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1 Linear approximation

Given two points (x0, y0) and (x1, y1), we can find a polynomial of degree one (i.e. a
linear polynomial) that passes through these points. If P is the polynomial that we seek,
we want it to have the property that P (x0) = y0 and P (x1) = y1. To construct P , first
define the functions

L0(x) =
x− x1

x0 − x1

and L1(x) =
x− x0

x1 − x0

.

Then the linear polynomial in question is

P (x) = L0(x)y0 + L1(x)y1

=
x− x1

x0 − x1

y0 +
x− x0

x1 − x0

y1.
(1)

To see that P (x) passes through the points (x0, y0) and (x1, y1), substitute x0 and x1

into (1) to obtain

P (x0) =
x0 − x1

x0 − x1

y0 +
x0 − x0

x1 − x0

y1

= y0

P (x1) =
x1 − x1

x0 − x1

y0 +
x1 − x0

x1 − x0

y1

= y1.

Furthermore, we have

L0(x0) =
x0 − x1

x0 − x1

= 1 and L0(x1) =
x1 − x1

x0 − x1

= 0

and similarly

L1(x0) =
x0 − x0

x1 − x0

= 0 and L1(x1) =
x1 − x0

x1 − x0

= 1.
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Example 1.1. Consider the function f(x) = x3. Find a linear polynomial through the
points (

−3

2
, −27

8

)
and

(
3

2
,

27

8

)
that approximates f(x).

Solution. We let

(x0, y0) =

(
−3

2
, −27

8

)
and (x1, y1) =

(
3

2
,

27

8

)
and substitute into (1) to get

P (x) =
x− 3/2

−3/2− 3/2

(
−27

8

)
+

x+ 3/2

3/2 + 3/2

(
27

8

)
=

9

4
x.

To see how good P (x) is at approximating f(x), consider plotting P (x) and f(x) on the
same set of axes:

sage: f = x^3
sage: x0 = -1.5; y0 = f(x=x0)
sage: x1 = 1.5; y1 = f(x=x1)
sage: P1 = plot(f, (x,-2,2))
sage: P = ((x - x1) / (x0 - x1))*y0 + ((x - x0) / (x1 - x0))*y1
sage: P2 = plot(P, (x,-2,2), color="red")
sage: show(P1 + P2)

Figure 1 shows the plots of f(x) (coloured blue) and P (x) (coloured red).

Figure 1: Approximating f(x) = x3 by a linear polynomial through two points on f(x).

2



2 Lagrange interpolating polynomial

If we are now given n+ 1 points

(x0, y0), (x1, y1), . . . , (xn, yn) (2)

a natural question to ask is, “How can we adapt the above method for two points to the
case of n + 1 points?” For each k = 0, 1, 2, . . . , n we require a rational function Ln,k(x)
such that Ln,k(xi) = 0 whenever i 6= k and Ln,k(xk) = 1. The condition Ln,k(xi) = 0 for
i 6= k can be met if the numerator of Ln,k(x) is

n∏
i 6=k

(x− xi) = (x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn).

To satisfy the condition Ln,k(xk) = 1, the numerator and denominator of Ln,k(x) must
be equal to each other when evaluated at x = xk. So the function Ln,k(x) that we seek is

Ln,k(x) =

∏n
i 6=k(x− xi)∏n
i 6=k(xk − xi)

=
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

Then the general polynomial P (x) that we require is defined in the same manner as
equation (1). For the n+ 1 points in (2), the polynomial P (x) that passes through each
of those points is stated in Theorem 2.1 and is called the n-th Lagrange interpolating
polynomial.

Theorem 2.1. Lagrange interpolating polynomial. Let x0, x1, . . . , xn be n+ 1 dis-
tinct numbers in the domain of a function f and suppose that f is defined at those
n + 1 values. Then there is a unique polynomial P (x) of degree at most n such that
f(xk) = P (xk) for k = 0, 1, 2, . . . , n. Furthermore, P (x) is given by

P (x) =
n∑

k=0

f(xk)Ln,k(x)

= f(x0)Ln,0(x) + f(x1)Ln,1(x) + · · ·+ f(xn)Ln,n(x)

where

Ln,k(x) =

∏n
i 6=k(x− xi)∏n
i 6=k(xk − xi)

=
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

for k = 0, 1, 2, . . . , n.

The next theorem gives a theoretical error bound when using the Lagrange interpo-
lating polynomial to approximate a function.
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Theorem 2.2. Error bound for Lagrange interpolating polynomial. Suppose
x0, x1, . . . , xn are n+1 distinct numbers in the closed interval [a, b] and let f ∈ Cn+1[a, b].
Then for each x ∈ [a, b] there is a number ξ(x) ∈ (a, b) such that

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!

n∏
k=0

(x− xk)

where P (x) is the Lagrange interpolating polynomial from Theorem 2.1.

Example 2.3. Let f(x) = sin(x) and consider the following four points on the graph of
f(x):

(0, 0), (2π/3,
√

3/2), (4π/3, −
√

3/2), (2π, 0).

Use Theorem 2.1 to find a polynomial that interpolates f(x).

Solution. The particular L3,k(x) that we seek are

L3,0 =
1

16

(π − 3x)(2π − x)(4π − 3x)

π3

L3,1 =
9

16

(2π − x)(4π − 3x)x

π3

L3,2 = − 9

16

(2π − 3x)(2π − x)x

π3

L3,3 =
1

16

(2π − 3x)(4π − 3x)x

π3
.

The required interpolation polynomial is

P (x) =
3

7
2x3 − 3

9
2πx2 + 2 · 3 7

2π2x

16π3
.

To visualize how well P (x) interpolates f(x), use the following code to plot these two
functions on the same set of axes:

sage: f = sin(x)
sage: a = 0; b = 2*pi; n = 3; d = (b - a) / n
sage: x0 = a; y0 = f(x=x0)
sage: x1 = x0 + d; y1 = f(x=x1)
sage: x2 = x1 + d; y2 = f(x=x2)
sage: x3 = x2 + d; y3 = f(x=x3)
sage: L0 = ((x-x1) * (x-x2) * (x-x3)) / ((x0-x1) * (x0-x2) * (x0-x3))
sage: L1 = ((x-x0) * (x-x2) * (x-x3)) / ((x1-x0) * (x1-x2) * (x1-x3))
sage: L2 = ((x-x0) * (x-x1) * (x-x3)) / ((x2-x0) * (x2-x1) * (x2-x3))
sage: L3 = ((x-x0) * (x-x1) * (x-x2)) / ((x3-x0) * (x3-x1) * (x3-x2))
sage: P = f(x=x0)*L0 + f(x=x1)*L1 + f(x=x2)*L2 + f(x=x3)*L3
sage: P1 = plot(f, (x,-1,7))
sage: P2 = plot(P, (x,-1,7), color="red")
sage: show(P1 + P2)

The resulting plot is shown in Figure 2. The graph of f(x) is coloured blue, while that
of P (x) is coloured red.
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Figure 2: Interpolating f(x) = sin(x) using a cubic polynomial.

3 Lagrange polynomials via Neville’s method

This section considers a method for recursively generating Lagrange interpolation poly-
nomials. The technique is due to E.H. Neville who first published it in 1934.

Definition 3.1. Let f be a function defined at the n+1 points x0, x1, . . . , xn and suppose
that m1,m2, . . . ,mk are k distinct integers such that 0 ≤ mi ≤ n for each i. Then denote
by Pm1,m2,...,mk

(x) the Lagrange interpolating polynomial that agrees with f(x) at the k
points xm1 , xm2 , . . . , xmk

.

Theorem 3.2. Neville’s method [1]. Let f be a function defined at all points in
X = {x0, x1, . . . , xn} and suppose xi and xj are distinct numbers in X. Then the k-th
Lagrange interpolating polynomial P (x) given by

P (x) =
(x− xj)P0,1,...,j−1,j+1,...,k(x)− (x− xi)P0,1,...,i−1,i+1,...,k(x)

xi − xj

interpolates the function f at the k + 1 distinct numbers x0, x1, . . . , xk.

As a convenience, for 0 ≤ j ≤ i let Qi,j(x) denote the j-th Lagrange interpolating
polynomial on the j + 1 numbers xi−j, xi−j+1, . . . , xi−1, xi where

Qi,j = Pi−j,i−j+1,...,i−1,i.

Then Neville’s method can be described in terms of Qi,j as shown in Algorithm 3.1.
This algorithm generates the n-th Lagrange interpolating polynomial without using the
rational function Ln,k from Theorem 2.1. Upon termination, the algorithm returns a
table Q, called the Neville table. Each entry Qi,j of the table is a polynomial of degree
at most n and the entry Qn,n is the n-th Lagrange interpolating polynomial.

Example 3.3. Suppose we are given the values in Table 1. Use Neville’s method as stated
in Algorithm 3.1 to find the 4-th Lagrange interpolating polynomial of these points.
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Input : The numbers x0, x1, . . . , xn. The n+ 1 values f(x0), f(x1), . . . , f(xn) as
the first column Q0,0, Q1,0, . . . , Qn,0 of Q.

Output: The Neville table Q where P (x) = Qn,n.

Let Q be an (n+ 1)× (n+ 1) array1

Qi,0 ← f(xi) for i← 0, 1, . . . , n2

for i← 1, 2, . . . , n do3

for j ← 1, 2, . . . , i do4

Qi,j ←
(x− xi−j)Qi,j−1 − (x− xi)Qi−1,j−1

xi − xi−j5

end6

end7

return Q8

Algorithm 3.1: Neville’s method for recursively generating the n-th Lagrange inter-
polating polynomial.

x f(x)

0.7847 2.3610
1.0320 2.4706
2.3414 6.8767
3.6836 11.7008
4.9530 15.6005

Table 1: Some tabulated values of a function.

xi 0 1 2 3 4

0 0.7847 2.3610
1 1.0320 2.4706 Q1,1

2 2.3414 6.8767 Q2,1 Q2,2

3 3.6836 11.7008 Q3,1 Q3,2 Q3,3

4 4.9530 15.6005 Q4,1 Q4,2 Q4,3 Q4,4

Table 2: The Q table of a 4-th Lagrange interpolating polynomial.
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Solution. For the points in Table 1, the Neville table Q described in Algorithm 3.1 is
shown in Table 2. We already have the values Q0,i for i = 0, . . . , 4. These are the f(xi)
values

Q0,0 = 2.3610, Q0,1 = 2.4706, Q0,2 = 6.8767, Q0,3 = 11.7008, Q0,4 = 15.6005.

The remaining Qi,j values can be calculated recursively using Algorithm 3.1; these values
are

Q1,1 = 0.443186413263243x+ 2.01323162151233

Q2,1 = 3.36497632503437x− 1.00205556743547

Q2,2 = 1.87691264326532x2 − 2.96660078575686x+ 3.53317499992008

Q3,1 = 3.59417374459842x− 1.53869840560274

Q3,2 = 0.0864374036672401x2 + 3.07338838750330x− 0.793194725306702

Q3,3 = −0.617639532097720x3 + 4.44511958168085x2 − 6.09397642116479x

+ 4.70427518391589

Q4,1 = 3.07208129825114x+ 0.384481329762090

Q4,2 = −0.199912868106631x2 + 4.79864877494087x− 3.26290312010083

Q4,3 = −0.0730299086390897x3 + 0.601809468933296x2 + 1.98943605018381x

− 0.143172010839081

Q4,4 = 0.130655092833680x4 − 1.64219757357159x3 + 7.10789767270635x2

− 8.77864426201650x+ 5.61682749870231

where the coefficients have been rounded off. We can also compute the required Lagrange
interpolating polynomaial as follows:

sage: X = [0.7847, 1.0320, 2.3414, 3.6836, 4.9530]
sage: Y = [2.3610, 2.4706, 6.8767, 11.7008, 15.6005]
sage: PR = PolynomialRing(RR, "x")
sage: P = PR.lagrange_polynomial(zip(X,Y), algorithm="neville")[-1]

Thus the 4-th Lagrange interpolating polynomial that we seek is the polynomial Q4,4

above.

In practice, we usually do not require the full Neville table Q that results from using
Algorithm 3.1. It is the entryQn,n that we need, and in terms of computer implementation
it is a waste of computer memory to generate the full table. Algorithm 3.2 presents a
version of Neville’s method that is more memory efficient than Algorithm 3.1. It does
not generate the full Neville table, but only keeps track of both the current and previous
rows of the table. After finish running, the algorithm returns the last row of the Neville
table.

If the generated Lagrange interpolating polynomial P (x) is not a reasonable approx-
imation to f(x), we can add k more interpolation points to get

(x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)), (xn+1, f(xn+1)), . . . , (xn+k, f(xn+k)). (3)
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Input : The numbers x0, x1, . . . , xn. The n+ 1 values f(x0), f(x1), . . . , f(xn).
Output: The n-th row of the Neville table Q where P (x) = Qn,n.

Let Q be a vector of size n+ 11

Q0 ← f(x0)2

P ← Q3

for i← 1, 2, . . . , n do4

Q0 ← f(xi)5

for j ← 1, 2, . . . , i do6

Qj ←
(x− xi−j)Qj−1 − (x− xi)Pj−1

xi − xi−j7

end8

P ← Q9

end10

return Q11

Algorithm 3.2: A memory efficient version of Neville’s method.

Let Q be the Neville table of the n-th Lagrange interpolating polynomial P (x) where
Qn,n = P (x). Using the points in (3), we want to compute the (n + k)-th Lagrange
interpolating polynomial P ′(x) without having to generate its Neville table. One solution
is to use the last row of the Neville table for P (x) and adapt Neville’s method so that it
starts its computation from the points

(xn+1, f(xn+1)), (xn+2, f(xn+2)), . . . , (xn+k, f(xn+k)).

Such a method is presented in Algorithm 3.3. This algorithm is essentially a modification
of Algorithm 3.2 so that it can use the results of previous computation.

Example 3.4. Let f(x) = x3 cos(x) − 2x. Find a 2-nd Lagrange polynomial P (x) that
interpolates f(x) at the points

(x0, y0) = (0.5, f(x0)), (x1, y1) = (3.2, f(x1)), (x2, y2) = (1.7, f(x2)).

Use P (x) and the additional points

(x3, y3) = (5, f(x3)), (x4, y4) = (6, f(x4))

to find a 4-th Lagrange interpolating polynomial P ′(x).

Solution. For the first three points, the 2-nd Lagrange interpolating polynomial that we
seek is

P (x) = (−10.8765434414684x+ 26.0869807210336)x− 11.2146566799134.

With the two additional points, the required 4-th Lagrange interpolating polynomial is

P ′(x) = −4.67639356528245x4 cos(5) + 3.26185442464512x4 cos(6)− 1.57644155638333x4

+ 53.3108866442200x3 cos(5)− 33.9232860163093x3 cos(6) + 20.7681601852390x3

− 188.411896745230x2 cos(5) + 113.806100875868x2 cos(6)− 86.3086893150001x2

+ 234.100261878040x cos(5)− 137.552401087285x cos(6) + 115.285289941467x

− 76.3187429854097 cos(5) + 44.3612201751737 cos(6)− 39.4532672476283.
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Input : The numbers x0, x1, . . . , xn. The n+ 1 values f(x0), f(x1), . . . , f(xn).
The last row R of the Neville table that results from computing the k-th
Lagrange interpolating polynomial of the points
(x0, f(x0)), (x1, f(x1)), . . . , (xk, f(xk)) where 0 < k < n.

Output: The n-th row of the Neville table Q where P (x) = Qn,n.

Let Q be a vector of size n+ 1 where Qi ← Ri for i← 0, 1, . . . , k1

P ← Q2

for i← k + 1, k + 2, . . . , n do3

Q0 ← f(xi)4

for j ← 1, 2, . . . , i do5

Qj ←
(x− xi−j)Qj−1 − (x− xi)Pj−1

xi − xi−j6

end7

P ← Q8

end9

return Q10

Algorithm 3.3: A memory efficient version of Neville’s method that uses the results
of previous computation.

To visualize how well P (x) and P ′(x) interpolate f(x), we graph these three functions on
one set of axes:

sage: f = x^3 * cos(x) - 2*x
sage: x0 = 0.5; y0 = f(x=x0)
sage: x1 = 3.2; y1 = f(x=x1)
sage: x2 = 1.7; y2 = f(x=x2)
sage: x3 = 5; y3 = f(x=x3)
sage: x4 = 6; y4 = f(x=x4)
sage: X = [x0, x1, x2]
sage: Y = [y0, y1, x2]
sage: PR = PolynomialRing(SR, "x")
sage: P(x) = PR.lagrange_polynomial(zip(X,Y), algorithm="neville")[-1]
sage: X = [x0, x1, x2, x3, x4]
sage: Y = [y0, y1, y2, y3, y4]
sage: P1(x) = PR.lagrange_polynomial(zip(X,Y), algorithm="neville")[-1]
sage: plot1 = plot(f, (x,0,6))
sage: plot2 = plot(P, (x,0,6), color="red")
sage: plot3 = plot(P1, (x,0,6), color="green")
sage: show(plot1 + plot2 + plot3)

The resulting plot is shown in Figure 3.
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Figure 3: Interpolating f(x) = x3 cos(x)− 2x using a quadratic and quartic polynomials.
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