
validate.args(l) validate.args(l)

NAME
validate.args − validate arguments and data structures

SYNOPSIS
va = require('validate.args')

−− set some options which will affect
−− all procedural calls
va.opts{ options }

−− Procedural interface

−− foo(a, b)
func foo(...)

local spec = { <specifications> }
local ok, a, b = va.validate(spec, ...)

end

−− goo(c, d)
func goo(...)

local spec = { <specifications> }
local ok, c, d = va.validate(options, spec, ...)

end

−− Object based interface
func foo(...)

local spec = { <specifications> }
local vo = va:new()
vo:setopts{ ... }
local ok, a, b = vo:validate(spec, ...)

end

DESCRIPTION
validate.args provides a framework for validating function arguments and data structures. Scalar and
(nested) table values as well as lists of values of the same type may be validated.

validate.args provides both procedural and object-oriented interfaces. Thesignificant difference between
the interfaces is that the procedural interface may be influenced by global settings while the object-oriented
interface keeps those settings local to each object. Objects may themselves be cloned, allowing for nested
hierarchies of validation specifications.Changes to parent objects do not affect child objects, and vice-
versa.

Validating Function Arguments
Positional, named, and mixed positional and named arguments are supported. Positional arguments may be
converted to named arguments for uniformity of access (see ‘‘Validation Options’’).

Positional arguments
foo(3, 'n')

Positional arguments are not explicitly named when passed to the function. Their validation
specifications are passed as a list, one element per argument:

{ { p os1 specification },
{ p os2 specification }

}

Named arguments
goo{ a = 3, b = 'n' }

Named arguments are passed as a single table to the function (notice the{} syntactic sugar in the

2011-08-25 1

validate.args(l) validate.args(l)

function invocation). Theirvalidation specifications are passed as a table:

{ a rg1_name = { arg1 specification },
arg2_name = { arg2 specification }

}

‘‘ mixed’’ mode
bar(3, 'n', { c = 22 })

Here a nested table is used to hold the named arguments. The table is simply another positional
argument, so the validation specifications are passed as a list, one per argument:

{ { p os1 specification },
{ p os2 specification },
{ t able specification }

}

The validation specification for the table specifies the constraints on the named arguments, typically
using thevtable constraint.

Validating Data Structures
Validation of data structures is very similar to validating function arguments. Thebase structure operated
upon is a table whose elements may be positional (indexed with integers) or named (indexed with anything
else) or both. The layout of the validation specifications are identical to those described above. Typically
thevalidate_tbl method or function is used.

Validation Specifications
A validation specification is a set of constraints which a value must meet.In most cases the specification is
encoded in a table, where each key-value pair represents a type of constraint and its parameters.The
specification may also be specified by a function (see ‘‘Mutating Validation Specifications’’).

Note: The documentation below refers to validation of both function arguments and data structures. When
the termelement is used it refers to either a function argument or to an element of a data structure.

Multiple constraints may be specified for each element. There are no guarantees as to the order in which the
constraints are applied.

The caller may provide constraints which modify the passed elements; these must not expect a particular
sequence of operation.

The caller may provide callbacks which are called pre− and post− validation. Thesemay modify the
elements.

The following specification parameters are recognized:

optional
This is a boolean attribute which, if true, indicates that the element need not be present.Positional (as
well as named elements) may be optional; if they are not at the end of the list they must be specified as
nil in the list of input values, e.g.

nil, 3

This defaults tofalse . All elements are required by default.

default
This provides the default value when a element was not specified, as well as indicating that the
element is optional. This may be a function, which will be called if a default value is required. The
function is passed a single argument, a table (see ‘‘Callback Arguments’’ f or its contents). The
function should return two values:

1. aboolean indicating success or failure;

2. thedefault value upon success, an error message upon failure

If no default value is specified for a table element with a vtable constraint, the nested specifications in

2011-08-25 2

validate.args(l) validate.args(l)

the vtable are scanned for defaults.

Note that if nested specifications are scanned for defaults and not all of those specificatons provide
defaults, an error will be thrown. To avoid this, usedefault_is_nil

default_is_nil
This indicates that the default value for an element isnil . This is primarily used to indicate that
nested vtable specifications should not be scanned for defaults.

type
This specifies the expected type of the element. It may be either a single type or a list of types.See
‘‘ Element Types’’ f or more information. This is optional.

enum
This specifies one or more explicit values which the element may take. It may be either a single value
or a list of values:

enum = 33
enum = { 'a', 33, 'b' }

allow_nil
This is a boolean and indicates that the element may be nil. This only pertains to positional elements.

not_nil
This is a boolean and indicates that the element must not be nil.This only pertains to positional
elements.THIS IS DEPRECATED. It defaults totrue .

requires
This lists the names of one or more elements whichmust be specified in addition to the current
element. Thevalue is either a single name or a list of names:

requires = 'arg3'
requires = { 'arg3', 'arg4' }

See also ‘‘Element Groups’’

excludes
This lists the names of one or more elements whichmay not be specified in addition to the current
element. Thevalue is either a single name or a list of names:

excludes = 'arg3'
excludes = { 'arg3', 'arg4' }

See also ‘‘Element Groups’’

one_of
This provides a list of names of other elements of which exactly onemust be specified in addition to
the current element:

one_of = { 'arg3', 'arg4' }

See also ‘‘Element Groups’’

vfunc
This specifies a function which is called to validate the element. It is called with two arguments, the
passed element value and a table (see ‘‘Callback Arguments’’ f or its contents). It must return two
values:

1. aboolean indicating success or failure;

2. the(possibly modified) element value upon success, an error message upon failure

For example,

2011-08-25 3

validate.args(l) validate.args(l)

vfunc = function(orig)
if type(orig) == 'number' and orig >= 3 then

return true, orig / 22
end

return false, 'not a number or less then 3'
end

vtable
This is used to validate the contents of an element which is a table. Its value may be either:

a table of specifications
There should be one element in the specification table for each element in the element table. For
example, to validate a call such as

foo('hello', { nv1 = 3, nv2 = 2 })

Use

spec = { { type = 'string' },
{ v table = { nv1 = { type = 'posint' },

nv2 = { type = 'int' },
}

}
}

ok, pos, tbl = validate(spec, ...)

which will return

pos = 'hello'
tbl = { nv1 = 3, nv2 = 2 }

in the above invocation.

a function
The function is called with two arguments: the passed element value, and a table (see ‘‘Callback
Arguments’’ f or its contents) and must return two values:

1. aboolean indicating success or failure;

2. Upon success, a table of validation specifications. Upon failure, an error message.See
‘‘ EXAMPLES’’ f or an example of this in use.

This function may be called with the element value equal tonil if no element value was
specified.

ordered
If an element is a vtable and this parameter is true, the vtable’s elements will be processed in the order
specified by elements’order parameters.

This is useful if elements have callback functions which must be called in a specific order.

To specify theordered attribute for implicit vtables you must use theordered validation option.
Implicit vtables are created for the specification passed tovalidate_tbl and for pure named-element
specifications passed tovalidate.

order
If an element isin a vtable and the vtable hasordered set, this specifies the ‘‘weight’’ of the item;
elements with smaller weights will be processed before elements with larger weights.

precall
postcall

Functions to be called for each element before and after validation. They are called with two
arguments: the passed element value, and a table (see ‘‘Callback Arguments’’ f or its contents). If the

2011-08-25 4

validate.args(l) validate.args(l)

function wishes to modify the element value it should return two arguments,true and the new value,
else it should returnfalse .

Please note:

• If an error occurs during validation, thepostcall function will not be called.

• Specification validation is done before theprecall function is invoked. If a specification is
invalid neither callback is invoked.

• The functions are called at the table level for elements which are vtables.

name
A name for a positional element.If specified and thenamed validation option istrue, then the
element will be assigned this name in the returned table.See ‘‘Validation Options’’ f or more
information.

named
Indicate that a name should be (or not be) assigned to a positional element. This option overrides the
validation option of the same name, and is useful for control over particular elements.

This option can only be specified for positional elements in tables, not at the top level of the data
structure, e.g.

spec = { { name = 'foo', named = true } }

will cause an error to be thrown, while

spec = { data = { vtable = { { name = 'foo', named = true } } }}

is legal. Usethenamed validation option to assign names to top level positional elements.

multiple
This indicates that the element is a table whose members must each meet the validation specifications.
For example, to validate a list of positive integers:

{ t ype = 'posint', multiple = true }

This parameter may take the following values:

true or false
If true , each member of the element table is validated.

a table of options
In addition to validating the members of the input table, further validation is possible.The
following options are recognized:

n This specifies the exact number of members in the element table. It is optional.

min
This specifies the required minimum number of members in the element table.It may not be
combined with then option. It is optional.

max
This specifies the required maximum number of members in the element table.It may not
be combined with then option. It is optional.

keys
This specifies a validation specification for thekeys in the element table. It is optional.

For example, the following ensures that keys consist only of alphabetical characters:

2011-08-25 5

validate.args(l) validate.args(l)

multiple = {
keys = {

vfunc = function(val)
if type(val) == 'string'

and val:match('ˆ%a+$') then
return true, val

else
return false,

"only alpha characters allowed"
end

end
}

}

allow_scalar
Normally, indicating a multiplicity implies that the element must be a table.This ensures
that there is no confusion if the members of that table are themselves tables For. example, is

foo = { a = 2 }

a table of multiple values (with multiplicity of 1) or is it a single value which happens to be a
table?

If the element is a scalar, there is no confusion. If this option istrue, validate.args will
upgrade the element to a table.

This option defaults tofalse

Element Types
validate.argssupports two schemes for specifying element types for thetype option:simple andinline.

Simple types include the standard Lua types and can be augmented using theadd_type function or method.
They are specified using their name (as a string):

’number’
’string’
’boolean’
’table’
’function’
’thread’
’userdata’

These are the built-in types as returned by the Luatype function.

’posnum’
The element must be a number greater than zero.

’zposnum’
The element must be a number greater than or equal to zero.

’posint’
The element must be an integer greater than zero.

’zposint’
The element must be an integer greater than or equal to zero.

Inline types are specified as tables of validation specifications. They are a bit more complex.

1. Whenusing inline type specifications, the specifications must be passed to thetypes option as alist
of types, even if there is only one specification.

2. Inlinetypes must be given a name. Itshould not be the same as the name of any simple type.

For example, hereis the type specification for themultiple option:

2011-08-25 6

validate.args(l) validate.args(l)

type = { 'boolean',
['multiple table'] = {

vtable = {
min = { type = 'zposint', optional = true,

excludes = 'n'
},

max = { type = 'posint', optional = true,
excludes = 'n'

},
n = { t ype = 'posint', optional = true,

excludes = { 'min', 'max' }
},

keys = { v table = validate_spec,
optional = true

},
allow_scalar = { type = 'boolean', default = false },

}
}

},

It indicates thatmultiple may either be a boolean value or a table which may have the elementsmin , max,
c<n>, etc.

Callback Arguments
Several of the validation specification entries take callback functions. The last argument passed to these
functions is a table containing the following named entries:

va The validation object. In the case that the procedural interface is being used, this will be a default
object.

name
The fully qualified name of the element stored as avalidate.args.Name object. Usethe
tostring() function (or the similarly named method) to stringify it.

spec
The specification table for the element.Do not modify this.

Catch-all Specifications
It is possible to provide default specifications for named or positional elements in tables. These are passed
as specifications for the special names%named and %pos. A third special name%default is an
alternative which can be used to provide a catch-all for all unmatched elements.

The specifications must be functions. They are passed the element name or position and its value. They
should return two values,

1. aboolean indicating that the element name or position is acceptable

2. if acceptable, a specification table for the element.

For example, to catch all even numbered positional elements in a table after the first two:

2011-08-25 7

validate.args(l) validate.args(l)

vtable = {
{ n ame = "first", type = 'string' },
{ n ame = "second", type = 'table' },
[%pos] = function (k,v)

−−only look at even numbered positions
if k%2 == 0 then

return true, { type = 'posint' }
else

return false
end

end
}

Mutating Validation Specifications
A validation specification is usually (as documented above) a table of constraints. In the case where the
entire validation table must be created on the fly the validation specification may be afunction. The
function should take a single parameter − the passed elementvalue − and must return two values:

1. aboolean indicating success or failure;

2. Uponsuccess, a table of validation specifications. Upon failure, an error message.

Element Groups
Some operations on groups of elements are possible for named elements.These are specified as special
‘‘ names’’ in the validation specification.In order to accomodate multiple groups, these ‘‘names’’ take as
values alist of lists,

['%one_of'] = { { 'a', 'b', 'c' } }

not a simple list:

['%one_of'] = { 'a', 'b', 'c' }

This allows specifying multiple groups:

['%one_of'] = { { 'a', 'b', 'c' } , { 'd', 'e', 'f' } }

%one_of
This ensures that exactly one element in a group is specified.For example, say that the caller must
provide exactly one of the elementsarg1 , arg2 , or arg3 . Exclusivity is obtained via

arg1 = { optional = true, excludes = { 'arg2', 'arg3' } },
arg2 = { optional = true, excludes = { 'arg1', 'arg3' } },
arg3 = { optional = true, excludes = { 'arg1', 'arg2' } }

But that doesn’t force the user to specify any. This addition will:

['%one_of'] = {{ 'arg1', 'arg2', 'arg3' }}

Note that specifying theexcludes attribute is redundant with%one_of , so the above could be
rewritten as

arg1 = { optional = true },
arg2 = { optional = true },
arg3 = { optional = true }
['%one_of'] = {{ 'arg1', 'arg2', 'arg3' }}

%oneplus_of
This ensures that at least one element in a group is specified. More may be specified. As a
complicated example:

2011-08-25 8

validate.args(l) validate.args(l)

sigma = { o ptional = true, excludes = { 'sigma_x', 'sigma_y' } },
sigma_x = { optional = true, requires = { 'sigma_y' } },
sigma_y = { optional = true, requires = { 'sigma_x' } },
['%oneplus_of'] = { { 'sigma_x', 'sigma_y', 'sigma' } },

ensures that only one of the two following situations occurs:

sigma
sigma_x sigma_y

Validation Options
There are a few options which affect the validation process.How they are specifed depends upon whether
the procedural or object-oriented interfaces are used; see ‘‘Procedural interface’’ and ‘‘Object oriented
interface’’ f or more details.

check_spec
By default the passed validation specification is not itself checked for consistency, as this may be too
much of a performance hit. Setting this totrue will cause the specifications to be checked.

This defaults tofalse .

error_on_invalid
If true , the Luaerror() function will be called the case of invalid elements instead of returning a
status code and message.

This defaults tofalse .

error_on_bad_spec
If this is true , an inv alid validation specification will result in a call to the Luaerror() function.

This defaults tofalse .

named
If this is true , positional elements are returned as a table, with their names given either by thename
attribute in the validation specification or by their cardinal index in the argument list.For example:

ok, opts = validate_opts({ named = true },
{ { n ame = a }, { }, },
22, 3

)

will result in

opts.a = 22
opts[2] = 3

This defaults tofalse .

allow_extra
If this is true , then any extra elements (either named or positional) which are not mentioned in the
validation specification are quietly ignored. For example:

local ok, a, b, c = validate_opts({ allow_extra = true,
pass_through = true,

},
{ { }, {} },

1, 2, 3)

would result in

a = 1
b = 2
c = n il

This defaults tofalse .

2011-08-25 9

validate.args(l) validate.args(l)

pass_through
If this is true and allow_extra is also true , then any extra elements (either named or
positional) which are not mentioned in the validation specification are passed through.For example:

local ok, a, b, c = validate_opts({ allow_extra = true,
pass_through = true,

},
{ { }, {} },

1, 2, 3)

would result in

a = 1
b = 2
c = 3

This defaults tofalse .

udata
This option is used to pass arbitrary data to the callback routines. Use thegetopt method to retrieve
it.

ordered
If this is true, implicit vtables will be processed in order specified by their elements’order
parameters. Seethe documentation for theordered validation specification for more information.

Object oriented interface
Constructors

There are two available constructors: a constructor based upon class defaults and one based upon an object:

Class constructor
va = require('validate.args')
vobj = va:new(args)

This constructs a new validation object based upon either the class defaults or the current defaults (as
set by theopts() andadd_type() functions). Ittakes a table of named arguments:

use_current_options
If true, the values of the object’s validation options are taken from the current option values set by
theopts() function. If false (the default), the options have the default values specified above.

use_current_types
If true, the validation types are taken from the current values set by theadd_type() function.
If false (the default), the options have the default values specified above.

use_current
This is equivalent to specifying bothuse_current_types anduse_current_options
to the same value.

Object constructor
−− create and specialize an object
va = require('validate.args')
vobj = va:new(args)
vobj:add_type(...)
vobj.opts.xxx = yyy

−− now create an independent copy of it
nobj = vobj:new()

This creates an independent copy of the vobj object, including all of its options and types. This is
useful for nested specialization of types and options.

2011-08-25 10

validate.args(l) validate.args(l)

Warning! Only a shallow copy of the objects’ validation options is made; if any of the option values
are tables (e.g.udata) the options in the new object will refer to the same tables as in the original
object.

Do not rely upon this behavior.

Methods

setopts
vobj:setopts{ opt1 = val1, opt2 = val2 }
−− or
vobj.opts.opt1 = val1
vobj.opts.opt2 = val2

Set the specified validation options (See ‘‘Validation Options’’ f or the valid options). These hold for
this object only. An error will be thrown if the specified options are not recognized.

add_type
vobj:add_type(type_name, func)

Register a validation function for the named type which will be accepted by thetype validation
attribute.

The function will be passed the value of the element to validate. Itshould return two values:

1. aboolean indicating success or failure;

2. the(possibly modified) element value upon success, an error message upon failure

For example, the following

vobj:add_type('mytype', function(arg)
if 'number' == type(arg) then

return true, 3 * arg
else

return false, 'not a number between 2 & 3'
end

end
)

adds a new type calledmytype which accepts only numbers between 2 and 3 (exclusive) and
modifies the element value by multiplying it by 3.

validate
vobj:validate(specs, ...)

Validate the passed list against the specifications.It returns a list of values. Thefirst value is a
boolean indicating whether or not the validation succeeded.

If validation succeeded, the remainder of the list contains the values (possibly modified during the
validation).

If validation failed, the second value is a string indicating what caused the failure.

validate_tbl
vobj:validate_tbl(specs, table)

Validate the contents of the passed table against the specifications. The return values are the same as
for validate.

getopt
vobj:getopt(opt)

Returns the value of the specified option. Throws an error if the option does not exist.

2011-08-25 11

validate.args(l) validate.args(l)

Procedural interface
validate(specs, ...)

validate(specs, ...)

Validate the passed list against the specifications using the current global settings for the validation
options. Seethe documentation for thevalidate() method for more details.

validate_opts
validate_opts(opts, specs, ...)

Validate the passed list against the specifications using the current global settings for the validation
options. Temporary values for validations options may be specified with theopts argument. The
return values are the same asvalidate.

validate_tbl
validate_tbl(opts, specs, tble)

Validate the contents of the passed table against the specifications using the current global settings for
the validation options. Temporary values for validations options may be specified with theopts
argument. The validation workflow may be altered via options passed via theopts argument. The
return values are the same asvalidate.

add_type
add_type(type_name, func)

Globally register a validation function for the named type which will be accepted by thetype
validation attribute. Seetheadd_type() method for more details on the arguments.

The function will be passed the value of the element to validate. Itshould return two values:

opts(table of options)
Globally set the values for the passed options. See ‘‘Validation Options’’ f or the available options.

posnum(arg)
Returns true ifarg is a positive number.

zposnum(arg)
Returns true ifarg is a number greater or equal to zero.

posint(arg)
Returns true ifarg is a positive integer.

zposint(arg)
Returns true ifarg is an integer greater or equal to zero.

EXAMPLES
• Named parameters, some optional

function foo(...)
local ok, args = validate({ a = { type = 'number' },

b = { d efault = 22,
type = 'number' },

}, ...)
end

If called as

foo{ a = 12 }

then

args.a = 12
args.b = 22

2011-08-25 12

validate.args(l) validate.args(l)

• Positional parameters and optional named ones

function bar(...)
local ok, arg1, arg2, opts

= validate({ { type = 'string' },
{ t ype = 'number' },
{ v table = {

a = { d efault = true,
type = 'boolean' },

b = { d efault = 22,
type = 'number' },

},
}

}, ...)
end

If called as

bar('a', '22', { b = 33 })

then

arg1 = 'a'
arg2 = 22
opts.a = true
opts.b = 33

• vtable functions

In this example a function (foo()) takes a named parameter, idist , which describes a random
number distribution and its parameters:

foo(idist = { 'gaussian', sigma = 33 });
foo(idist = { 'powerlaw', alpha = 1.5 });

idist is a table with the name of the distribution as the first positional value and its parameters as
subsequent named parameters. Each random number distribution has different parameters, so a simple
specification cannot be written which would cover all possible cases. This is where using a vtable
function makes it easy.

First, create a table containing validation specifications for each of the distributions. Thedistribution
names are the keys:

specs = { gaussian = { {}, sigma = { type = 'number' } },
uniform = { { }, },
powerlaw = { {}, alpha = { type = 'number' } },

}

The specifications are used to validate the entire contents of idist, so the name of the distribution must
be validated as well (hence the{} as the first element in the specification table).Later, in the full
validation specification forfoo() , idist is validated using a vtable function which selects the
correct validation specification based upon the value of the first positional element (the name of the
function):

2011-08-25 13

validate.args(l) validate.args(l)

{ i dist = { vtable = function (arg)
local vtable = specs[arg[1]]
if vtable then

return true, vtable
else

return false, "unknown idist: " .. tostring(arg)
end

end } }

• Homogeneous Lists

In this example, an element may be a list of numbers.

{ multiple = true, type = 'number' }

• Heterogeneous Lists

In this example, an element may be a list of enumerated strings or non-negative integers.

{ multiple = true,
type = { 'zposnum',

['Food Groups'] =
{ e num = { 'Fruit', 'Bread', 'Snacks' } }

}
}

AUTHOR
Diab Jerius, <djerius@cfa.harvard.edu>

COPYRIGHT AND LICENSE
Copyright (C) 2010 by the Smithsonian Astrophysical Observatory

This software is released under theGNU General Public License.You may find a copy at
<http://www.fsf.org/copyleft/gpl.html>.

2011-08-25 14

