
validate.inplace(l) validate.inplace(l)

NAME
validate.inplace − validate elements in a data structure during assignment

SYNOPSIS
−− load packages
va = require('validate.args')
vi = require('validate.inplace')

−− define a validation specification (see docs for validate.args)
spec = { foo = { type = 'posint' } }

−− construct the inplace validation object
vio = vi:new('test', spec, va:new())

−− create a more user friendly table to play with
test = vio:proxy()

−− assign something that's legal.
test.foo = 3

−− assign something that's not legal; this'll throw an error
test.foo = −3

−− use the value
if 3 == test.foo then print ("3!") end

−− create an independent standard Lua data structure
copy = vio:copy()

DESCRIPTION
validate.inplace makes it easy to provide instantaneous feedback to users when they assign an incorrect
value to an element in a data structure.

Traditional validation of data occurs after a data structure has been created and passed into a validation
routine. Atthat point the user can only be notified of which element in the data structure is invalid. It’d be
much more useful if the user was notified of where in theircode the error was made.

This class creates a proxy data structure which allows the validation of elements upon assignment to them.

Validation is performed byvalidate.args.

Usage
1. Createa validation specification table (see thevalidate.args docs). Asthis is a validation of a table,

only named elements can be validated, so the specification table will look like

spec = { name_of_elem1 = { spec for elem1 },
name_of_elem2 = { sepc for elem2 } }

2. Createa validate.args validation object and customize it as necessary:

vao = require('validate.args'):new()

3. Createthevalidate.inplace object:

vio = vi:new('config', spec, vao)

4. Retrieve and expose the proxy data structure:

config = vio:proxy();

At this pointconfig is a Lua table which can be assigned to and read from.However, none of the Lua
functions used to traverse a table (such aspair, next, etc) will be of much use.To use those you’ll need to

2011-07-07 1

validate.inplace(l) validate.inplace(l)

make a copy of the table (using thecopy() method) and traverse the copy.

Methods
new

obj = vi:new(name, spec, vao)

Create avalidate.inplace object. Thisobject administers the storage and validation of the data, as
well as the proxy data structure presented to the user.

The following parameters are required:

name
The name assigned to the root of the data structure, used in error messages.Typically this is the
name of the table to which the top level proxy table will be assigned (via theproxy() method):

vio = vi:new('config', spec, va:new())
config = vio:proxy()

spec
This is a validate.args validation specification table. Its structure must follow the ‘‘named
argument layout’’ structure as documented in thevalidate.args docs.

vao This is avalidate.args object. Itis used along with the specification to validate elements.

proxy
table = vio:proxy()

This returns a table to which data may be written to and read from. As it is a proxy, attempts to
traverse it will be unfulfilling.

copy
copy = vio:copy()

Create a copy of the data structure managed by thevalidate.inplace object. Unlike the structure
returned by theproxy() method, the structure returned bycopy() may be traversed using the standard
Lua functions.Changes to it will not be reflected in the data stored in thevalidate.inplace object (nor
will changes in the object change this data structure).

LIMITATIONS
Unsupported validate.args features

validate.inplace cannot handle specifications which usevtable functions or mutating validation
specifications.

Performance
This class is not built for speed.It imposes significant overhead when both setting and retrieving elements
within a data structure. It was designed for validation of configuration data which is typically done once.

Some of things that happen under the hood:

1. validate.args is invoked whenever a value is set

2. Thedata structure uses proxy tables to track accesses to the data.

3. Assignmentof a nested data structure to an element requires a recursive descent through the nested
table if some or all levels of the nested structure are to be validated.

To improve read performance, use thecopy() method to create a non-proxied version of the data structure.
It will be detached from the proxied version (so changes to either will not be reflected in the other).

AUTHOR
Diab Jerius, <djerius@cfa.harvard.edu>

COPYRIGHT AND LICENSE
Copyright (C) 2011 by the Smithsonian Astrophysical Observatory

This software is released under theGNU General Public License.You may find a copy at
<http://www.fsf.org/copyleft/gpl.html>.

2011-07-07 2

