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a b s t r a c t

Viewpoint independent recognition of free-form objects and estimation of their exact position are a
complex procedure with applications in robotics, artificial intelligence, computer vision and many other
scientific fields. In this paper a novel approach is presented that addresses recognition of objects lying in
highly cluttered and occluded scenes. The proposed procedure relies on distance maps, which are
extracted and stored off-line for each of the 3D objects that might be contained in the scene. During the
on-line recognition procedure distance maps are extracted from the scene. Greyscale images, derived
from scene’s distance maps, are matched with those of the object under recognition by applying
similarity measures to the descriptors that are extracted from the images. The similarity is then
estimated from image patches, which are defined using the SIFT descriptor in an appropriate way. After
finding the best similarities the position of the object in the scene is estimated. This process is repeated
until all objects are successfully recognized. Multiple experiments, which were performed on both 2.5D
synthetic and real scenes, proved that the proposed method is robust and highly efficient to a
satisfactory degree of occlusion and clutter.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years, significant progress has been made
towards the recognition of free-form objects. The immediate
objective of object recognition systems is to correctly identify an
object in a scene of objects, in the presence of clutter and
occlusion and to estimate its position and orientation. Those
systems can be exploited in robotic applications where robots are
required to navigate in crowded environments and use their
equipment (i.e. range scanners, arms) to recognize and manip-
ulate objects. Robots with advanced capabilities could be used to
service elderly/impaired people or for surveillance in sensitive
environments. Object recognition can be performed using 2D
images, which is an affordable solution due to the wide
availability of low cost cameras. Approaches exploiting cameras
are fast and low cost, yet they are also very sensitive to
illuminations, shadows and occlusions and do not provide
accurate estimation of object’s pose. Thus, the focus of the
relevant scientific communities is on the development of 3D
object recognition algorithms that overcome the aforementioned
limitations.

The idea of recognizing objects in range data has already been
investigated in several scientific studies. Campbell’s and Flynn’s

survey [1] provides an extended overview of 3D object recogni-
tion techniques. However, a short complement to this survey and
a report to recent methods is presented here for the sake of
completeness. COSMOS [2], one of the earliest algorithms, is based
on the computation of principal curvatures of the surface. This
method is limited to objects with smooth surfaces and is
applicable to just unoccluded views of an object. Chua and Jarvis
[3] propose a point signature (PS) for 3D object recognition where
a sphere centered at a given point is intersected with the surface
and creates a 3D space curve on which a plane is fitted. Point
signature was proved to be sensitive to noise and surface
sampling [14]. Hetzel et al. [13] combine pixel depth, surface
normals and curvature in a multidimensional histogram in order
to directly model the probability distribution of different feature
combinations. Their experiments proved the efficiency of this
method; however, the database used includes only non-cluttered,
self-occluded range images of 30 free-form objects. Johnson and
Hebert propose the spin image method [7], which is vulnerable to
sampling and resolution (level-of-detail) of the models and has
low discriminative power. Additionally, this method is applied to
every vertex of the object or the scene, therefore the number of
the descriptors increases as the number of vertices does. When
the number of descriptors is compressed, using principal
component analysis (PCA), the average recognition rate decreases
significantly (almost 10%). Nevertheless, spin images have been
used in many applications such as parts-based 3D object
classification [4] and for recognizing members of classes of
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3D shapes [5]. In [9], an enhancement of the spin images
algorithm is presented by using vertex interpolation. Although
these changes resolved sensitiveness of spin images to variations
in resolution, descriptor’s discriminative power was not improved
significantly. Spherical harmonics [11] and locality-sensitive
hashing [12] are exploited in [10] to perform efficient retrieval
of shapes; the work is tested on 3D shape information obtained
from laser range scanners. However, the approximate location of
the shape to be retrieved is already known, thus algorithm’s task
is limited to identify database’s correct shape. Mian et al. [14],
recently proposed a tensor-based surface representation defined
on pairs of oriented points. Their descriptors are 3D tensors
that measure the variation of surface position. Correspondence
between 3D Tensors is established using a voting process to find
pairs of tensors with high overlap ratio.

A more recent approach is presented in [17], where the
similarities between input 3D images are computed by matching
their descriptors with a pyramid kernel function. The similarity
matrix of the images is used to train support vector machines-
based (SVM) classification [19], and new images can be recog-
nized by comparison with the training set. The experiments were
performed on the same database as in [13], and thus robustness
with respect to clutter was not examined. In [18], an initial
implementation of the distance map descriptor was presented;
however, this approach was viewpoint dependent. The algorithm
presented in [16] (an extension of work in [15]) calculates the
local surface properties of patches, which are defined on the
extracted feature points. By comparing local surface patches for a
model and a test image, and casting votes for the models
containing similar surface descriptors, the potential correspond-
ing local surface patches and candidate models are hypothesized.
The evaluation experiments were simple, since at most two
objects existed in the scene. In [20], the generalized Hough
transform is extended to detect instances of an object in laser
range data, independently to the scale and orientation of the
object. However, this method is restricted to simple objects that
can be represented with few parameters, such as planes, spheres
and cylinders.

The plethora of the existing algorithms [6,17,5,4] use spin
images [7]. These methods either modify the spin image or
integrate it with other components, so as to improve its
performance. Moreover, the majority of the methods was tested
on self-occluded scenes without presence of clutter [2,4,3,13].
Thus, there is a need for the development of novel methods that
address the object recognition problem in a more efficient way.

In this paper a novel approach for recognition of 3D objects in
range scenes, is presented. The primary step of the proposed
algorithm is to place the 3D object in a proper position and then to
form a coordinate basis used to extract distance maps for this
object. During the 3D object’s recognition procedure, distance
maps are extracted for the scene according to a coordinate
system, which allows keeping their total number very low.
Matching between scene’s and object’s distance maps is estab-
lished using the SIFT algorithm on greyscale images that are
generated from the distance maps. The whole procedure is novel
and provides a different insight in the ‘‘treatment’’ of the object
recognition problem. A major difference to previous methods (i.e.
[7]), where descriptors are extracted on the vertices of the
reconstructed point cloud, lies on the extraction of scene’s
descriptors, which is based on a coordinate system that is formed
according to scanning parameters.

The advantages of the proposed method are the following: the
approach used to extract distance maps, especially for the scene,
allows keeping their number low since it is independent of 3D
object’s number of vertices. Added to this, the employment of a
simple 1D hash table allows significant acceleration of the

execution time. Another advantage is its robustness with respect
to objects’ level-of-detail since, unlike spin images, it is not
required the library objects to have similar resolution.

The results on synthetic scenes proved that the proposed
algorithm is robust to a high degree of clutter and occlusion and
experimental comparison with the spin image approach on real
scenes verified the superiority of the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, the
off-line extraction of 3D object’s distance maps along with the
automatic extraction of scene’s distance maps are presented.
Section 3 introduces a similarity measure based on the SIFT
algorithm. In Section 4, the performed experiments both on
synthetic and real data are given, while conclusions are drawn in
Section 5.

2. Computation of distance maps

2.1. Model’s initial distance maps

The goal of this procedure is twofold: firstly to place the 3D
model in a proper initial position and secondly to create a
coordinate basis around the object, which is used to define
object’s initial distance maps in such a way that largest portion of
object’s surface will be described with the minimum number of
descriptors.

2.1.1. Initial position of 3D model
Each model’s vertices are stored in the matrix Vmodel (where

Vmodel is a N!3 matrix of 3D coordinates). The PCA [8] on Vmodel is
computed and the three orthogonal principal components are
derived. The object is rotated around its center of mass, so that the
first principal component becomes parallel to z-axis and the
second principal component becomes parallel to y-axis. After
rotation, the object is denoted as VPCA. The object is then
translated by V final ¼ VPCA#½xm,ym,za%, where Cm ¼ ½xm,ym,zm%T is
VPCA’s center of mass and Pa ¼ ½xa,ya,za%T is VPCA’s point with
minimum z-coordinate. This procedure intends to place the object
in such a position that z-axis passes centrally through object’s
volume since the coordinate basis used to extract object’s initial
distance maps is constructed around z-axis. The points of
intersection between V final and z-axis with minimum z-coordinate
and maximum z-coordinate are Pmim ¼ ½xmin,ymin,zmin%T and
Pmax ¼ ½xmax,ymax,zmax%T , respectively (Fig. 1(a.2) and (b.2)). Fig. 1
depicts two objects after estimation of their initial position.

2.1.2. Extraction of 3D object’s initial distance map
2.1.2.1. Circular sector formation. Before advancing to the extraction
of initial distance maps, a circular sector S of N points, indexed
by variable f (f¼0,1,y,N), with radius R (a global parameter
used throughout this paper) and center O¼[0,0,0]T is created on
xy plane. Circular sector’s points are sampled uniformly on the
circular disc by creating a centroidal Voronoi tessellation (CVT)
[21] of points within the sector region. Since points are sampled
uniformly its rather impossible that a point coincides with O;
however, the circular sector’s point that has the minimum
Euclidean distance from O is denoted as point K and it is assumed
to coincide with O. The distribution of points over a specific
circular area, using a polar coordinate system and CVT is depicted
on Fig. 2(a) and (b), respectively. This figure proves the efficiency
of CVT to generate uniform points. S is adapted around points of
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spherical sub-grids that form object’s coordinate basis as
described below.

2.1.2.2. Sub-grids formation. Initially a G¼ fGi,i¼ 1, . . . ,NGg
(Fig. 3(a)) grid of points, which are uniformly distributed on a
sphere, is created. G points’ spherical coordinates have been
precomputed, so that for a Gi point the longitude and the latitude

are yiA ½0,3603Þ and fiA ½#903,þ903%, respectively. From G three
sub-grids centered at O¼[0,0,0]T are derived, by applying
latitude thresholds. These are: Ga ( G ð8fioþ603Þ (Fig. 3(b)),
Gb ( G ð8fi4#603Þ (Fig. 3(c)) and Gc ¼ Ga \ Gb (Fig. 3(d)).

Then, a z-axis parameter is defined as hjAfa * jþzminþR;
j¼ 0,1,2, . . . ,H=ag, where a is the z-axis variable and
H¼ jzmax#zminj#2 * R. Ga is adapted around point g1¼[0, 0, R]T to
cap the bottom part of the object, Gb is adapted around point

Fig. 1. (a.1) Random position of the ‘‘T-rex’’ model, (a.2) initial position of ‘‘T-rex’’, (a.3) initial position from a different viewpoint, (b.1) random position of the ‘‘budha’’
model, (b.2) initial position of ‘‘budha’’, (b.3) initial position from a different viewpoint.

Fig. 2. Circular sector’s sampled points using (a) polar coordinates and (b) centroidal Voronoi tessellation.
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g2¼[0, 0, H]T to cap the upper part of the object, while Gc is
adapted sequentially to points that correspond to all intermediate
values of h.

Provided that the descriptors for hj are computed, the
following initial steps are required:

1. The sub-grid corresponding to hj is formed as GCj
¼ GcþCj,

where Cj ¼ ½0,0,hj%T (cases: I. Cj + g1 ) c¼ a, II. Cj + g2 )
c¼ b, III. c¼ c) (Fig. 4(a)).

2. Equation: Sjyf ¼ Rzð#yÞRyð#ðp=2#fÞÞSþGCjyf adapts circular
disc Sjyf around each point GCjyf of GCj

(Fig. 4(a) and (b)),
where Rz, Ry are the rotation matrices about the y and z-axes,
respectively.
Each point sjyff

ASjyf is the origin of a ray with direction
u!yf ¼ ½#cosðyÞ cosðfÞ,#sinðyÞ cosðfÞ,#sinðfÞ%T (Fig. 4(b)).

Using the ray-triangle intersection algorithm, presented in
[22], the distance djyff

between sjyff
and the triangulated Vmodel is

computed. The minimum distance per Sjyf is djyf0
¼minðdjyff

Þ.
The point giving djyf0

is denoted as sjyf0
. In cases the ray intersects

more than one triangles, the smallest distance is stored for a
specific point. The intersection of the ray with origin sjyfK

, with
the model at point J jyf (Fig. 4(b)) is given by the following
equation and is called Sjyf’s central intersection.

J jyf ¼ u!yf * djyfK
þsjyfK

ð1Þ

The computed distances for all sjyff
are used to extract the

initial distance map Ujyf per Sjyf. The cartesian coordinates of a
point in Ujyf are Fjyff

¼ ½xf ,yf ,djyff
#djyf0

%T , where xf, yf are the
abscissa and the ordinate of point f on S (Section 2.1.2.1). Points
that have z-coordinate below 2R are stored in the initial distance

map. Initial distance maps for all models are created and stored
(off-line) in a model library. So far the methodology for the
extraction of model initial distance maps is encapsulated in the
following steps:

, GCj
grids are centered at different Cj to form the coordinate

basis for the extraction of model initial distance maps.
, A Sjyf circular sector is adapted around each point of GCj

.
, The initial distance map Ujyf per Sjyf is computed.

2.2. Scene’s initial distance maps

Let us suppose that a 3D reconstruction computer vision
system, which is placed in a predefined position in a room, creates
a triangulated mesh of the observed scene. From the scanning
parameters, the parallelogram volume that encloses the
reconstructed objects can be derived. The variables that define
this parallelogram are W (width), L (length) and D(depth).
The viewpoint of observation (i.e. laser scanner center) is
D¼ ½xd,yd,zd%T and the depth scanning direction is
q
!¼ ½q1,q2,q3%T (Fig. 6(c)). Then a CVT of points, enclosed in an
orthogonal region defined by the parameters W, L, is created. The
distribution of points over a specific parallelogram area, using a
cartesian coordinate system or CVT is depicted in Fig. 5(a) and (b),
respectively. Although points in Fig. 5(a) are uniformly sampled
over the plane, their coordinates are strictly defined ((i * a,j * a),
where fi,jgAN), while in Fig. 5(b) points are uniformly sampled
without any systematic way, thus CVT is selected for the
generation of points.

Fig. 3. Spherical grid (a) G and its sub-grids: (b) Ga , (c) Gb , (d) Gc .

Fig. 4. Illustration of 3D object’s initial distance map computation: (a) frontal view and (b) overview.
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A point on GD is indexed by variable m (m¼0,1,y,M), where M
is the total number of GD points. The centered at D, GD grid is
given by

GD ¼ Rzð#y1ÞRyð#ðp=2#f1ÞÞGþD ð2Þ

where Rz and Ry are the rotation matrices about y and z axes,
respectively, and q

!
’s spherical coordinates are y1ðlongitudeÞ and

f1ðlatitudeÞ. Each point gDm
AGD is the center of a circular sector

SDm (Fig. 6(a) and (b)) given by

SDm ¼ Rzð#y1ÞRyð#ðp=2#f1ÞÞSþgDm
ð3Þ

Each point sDmf
ASDm is the origin of an oriented ray with direction

q
!

. The distance dDmf
between sDmf

and the 2.5D triangulated
scene is computed. The minimum distance per sDmf

is
d0m
¼minðdDmf

Þ. The point giving d0m
is denoted as s0m

. The
intersection of the ray, with origin sDmK

, with the scene at point
JDm

(Fig. 6(b)) is given by the following equation and is called SDm ’s
central intersection.

JDm
¼ q
! * dDmK

þsDmK
ð4Þ

The initial distance map Um per SDm is defined by the points
Umf
¼ ½xf ,yf ,dDmf

#d0m
%T .

In Fig. 6 for the SDm whose rays intersect Oa object, it can be
noticed that JDm

and the point Pmin that had the minimum
distance d0m

from SDm are on the same object (first category initial
distance map). However, when an object Ob (Fig. 6) is further from
the reconstruction system than other scene’s objects perhaps it is
occluded by some of them. In this case, it is probable that even the
vast majority of the rays of a circular sector SDm intersect Ob there
will be some rays that intersect other objects that are nearer to
the reconstruction system. Thus, the minimum distance d0m

of SDm

perhaps corresponds to a ray that intersects another object
that is closer to the reconstruction system than Ob while central
intersection JDm

is on Ob’s surface (second category initial distance
map). The threshold that distinguishes between the two cate-
gories is e. With Umð3Þ is denoted Um’s third row while median
denotes the median value (median is a robust estimate of the
center of data since outliers have little effect on it).

If e4medianðUmð3ÞÞ, the Um falls into the first category. In this
case Um2 DUm, where Umð3Þoe (this relation removes the initial
distance map points which are probably computed from rays that
intersect objects that are further from the reconstruction system
than Oa).

If ermedianðUmð3ÞÞ, the Um falls into the second category and
the following statistical analysis sequential steps have to be

Fig. 5. Orthogonal region points in (a) method [1] and (b) in the proposed method.

Fig. 6. Illustration of scene’s initial distance map computation: (a) frontal view, (b) sidelong view and (c) overview.

G. Kordelas, P. Daras / Pattern Recognition 43 (2010) 3833–3845 3837



executed in order to isolate the initial distance map points that
come from rays that intersect Ob:

, The relation: sizeðUmð3Þ4 ½medianðUmð3ÞÞ#stdðUmð3ÞÞ%Þ=
sizeðFmÞ40:75 (where size gives the total number of points
that satisfy the expression inside the parentheses) confirms
that the majority of Um’s points (about 75%) is derived from
intersection with Ob’s surface.
, Initial distance map points that represent Ob’s surface

are Um2 DUm, where medianðUmð3ÞÞ#stdðUmð3ÞÞrUmð3Þr
medianðUmð3ÞÞþstdðUmð3ÞÞ.

A viewpoint that lies between Ob and the objects that are nearer
to the reconstruction system is gnew ¼ JDm

# q
! * stdðUmð3ÞÞ (Fig.

6(c)). If a circular sector was adapted to gnew, its central
intersection and the point that has the minimum distance d0m

from it would be on Ob.
So far the methodology for the extraction of scene’s initial

distance maps is encapsulated in the following steps:

, The GD plane forms the coordinate basis for the extraction of
scene’s initial distance maps.
, A SDm circular sector is adapted around each point of GD.
, According to e, per SDm , an initial distance map Um2 is

extracted. However, the notation Um is used instead of Um2

through this paper.

2.3. Initial distance map correction

It is obvious that the extraction of the initial distance maps,
described in Sections 2.1.2 and 2.2, respectively, for the model and
the scene, depends on a coordinate system that is independent of
the surface of the objects. Thus, the same surface observed from
different viewpoints, would give different initial distance maps
and therefore, they are viewpoint dependent. This algorithm
proposes a simple, yet effective solution to extract, for each initial
distance map, a final distance map dependent on the topology of
the surface patch from where initial map was extracted. More
specifically, the initial distance map is used to compute a novel
viewpoint, which is aimed to be almost parallel to the normal of
the surface patch described by this initial distance map, since a
normal view of a surface region provides more explicit informa-
tion about its topology rather than a slantwise view. Then, a
circular sector S (Section 2.1.2.1) is adapted around the novel
viewpoint and the final distance map is computed. In this way, the
final distance map is interrelated to the normal of the surface
patch it describes and as a sequence is viewpoint independent.
This process can be explained using an example for a model initial

distance map. Let us assume that the initial distance map Ul of
the circular sector Sl, which is adapted around GCl sub-grid point,
was computed (Fig. 7(a)). Sl’s central intersection is Jl and its
orientation is u

!
l. Using PCA a plane (green plane in Fig. 7(b)) fits

to the point cloud of Ul (red point cloud in Fig. 7(b)). The
coefficients for the first two principal components define vectors
that form a basis for the plane. Moreover, the third principal
component is orthogonal to the first two, and its coefficients
define plane’s normal vector u

!
lPCA

. Its spherical coordinates
are yPCAand fPCA. The orientation of the novel viewpoint is
u
!

m ¼ Rzð#ylÞRyð#ðp=2#flÞÞRzðyPCAÞRyðp=2#fPCAÞ½0 0 1%T and its
center is Cm ¼ Jl# u

!
m * x. The new circular sector’s Sm computation

steps are:
Step 1: Sm ¼ Rzð#ylÞRyð#ðp=2#flÞÞRzðyPCAÞRyðp=2#fPCAÞS

rotates the S sector (Section 2.1.2.1), so that its surface normal
is u
!

m.
Step 2: Sm ¼ SmþCm translates the new sector around a new

viewpoint.
Rays starting from points of Sm with orientation u

!
m create the

final distance map (blue point cloud in Fig. 7(b)) in a straightfor-
ward manner as in Section 2.1. It is clear that the final distance
map is aligned to the surface it represents. The above procedure is
utilized for the initial distance map if acosð u!lPCA

* ½0 0 1%T ÞZ153.
Otherwise, it is assumed that u

!
l is almost parallel to the normal

of the surface patch described by Ul; therefore, the initial
distance map coincides with the final distance map and no
further computation is required. Only points with distance below
2R are stored in the final distance map. The maximum
z-coordinate value (zmax) of each final distance map is used as
index for a 1D hash table. zmax is quantized into bins of Dzmax.

Concluding, through the correction of initial distance maps,
very similar final distance maps are computed. This fact is useful
for compressing the number of the similar final distance maps.

3. Object recognition

In this section the procedure for finding correspondences
between object’s and scene’s final distance maps is described.

3.1. Greyscale images and sift descriptors

The square that encloses the circular disc (Fig. 2(b)) is divided
into equally spaced bins (the total number of bins is nb!nb). For a
final distance map, the value of each bin is defined as the mean
value of the z-coordinates of its points, whose x,y-coordinates fall
within this bin (Fig. 8a). Empty bins are those that there is no any
point inside them. The resulting nbxnb matrix is represented as a

Fig. 7. (a) Sl and Sm circular sectors, (b) Ul and Um distance maps.
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greyscale image with resolution of nb!nb pixels. Since, it was
noticed that the number of SIFT frames was dependent on the
image resolution, each image is resized to 5nb!5nb resolution by
applying bilinear interpolation (Fig. 8b). Image areas that have
zero intensity value (correspond to empty bins and do not
actually represent real surface) are separated from non-zero areas
using the Canny algorithm [24]. More specifically, Canny detects
image edges and only edges (boundary edges) that separate
regions with zero intensity from regions with non-zero intensity
(Fig. 8b). Then, contrast stretching is used to emphasize intensity
variations of the image, thus intensity values that are in the range
[0, 199] are remapped to fill the entire intensity range [0, 255].
The SIFT algorithm [23] returns a 4!K matrix containing the total
K frames (or keypoints) of the image and a 128!K matrix
containing their descriptors. Each frame is defined by its center k,
its scale s and its orientation o and is denoted by a circle on the
image with radius 6s (Fig. 8c). SIFT frames, whose circles do not
intersect with the boundary edges, are stored for each greyscale
image (Fig. 8d). The rest frames take into account zero-intensity
areas and thus they are excluded.

3.2. Greyscale image matching

Supposed that two final distance maps represent overlapping
areas of a surface their corresponding greyscale images will have
common patches according to the degree of overlapping. In this
paragraph, a methodology is proposed that attempts to detect
image pairs that have similar patches even if the first image is
rotated or cropped when compared to the second one. Let us
assume that a first image’s I1 random frame is Fa (Fig. 9(b.1)),
which is defined by center ka ¼ ½xka yka %

T , scale sa and orientation

oa and a second image’s I2 random frame is Fb (Fig. 9(b.2)), which
is defined by the center kb ¼ ½xkb ykb %

T , scale sb and orientation
ob. In order to deduce that two SIFT frames are matched, the
following relations must be verified:

, Distance ratio r0:8 (as defined in [23]).
, jsa#sbj=sar0:2 (since images have the same scale).

The matched frames for a pair of greyscale images are depicted
in Fig. 9(a). Taking into account the centers and the orientation of
the matched frames, the second greyscale image is rotated around
its center in order to be aligned to the first one and then image
patches are generated from the two images. The latter is
accomplished through the following steps:

, The angle divergence is Df¼oa#ob.
, I2Fb

¼ rotateðI2,DfÞ (Fig. 9(b.4)) (counter-clock rotation around
center of I2 by Df).
, The center of Fb in I2Fb

is kbnew
and is given by

3 xkb ¼ 5nb=2þcosð#DfÞ * ðykb#5nb=2Þ
#sinð#DfÞ * ðxkb#5nb=2Þ.

3 ykb ¼ 5nb=2þsinð#DfÞ * ðykb#5nb=2Þ
þcosð#DfÞ * ðxkb#5nb=2Þ.

, Windows (of size Z! Z) Pa, Pbnew
centered at ka and kbnew

(Fig. 9(b.3) and (b.4)) are defined for Fa, Fb, respectively
(Fig. 9(c.1) and (c.2)).
, The degree of correspondence between Pa and Pbnew

is
measured by a modified normalized cross-correlation [25]

mnccðPa,Pbnew
Þ ¼

2covðPa,Pbnew
Þ

varðPaÞþvarðPbnew
Þ

ð5Þ

Fig. 8. (a) Final distance map points, (b) Canny edge boundary, (c) frames of SIFT descriptors and (d) frames of stored SIFT descriptors.
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By estimating the mnccðPa,Pbnew
Þ is verified whether frames

actually match, since patches occupy a larger portion of the
image than the area within circle that denotes each frame, as it is
evident in Fig. 9(b.3) and (b.4). The absolute value of modified
normalized cross-correlation lies between #1 and 1, and a value
of 1 indicates perfect matching of the windows. The degree of
correspondence is estimated for the patches of all matched frames
(patches extracted for another pair of frames (Fig. 9(a)) are shown
in Fig. 9(d.1) and (d.2)). The maximum degree of correspondence
for a pair of images is L1#2 ¼maxðmnccðP1u ,P2u ÞÞ, where
u¼ 1,2, . . . ,z (z is the total number of matched frames and
P1u ,P2u are the patches that correspond to each pair of matched
frames on I1, I2 images).

So far, the process of matching a pair of greyscale images was
described. In the following paragraph the methodology followed
to match all model’s greyscale images with all scene’s greyscale
images is presented.

3.3. Object recognition in a scene

For each library model its final distance maps, their corre-
sponding greyscale images and their SIFT frames are extracted
and stored off-line. During the on-line recognition procedure SIFT
frames of scene’s greyscale images are extracted. Then, scene’s
greyscale images are matched to model’s greyscale images. In
order to achieve time efficiency, a scene’s Is greyscale image can
be matched to model’s Imk

(where k¼1,y,F) greyscale images
whose final distance maps (F is their total number) have the same
zmax index with Is in the 1D hash map. Two matching criteria are
established.

Regarding the first criterion, the matching results for Is are
ranked in descending order in terms of LIs#Imk

. A specific Imk
, when

compared to different Is with the same zmax index, is allowed to
satisfy the LIs#Imk

4t1 condition for up to w times. Then, for the
top ranked pair of images per Is, it is verified whether LIs#Imk

exceeds a predetermined threshold t2.
Apart from the above criterion that is based purely on image

comparison, a more robust matching criterion is proposed below.
This criterion is further applied for each Is to its top ranked (Is, Imk

)
image pair if and only if LIs#Imk

4t3. In brief, final distance maps
with lower z-coordinate upper limit are created, then it is checked
if the normal vector plane fitted to the points of final distance
maps has limited angle divergence from the z-axis. Finally, the
degree of correspondence of the images extracted from the final
distance maps is computed.

Let us suppose that Fs and Fmk
are the final distance maps,

from which Is and Imk
were generated. The following steps show

how Fs and Fmk
are processed:

Step 1: Fs1 DFs, where Usð3ÞomeanðUsð3ÞÞþstdðUsð3ÞÞ,
Fmk1

DFmk
, where Umk

ð3ÞomeanðUmk
ð3ÞÞþstdðUmk

ð3ÞÞ:
Step 2: Using PCA [8] the third principal component

u
!

sPCA
and u

!
mkPCA

is computed for Fs1 and Fmk1
, respectively.

Then is determined whether acosð u!sPCA
* ½0 0 1%T Þr303 and

acosð u!mkPCA
* ½0 0 1%T Þr303. These conditions verify that u

!
sPCA

and u
!

mkPCA
have not great angle divergence from the z-axis.

Step 3: Images Is1 ,Imk1
are generated for Fs1 and Fmk1

using the
same process described in Section 3.1 stopping right after image
interpolation. The produced Is1 ,Imk1

images depict more details
about the represented surface than the images Is, Imk

.
Step 4: Using SIFT-frames previously computed for Is and Imk

,
according to Section 3.2, LIs1

#Imk1
is estimated for Is1 ,Imk1

. LIs1
#Imk1

has to be over t4.

Fig. 9. (a) Two greyscale images and lines connecting the matched frames, (b) a matched pair of frames and the generation of image patches, (c) generated image patches
for frames connected by orange line and (d) Generated image patches for frames connected by blue line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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The above thresholds are defined explicitly in Section 4.1.
Let us assume that for a pair Is,Imk

one of the above criteria is
satisfied. During the computation of the final distance maps, from
which Is,Imk

were generated, their central intersections Js,Jmk
were

also computed.
Therefore, the point Jmk

(which lies on M surface), corresponds
to the point Js (which lies on scene’s surface). Thus, a point
correspondence between scene and model is established. This
procedure is repeated for all scene’s images and the Js correspon-
dence points are localized in the scene separately for the points
that satisfy each criterion. For some models whose surface has
common geometric characteristics (i.e. nearly planar surface
patches) probably some false correspondences might be found
in the scene. By extending the ISODATA algorithm [26] for 3D
data, the Js correspondence points found for each criterion are
separately classified into clusters based on their inter-distances.
The largest cluster of each criterion is computed. Though the
largest clusters for both criteria usually coincide, the largest
cluster of the second criterion, at most times (85%) (when the
occlusion of the model is not severe), contains the Js points that
are true correspondences of the model in the scene. In this case
the object is positively identified in the scene. The largest cluster
of the first criterion is used when there is no largest cluster (larger
clusters have the same number of points) or there is no any
cluster for the second criterion.

Simultaneous recognition of many object in a scene is not time
consuming since it can be executed in parallel for these objects
exploiting multi-core computer architecture.

4. Experimental results

This section includes experiments on both synthetic and real
data. Prior to initiation of the experiments the parameters used in
this method are clarified. Experiments on synthetic data were
performed on a model library containing 20 models of varying
surface structure (Fig. 10). Real data were used to compare our
method against spin images.

4.1. Specification of parameters used

In Section 2.1.2, variable R that defines S’s radius was
mentioned. This variable is crucial for the method since some
variables are defined according to it. It is desired that the rays
starting from Siyf and SDm intersect the surface in a large enough
area, so that the distance map will contain sufficient information
for the topology of the surface in order to discriminate different
surfaces. At the same time, if R’s were set to be very large scene’s
distance maps would have more chances to store distances for
rays that intersect surfaces from different objects due to occlusion

Fig. 10. Library models from 3DVIA [28] and Princeton [29] 3D object databases.
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and clutter. For library objects that have comparable sizes R was
experimentally set to be meanðHgÞ=7rRrmeanðHgÞ=9 (g is the
index for each library object). Whereas the total number of
circular disc S points is N¼2000, so that points of the extracted
distance map are dense enough to describe efficiently the
represented surface and to form the greyscale images. The NG

was set to 642 after experiments on the real data (Section 4.3) and
was also used for the experiments on the synthetic data.

The sum of distance maps per model was controlled by
assuming a maximum value for j in z-axis parameter hj. The
maximum j was set to 7 thus a parameter in hj was a¼H=7 and as
a consequence the total number of distance maps was limited to
4600 for objects with higher H. In Section 2.2, the density of GD

points is such that the distance between a GD point and its direct
neighbors is between R/2 and 2R/3. e used in this section is set to
2R. In Section 2.3, for model and first category scene initial
distance maps x¼ 3 * R, while for the second category initial
distance maps is x¼ stdðUmð3ÞÞ (so that Cm is computed in the
same sense as gmin in Section 2.2). The zmax ranges between 0 and
2R while Dzmax ¼ 2R=8. The square that enclosed the S circular disc
in Section 3.1 was separated into 40!40 bins, so that their size
allowed a sufficient number of distance map points to fall within
each bin. Otherwise, if the initial number of bins was greater, then
the number of bins would over exceed the total number of
distance map points (N¼2000), thus most of the bins would be
empty.

The thresholds used for the matching criteria were defined
after exhausting tests. A specific Imk

when compared to different Is

shall not give large degrees of correspondence (over t1) for many
of them (the total number where the degree of correspondence is
over t1, is w). Otherwise, it has to be discarded from the matching
procedure since it has low discriminative power and may lead
to erroneous matches. During the experimental trials it was
observed that for t1 ¼ 0:8 and w¼ 1, Imk

images that led to
erroneous matches were successfully discarded. The purpose of
the t2 is to separate image pairs that give true correspondences of
the model in the scene from false ones. It was noticed that for t2

below 0.86 the number of false correspondences in the scene was
increasing in fast rate as t2 reduced, while for t2 over 0.89 many
true correspondences were discarded. Therefore, the ideal value
for t2 was between 0.86 and 0.89. Experimentally, t2 was set to
0.88. For time efficiency, t3 ¼ 0:7 was used to reduce the number
of the top ranked image pairs to be processed through the second
criterion, since it was experimentally confirmed that pairs with
lower t3 are rather impossible to satisfy this criterion. In the same
way as t2, it was observed that t4 ranged from 0.66 to 0.72.
Experimentally, t4 was set to 0.68.

For the ISODATA algorithm, the threshold for the minimum
number of samples each cluster could have (used for discarding
clusters) was set to 3, the threshold for the standard deviation
(used for split operation) was set to 2R and the threshold for the
pairwise distance (used for merge operation) was set to R/2 [26].

4.2. Synthetic scene experiments

To evaluate the performance of the recognition system a model
library, which consisted of 20 synthetic models, was used
(Fig. 10). These objects were chosen arbitrary, so that the
geometric characteristics of their surface varied from object to
object. In the experiments, the objects were placed randomly in
scenes using a simulation program and the number of models per
scene varied from 3 to 9. The total number that a library model
was placed in the scenes was approximately the same for all
models. In order to estimate the recognition rate at different
clutter and occlusion rates additional objects were used. During
the experimental procedure the performance of this approach was
checked for cluttered and occluded scenes. Recognition success
was verified by computing the rates of true positive (TP), true
negative (TN) and false positive (FP) [7]. The searched model
existed in the scene, thus true negative rate was not computed.
The occlusion in the scene was defined as

occlusion¼ 1#
model surface patch data
total model surface data

ð6Þ

The clutter was defined as

clutter¼ 1#
model surface patch data
total scene surface data

ð7Þ

The library objects were manually segmented from the
scene in order to compute their clutter and occlusion values.
Totally 160 recognition experiments were performed on
35 synthetic scenes. The mean number of scene’s descriptors
was 650 and the mean time to recognize all models in a scene
was about 80 min. From Fig. 11(a) it is concluded that the
average recognition rate was 79% with 80% occlusion. When
the occlusion percentage exceeds 85%, the rate decreases
significantly. The recognition rate with respect to clutter was
83.3% at 90% clutter (Fig. 11(b)). It was shown experimentally that
the rate is mainly affected by occlusion since the recognition rate
is not reduced significantly as clutter increases. The average
recognition rate was 78.13%, since 125 out of 160 recognition
trials were successful. Here, it should be denoted that 118
recognition trials had over 75% occlusion. Fig. 12 depicts the
experimental results for nine scenes. The correspondences of each

Fig. 11. Recognition rate against (a) occlusion and (b) clutter.
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model in the scene are displayed in different colors. It can be
noticed that the vast majority of the models were successfully
recognized in the exhibited scenes. Examples of unrecognized

objects are exhibited in Fig. 12 III, IV, VI where ‘‘head’’, ‘‘Porche’’
and ‘‘Mclaren’’ objects were not recognized due to significant
occlusion.

Fig. 12. Experimental results for synthetic scenes.

Fig. 13. (a–c) Experimental results, (d,e) visibility results and (f) recognition rate against occlusion.
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4.3. Experimental comparison with spin images

Before defining the NG parameter the performance of the
algorithm was tested for NG¼1002 (icosahedron subdivision level
10), NG¼642 (subdivision level 8) and NG¼362 (subdivision level
6) points. The results are depicted in Fig. 13(f). From this picture it
is obvious that for NG¼342 the recognition rate was significantly
decreased compared to the rate for NG¼642. Though the rate
for NG¼1002 is slightly superior to the rate for NG¼642, the
execution time was increased to about 25%. Consequently,
spherical grid G is selected to have NG¼642 in order to provide
an adequate number of viewpoints, while sub-grids Ga, Gb and Gc

have 605, 605 and 568 points, respectively. The results are
discussed taking into consideration the distance maps recognition
rate for NG¼642.

The proposed algorithm was compared towards uncompressed
spin images using the testing data which is available in [27]. The
available 50 real scenes were composed of five models. However,
recognition of the ‘‘rhino’’ model was excluded from the final
results since spin image had very low recognition rate (about
21%). The total recognition rate of the compared methods towards
occlusion is indicated in Fig. 13(f). It is clear that the proposed
method is superior to the spin image method. Normally,
information about the viewpoint of observation is automatically
provided since the coordinate system of a real scene is based on
the pose of the scanner. Observing the real scenes from range
scanner’s viewpoint ensures maximum visibility, since recon-
structed surfaces are fully visible (they do not occlude each other).
The 2.5D real reconstructed scenes used for the real experiments
in this paper were derived from the Internet [27] and information
of scanner’s viewpoint was not included in the provided
experimental data. Therefore orientation and position were
manually defined bearing in mind to obtain the best possible
visibility of the scenes (in other words to ensure minimum
occlusion), and since it was not the optimum the performance of
our algorithm was probably negatively influenced. Fig. 13(d) and
(e) shows the visibility of a scene from two manually selected
viewpoints. The first one that gave the visibility depicted in
Fig. 13(d) is closest to the range scanner’s real viewpoint, than the
second one that gave the visibility depicted in Fig. 13(e). This is
evident due to the fact that in Fig. 13(e) foreground objects
occlude more the background objects than in Fig. 13(d).

Another significant advantage of this approach is the number of
the descriptors per model or scene. The mean number of scene’s
descriptors in our method was 340, while in spin image method
was about 8500. This fact explains the observed time divergence,
since our method requires about 65 min per scene while spin
images about 320 min. Totally 168 recognition experiments were
performed on 50 real scenes. From Fig. 13(f) it is concluded that the
average recognition rate was 75.3% with up to 82.5% occlusion.
When the occlusion percentage exceeds 85%, the rate decreases
significantly. The average recognition rate was 86.9%, since 146 out
of 168 recognition trials were successful, while for the spin image
method this percentage was 78.6%. Fig. 13(a–c) depicts the results
for experiments 5, 29, 46, respectively. The correspondences of
each model in the scene are displayed with dots of different colors,
i.e. red for the ‘‘Chicken’’, green for the ‘‘Chef’’, yellow for the
‘‘Parasaurolophus’’ and pink for the ‘‘T-rex’’ model. Models were
successfully recognized in the scene, with the exception of chicken
in Fig. 13(b) which was severely occluded. On the other hand, the
spin image algorithm did not manage to recognize the ‘‘Chicken’’
and ‘‘T-rex’’ models in Fig. 13(b) and the ‘‘T-rex’’ model in Fig. 13(a),
since most of their correspondences in the scene were on a false
object. The correspondences of the unrecognized objects, for the
spin image algorithm, are displayed with black dots for the
‘‘Chicken’’ and with brown dots for the ‘‘T-rex’’ model, respectively.

5. Conclusions

In this paper a novel algorithm for viewpoint independent
recognition of 3D free-form objects was presented. The metho-
dology for extracting scene and model distance maps allowed to
keep their total number low. This fact, in conjunction with the
simple 1D hash table, allowed for significant acceleration of the
execution time. Additionally, the performance and the number of
descriptors of this method is independent to the resolution of the
models and the scenes.

Experiments conducted on synthetic scenes that contained
objects with varying surface structure from a model library
proved the robustness of this method to a satisfactory degree on
clutter and occlusion. The efficiency of this algorithm was further
verified by testing real scenes where noise was present. These
tests indicated that this method is advantageous to the spin image
algorithm in terms of occlusion and computational time. The
average recognition rate for 318 experimental trials was 80.5%.
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