
tvaLib Training Manual 0.57 1 Paul G. St-Aubin

tvaLib Training Manual
v. 0.57

Paul G. St-Aubin

Friday, April 13, 2017

tvaLib Training Manual 0.57 2 Paul G. St-Aubin

1. Table of Contents
1. Table of Contents .. 2
2. Install Traffic Intelligence and tvaLib .. 4

2.1. Windows ... 4
Mercurial ... 4
Python ... 4
Traffic Intelligence... 6
tvaLib ... 8
Setup ... 8

2.2. Linux .. 10
Mercurial ... 10
Python ... 10
OpenCV ... 10
Library for Trajectory Management .. 11
Traffic Intelligence... 11
tvaLib ... 12
Setup ... 12

3. Video Data Storage & Indexing ... 13
3.1. Database Location ... 13
3.2. Data Storage Structure.. 13

Organisation .. 13
Satellite files .. 14
Video Sequences ... 15
Video Database ... 16

3.3. Preprocessing .. 18
Undistortion .. 18
Homography ... 20
Create Tracking Mask (Optional) .. 22

4. Feature Tracking ... 23
5. Annotate Metadata... 24

5.1. General Annotation... 24
Correct Camera Parallax ... 24
Create the Alignments .. 26
Create the Mask (Optional)... 28

5.2. Study-Specific Annotation ... 29
Create the Site-Analysis .. 29
Draw the Analysis-Zone .. 30
Draw Plotting Bounds (Optional) .. 30

5.3. High-Level Interpretation .. 31
6. Analysis ... 32

6.1. Basic Traffic Analysis ... 32
6.2. Conflict/SSM/Interaction Analysis .. 32
6.3. Playback .. 32

7. Validation and Manual Annotation ... 34
7.1. Annotation & Ground Truth Creation (tvaLib) .. 34
7.2. Annotation & Ground Truth Creation (Urban Tracker)... 34

tvaLib Training Manual 0.57 3 Paul G. St-Aubin

7.3. MOTP & MOTA Analysis .. 35
7.4. MOTP & MOTA Optimisation .. 35

8. Programming Guide .. 36
8.1. HLI Plugins ... 36
8.2. Trajectory Data ... 37

tvaLib Training Manual 0.57 4 Paul G. St-Aubin

2. Install Traffic Intelligence and tvaLib
2.1. Windows
Mercurial

It is highly recommended to install Traffic Intelligence and tvaLib through CVS utilities, specifically
Mercurial CVS. Each packages repository makes use of Mercurial. Therefore, the first thing that you
should install is Mercurial. For Windows users who are familiar or predominantly comfortable with GUI
environments, the GUI tool, Tortoise HG, is available and recommended (the installer includes
Mercurial). It looks as such:

As an alternative to using Mercurial, the source code can be downloaded and extracted manually from
its repository. However, it may be tedious to push updates using this method.

Python
Install Python. If your OS is 64-bit, you will want to install 64-bit Python 2.7. Download and run the
Windows x86-64 MSI installer from here: https://www.python.org/downloads/release/python-2712/

The editor Spyder is a recommended working environment on Windows, especially if coding will be
undertaken. It can optionally be downloaded and installed from here: https://github.com/spyder-
ide/spyder/releases

Next, you will need to install the required python modules. The easiest installation method is to use the
pip command in a Windows command prompt:

pip install PACKAGE_NAME

https://www.mercurial-scm.org/
https://tortoisehg.bitbucket.io/
https://www.python.org/downloads/release/python-2712/
https://github.com/spyder-ide/spyder/releases
https://github.com/spyder-ide/spyder/releases

tvaLib Training Manual 0.57 5 Paul G. St-Aubin

If PIP is not already installed, bootstrap it with instructions found on this page:
https://pip.pypa.io/en/latest/installing/#install-pip

The recommended (required) python modules to be downloaded and installed include:

basemap
colorama
cx_Freeze
ipython
jupyter
matplotlib
numpy
opencv
pandas

Pillow
py2exe
pylint
pyYAML
pyzmq
scikit
scipy
six
SQLAlchemy

Alternatively, on Windows 64-bit machines, precompiled binaries can also be obtained from:
http://www.lfd.uci.edu/~gohlke/pythonlibs/

To quickly install all downloaded precompiled packages, place the included script setup_whl.py in
the same download directory as all of these python modules (.WHL files) and in a Windows command

https://pip.pypa.io/en/latest/installing/#install-pip
http://www.lfd.uci.edu/%7Egohlke/pythonlibs/

tvaLib Training Manual 0.57 6 Paul G. St-Aubin

prompt, run setup_whl.py. You may have to run this script twice, and as an administrator, to
properly install all modules.

Traffic Intelligence
Choose a directory in which to install Traffic Intelligence and tvaLib. With TortoiseHG installed, right-
click > TortoiseHG > Clone… and then copy the following path:
“https://bitbucket.org/Nicolas/trafficintelligence” into Source:.

Alternatively, run the following command in a Windows command prompt from within the desired
directory:

hg clone https://bitbucket.org/Nicolas/trafficintelligence

Alternatively, the source code can be downloaded and extracted manually from the repository
webpage.

Finally, download the most recent Traffic Intelligence Windows compilation from here:
https://bitbucket.org/Nicolas/trafficintelligence/downloads and unzip it in the

https://bitbucket.org/Nicolas/trafficintelligence
https://bitbucket.org/Nicolas/trafficintelligence
https://bitbucket.org/Nicolas/trafficintelligence/downloads

tvaLib Training Manual 0.57 7 Paul G. St-Aubin

trafficintelligence folder. Once this operation is performed, the target folder should look
something like:

tvaLib Training Manual 0.57 8 Paul G. St-Aubin

tvaLib
Repeat the previous Mercurial (or manual) steps using https://bitbucket.org/pstaub/tvalib as source. No
source compilation or binary downloads are required.

It is recommended to work in the stable branch. To change branches in Mercurial, right-click the top-
most branch titled stable and select Update…. This will change the code in the working directory to
use whatever code is in the stable branch:

Setup
You must add the ../trafficintelligence/python path to your list of PYTHONPATHS.

The easiest way to do this is through Spyder. Follow the steps in the following image, then log out of
your Windows session and then log back in (alternatively, just reboot the computer).

If Spyder is not installed, follow these instructions instead:
https://stackoverflow.com/questions/3701646/how-to-add-to-the-pythonpath-in-windows-7

https://bitbucket.org/pstaub/tvalib
https://stackoverflow.com/questions/3701646/how-to-add-to-the-pythonpath-in-windows-7

tvaLib Training Manual 0.57 9 Paul G. St-Aubin

Next, find, or designate, an appropriate location to store the entire video database. This is typically done
on a bare drive used for the sole purpose of video analysis. The data will be organised in a specific
manner as described in section 2. Video Data Storage, and will contain a SQLite file that indexes all of
the data. This path usually looks something like: I:\Video\scene.sqlite

Run main.py once (located in the tvaLib folder). If all python modules are installed, this first launch
will generate a new configuration file (tva.cfg). It will ask you for the location of
../trafficintelligence/ and it will ask you for the location of the scene.sqlite file.
Point the program to these files.

If main.py crashes at this stage, then there is a problem with you Python installation.

tvaLib Training Manual 0.57 10 Paul G. St-Aubin

2.2. Linux
Note that the following instructions are heavily geared towards Debian-based Linux distributions,
particularly Ubuntu. The specific commands may vary slightly for other Linux distributions.

Mercurial
It is highly recommended to install Traffic Intelligence and tvaLib through CVS. Both of these make use
of Mercurial CVS. Mercurial can be installed from the terminal with the command:

sudo apt-get install mercurial

Python
Python comes preinstalled on most distributions of Linux. It may be required to install some of the
following modules (the most important packages are in bold). Some of the packages need to be installed
via apt-get due to build dependencies:

python-matplotlib

python-opencv

Others may be installed using pip. To bootstrap pip installation, in a terminal, use the command:

sudo apt-get install python-pip

numpy
pandas
scikit-learn

scipy
SQLAlchemy

To install packages using pip, in a terminal, use the command:

sudo pip install <package_name>

OpenCV
OpenCV 2.4.x is required for Traffic Intelligence at this time. To install openCV 2.4.x in Linux, you will
have to build it from source, even though openCV packages exist for Linux.

You must first install the dependencies. In a terminal, use the following commands:

sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-
config libavcodec-dev libavformat-dev libswscale-dev libavresample-dev

Then, in a terminal, use the following commands:

wget https://github.com/Itseez/opencv/archive/2.4.13.zip

unzip 2.4.13.zip

cd opencv-2.4.13

mkdir build

cd build

https://github.com/Itseez/opencv/archive/2.4.13.zip

tvaLib Training Manual 0.57 11 Paul G. St-Aubin

cmake ..

make

sudo make install

If you need to uninstall openCV for some reason, from within the ../build/ directory, in a terminal,
use the command:

 sudo make uninstall

For more information, follow the complete instructions to compile openCV on Linux here:
https://bitbucket.org/Nicolas/trafficintelligence/wiki/Compile%20the%20C++%20Code

Library for Trajectory Management
Choose a directory in which to install the Trajectory Management library, then run the following
command in a terminal from this directory:

hg clone
https://bitbucket.org/trajectories/trajectorymanagementandanalysis

You must then install the dependencies. In a terminal, use the following commands:

sudo apt-get install sqlite3 libsqlite3-dev ccmake

Next, to compile the library, from the ..
trajectorymanagementandanalysis/trunk/src/TrajectoryManagementAndAnaly
sis/ directory, in a terminal, run the following commands:

ccmake .

make TrajectoryManagementAndAnalysis

For more information, follow the instructions to compile the Trajectory Management library on Linux
here: https://bitbucket.org/trajectories/trajectorymanagementandanalysis/wiki/Home

Traffic Intelligence
Choose a directory in which to install Traffic Intelligence, then, from that directory, run the following
command in a terminal:

hg clone https://bitbucket.org/Nicolas/trafficintelligence

The ../trafficintelligence/c/MakeFile file should be edited (in a text editor). Edit line 3
containing the following:

TRAJECTORYMANAGEMENT_DIR=$(HOME)/Research/Code/trajectorymanagementand
analysis/trunk/src/TrajectoryManagementAndAnalysis

It should point to the equivalent location of your Trajectory Management Library installation, i.e. edit
the $(HOME)/Research/Code part.

https://bitbucket.org/Nicolas/trafficintelligence/wiki/Compile%20the%20C++%20Code
https://bitbucket.org/trajectories/trajectorymanagementandanalysis
https://bitbucket.org/trajectories/trajectorymanagementandanalysis/wiki/Home
https://bitbucket.org/Nicolas/trafficintelligence

tvaLib Training Manual 0.57 12 Paul G. St-Aubin

The simplest method of building Traffic Intelligence is to run the following commands from within the
directory ../trafficintelligence/c/:

make feature-based-tracking

sudo make install

For more information, follow the instructions to compile Traffic Intelligence on Linux here:
https://bitbucket.org/Nicolas/trafficintelligence/wiki/Compile%20the%20C++%20Code

tvaLib
Repeat the previous Mercurial steps using https://bitbucket.org/pstaub/tvalib as source. No source
compilation is required.

It is recommended to work in the stable branch. To change branches in Mercurial, run the following
command in a terminal from the repository directory:

hg up stable

Setup
You must add the ../trafficintelligence/python/ path to your list of PYTHONPATHS. To do
so, add the following line to the end of your ~/.bashrc file using a text editor (it is important to point
to the python/ directory, and not the root trafficintelligence/ directory):

export
PYTHONPATH="${PYTHONPATH}:/path/to/traffic/intelligence/python/"

To enact this change immediately, run the following command in a terminal:

source ~/.bashrc

Next, find, or designate, an appropriate location to store the entire video database. This is typically done
on a bare drive used for the sole purpose of video analysis. The data will be organised in a specific
manner as described in section 2. Video Data Storage, and will contain a SQLite file that indexes all of
the data. This path usually looks something like: /media/Video/scene.sqlite

At this step, and every time tvaLib is updated, you may have to make ../tvalib/main.py
executable. To do so, from the ../tvalib/ directory, in a terminal, use the following command:

chmod +x main.py

Run main.py once (located in the tvaLib folder). If all python modules are installed, this first launch
will generate a new configuration file (tva.cfg). It will ask you for the location of
../trafficintelligence/ and it will ask you for the location of the scene.sqlite file.
Point the program to these files.

If main.py crashes at this stage, then there is a problem with you Python installation.

https://bitbucket.org/Nicolas/trafficintelligence/wiki/Compile%20the%20C++%20Code
https://bitbucket.org/pstaub/tvalib

tvaLib Training Manual 0.57 13 Paul G. St-Aubin

3. Video Data Storage & Indexing
3.1. Database Location

Whether using Traffic Intelligence or tvaLib, video data MUST be stored following a specific format
encoded in the scene.sqlite file. To bootstrap a new scene.sqlite, navigate to the
../tvalib/scripts/ directory and run the following command from a terminal or command
prompt:

python create-metadata.py -z “ROOT_PATH_TO_VIDEO_DB_DIRECTORY”

Where ROOT_PATH_TO_VIDEO_DB_DIRECTORY is the root path to the video data repository
(where scene.sqlite is to be stored), e.g. I:\Video

3.2. Data Storage Structure
 Organisation

Data for each physical location, a site, where filming takes place is to be placed in a separate subfolder
of the root path to the video data. Each camera, a grouping of video sequences taken in succession
without moving the field of view of the camera, is also placed in a subfolder within the site subfolder.
The camera subfolder structure is arbitrary, and can have many sub-sub folders, as long as all sequences
of the camera reside in the same folder. By convention, cameras are split into filming days, and
subdivided again into field of views (if multiple exist).

For example, data is collected at two sites: “SiteA” and “SiteB”. At SiteA, filming took place on July 1st
and then again on July 2nd. On each of these days, two cameras were installed (simultaneously at SiteA).
Thus, four cameras are created for SiteA. These are named:

20160601/V1
20160601/V2
20160602/V1
20160602/V2

tvaLib Training Manual 0.57 14 Paul G. St-Aubin

Satellite files
Each site folder should have a satellite image stored alongside with the site. By convention, this file is
named “ortho-cal.png”, but may be named alternatively if so specified in the scene.sqlite.

The resolution of this image must be known to properly calibrate the homography later. To do so, divide
a known spatial distance (e.g. as measured in Google Earth) with the measured distance in pixels (e.g. as
measured in a photo editing program like Photoshop). It may by beneficial to hard-code this
measurement into the image for easy reference.

TIP: In Google earth, be sure to align the camera such that it faces perpendicular to the ground, and
faces north, by using the “R” key. Also, this image should be large enough to cover anything visible in
any of the cameras installed at this site.

tvaLib Training Manual 0.57 15 Paul G. St-Aubin

Video Sequences
All video sequences from the same camera are to be stored together in the same video folder.

Optional step: A still frame of one of the sequences needs to be captured for undistortion and
homography calibration later. For best results, this frame should have a minimal amount of traffic
present. The still should have the same filename as the sequences (plus an image file extension).

VLC is recommended for this task. Alternatively, tvaLib can do this automatically from the first video
frame by running the following command from the tvaLib directory:

main.py –e --framedump

tvaLib Training Manual 0.57 16 Paul G. St-Aubin

This should result in something similar to this:

Video Database
The scene.sqlite needs to be edited to add indexes for all sequences. This can either be done manually
using a SQLite database editor such as http://sqlitebrowser.org/, or using tools that come with tvaLib.

To add a new site to the database, run the following command from the tvaLib directory:

main.py --create-site

You will be prompted to enter the site’s name (this MUST be identical to the folder name used to store
the data associated with this site) an optional description (or database ID), the resolution of the
satellite image calculated earlier, and the filename of this image (“ortho-cal.png” is the default).

To add a new camera view to the database, run the following command from the tvaLib directory:

main.py --create-view

http://sqlitebrowser.org/

tvaLib Training Manual 0.57 17 Paul G. St-Aubin

You will be prompted to enter the camera’s name (this MUST be identical to the folder names used to
store the sequences associated with this camera view), a camera type, and the relevant site at which
recording took place. Note that in this case, sequences are stored in the “V1” folder within the
“20160601” folder, itself within the “SiteA” folder. Thus the name for this camera becomes
“20160601/V1”.

To add the sequences to the database, run the following command from the tvaLib directory:

main.py --create-seqs

You will be prompted to enter the start time (startTime) of the first sequence in the folder, and the
duration of each sequence, in seconds. If the last sequence has a duration of a different length than the
other sequences, this duration can later be edited manually in the database directly. The startTime takes
strict ISO 8601 formatting https://en.wikipedia.org/wiki/ISO_8601 and should be entered with care.

https://en.wikipedia.org/wiki/ISO_8601

tvaLib Training Manual 0.57 18 Paul G. St-Aubin

This operation will search the folder for any video sequences, and add them to the database.

3.3. Preprocessing
Undistortion

Once this is complete, an undistorted reference frame can be created, e.g. from the “GP010102.png”
image captured in step 2.2.3 Video Sequences. The parameters should be properly set by having chosen
the appropriate camera type in the previous section. To run the undistortion, run the following
command from the tvaLib directory:

main.py –e –-undistort

tvaLib Training Manual 0.57 19 Paul G. St-Aubin

Follow the on-screen sequence selection dialogue and the program will then begin undistorting both the
relevant still capture, and any relevant video files. Note that video undistorting is not necessary at this
step, only undistortion of still frames. The program can be terminated as soon as the still frame has been
undistorted.

tvaLib Training Manual 0.57 20 Paul G. St-Aubin

Note that if a still frame wasn’t generated in a previous step earlier, one will now be automatically
generated.

Homography
To calibrate the scene, a homography must be created for each camera view (or anytime the camera
moves) to create the homography, run the following command from the tvaLib directory:

main.py –e –-homo 6

The undistorted camera view will appear on screen and the user is prompted to select 6 distinct points.
These points should be carefully chosen such that they be visible from both the satellite image and from
the camera view, and should encompass the general area of interest of the camera view (e.g. well
dispersed throughout the camera view). Once the selection of these 6 points is made, the user is
prompted to select the same 6 points, in that order, in the satellite view.

Once complete, the homography will be computed. Quality of the homography can be inspected visually
by comparing how well the points line up in camera space. The homography is stored to a text file along
with the sequences.

Note that if a still frame wasn’t generated in a previous step earlier, one will now be automatically
generated.

tvaLib Training Manual 0.57 21 Paul G. St-Aubin

tvaLib Training Manual 0.57 22 Paul G. St-Aubin

Create Tracking Mask (Optional)
An optional step is to create a tracking mask, which defines an area of the image to ignore when
running tracking using Traffic Intelligence. This image must have an identical size to the video and must
be placed in the camera view folder alongside sequence and video files. The name of this mask is
specified by maskFilename field entered during the camera view creation step outlined in section 3.2
(defaults to mask.png). At this time, the file should be created using an external image editing
program. Any white pixels in the image correspond to the region of the image where Traffic Intelligence
should attempt to track road users. Black pixels will be ignored.

The main benefit to this mask is that it improves performance and keeps trajectory file sizes down by
ignoring portions of the video.

Usage Tips:

• The tracking mask is most beneficial for ignoring trees blowing in the wind.

• The tracking mask does not solve the issue of warm-up error, where partial objects are tracked
at the edges of the image. Use a conventional (tvaLib) mask to solve this problem.

• If the video is being undistorted, be sure to use the image dimensions of the undistorted video.
The easiest way to do this is to load a corresponding *-frame-undistort.png file after
creating the homography.

!

tvaLib Training Manual 0.57 23 Paul G. St-Aubin

4. Feature Tracking
To begin feature tracking, run the following command from the tvaLib directory:

main.py –e –-trafint

This will automatically launch feature tracking and grouping using Traffic Intelligence, with any
appropriate homography transformations, tracking configurations (specified in the metadata), and any
relevant undistortion.

To watch tracking, add the command -p. This will slow tracking down considerably, and is not
recommended other than for manual inspection.

To process tracking on multiple sequences simultaneously using multiple CPU threads, use the
command -t # replacing # with the desired number of parallel threads.

Tracking can take several hours to complete and should be monitored through task manager in
Windows or the command top –c in Linux. These should also be used to terminate the tracking
processes as needed.

tvaLib Training Manual 0.57 24 Paul G. St-Aubin

5. Annotate Metadata
Once tracking is complete, annotation can begin. Some annotations are tied to specific sites, other
annotations are tied to the specific study, to the camera, or to individual video sequences. These will be
defined and created in this section

5.1. General Annotation
Correct Camera Parallax

Before analysis proceeds, it may be helpful to correct for camera parallax. This can be accomplished
simply by annotating the known camera position and height. To do so, run the following command from
the tvaLib directory:

main.py –e --draw-mhc

You will then be prompted to select the camera origin (if not already defined) and then you will be asked
to calibrate the mast height (if not recorded in the field) by checking against a live correction of
trajectory projection.

tvaLib Training Manual 0.57 25 Paul G. St-Aubin

tvaLib Training Manual 0.57 26 Paul G. St-Aubin

Create the Alignments
The primary general-purpose annotation is the alignment. To annotate site alignments, run the
following command from the tvaLib directory:

main.py –e --draw-align

The objective of this step is to draw center-lane alignments in the direction of travel of each lane. The
alignment should ideally be representative of aspects of geometry (the lanes), and the clusters of
trajectories of the tracked road users using these lanes. Generally, if the trajectories do not line up with
the lanes (as seen in the satellite images), then there is likely a problem with the homography, or the
angle of the field of view of the camera is so large as to create important parallax error with trajectories
at a great distance from the camera.

The program will normally load a sample of trajectories for each camera attached to the site. Normally,
a single set of alignments should serve all camera views at a particular site, and are created for all
cameras simultaneously. To force tvaLib to display a drawing plot without any trajectories, running the
following command from the tvaLib directory:

tvaLib Training Manual 0.57 27 Paul G. St-Aubin

main.py –e --draw-align-no-trk

You will be prompted to verify automatic alignment connector creation (currently partially
implemented) as well as identify pedestrian and bike paths (optional). Reffer to the following chart for
alignment colour codes:

Alignment colour Meaning
Red
Orange
Magenta
Green
Purple

Active alignment
Inactive newly drawn alignment
Default/motor vehicle lane
Sidewalk/crosswalk
Exclusive cycle lane

Usage Tips:

• Use one alignment per lane, per direction, as well as one alignment per sidewalk/crosswalk.

• Alignments should generally continue straight through an intersection whenever through traffic
is expected (including sidewalks/crosswalks).

!

tvaLib Training Manual 0.57 28 Paul G. St-Aubin

• Do not draw connectors between alignments. Try instead to draw them sufficiently close that
the algorithm finds its own connections.

• When a car lane is shared with bikes, do not draw a separate alignment for bikes. Bike lanes
should only be used when an area of road is used clearly and exclusively for cyclists.

• Alignments can cross each other perpendicularly, but should never overlap more than once.

Create the Mask (Optional)
An optional step is to create a mask, which automatically rejects trajectories outside of a given area.
This area is represented by the black polygons visible in the previous image. To draw the mask, run the
following command from the tvaLib directory:

main.py –e --draw-mask

This same mask can be drawn using an alternate view by running the following command:

main.py –e --draw-mask2

tvaLib Training Manual 0.57 29 Paul G. St-Aubin

5.2. Study-Specific Annotation
Create the Site-Analysis

The first step is to create a site-analysis, an object to store information relevant to the study of a
particular site or camera view, or sequence.

To create a site-analysis to target a specific site, camera view, or sequence, run the following command
from the tvaLib directory:

main.py --create-sa

As with previous database creation steps, this will launch a dialogue, asking for a name for the site-
analysis, and a selection of cameras to include. Selection of trajectories by a period of time is currently
not implemented.

tvaLib Training Manual 0.57 30 Paul G. St-Aubin

Draw the Analysis-Zone
The analysis-zone is a property of the site-analysis that defines a region in space (and time) where
trajectories are selected for further analysis (hence site-analysis). To create an analysis-zone, run the
following command from the tvaLib directory:

main.py -e --draw-zone

The location of the analysis will largely be dependant on the goals of the study. In the following figure,
only road the left-turn area serving the south-east-heading alignment is selected for analysis.

Draw Plotting Bounds (Optional)
The plotting bounds method can be selected by running the following command from the tvaLib
directory:

main.py –e --draw-bounds

This will zoom all figures (including all drawing figures mentioned in this section) to the selected world-
space bounds. This data is mostly cosmetic.

tvaLib Training Manual 0.57 31 Paul G. St-Aubin

5.3. High-Level Interpretation
HLI Modules extend tvaLib to add context-specific data to the analysis. These are usually study-specific
modules. An example application of this is included with tvaLib source: a stop sign identification and
analysis module. With this module, the user identifies a location along alignments were a stop sign is
located, and tvaLib will automatically extract and compile the speed of road users at this stop sign.

To identify stop signs in trajectory space, the user must launch the following command:

main.py –e --draw-hli -y stop

This opens up a simple interface where the user clicks on an alignment corresponding to the world
location of the stop sign. Note that the stop argument identifies the stop HLI module by name. The
argument all can also be used to run all available HLI modules.

Usage Tips:

• If the alignment data is changed for a site, the stop sign(s)’s location(s) will have to be
reidentified for that site as well.

To perform the HLI analysis and return output, run the following command:

main.py –ewa -y stop

!

tvaLib Training Manual 0.57 32 Paul G. St-Aubin

6. Analysis
6.1. Basic Traffic Analysis

A basic analysis can simply be performed with the following commands:

main.py -e

To save figures, add the -w option, as in:

main.py -ew

To also cache the data such that it loads faster during a future analysis, add the -a option, as in:

main.py -ewa

All program output is stored in the Analysis folder under the root video database folder, e.g.
I:\Video\Analysis, with one folder per site-analysis.

6.2. Conflict/SSM/Interaction Analysis
Conflict analysis can be performed by launching the following command:

main.py -ea -i 0

Note that the -i parameter takes as input a list (e.g. -i 0, or -i 0,1) of prediction methods declared
by id. The following methods are supported:

id Prediction Method Requires calibration
0
1
5

constant velocity
normal adaptation
discretised motion pattern

No
No
Yes

6.3. Playback
A video/trajectory playback interface is available to investigate individual trajectories or interactions
manually, featuring video media controls along with tracking data. To launch video playback of
trajectories, run the following command:

main.py -ep

To launch video playback of interactions (using constant velocity prediction, i.e. #0) and display collision
points, run the following command:

main.py -e --play-int -i 0

tvaLib Training Manual 0.57 33 Paul G. St-Aubin

tvaLib Training Manual 0.57 34 Paul G. St-Aubin

7. Validation and Manual Annotation
It is possible to validate the quality of the tracking using MOTP & MOTA evaluation between tracked
trajectories and manually created ground truth data.

7.1. Annotation & Ground Truth Creation (tvaLib)
To create ground truth data, run the following command:

main.py -e --annotate

This will launch an interactive playback tool with annotation tools to add, delete, join objects and draw
or edit existing trajectory keyframes. The most important keybord shortcuts:

Key Function
Ctrl+N
Ctrl+Left click
Left click
Delete
Ctrl+Delete
Space Bar
Arrow keys
Ctrl+ Arrow keys
Page up
Page down
4
6
+
-
Home
End

Create new object starting at this instant
Jump to first frame of visible trajectory clicked on in the video window
Add or move existing keyframe at this instant
Delete any existing keyframe at this instant
Delete active object
Play/Pause
Scrub forwards/backwards by one frame
Scrub forwards/backwards by ten frames
Select previous trajectory
Select next trajectory
Jump to previous keyframe of active object
Jump to next keyframe of active object
Speed up playback (x2)
Slow down playback (/2)
Jump to first frame
Jump to last frame

Usage Tips:

• Keyframes should be added relatively frequently, e.g. one keyframe approximately every
second. More keyframes are needed when the trajectory accelerates or decelerates. Do not
forget to add a keyframe the instant a road user begins to move again.

• The selected position should correspond to the center of the object where it touches the
ground in real space, as best as possible.

• The position of the object from one keyframe to the next should be consistent; try to identify a
feature/corner to follow. If the object rotates or changes shape (e.g. pedestrians), this position
will have to be estimated.

7.2. Annotation & Ground Truth Creation (Urban Tracker)
The Urban Tracker Annotation Tool can also be used to generate ground truth data. This tool is focused
on creating bounding boxes around pixels. It is not as efficient for the task of evaluating MOTA as the

!

tvaLib Training Manual 0.57 35 Paul G. St-Aubin

included tvaLib annotation tool. Urban tracker is available here:
https://www.jpjodoin.com/urbantracker/index.htm

7.3. MOTP & MOTA Analysis
With these annotations saved and exported to a ground truth file, you may evaluate MOTP & MOTA by
running the following command:

main.py -e --mot

If you add the play command, as in:

main.py -ep --mot

tvaLib will also load both the ground truth data and tracking data for visually comparison using the
standard playback interface.

7.4. MOTP & MOTA Optimisation
You can also attempt an optimisation of tracking parameters using the ground truth data with the
following command (using multiple threads is highly recommended):

main.py -ep -t 8 --mota-opt-t --mota-opt-g

https://www.jpjodoin.com/urbantracker/index.htm

tvaLib Training Manual 0.57 36 Paul G. St-Aubin

8. Programming Guide
8.1. HLI Plugins

tvaLib supports modularity of analysis by using plugins called High-Level-Interpretation (HLI). HLI allows
the user to implement their own analysis, computation, and visualisation functions and have them run
in-line with tvaLib. This is particularly useful when custom, analysis-specific calculations need to be
made, or when the user wishes to extend general-purpose analysis functionality of tvaLib.

A tvaLib HLI plugin is a self-contained Python library file that is placed in the tvaLib hli folder. A tvaLib
HLI plugin contains its own function and class definitions alongside several mandatory, reserved
functions that are called by tvaLib. Thus, as a library, it should not be written to execute code on its
own.

Usage Tips:

• With the exception of imports and simple variable declarations, no code within an HLI module
should be outside of a class or function definition.

Here are the following reserved functions and what they do if the associated HLI module is specified by
name:

Function Name Arguments Purpose
main()

listingPlugin()

draw()

analysis()

commands, config,
objects, sites,
site_analyses

site_analysis,
config

objects,
commands, config,
sites, site_analyses,
local
commands, config,
site_analyses,
analyses, local

main() is executed at the end of the main() function of
tvaLib (during normal operation). It loads all relevant user
commands, configuration settings, all objects, and all
metadata. This function should conduct the bulk of your
analysis, to be performed for each site individually by
loading the relevant metadata.
This function is called by master
interactiveSiteAnalysisSelection() to output metadata
completion information during interactive site selection.
This is called when the user specifies drawing of
metadata (that may be necessary for performing HLI-
specific calculations.

This is called when the analysis script is performed,
usually to load precalculated HLI results and compile
them together.

An example file, example.template, is included in tvaLib (be sure to rename it, e.g.
myHLItest.py).

!

tvaLib Training Manual 0.57 37 Paul G. St-Aubin

8.2. Trajectory Data
As with Traffic Intelligence, tvaLib uses the data structure provided by the Trajectory Management
library. Each trajectory is a MovingObject() object with a number of methods that can be called to
access the data. Here is a simple (inefficient) example that can be run from within an HLI’s function that
searches for the closest trajectory vertex to the given point at coordinates (80, 70) for the first object to
appear after a time of 500 frames, returning the speed of that object at that point:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23

24
25

import lib.tools as tvaLib
import math as m

try: objects = objects.getAll()
except: pass

pos_x = 80.0
pos_y = 70.0
search_time_in_frames = 500

for obj in objects:
 if(obj.getLastInstant() < search_time_in_frames): continue
 nearest_dist = sys.maxint
 nearest_point = 0
 for pIx in range(len(obj.getXCoordinates())):
 dist = tvaLib.Geo.ppd(pos_x,pos_y,obj.getXCoordinates()[pIx],
 obj.getYCoordinates()[pIx])
 if(dist < nearest_dist):
 nearest_dist = dist
 nearest_point = pIx

 speed = m.sqrt((obj.velocities.getXCoordinates()[nearest_point])**2+
 (obj.velocities.getYCoordinates()[nearest_point])**2)
 print 'Nearest distance: ' + str(nearest_dist) + ' at point: ' +
 str(nearest_point)
 print 'Speed: ' + str(speed)
 break

Usage Tips:

• To get this code working right away, paste lines 4 to 25 into hli/example.template (on
line 67, fixing the indentation as necessary), rename the file to example.py, and, finally,
launch main.py with the arguments -e -y example.

Here is the code explained, line by line.

import lib.tools as tvaLib
import math as m

This line imports tvaLib’s library of tools and basic Python math functions. The geometry-calculating
point-to-point distance function ppd() will be needed later for the task. Normally, imports should be
declared at the top of the file (you can find these lines of code in example.template), outside of
any functions, but they can also be imported within a function at runtime, so long as the import happens
before any other references to it.

!

tvaLib Training Manual 0.57 38 Paul G. St-Aubin

try: objects = objects.getAll()
except: pass

This is a python try-except block. It will attempt to run thy code under the try: statement. If it fails due
to some error, it’ll be instructed instead to pass (i.e. ignore) execution of that code instead.
objects.getAll() is a tvaLib-specific instruction that is beyond the scope of this example, but is
necessary to declare here to get the example working in an HLI script. In any other context, it’ll fail, but
that isn’t a problem since failure of this line of code is ignored.

pos_x = 80.0
pos_y = 70.0
search_time_in_frames = 500

These three lines store, in memory, some data that will be used as search criteria: coordinates for the
search location and the minimum frame number to perform the search.

for obj in objects:

This is a basic python loop. For each trajectory (obj) in the list of trajectories (objects), the remaining
indented lines of code will be run (unless a break is found). In this way, the computer is instructed to
execute the remaining indented code for each trajectory, in the order that those trajectories are stored
in memory.

if(obj.getLastInstant() < search_time_in_frames): continue

This is a basic python if statement. It evaluates if obj.getLastInstant() is smaller than
search_time_in_frames. If it is, the next statement, continue is executed. Otherwise, it is not
executed. Normally, the code would continue to execute after the if statement and any conditional
code executes. However, in this case, continue is a special instruction which instructs the computer
to ignore the remainder of the code to be executed in this iteration of the for loop and to, instead,
execute the next iteration (trajectory) of the for loop immediately.

The value of search_time_in_frames was previously set to 500 and will stay constant for the
remainder of this task. Meanwhile, obj.getLastInstant() accesses the last frame number of the
current trajectory.

In summary, this lines checks that the current trajectory exists at least up until frame 500 before
proceeding with any further calculations. If not, it instructs the program to skip any remaining
calculations and jump to the next trajectory instead.

nearest_dist = sys.maxint
nearest_point = 0

Here, memory is set aside to remember which point was found to be closest and what that distance
was. The initial distance is set to sys.maxint, which instructs the computer to use the largest number
it is capable of remembering.

for pIx in range(len(obj.getXCoordinates())):

https://en.wikibooks.org/wiki/Python_Programming/Exceptions
https://en.wikibooks.org/wiki/Python_Programming/Loops#For_Loops
https://en.wikibooks.org/wiki/Python_Programming/Conditional_Statements

tvaLib Training Manual 0.57 39 Paul G. St-Aubin

This is a second loop that loops through the index (stored locally in memory as pIx) of each trajectory
vertex. For example, a trajectory with three vertices would result in
range(len(obj.getXCoordinates())) having an iterable value of [0,1,2] (a Python list).
Thus, this loop will run three times, running through the indices 0 to 2, corresponding to each of the
trajectory’s three vertices. Note that this for loop is nested in the trajectory for loop, i.e. calculations
are being performing on each vertex of each trajectory…

dist = tvaLib.Geo.ppd(pos_x,pos_y,obj.getXCoordinates()[pIx],
obj.getYCoordinates()[pIx])

This instruction (one line of code) stores in memory (dist) the distance calculated by the function
ppd() located in tvaLib.Geo which was previously imported. ppd() takes four parameters: the x
and y coordinates of a first point and the x and y coordinates of a second point. It returns the distance
between these two points. These coordinates are past be referring to pos_x and pos_y defined in
memory earlier, as well as passing the indexed point of the list of X and Y coordinates.
obj.getXCoordinates() returns a Python list of x coordinates representing the coordinates of the
vertices of the obj trajectory. The specific vertex chosen corresponds to the index pIx of the current
iteration through the vertex indeces.

if(dist < nearest_dist):
 nearest_dist = dist
 nearest_point = pIx

Here, the distance is compared to the existing shortest distance. If the distance of this vertex is smaller
than the last, it becomes the new shortest distance. This is the last operation performed for each
iteration of the vertex loop.

speed =
m.sqrt((obj.velocities.getXCoordinates()[nearest_point])**2+(obj.veloc
ities.getYCoordinates()[nearest_point])**2)

This instruction stores in memory (speed) the normalised speed value at the point that was found to
be nearest (shortest ppd()). Trajectory speed is stored as vertices, as with positions, and is accessed in
a similar manner.

print 'Nearest distance: ' + str(nearest_dist) + ' at point: ' +
str(nearest_point)
print 'Speed: ' + str(speed)

This line of code instructs the computer to print to console the results of the search and distance.

break

This line instructs the computer to stop executing any more iterations of the loop. In summary, the
script stops searching through trajectories as soon as it finds a trajectory that exists after 500 frames.

https://en.wikibooks.org/wiki/Python_Programming/Lists
https://en.wikibooks.org/wiki/Python_Programming/Lists

	1. Table of Contents
	2. Install Traffic Intelligence and tvaLib
	2.1. Windows
	Mercurial
	Python
	Traffic Intelligence
	tvaLib
	Setup

	2.2. Linux
	Mercurial
	Python
	OpenCV
	Library for Trajectory Management
	Traffic Intelligence
	tvaLib
	Setup

	3. Video Data Storage & Indexing
	3.1. Database Location
	3.2. Data Storage Structure
	Organisation
	Satellite files
	Video Sequences
	Video Database

	3.3. Preprocessing
	Undistortion
	Homography
	Create Tracking Mask (Optional)

	4. Feature Tracking
	5. Annotate Metadata
	5.1. General Annotation
	Correct Camera Parallax
	Create the Alignments
	Create the Mask (Optional)

	5.2. Study-Specific Annotation
	Create the Site-Analysis
	Draw the Analysis-Zone
	Draw Plotting Bounds (Optional)

	5.3. High-Level Interpretation

	6. Analysis
	6.1. Basic Traffic Analysis
	6.2. Conflict/SSM/Interaction Analysis
	6.3. Playback

	7. Validation and Manual Annotation
	7.1. Annotation & Ground Truth Creation (tvaLib)
	7.2. Annotation & Ground Truth Creation (Urban Tracker)
	7.3. MOTP & MOTA Analysis
	7.4. MOTP & MOTA Optimisation

	8. Programming Guide
	8.1. HLI Plugins
	8.2. Trajectory Data

