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Abstract—A community in a network is a set of nodes with
a larger density of intra-community links than inter-community
links. Tracking communities in a network via a community life-
cycle model can reveal patterns on how the network evolve. Previ-
ous models of community life-cycle provided a first step towards
analyzing how communities change over time. We introduce an
extended life-cycle model having the minimum community size
as a parameter. Our model is capable of uncovering anomaly
in community evolution and dynamics such as communities with
stable or stagnant size. We apply our model to track, and uncover
trends in, the evolution of communities of genetic programming
researchers. The lifespan of a community measures how long
it has lived. The distribution of lifespan in the network of
genetic programming researchers is shown to be modeled as
an exponential-law, a phenomenon yet to be explored in other
empirical networks. We show that our parameter of minimum
community size can significantly affect how communities grow
over time. The parameter is fine-tuned to detect anomaly in
community evolution.

I. INTRODUCTION

Networks are ubiquitous in modern society. Over the past

decade, complex systems found in social interactions, eco-

nomics, science, and technology have been analyzed and mod-

eled using the concept of network as a unified approach [1].

One challenge is to uncover trends in, and characteristics of,

networks that change over time using special clusters of nodes

called communities. In addressing this challenge, an objective

is to discover principles underlying community evolution.

In a network, a community is a set of nodes having a

larger density of intra-community links than inter-community

links [2]. Tracking communities over time can uncover long-

term trends in how communities evolve in the underlying

networks. For example, in a blog network we might wish

to detect which communities of blogs are relatively stable in

size over a period of time [3]. In a mobile phone network,

changes in community size over a timeframe can reveal calling

patterns and customer churns [4], [5]. In other contexts such as

scientific collaboration networks, communities of researchers

that span many years suggest long-term research collabora-

tion [5]. Such communities can be further investigated to

uncover researchers in particular fields who are consistently

productive over a period of time [3].

Previous work on scientific collaboration networks focused

on evolution of the networks as a whole or individual node
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properties [6]–[10]. These studies presented local statistics

such as clustering coefficients, number of collaborators per

author, and average number of papers per author. Also con-

sidered were global statistics including size of the largest

component, average path lengths, and degree distribution.

A property shared by scientific collaboration networks is

the small-world effect: high clustering coefficients and low

average path lengths. Where communities were considered,

as was the case for the network of genetic programming

researchers [7], communities were extracted from the largest

component of the network and little attempts were made to

investigate community evolution.

An approach to track communities over time is to view

community evolution in demographic terms. Previous work

along this line analyzed community changes using a life-

cycle model comprising events such as birth, death, expand,

contract, merge, and split [4], [5], [11]. Unlike [4] and [5],

Asur et al. [11] emphasized the life-cycle of nodes, an em-

phasis that is impractical in networks with millions of nodes

and irrelevant when an overview of how communities evolve is

required. Palla et al. [5] used the above events to quantify the

evolution of a phone call network and a coauthorship network,

whereas Greene et al. [4] used the events to investigate

community evolution in a phone call network. Except for [5],

little attention was paid to modeling an event as a function of

time. Life-cycle models in the above work provided a first step

towards analyzing community evolution. Issues that were not

addressed include: Under what condition(s) would a change in

community size be stable? To what extent does the minimum

community size affect the evolution of communities?

In this paper, we introduce an extended life-cycle model

to address issues such as the above, among others. Our

model extends previous work by introducing a set of extra

events and a parameter for the minimum community size.

As a case study, we apply our model to the network of

genetic programming (GP) researchers as documented in the

GP bibliography.1 This dataset is a comprehensive record of

research publications in GP, hence an analysis of the dataset is

expected to provide some general conclusions about the state

of GP research. We show that trends in community events

within the GP network can be modeled as functions such

as exponential for birth, logarithmic for direct (an event in

our model), and polynomial for expand. The lifespan of a

community measures how long the community has lived since

birth [5]. We show the distribution of lifespan within the GP

1http://www.cs.bham.ac.uk/∼wbl/biblio/



network to be modeled as an exponential-law, a phenomenon

that to the best of our knowledge is yet to be explored in other

real-world networks. Our parameter of minimum community

size is shown to significantly affect, and can be used to detect

anomaly in, community evolution.

The rest of the paper is organized as follows. Section II

introduces our extended life-cycle model. In section III, we

describe our experimental setup and parameter settings. Sec-

tions IV and V discuss results of our experiments in applying

our extended life-cycle model to the network of genetic pro-

gramming researchers. We conclude the paper in section VI.

II. METHODS

Our extended life-cycle model is best understood in the

context of time-stamped network datasets and the life-cycle

model in [4] and [5]. We first describe how to preprocess

a time-stamped network dataset, in preparation for tracking

community evolution via our extended life-cycle model or the

previous life-cycle model.

A. Preprocessing

A general procedure to preprocess a time-stamped network

dataset is as follows. First, define the objects in the dataset

to represent as nodes. Next, define the relationship to be used

to connect two nodes via an edge. In some cases, the dataset

might need to be cleansed to remove noise or disambiguate

objects. A network snapshot at time t is historical as it

contains all nodes and edges existing at or prior to t. Extract

all communities in the snapshot via a community detection

algorithm, e.g. an algorithm in section II-A4. By the end of

the preprocessing stage, we have a set Ct of communities for

the snapshot at t. All the Ct are fed in temporal order to an

algorithm for tracking community evolution based on a life-

cycle model, such as the algorithm in Figure 1. Below, we

elaborate the procedure for the case of the GP dataset.

1) Nodes and edges: The objects of interest are author and,

to a lesser extent, editor names. We define the collaborators

of a publication as its authors and people who served as the

publication’s editors (if any). We derive two versions of the

GP network: the network with only authors (the coauthor net-

work), and the network including both authors and editors (the

collaborator network). In [7], collaborators were defined as

strictly coauthors or coeditors. Our definition of collaborator

accounts for the roles that editors play in shaping the technical

contents of papers in edited volumes. In summary, nodes

represent people with names in the GP dataset. Two nodes are

linked by an edge if the corresponding people have coauthored,

coedited, or collaborated on a publication.

2) Data cleansing: In automated extraction of author and

editor names from a bibliographic dataset, bias in the choice

of name representation should be minimized. One approach to

control bias is to construct two different networks for the same

bibliography, such that the networks provide rough lower and

upper bounds for various statistics on the original dataset [12].

Following [7], we use the names as given in the GP dataset.

This is supplemented with minimal name cleansing. Each

occurrence of a generational suffix is standardized to a lower-

case equivalent without periods, e.g. “jr” or “sr”. Where

relevant, we insert missing periods after initials and remove

white spaces between hyphens.

3) Snapshots: Each entry in the GP dataset is time-stamped

by the publication year. We construct time-ordered snapshots

based on author and editor names and the years of publication.

The network snapshot for a year consists of all papers and

volumes published before or during that year. The GP dataset

has publications since 1950, thus we have yearly snapshots

from 1950 up to and including 2011. Each snapshot is repre-

sented as an undirected graph without self-loops nor multiple

edges. Nodes and edges are as defined above. We retain

isolated nodes, since a node might be isolated in one snapshot

but is connected with another node in a subsequent snapshot.

4) Communities: All communities in each snapshot are

extracted via the algorithms in [13] and [14], each of which

produces non-overlapping communities. The algorithm in [13]

uses modularity optimization and hence suffers from the

problem of resolution limit [15]. That is, it is possible for an

algorithm using modularity optimization to combine multiple

smaller communities into one large community when doing

so optimizes its objective function. In contrast, the algorithm

in [14] uses label propagation and is immune to such problem.

These algorithms are chosen because their implementations are

publicly available in the igraph2 C library and they scale to the

size of the entire GP network. Using different techniques to

extract communities allows us to compare and contrast results

based on various community detection algorithms.

B. Life-cycle model

The life-cycle of dynamic communities can be described via

six events: birth, death, merge, split, expand, and contract [4],

[5]. Before defining these events, we define dynamic commu-

nities and show how to capture their evolution as timelines.

Let Γ be a network whose snapshots are given as step

graphs G0, . . . , Gn. Each snapshot Gt captures the state of Γ
at time t. We want to identify a set of k′ dynamic communities

D = {D0, . . . , Dk′
−1}, where each Dj is present in Γ at one

or across multiple snapshots. In each Gt is a set of kt step

communities Ct = {Ct0, . . . , Ct(kt−1)}, where each Cti is a

snapshot at time t of some Dj . The evolution of Dj up to

and including time t is represented as a timeline comprising

of step communities Ct′i, C(t′+1)i, . . . , Cti, where 0 ≤ t′ ≤ t.

The most recent observation in the timeline of Dj is called the

front of Dj , denoted Fj . The lifespan ℓ of Dj is the number of

snapshots in which it exists. If Gt′ and Gt are the first and last

snapshots in which Dj exists, respectively, then ℓ = t− t′+1.

1) Birth: Birth is the emergence of a new Dj distinct from

any extant Di ∈ D. At some time t, a step community Ctl

emerges, but does not match the front of any Di ∈ D. We

create a new dynamic community Dj , let Ctl be its first step

community, and add Dj to D. The number of birth in t counts

how many dynamic communities first emerge in t.

2https://launchpad.net/igraph



2) Death: Death is the dissolution of Dj ∈ D after a fixed

number of consecutive time steps in which the front Fj does

not match any step communities. Fix a death threshold δ > 0
specifying the number of time steps prior to terminating Dj . If

during at least δ consecutive time steps Fj does not match any

step communities, then we remove Dj from D. The number

of death in t counts how many dynamic communities have

their very last observation in t.
3) Merge: A merge is the join of multiple dynamic com-

munities into one. Let Da0
, . . . , Dan

be distinct dynamic

communities. If at time t the fronts Fai
match the same step

community Ctk, then the Dai
are said to have merged into one

dynamic community. From t onwards, all Dai
share the same

timeline. The number of merge in t counts how many dynamic

communities in t into which multiple dynamic communities

from t− 1 merge.

4) Split: A split is a branching of some Di into multiple

dynamic communities. That is, at time t, Fi is matched to

multiple Cta0
, . . . , Ctak

. We create new dynamic communities

Da0
, . . . , Dak

sharing the same timeline with Di up to t− 1.

The Daj
have their own timelines starting from t onwards. The

number of split in t counts how many dynamic communities

in t into which dynamic communities from t− 1 split.

5) Expand: A Di is said to expand if its front at t has

significantly more nodes than its front at t− 1. Fix a growth

threshold 0 < γ ≤ 1. Then Di expands if its front at t has

a minimum proportion of γ more nodes than the front at t−
1. The number of expansion in t is the number of dynamic

communities that expand in t from its previous size at t− 1.

6) Contract: Contraction is a shrinking in size of some

Di. Let F(t−1)i and Fti be fronts of Di at times t− 1 and t,

respectively. Fix a contraction threshold 0 < κ ≤ 1. Then Di

has contracted if Fti has a minimum proportion of κ less nodes

than F(t−1)i. The number of contraction in t is the number of

Di that contract from its previous size in t− 1.

Based on the above events, Greene et al. [4] proposed

an algorithm to track dynamic communities across time

steps (see Figure 1). The algorithm takes as input n + 1
time-ordered snapshots G0, . . . , Gn, a community detection

algorithm K (e.g. see section II-A4), a similarity function

S (e.g. the Jaccard coefficient), and a match threshold θ.

We have implemented the algorithm in Figure 1 using

Python. The time complexity of the algorithm is dominated by

the time complexities of K and S. The time complexity can

be improved by extracting beforehand all communities from

each snapshot graph. When executing each of lines 1 and 3,

use the pre-extracted communities. This is the strategy we

adopt. In our implementation, we first extract all communities

using the igraph C implementation of the algorithms in [13]

and [14] and then track dynamic communities using our

Python implementation. We use the Jaccard coefficient to

match communities. Two step communities Cti and C(t+1)j

in consecutive snapshots Gt and Gt+1, respectively, are said

to match each other if their Jaccard coefficient satisfies

J(Cti, C(t+1)j) =
|Cti ∩ C(t+1)j |

|Cti ∪ C(t+1)j |
> θ.

Input: G0, . . . , Gn; K; S; θ

Output: Records of community matches.

1: C0 ← K(G0); D ← {Di | Di = C0i ∀C0i ∈ C0}
2: for t← 1, . . . , n do

3: Ct ← K(Gt)
4: for all Cta ∈ Ct do

5: match all Di for which S(Cta, Fi) > θ

6: if no match exists then

7: create new Dj and add to D

8: let Cta be the first observation of Dj

9: else

10: add Cta to each matching dynamic community

11: end if

12: update front of each Di to latest matched Cta

13: if some Di matches multiple step communities then

14: create a split dynamic community

15: end if

16: end for

17: end for

Fig. 1. Algorithm to track communities over time, as proposed in [4]. In this
framework, K and S should be substituted for a specific community detection
algorithm and a similarity function, respectively.

C. Extended life-cycle model

The life-cycle model above characterizes dynamic com-

munities in a coarse-grained manner. Here, we introduce an

extended life-cycle model that addresses finer-grained issues

such as when the count of missing observations is within the

death threshold, when the change in community size is neither

a contract nor an expand, and so on. Our model incorporates

the life-cycle model and enhances the latter with extra events:

direct, missing, resume, stable, and stagnant. As noted in

section I, in a network a community is generally agreed to

be a set of nodes having a larger density of intra-community

links than inter-community links. Beyond this description, we

are not aware of a generally agreed upon formal definition that

specifies exactly the minimum number of nodes a community

must have. We address this issue by introducing the parameter

smin, the minimum community size.

1) Direct: Let C(t−1)a and Ctb be communities in the

timeline of Dj . If C(t−1)a matches only Ctb and vice versa,

then Ctb is a direct continuation of C(t−1)a. The count of direct

continuation in t is the number of dynamic communities in t

whose observations C(t−1)a and Ctb only match each other.

2) Missing: A Dj has missing observation in t if Fj does

not match any step communities in t. The number of missing

observation in t is the number of dynamic communities with

missing observation during that time step.

3) Resume: A Dj has a resume observation in t if it has a

missing observation at t−1, but Fj matches a step community

at t. The number of resumption in t counts the number of

dynamic communities in t with a resume observation.

4) Stable: Let C(t−1)a and Ctb be communities in the

timeline of Dj , where the change in community size from

t − 1 to t is given by the proportion c. If 0 < c < γ or



TABLE I
STATISTICS FOR VARIOUS SCIENTIFIC COLLABORATION NETWORKS.

GP1 GP2 Biology Physics Math

# authors 10,342 8,655 1,520,251 52,909 253,339
# papers 8,687 8,578 2,163,923 98,502 —
Papers/author 5.12 2.35 6.4 5.1 6.9
Authors/paper 5.90 2.43 3.75 2.53 1.45
〈collaborators〉 16.9 4.7 18.1 9.7 3.9
Largest comp. 73% 27% 92% 85% 82%
Mean distance 3.6 6.6 4.6 5.9 7.6
Diameter 13 17 24 20 27
Clust. coeff. 0.75 0.62 0.066 0.43 0.15
Assortativity −0.14 0.96 0.13 0.36 0.12

0 < |c| < κ, then Dj has a stable community size in t. The

number of stable dynamic communities in t is the number of

dynamic communities with stable size in that time step.

5) Stagnant: Let C(t−1)a and Ctb be communities in the

timeline of Dj , where the change in community size from

t− 1 to t is given by the proportion c. If c = 0, then Dj has

a stagnant size from t− 1 to t. The number of stagnant Dj in

t is the number of dynamic communities with zero change in

size from t− 1 to t.

III. EXPERIMENTS

We use revision 1.1846 of the GP bibliography,

dated 2011/08/24. This dataset is unusual due to its compre-

hensive record of research publications in GP. By analyzing

the dataset, we expect to draw some general conclusions about

the current state of GP research. As of August 2011, the GP

collaborator network (see section II-A1 for definition) consists

of 10,342 nodes and 87,704 edges. Exactly 299 nodes are

isolated, i.e. people who have neither coauthored nor coedited

a publication. The GP coauthor network has 8,655 nodes,

20,480 edges, and 776 isolated nodes.

Prior to tracking dynamic communities across snapshots,

we set smin to a positive integer and consider only those

communities with size at least smin. In particular, we track

all dynamic communities for each parameter setting smin =
1, . . . , 10. We hypothesize that the parameter smin does not

affect any long-term trends in events of the life-cycle model

and our extended life-cycle model. Following [4], we set the

match threshold at θ = 0.3, the death threshold at δ = 3, the

expand threshold at γ = 0.1, and the contract threshold at

κ = 0.1. Whether we use our definition of collaborator (see

section II-A1) or the definition in [7], we hypothesize that

including editors can misrepresent the state of the GP network.

The misrepresentation is expected to be manifested through

the inflation of network statistics such as the size of the

largest component, average path length, and the clustering

coefficient. As the algorithm in [13] suffers from the problem

of resolution limit (see section II-A4), we hypothesize that

for some snapshots of the GP network the algorithm in [14]

would output more communities than the algorithm in [13].

The dataset we use and source code of programs to process it

are available at https://bitbucket.org/mvngu/cec2012-suppmat/.

IV. RESULTS: SUMMARY STATISTICS

This section and the next present results of applying our

extended life-cycle model to the GP network. Here, we present

an overview of the GP network and show that including editors

can misrepresent the state of the network. In section V, we

analyze the evolution of the GP network using our extended

life-cycle model.

A. Summary statistics

Table I presents summary statistics for the GP and various

scientific collaboration networks. GP1 and GP2 are the GP

collaborator and coauthor networks, respectively. In the GP1

column, “authors” refers to collaborators as defined in sec-

tion II-A1. In the GP1 and GP2 columns, “papers” refers to

papers, books, and edited volumes. Biology is the Medline

bibliography on biological research, Physics is the Physics

E-print Archive, and Math is the network of mathematicians

compiled from the Mathematical Reviews database. Values in

the columns Biology, Physics, and Math are taken from [8].

A note of caution is in order concerning how the Biology,

Physics, and Math datasets were preprocessed. Data for the

Biology and Physics columns were computed from networks

where each node maps to an author identified by their surname

and all initials [8], [12]. Data for the Math column were

derived from a network where each node represents an author

name as it appears in Mathematical Reviews, except a few

anomalous names (e.g. “et al.”) were excluded [8], [16].

As is clear from Table I, including editors can inflate

statistics on the whole GP network. Luthi et al. [7] noted

a similar inflation, although their definition of collaborator is

different from ours. The absolute counts of authors and papers

are inflated, as are the average number of papers per author,

the average number of authors per paper, and the average

number of collaborators (denoted 〈collaborators〉). In GP1, the

largest component includes about 73% of all nodes, resulting

in reduced values for the average path length (mean distance)

and length of the longest path (diameter). In terms of the

average number of authors per paper and the average number

of collaborators, the publication pattern for GP1 resembles that

in biology than in either physics or mathematics. In contrast,

the publication pattern for GP2 resembles that found in physics

and mathematics. Both GP1 and GP2 exhibit the signature

of small-world networks: relatively low mean distance as

compared to the respective diameters, and high clustering

coefficients (≥ 0.62). Thus, editors can misrepresent the state

of the GP network by inflating various summary statistics.

Another way in which editors can misrepresent the state

of the GP network is by deflating the mixing ratio (degree

assortativity). GP1 is disassortative with mixing ratio r ≈
−0.14 (see Table I). As collaborators of authors, editors (es-

pecially those with high numbers of collaborators) tend to

connect with authors having relatively low numbers of coau-

thors, resulting in decreased path lengths in GP1. Note that this

tendency is rather weak. With editors excluded (GP2), the GP

coauthor network is highly degree assortative (r ≈ 0.96). In

this case, authors with high numbers of coauthors strongly tend
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Fig. 2. Cumulative distributions of number of coauthors and collaborators.
See section II-A1 for definition of collaborator.

to collaborate with others having high numbers of coauthors.

In contrast, authors with low numbers of coauthors strongly

tend to collaborate with those of similarly low numbers of

coauthors. Social networks found in scientific and profes-

sional collaborations are reported to be assortative, whereas

technological and biological networks are disassortative [17].

Thus, GP1 is atypical of a scientific collaboration network.

It resembles more of a technological or biological network,

rather than a scientific or professional collaboration network.

B. Degree distribution

Both of the GP coauthor and collaborator networks cannot

be modeled using pure power-laws of the form p(x) ∼ x−α

for their degree distributions. Figure 2 shows the cumulative

distribution of the number of coauthors (resp. collaborators)

corresponding to the coauthor (resp. collaborator) network.

The distributions are fitted with power-laws having exponents

α ≈ 2.42 (coauthor) and α ≈ 1.95 (collaborator), both

computed using the maximum likelihood estimator (MLE)

technique in [18]. The power-law regimes are estimated to take

effect from xmin = 7 (collaborator) and xmin = 3 (coauthor).

Following the procedure of Clauset et al. [18], we use the

Kolmogorov-Smirnov statistic to quantify the goodness-of-fit

of the GP coauthor/collaborator networks to power-laws. The

resulting p-values are < 0.05. Clauset et al. proposed the

conservative rule that if the p-value is ≤ 0.1, then the power-

law hypothesis is ruled out for the data in question. Using

this rule, we conclusively reject that the GP coauthor and

collaborator networks follow power-law degree distributions.

Such phenomenon has been reported for related empirical

networks. Luthi et al. [7], [10] reached the same conclusion

for the GP dataset, but based on visual evidence in the plots of

degree distributions. Above, we provided statistical evidence

to support such conclusion. Other scientific coauthor networks

are known to exhibit an exponential degree distribution or a

power-law with an exponential cut-off [12], [16].
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Fig. 3. Cumulative distributions of community size for the GP coauthor net-
work. The distributions are derived from the 2011 snapshot. “Blondel” refers
to communities extracted via the algorithm of Blondel et al. [13]. “Raghavan”
refers to communities extracted via the algorithm of Raghavan et al. [14].

V. RESULTS: COMMUNITY EVOLUTION

We present detailed analyses on community evolution in

the GP network. As shown in section IV, including editors

can misrepresent the state of the GP network, hence we

focus exclusively on the GP coauthor network. Only snapshots

since 1995 are considered, because it is from 1995 onward that

the coauthor network has communities with smin = 10.

A. Distribution of community size

Here, we model the distribution of community size in

the GP coauthor network as a power-law. Figure 3 shows

the cumulative distributions of community size. Communities

are extracted from the 2011 snapshot via the techniques

in [13] (denoted “Blondel” in the figure) and [14] (denoted

“Raghavan”). At first, the Raghavan distribution is higher

than the Blondel distribution, but from size 15 onward the

Raghavan distribution is below the Blondel distribution. This

cross-over can be explained by the problem of resolution

limit inherent in the algorithm of [13] (see section II-A4). As

the latter algorithm uses modularity optimization, it tends to

aggregate smaller communities into a large community, hence

outputs a smaller number of communities than the algorithm

in [14]. We note this for all snapshots since 1999, confirming

our hypothesis from section III.

Using procedures in [18], the Blondel distribution has a

power-law exponent α ≈ 2.54 (solid line in Figure 3) and

p-value ≈ 0.123 for goodness-of-fit. The power-law regime

is estimated via MLE to take effect from xmin = 3 and

we observe the power-law decay for community sizes up

to x ≈ 50. The Raghavan distribution has a slightly higher

exponent (α ≈ 2.72, dashed line) and p ≈ 0.995. We estimate

the power-law regime to start from xmin = 5 and observe

the decay for all community sizes up to x ≈ 40. Using

the rule of Clauset et al. [18] for accepting/rejecting the



power-law hypothesis, since p > 0.1 for both of the Blondel

and Raghavan distributions, we accept it is possible for the

GP coauthor network to have community size distributed

as a power-law. Furthermore, each snapshot of the coauthor

network from 1995 to 2010 has power-law scaling in its

community size distribution with p > 0.1. Thus, we have

statistical evidence that community size in the GP coauthor

network can be modeled as a power-law.

The above scaling behavior of community size distribution

has been observed in other real-world networks. Various sub-

sets of the arXiv dataset have been shown to have power-law

exponents α ≈ 0.54, 0.97, 1.07, 1.6 in their community size

distributions [19], [20]. Other empirical networks exhibiting

power-law scaling in their community size distributions in-

clude: protein interaction and word association networks [20];

email interaction and jazz musician networks [19]; and an

Amazon copurchasing network [21]. Such a phenomenon

suggests that, analogous with networks having scale-free de-

gree distributions, many types of real-world networks are

heterogeneous in the distributions of their community sizes. To

the best of our knowledge, an explanation for this phenomenon

is yet to be proposed.

B. Trends in events

We model events in the life-cycle of dynamic communities

as exponential, logarithmic, and polynomial functions. Events

in our extended life-cycle model are shown to provide finer-

grained analysis of how the GP network evolves than events in

the life-cycle model. Due to limitation of space, we only dis-

cuss some trends apparent from grayscale maps (see Figure 4)

of time series data on normalized counts of events.

Figure 4 shows grayscale maps for four events in the life-

cycle of dynamic communities. All communities are extracted

via the algorithm in [13]. We omit grayscale maps based on

communities extracted via the algorithm in [14], as these are

qualitatively similar to the maps derived from communities

extracted via the algorithm in [13]. Also omitted are maps for

other events described in section II. The maps can be read as

follows. For each setting of the parameters smin and year, we

count the number of occurrences of an event and normalize

that number by the count of dynamic communities for the

given parameter setting. The resulting normalized count is

shown in the grayscale map for the event under consideration.

For a given year and a particular setting of smin, as the

normalized count of an event approaches 1 (resp. 0), the

higher (resp. lower) is the proportion of dynamic communities

experiencing the event in question. A normalized count of, say,

birth close to 0 indicates that a relatively small proportion of

new dynamic communities were born during a given year and

for a particular setting of smin (see Figure 4(a)). A normalized

count of, say, stagnant close to 1 indicates that during a given

year and for a particular setting of smin, the vast majority

of dynamic communities did not change in size from their

respective sizes in the previous year (see Figure 4(d)).

From Figure 4(a) note that over time the normalized count

of birth, denoted b, decreases. The time series plots of b

suggest an exponential decay. To confirm this, for each smin =
1, . . . , 10 we use nonlinear least squares regression to fit the

model b ∼ exp(α+βx) to the time series of b and obtain the

bounds 0.02 < RSS < 0.17 on the residual sums of squares.

Thus, it is plausible that b decays as an exponential function.

Now consider how the normalized count of expand, denoted

e, changes over time (see Figure 4(b)). Unlike b, e appears to

follow two decay regimes depending on the parameter smin.

For each smin = 1, 2, 3, 4, 6, 7, we use linear regression to

fit the time series of e to the model e ∼ αx + β, with the

null hypothesis α = 0. The resulting p-values are < 0.05,

so it is plausible that e decays linearly. However, the same

procedure and null hypothesis result in p-values > 0.05 for

smin = 5, 8, 9, 10. As an alternative, with the latter settings for

smin, we use nonlinear least squares regression to fit the time

series of e to the model e ∼
∑5

i=0 αix
i. The residual sums of

squares are bounded by 0.008 < RSS < 0.051. Therefore, e

appears to follow two decay patterns depending on values of

smin, thus invalidating our hypothesis from section III.

The normalized counts d and s of direct continuation

and stagnant size, respectively, both appear to increase over

time (see Figures 4(c) and 4(d)). The time series plots of d

suggest two growth trends: one is logarithmic and the other

linear. For any smin = 1, . . . , 10, we use nonlinear least

squares regression to fit the time series of d to the model d ∼
α+β log(x), using the natural logarithm. The resulting bounds

on the residual sums of squares are 0.02 < RSS < 0.067.

Consider again each of the above settings for smin and suppose

that d ∼ αx+β, where α ≥ 0. With the null hypothesis α = 0,

linear regression on the time series of d produces p-values

< 0.05. With the same null hypothesis, linear regression on

the time series of s also results in p-values < 0.05. Unlike the

decay patterns of e, the minimum community size does not

seem to affect the growth patterns of d and s.

The trends in the proportion of split suggest some interesting

dynamics within the wider community of GP researchers.

Irrespective of smin, it is only since 2001 that we have splits

in dynamic communities, with normalized count < 0.036 for

each year from 2001 onward. This is possibly a sign of healthy

inter-disciplinary collaboration among GP researchers during

the decade 2001–2011. Another hypothesis is that in the last

decade, various research projects came to an end and the

participants scattered themselves amongst other projects or

started new collaborative research projects. Such projects may

be within standard topics of genetic programming or more

likely be centered around hot topics. It would be interesting to

test such conjectures based on the GP bibliography, in tandem

with anthropological or sociological analyses.

We now synthesize the trends apparent in Figure 4. Taking

into account the exponential and linear decays of b and e,

respectively, these suggest the presence of events other than

those in the life-cycle model. Figure 4 suggests that the

relatively low and decreasing proportions of events in the life-

cycle model are to a large extent offset by the increasing

proportions of events in our extended life-cycle model. The

general pattern is that the relatively low and in some cases de-
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Fig. 4. GP coauthor network: normalized counts of events in the life-cycle of dynamic communities for given settings of the parameters smin and year. The
top two grayscale maps are for events in the life-cycle model. The bottom two maps are for events in our extended life-cycle model. Each count is normalized
by the number of dynamic communities for a given parameter setting. The counts are based on communities extracted via the algorithm of Blondel et al. [13].

creasing proportions of birth, death, expand, contract, merge,

and split are offset by the increasing proportions of direct

continuation and zero change in community size. Dynamic

communities of GP researchers appear to experience relatively

few split and merge, but a high number of direct continuation.

Over time, a relatively large proportion of dynamic commu-

nities appear to be likely to have no new members from one

year to the next. We further address this point in section V-D,

where stagnant size forms part of a signature of anomaly.

C. Distribution of lifespan

We model the distribution of lifespan of dynamic com-

munities as an exponential-law. The longest possible lifes-

pan for any dynamic community in the GP network is 62,

corresponding to the 62 network snapshots from 1950 up

to 2011. Figure 5 shows the distributions of lifespan for

the GP coauthor network, for each minimum community

sizes smin = 1, 4, 7, 10. We only show distributions based

on communities extracted via the algorithm in [13], but we

obtain qualitatively similar distributions when communities are

extracted via the technique in [14].

From Figure 5, note that the distribution of lifespan ℓ can

be fitted with an exponential-law p(ℓ) ∼ exp(−λℓ). For all

combinations of community detection algorithm [13] or [14],

and minimum community size (smin = 1, 4, 7, 10), we have

the parameter bounds 0.10 < λ < 0.19. In Figure 5, with

smin = 1 and the algorithm in [13], we fit the distribution

of ℓ to an exponential-law with λ ≈ 0.101. A significant

caveat in the cases smin = 1, 4, 7, 10 is that, when fitting the

distribution of ℓ with a power-law, the power-law regime is

estimated via MLE to take effect from xmin ≥ 13 for the

algorithms in [13], [14]. In other words, using the algorithm

in [13] we would ignore between 60% to 76% of all dynamic

communities in order to fit a power-law to the remaining

data. The corresponding percentage range when using the

algorithm in [14] is 63% to 87%. The distribution of ℓ

shows good fit to a power-law, but usually for < 40% of all

dynamic communities. It seems plausible that an exponential

distribution might provide a better fit than a power-law. To the

best of our knowledge, the distribution of lifespan of dynamic

communities is yet to be investigated in real-world networks

other than the network of genetic programming researchers.

D. Detecting anomaly

Relatively small values of smin can be used to detect

anomalous dynamic communities. A signature of anomaly

can be seen in dynamic communities with relatively long

lifespans (e.g. over half the number of snapshots), but are

consistently stagnant in size. This might be a sign of people

leaving the wider community of GP researchers, or in the

worse case scenario the death of a researcher. For example, we

consider all communities extracted via the algorithm in [13]

and set smin = 1. The dynamic communities consisting solely

of George R. Price, R. M. Friedberg, and Alan Turing span
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1970–2011, 1958–2011, and 1950–2011, respectively. All of

these researchers, except for R. M. Friedberg, are known to be

dead. Our parameter smin can be used to separate historical

dynamic communities from those with active researchers.

The example above illustrates shortcomings in how net-

work snapshot and community are defined. Our definition of

network snapshot views a snapshot as historical, so nodes

representing dead people would remain in perpetuity. This

issue was discussed in [10], where the notions of effective

network and sliding time window were used to approximate

the current state of collaboration within a given timeframe.

Also, there lacks a generally agreed upon formal definition

of community that specifies exactly the minimum community

size. Together, the shortcomings above raise the following

issue: To what extent do bibliographic databases capture the

current state of research in particular disciplines?

VI. CONCLUSION

We have introduced an extended life-cycle model of com-

munities that contains the parameter smin, the minimum com-

munity size. Using the network of genetic programming (GP)

researchers as a case study, we have shown that our model

allows for a finer-grained analysis than previous models on

community evolution. The effect of smin on community evo-

lution depends on which community event we focus on. The

parameter smin did not seem to affect the trends in community

events such as birth, direct, and stagnant. However, different

values of smin resulted in different trends for expansion. We

addressed the issue of stability of community size by defining

the stable event. The proportion of change c 6= 0 in community

size is said to be stable if c lies strictly between the thresholds

for contraction and expansion. Furthermore, we have shown

that smin can be fine-tuned to detect anomaly in community

evolution. From the GP network, we uncovered that the

lifespan of communities is distributed as an exponential-law.

An avenue for future research includes using other real-world

datasets to test our model and our exponential-law of lifespan.

ACKNOWLEDGMENT

This work used computing resources supported by US

National Science Foundation Grant No. DMS-0821725. Data

analysis was performed using igraph, plfit, R, and Sage.3 We

thank Andrey Kan and Jens Pfau for their comments.

REFERENCES

[1] L. da Fontoura Costa, O. N. Oliveira Jr., G. Travieso, F. A. Rodrigues,
P. R. Villas Boas, L. Antiqueira, M. P. Viana, and L. E. C. Rocha, “An-
alyzing and modeling real-world phenomena with complex networks: a
survey of applications,” Adv. Phys., vol. 60, pp. 329–412, 2011.

[2] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
pp. 75–174, 2010.

[3] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “FacetNet: A
framework for analyzing communities and their evolutions in dynamic
networks,” in WWW, J. Huai, R. Chen, H.-W. Hon, Y. Liu, W.-Y. Ma,
A. Tomkins, and X. Zhang, Eds., 2008, pp. 685–694.

[4] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of
communities in dynamic social networks,” in ASONAM, N. Memon and
R. Alhajj, Eds., 2010, pp. 176–183.

[5] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group
evolution,” Nature, vol. 446, pp. 664–667, 2007.

[6] A. L. Barabási, H. Jeong, Z. Náda, E. Ravasz, A. Schubert, and
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[15] S. Fortunato and M. Barthélemy, “Resolution limit in community
detection,” PNAS, vol. 104, pp. 36–41, 2007.

[16] J. W. Grossman, “The evolution of the mathematical research collabo-
ration graph,” Congressus Numerantium, vol. 158, pp. 201–212, 2002.

[17] M. E. J. Newman, “Mixing patterns in networks,” Phys. Rev. E, vol. 67,
p. 026126, 2003.

[18] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distribu-
tions in empirical data,” SIAM Rev., vol. 51, pp. 661–703, 2009.

[19] A. Arenas, L. Danon, A. Dı́az-Guilera, P. M. Gleiser, and R. Guimerá,
“Community analysis in social networks,” Eur. Phys. J. B, vol. 38, pp.
373–380, 2004.
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