ f(9)* = 1, so we can upper-bound the above sum by 4.

12



Bounding the cubic term. We proceed similarly:

E f(x) =Y [ fU U) B xs(@)xr@)xv(2)- (1)

,1,2
v ST.U

Each of the expectations can be written as a product over coordinates i € [n] using the fact that
individual coordinates of z, y, z are chosen independently. When ¢ belongs to exactly one of S, T, U
(say S), then it contributes a factor Ex; = 0, making the product zero. Similarly, when i belongs
to two of the sets (say S,T), then the contribution is E x;y; = 6 by our earlier calculation. Finally,
when 7 belongs to all three of the sets, we have Ex;y;z; = (1 —9) - (=1)+0-(0) = —(1 —§). In
light of this calculation, any triple S, T, U that makes a nonzero contribution to the sum (1) must
be of the form

S=AUBUC T=AJUCUD U=AUDUB

for suitable sets A, B,C, D C [n] where A is disjoint from B,C, D. Also |S|,|T|,|U| must be odd,
from which we can show that |A| must be odd. In terms of these new sets we can rewrite

E f)fw)fz)=— >, fAUBUC)f(AUCUD)f(AUDUB)(1 - §)AIsIBHICIHIPI
e B,C,D‘ X‘isj.dérom A

For a fixed A, define the function g4: {—1,1}"\* = R by §4(X) = f(AN X). Then we have

E_f@)f(y)f(2)

x’sz

—— Y a-oM Y gauos™ N gacunve ™ gapu v

|A| odd B,C,D
disj. from A
== > -0 > T 594(BUC)-Ts594(CUD)-T594(DUB)
Al odd B,C,D
4] 0 disj. from A
=— > (=)MT 59al3.
|A] odd

Write g (u) = Ey ga(u)+Ga(u) = f(A)+§a(u). Then, using the inequality |a+b]* < 4(|al? +[b]3),
we have

IT /59415 = 1£(A) + all3 < 4[F(A)® + 4)gall3

and therefore,

D 1= O)T 5gal® =4 (1 =) AFA)P +4 (1 6)|gall3.

To bound the first term, note that $(1—6)41| f(A)]? < 3 f(A)2-max{(1—8)4|f(A)])}. The sum
of the squared Fourier coefficients is just 1 (by Parseval’s identity) and we can use the (4, W)—

pseudorandomness property to bound the quantity in the maximum: when |A| < %log%, then
f < and when > s log = then (1 — <. us the entire first summand is .
A)| < V6 and when |A] > Llog 1 then (1 —§)l < 4. Thus th fi dis O(V6
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Hypercontractivity. It remains to bound S (1 — §)||gal3. Fix A = lolgo(% and apply the

modified hypercontractive inequality:

> A= 55403 < Y1 = 8)MNT 554015 5al3

Now, [|gal3* < 1 and ||T\/g§,4||§73>‘ = O(V9) Z@;&BgzélBlf(A U B)2. The contribution of the

corresponding term to the sum we were trying to bound is O(V/8) - f(AU B)? - (1 —A5)|A‘5‘B‘.
For each choice of AU B, the (1 — §)41§158] terms sum to at most one, and all the f(A U B)?
terms themselves sum to at most one. Therefore, we have bounded the entire sum by O(v/d) as
desired. O

6 Integrality gap for Unique Label Cover SDP

Problem and SDP relaxation. In the Unique Label Cover problem, we are given a label set L
and a weighted multigraph G' = (V| E) whose edges are labeled by permutations {m.: L — L}.cp,
and are asked to find an assignment f: V — L of labels to edges that maximizes the fraction
of edges e{u,v} that are “consistent” with our labeling, i.e., m.(f(u)) = f(v). If there exists a
labeling that satisfies all the edges, then it is easy to find such a labeling. However, when all we can
guarantee is that 99% fraction of the edges can be satisfied, it is not known how to find a labeling
satisfying even 1% of them. At the same time, present techniques cannot show that finding a
1%-consistent labeling is NP-hard.

One approach to solving this problem is to use an extension of the Goemans-Williamson SDP
for Max-Cut, where we set up a vector v; for every vertex v and label i:

maximize Ee{u,v} Zi€L<Ui, Uwe(z')>

subject to (ug, vj) = 0 Vu,v € V,Vi,j €L
dier(visvi) =1 Yo eV
(Xier i ZjEL v;) =1 Yu,v € L
(vi,vj) =0 YweV,Vi#jel

(The expectation in the objective is over a distribution where e{u, v} is picked with probability
proportional to its weight.) The intent is that |v;||? should be the probability that v receives label
i, and (u;,v;) should be the corresponding joint probability. It is easy to see that this SDP is a
relaxation of the original problem.

Gap instance. In an influential paper, Khot and Vishnoi | | constructed an integrality gap
for this SDP: for a label set of size 2* and an arbitrary parameter n € [0, %], a graph whose optimal
labeling satisfies < 1/27* fraction of the edges, but for which the SDP optimum is at least 1 — 7.
The hypercontractive inequality plays a central role in the soundness analysis, which we present
below.

Let V be the set of all functions f: {—1,1}* — {—1,1} and L be the Fourier basis {xs | S C [k]};
clearly, |L| = 2k Observe that V is an Abelian group under pointwise multiplication, and L is a
subgroup. We take the quotient V = f// L to be the vertex set. Fix an arbitrary representative for
each coset and write V = {f1L, f2L, ..., fijy|L}. We shall define a weighted edge between every pair
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of these representative functions, then show how to extend this definition to all pairs of functions,
and finally map these edges to edges between cosets.

e The edge é{f, g} has weight equal to Pry s/[(f,g) = (h,})], where h,h' € V are drawn to be
p-correlated on every bit with uniform marginals, where p =1 — 2n.

e With every edge é{f;, fj} between representative functions, we associate the identity permu-
tation.

e A non-representative function acts as if its label is assigned according to its coset’s represen-
tative. Thus, the permutation associated with é{fixs, fixr} is xvxs — xvxr-

e In the actual graph under consideration, every edge é{ fixs, fjx7} appears as an edge e{ f;L, f;L}
(with the same permutation and weight).

Soundness analysis. Given a labeling R: V' — L on the cosets, we consider the induced labeling
R:V — L given by R(fixs) = R(f;L)xs. From our definitions, it is clear that the objective value
attained by R is precisely Pry s [R(h) = R(R')], where h, h are chosen as before. Fix any label xg
and consider the indicator function ¢: V — {0,1} of functions that R labels with yg. Since exactly

one function in each coset gets labeled xg, we know that E ¢ = 1/2%. Therefore,

Prif(h) = R(h') = xs] = h%,w(h)d)(h')] = (h, Tyh) = ||T,5hl3,

2k
which we can upper-bound (using hypercontractivity) by ||A[|1, ,=1/214 <1/ 2k,
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