2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE)

Fast Calculating Feature Point’s Main Orientation in SURF Algorithm

Bing Han
Xi’an Research Inst. Of Hi-Tech
Honggqing, Xi’an, P.R.China, 710025
icytg@126.com

Abstract—in SURF algorithm, original process for feature
point’s main orientation assignment is not optimized. It uses a
sliding window covering an angle with 60 degrees shift around
a circle region, and calculates the sums of all Haar responses to
yield a vector in it. Along with the window rotating, many
overlap regions generated. Therefore, a lot of responses
summations need to be repeatedly taken. So the speed is slow.
An algorithm for fast calculating feature point’s main
orientation in SURF was proposed. It wiped off all repeated
responses summations in the overlap regions, and all the Haar
responses were just needed to be computed once, which not
only decreased the complexity, but also increased the speed.
Verified by the experimental results, the consuming time for
our fast main orientation calculating algorithm is just 60% of
the original one.

Keywords-SURF algorithm; feature point; main orientation;
fast calculating

I. INTRODUCTION

SUREF, proposed by Herbert Bay in 2006!" >3 was an
efficient algorithm for fast calculating and describin§ local
invariant features. It is very fit for recognizing!” and
tracking!®! objects in many real-time applications. SURF’s
high efficiency is mainly owed to the using of integral
image!® and box filters, and their effects present much
distinct in the steps of extracting and describing features.
Although SURF is faster than other algorithms, such as
SIFT"! Harris-Laplace® and so on, there are still some sub-
steps need to be optimized. Calculating feature point’s main
orientation is the typical.

Original method for calculating feature point’s main
orientation in SURF is using a sliding window covering an
angle with 60 degrees shift around a circle region, and then
calculating the sum of all Haar responses in it. When the
sliding window shifting, there are many big overlap regions
generated. Therefore, a lot of responses summations need to
be repeatedly taken. So algorithm’s speed is influenced by
these and tends to be slow. To solve this problem, an
algorithm for fast calculating feature point’s main orientation
in SURF was proposed. In part II of this paper, the original
algorithm for calculating main orientation in SURF was
introduced, and pointed out how the overlap regions and
repeated summations generated. In part III, we detailedly
analyzed the processes of our fast orientation calculating
algorithm. In it all the Haar responses just needed to be
summed once. So the complexity was decreased. In part IV,
an experiment was taken to test our algorithm’s efficiency.

978-1-4244-7956-6/10/$26.00 ©2010 IEEE

165

Yongming Wang, Xiaozhi Jia
Beijing Research Inst. Of Hi-Tech
Qinghe, Beijing, P.R.China, 100085
dayechia@sina.com

Firstly, in order to verify our fast algorithm is correct, we
compared the results between the original and our fast
algorithms. Because the results achieved by these two
algorithms were quite similar, the fast algorithm’s
correctness was verified. Secondly, we compared the speed
between these two algorithms. The results presented that our
fast algorithm’s consuming time was just 60% of the original
one’s.

II. ORIGINAL ALGORITHM FOR CALCULATING MAIN
ORIENTATION IN SURF

In original orientation assignment algorithm!"**, it first

calculates the Haar wavelet responses in horizontal and
vertical direction within a circular neighborhood of radius 6s
around the interest point, with s the scale at which the
interest point was detected. The sampling step is scale
dependent and chosen to be s. And the size of the wavelets is
scale dependent and set to a side length of 4s. Therefore,
integral image can be used here for fast filtering. See figure 1
and 5.

Figure 1. Haar wavelet filters to compute the responses in the horizontal
(left) and vertical direction (right). The dark parts have the weight -1 and
the light parts +1.

Figure 2. Orientation Calculation: As the 60 degrees window slides
around the origin the components of the responses are summed to yield the
vectors shown here in blue. The largest such vector determines the main
orientation.

Once the wavelet responses are calculated and weighted
with a Gaussian (6=2s) centered at the interest point, the
responses are represented as points in a space with the
horizontal response strength along the abscissa and the
vertical response strength along the ordinate. The main
orientation is estimated by calculating the sum of all
responses within a sliding orientation window of size 60

CMCE 2010

degrees. The horizontal and vertical responses within the
window are summed. The two summed responses then yield
a local orientation vector. The longest such vector over all
windows defines the orientation of the interest point. See
Figure 2.

In literature [9], the shifting step of sliding window was
chosen 5 degrees. So the local orientation vector could be
initially calculated in the 0~60 degrees region, then in the
5~65 degrees region, and analogized like this. Among these
two regions, 5~60 is an overlap region, when calculating the
local orientation vector, the horizontal and vertical responses
within the 5~60 degrees overlap region are needed to be
summed twice. Along with the sliding window rotating,
more overlap regions would be generated, responses in these
regions need to be summed once and once. It made the
algorithm process more complexity. So the original main
orientation calculating method is not optimized. To solve this
problem, an algorithm for fast calculating main orientation in
SURF was proposed in part III.

III. FAST ALGORITHM FOR CALCULATING MAIN
ORIENTATION IN SURF

In order to wipe off the repeatedly responses summations
in the overlap regions, an optimized fast algorithm was
proposed. Figure 3 shows a process of the sliding window
shifting from 0~70 degrees. The initial location for the
sliding window is in figure 3 (a), marked as a pink region.
Figure 3 (b) shows this window contra rotated 5 degrees
from (a)’s location, the real location was marked by the
green region adding the pink region. Here the green region
distinctly represents the overlap region between window in
0~60 and 5~65 degrees regions. Figure 3 (c) shows the
sliding window contra rotated 5 degrees again from (b)’s
location. Green region adding pink region also represents the
window’s real-time location in 10~70 degrees region. Green
is the overlap region. So a rule could be found there. We
don’t need to repeatedly calculate the responses sum in every
60 degrees region any more. Summation results of the
horizontal and vertical responses can be achieved just by
using the sum in the front region add the next 5 degrees
region’s sum, and subtract the first 5 degrees region’s sum in
the front region, i.e. the summation results of responses in (b)
could be achieved by the sum in (a)’s pink part subtracting
the sum in (b)’s blue part and add the sum in (b)’s pink part.
The process of our fast orientation calculating algorithm is
designed as follows.

. 4 .

(a) (b) (¢}

Figure 3. Process of the sliding window shifting from 0~70 degrees. For
(a), the Haar responses sums in horizontal and vertical directions were
marked as the pink region. For (b), the Haar responses sums in horizontal
and vertical directions can be calculated by the frontal sum in (a)
subtracting blue region’s sum and adding pink region’s sum in (b). For (c),
the process is similar as (b).

166

Firstly, two arrays x and y with length 72 were defined to
respectively store the Haar responses sum in horizontal and
vertical directions in each 5 degrees region. That is like we
divide a circle region into 72 parts and respectively compute
the responses sum in them. Both values in these two arrays
were initialized into 0. See figure 4.

4,

A

5 10 15 20 25 3035 40 360
x [tfsfp]ofs]e]]e 2

51015 20 5 4
y [RE[

iz
Figure 4. Two arrays with length 72 were defined to respectively store the

Haar responses in horizontal and vertical directions in each 5 degrees
region.

Secondly, we calculated the responses sum in horizontal
and vertical directions in each 5 degrees region by using
Haar wavelets and integral image. See figure 5. Suppose the
responses in horizontal and vertical directions were defined
as dx and dly, so the angle could be calculated using equation
(1). After that, we using the angle divide 5. No matter the
decimal part of the result whether was bigger than 0.5 or not,
we just kept its integral number. So these responses dx and
dy could be respectively added into arrays x and y based on
equations (2) and (3). In these two equations index add one
means the beginning indexes for x and y arrays were defined
as 1.

angle = arctan(dy / dx) 1)
x[floor(angle/5)+1] = x[floor(angle/5) + 1]+ dx (2)
Y[floor(angle/5)+1] = y[floor(angle/5)+1]1+dy (3)

M ERSNE

s il

Haar Wavelets

oy

Horizontal Vertical

I

=1 I

Figure 5. Calculating responses in horizontal and vertical directions by
using Haar waveltes and integral image. Green region represents the
locations which is need to calculate Haar responses.

Thirdly, local orientation vectors were calculated. After
all responses sums were achieved in the blue region in figure
5, we summated each 12 values in x and y arrays for each 60
degrees region. The moving step was 1. Here we took a

circulation from index 1. If the index was bigger than 0 and
smaller than 13, we directly added the sum values in x and y
arrays one by one. Equations (4) and (5) were taken to do
like this in the first 60 degrees region. If the index was
bigger than 12 and smaller than 62, as discussed in the
beginning parts, we used the frontal summation result add
the sum in index »#+11 and subtract the sum in index #-1. As
shown in equations (6) and (7). Figure 6 introduced the
whole process for calculating the responses sums, and it
yielded an echo with figure 3. The local orientation vector
could be calculated as equation (8).

sumx = sumx + x[n],(0 < n<13) (@)

sumy = sumy + y[n],(0 < n<13) &)

sumx = sumx + x[n+11]-x[n-1],(12<n<62) (6)
sumy = sumy + y[n+11]-y[n-1],(12<n<62) (7)
vector = SUMX - SUMX + SUMY - SUmy 8)

10 15202530 35404550 55606575

FEEREEREEET | |

510 15202530 35404550 55 60 65 75

_ BERNRNRERERCN

510 15202530 354045 50 55 60 6575 . 360

Figure 6. Calculting the reponses sums in each 60 degrees region.

360

5

360

At the end we choose the longest local orientation vector
over all windows as the main orientation of the interest point.

Using this algorithm to calculate the orientation, the
repeated summations were wiped off. All the summed
responses were just called once. Comparing with the original
algorithm, it decreased the complexity.

IV. EXPERIMENT EVALUATION

In order to verify our fast algorithm’s effectiveness, an
experiment was taken. All the results were obtained on a
netbook with CPU Intel atom N270, running at 1.6GHz. The
programming environment is MatlabR2009b. Test images is
using a scaled sunflower field sequence, which size is from
160 X 120~ 800 X 600. The increasing step is 160 X 120.
Figure 7 shows one picture in the sequence. Here we take 2
sub-experiments, one is to test our algorithm’s correctness,
by comparing the orientation calculating results with the
original algorithm. The other one is to test our algorithm’s
speed whether faster or not than the original algorithm.

e

Figure 7. Test image sunflower field, size 320X240.

A. Result Evaluation

Firstly, we used the fast Hessian detector to extract the
blob feature points in the sequence of test images. The
number of the extracted feature points for these pictures is 78
453 1018 1843 and 2937 respectively corresponding to the
picture sizes 160 X 120~800 X 600. Then we used the
original and our fast algorithm both calculate these feature
points’ main orientation, and compared the results. These
results were listed in Table 1.

TABLE L. ORIENTATION RESULTS OF TWO ALGORITHMS FOR

DIFFERENT TEST IMNAGES

Images Orientation Results of Two Algorithms

(Points)

Original Algorithm

Our Fast Algorithm
Farve

160x120
(78)

320%240
(453)

480%360
(1018)

640x480
(1843)

800x600
(2937)

167

Up to down, Table I listed the orientation calculation
results for picture sunflower field in size 160X 120~800 X
600. From these results we can see that the orientations
calculated by these two algorithms are quite similar. So our
fast algorithm is correct.

B. Speed Evaluation

After verified our fast algorithm’s correctness for
calculating orientation, we tested the speed based on image
sequences using above. Firstly, we also used the fast Hessian
detector to extract the blob feature points in each image.
Numbers for these feature points respectively were still 78,
453, 1018, 1843 and 2937. Then based on these points, a
comparison for the consuming time of these two algorithms
was taken. Results were listed in Table II and figure 7.

TABLE IL COMPARING THE CONSUMING TIME OF TWO ALGORITHMS
Test Images and Consuming Time for Two Algorithms
Feature Points
Number Original Algorithm Our Fast Algorithm
1 (7186 %f,ﬁg) 0226016 0.146972
2| (453 poin) 1292421 0806554
3 (13?3 >l<3306ir?ts) 2918384 1.792741
‘la 8612 ;i{:r?ts) 5.260386 3234674
5 | o957 point) 8382818 5173446

Speed Comparison for Two Algorithms

w

W

5 8 -Original Algorithm 1
E 7 [:]OurFast Algorithm i
1=

é 5 |
- 5

£

=

5 4 i
a

£ 3 R
=

22 1
£

21 1
[

“ 0

78 453 1018 1843 2937

Number of Feature Points Achieved from Different Sizes Images

Figure 8. Bar Graphic for Comparing the Speed of Original Algorithm
with Our Fast Algorithm

Table II shows the consuming time of these two
algorithms. In order to introduce the comparison results more
clearly, figure 8 was drawn based on the data in Table II.
From these results it could be concluded that both the fast
and original algorithm’s speed were decreased along with the
number of feature points increased. But the speed of our fast
algorithm is always much faster than the original one, which
is approximately just 61.7% of that for the original one.

V. CONCLUSION

An algorithm for fast calculating the feature point’s main
orientation in SURF was proposed. In original algorithm,
when the sliding window rotated along a circle, some big
overlap regions were generated. Therefore, a lot of repeated
responses summation calculations contained in the original
algorithm process, so its speed is slow. Our fast algorithm
solved this problem. It not only keeps the correct results, but

168

also decreased the algorithm’s complexity, so it is much
faster than the original algorithm.

REFERENCES

H. Bay, T. Tuytelaars and L. Van Gool, “Surf: Speeded up robust
features,” in ECCV, 2006, pp. 404-417.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust
Features (SURF),” Computer Vision and Image Understanding, vol.
110, 2007, 346-359.

H. Bay. “Wide-baseline point and line correspondences to 3D, Ph.D.
Thesis, ETH Zurich, 2006.

H. Bay, B. Fasel and L. Van Gool, “Interactive museum guide: Fast
and robust recognition of museum objects,” in Proceedings of the
FirstInternational Workshop on Mobile Vision, 2006.

A. C. Murillo, J. J. Guerrero and C. Sagues. “SURF features for
efficient robot localization with omnidirectional images”, 2007 IEEE
International Conference on Robotics and Automation, Roma, Italy,
April 2007, pp. 3901-3907.

P. Viola and M. Jones. “Rapid object detection using a boosted
cascade of simple features”. IEEE Conference on Computer Vision
and Pattern Recognition, 2001, pp. 511-518.

D. G. Lowe. “Distinctive image features from scale-invariant
keypoints™. International Journal of Computer Vision, 2004, 60(2), pp.
91-110.

K. Mikolajczyk, C. Schmid. “Scale and affine invariant interest point

detectors”, International Journal of Computer Vision, 2004, 60 (1), pp.
63-86.

Christopher Evans. “Notes on the OpenSURF library”, Online,
Internet, available: http://www. chrisevansdev.com/. MSC Computer
Science, University of Bristol, 2009.

(1]
[2]

(3]
(4]

(5]

(6]

(7]

(8]

]

