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1 Early studies of social networks

Milgram [8] is one of the early quantitative studies of the structure of social networks.
The study describes an experiment in which Milgram wished to send a number of letters
to his friend in another city. The letters were first distributed to a random selection of
people. These people were instructed to deliver the letters to the addressee, under the
conditions that the letters must be passed from person to person, and the passers were
permitted to only deliver the letters to people whom they knew on a first-name basis.
For those letters that eventually reached the intended addressee, it was found that on
average six steps were required for a letter to reach its destination. The path length
of six within social networks is colloquially known as the “six degrees of separation”.
Within mathematical circles, a similar type of social network is found in the scientific
collaboration network of Erdds numbers [2].

2 Watts-Strogatz small-world networks

Watts and Strogatz [11] study a class of networks that has become known as small-world
networks. The Watts-Strogatz model considers a generic graph G having N vertices and
K edges, and satisfying the following properties:

1. G is an unweighted or topological graph.

2. G is simple in that it has no loops and no multiple edges.

N(N -1)

—

4. G is connected such that there is a path between any distinct pair of vertices.

3. (G is sparse in the sense that K <
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For a random graph, the quantities N and K must satisfy
N> K>hh(N)>1

where K > In(N) guarantees that the graph is connected [1].

2.1 Characteristic path length and clustering coefficient

Watts and Strogatz [11] analyze the structure of such a network by means of two quan-
tities: the characteristic path length L; and the clustering coefficient C'. Let {d;;} be the
geodesic matrix of GG, i.e. the matrix of shortest edge counts between pairs of vertices in
G. Then the characteristic path length L is defined as the average shortest path between
distinct pairs of vertices in G:

1
MO = oy 2 Y

which is a global property of G. Furthermore, Watts and Strogatz also consider a local
property of GG, called the clustering coefficient. To define the clustering coefficient of G,
they first introduce the local clustering coefficient C; of vertex i:

K;

Ci = N;(N; —1)/2

where K; is the number of edges in the graph of immediate neighbours of ¢ and N; is
the number of immediate neighbours of vertex 7. The graph of immediate neighbours of
i is a subgraph of G. It consists of all vertices (# i) that are adjacent to i, preserving
the adjacency relation among those vertices as found in the supergraph G. Then the
clustering coefficient C' of GG is defined by

1
C(G) = N EVZ(G) C;

where the sum is taken over all vertices ¢ of G. The quantity C' can be interpreted to
mean the average cliquishness of vertices in G, hence C' is known as a local property of

G.

2.2 The Watts-Strogatz model

In [11], Watts and Strogatz propose an edge rewiring method for constructing a class of
graphs that interpolate between a regular lattice and a random graph. Known as the
Watts-Strogatz model, the method starts with a one-dimensional lattice G having N ver-
tices, periodic boundary conditions, and each vertex connecting to its k£ neighbours for
some even k. Identify the vertex set V(G) with the elements of the ring Z/NZ for some
fixed integer N > 2. The lattice can be conceptualized as a circulant graph, where each
vertex ¢ € Z/NZ is linked by an edge with each of the vertices i + j and i — j for each
jeA{1,2,...,k/2}, where vertex arithmetic is performed modulo N. We refer to such a
graph as a k-circulant graph on N vertices, or a ring lattice of N nodes and per-vertex
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degree k. Small-world networks are graphs that are intermediate between regular ring
lattices and Erdés-Rényi [3] random graphs. Figure 1 illustrates the interpolation from a
ring lattice with rewiring probability p = 0 to an Erdés-Rényi random graph where the
rewiring probability is p = 1. The graphs are produced using Sage’s [10] interface to the
NetworkX [4] Python package.

regular small-world random

> p=1

increasing randomness

Figure 1: From a regular ring lattice (left) to a random graph (right).

Given a k-circulant graph on N vertices, the Watts-Strogatz rewiring procedure is as
follows. Let the probability of choosing a vertex be uniformly distributed. Rewire each
vertex with probability p to another vertex chosen at random. The rewiring must result
in a graph that:

1. has no multiple edges;
2. has no loops; and

3. the number of edges does not change.

The Watts-Strogatz model does not specifically require that a rewired graph be connected,
hence the result of one round of random edge rewiring may be a disconnected graph.
However, by definition of the characteristic path length in (1), the underlying graph
must be connected, otherwise the geodesic matrix {d;;} has oo as one of its entries.

Figure 2 shows a plot of the characteristic path lengths and clustering coefficients nor-
malized. The horizontal axis follows a log scale. The plotted metrics were obtained in
an effort to verify by computer simulation results reported in [11]. The ring lattice in
question is a 10-circulant graph on 1000 vertices with 37 rewiring probability points. The
rewiring probabilities are chosen as follows. Let G be a k-circulant graph on N vertices.
For ¢« = 1,2,...,r the i-th rewiring probability p; is given by

‘ P 1/(r—1)
Di=Pmin X F'"1 with  F = (p“f”‘) (2)

where puin and ppax are the minimum and maximum rewiring probabilities, respectively.
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Figure 2: Normalized characteristic path lengths and clustering coefficients.

Next, we describe the procedure for normalizing L and C'. Let B be the number of batches
of r ring lattices to be rewired with probabilities chosen according to (2). That is, each
batch contains r k-circulant graphs on N vertices and the i-th graph from each batch is
to be rewired with probability p;. In particular, our computer simulation rewired a total
of Br = 20 x 37 = 740 ring lattices. Define G, as the connected graph resulting from
rewiring G with probability p;. For each rewiring probability p;, define the normalized
characteristic path length (respectively clustering coefficient) by

1 L(G,,) 1
norm,, (L) = B GZ L(G) and  norm,, (C) = 5 GZ

24

C(Gp)
() (3)

where each sum is taken over all graphs G,,. From Figure 2, we note that there is
a range of rewiring probabilities that result in connected graphs with high C' and a
rapid decrease in L. This is qualitatively consistent with results reported in [11]. The
decrease in L is attributed to a number of vertices with links to distant vertices, while
the value of C' remains high because only a relatively small proportion of vertices have
long-range connections. This phenomenon of graphs having the twin characteristics of
high cliquishness and low average path length is referred to as the small-world effect.



3 Generalizing the Watts-Strogatz model

Whereas [11] uses the characteristic path length L and clustering coefficient C' to study
small-world networks, Latora and Marchiori [7] generalize the method by using the notions
of local and global efficiencies as defined in section 3.1. The generalization is applicable
to both directed and undirected graphs, as well as weighted and unweighted graphs.
For weighted graphs, the weight can be a cost associated with the edge connecting two
vertices. A graph G with low cost is said to be economic, while G is said to exhibit
small-world behaviour provided that it has high efficiency at both the local and global
levels. If G has these two properties—both economic and efficiency—then it is referred
to as an economic small-world.

3.1 Global and local efficiencies and network cost

Let G be a graph (either weighted or unweighted) having N vertices and K edges. To
define local and global efficiencies, Latora and Marchiori [7] introduce the concept of
average efficiency. If < and j are distinct vertices of G, let d;; be the shortest path length
between ¢ and 7. Then the average efficiency of G is

O -y X i (4)

. dzy
i#jEV(G)

Let ky be the complete graph on N vertices so that E(ky) is the average efficiency of
ky. Define the global efficiency of G as

E(G)

E(K,N> (5)

E glob —

For each vertex ¢ of G, let GG; be the subgraph of neighbours of i. Then vertex i is excluded
from the vertex set V; of Gij. Define the local efficiency of G' by

1 B(Gy)
Eioc = Ng(:@ Bl (6)

where |V| is the cardinality of V;. Note that the metrics (4), (5) and (6) are also applicable
to directed graphs as well as weighted graphs. The cost of G can be defined as

Z ai;y(€ij)

i#jEV(G)

> Aty)

i#j€V(G)

Cq =

where {a;;} and {¢;;} are the adjacency and weight matrices of G, respectively. In the
Watts-Strogatz model, the weight /;; assigned to the edge connecting vertices ¢ and j is
l;; = 1. The cost evaluator function v measures the cost needed to set up a connection
with a given length. The Watts-Strogatz model assumes v to be the identity function



v(lij) = li; = 1 for all @ # j. Thus {a;;} = {¢;} holds for the specific case of the
Watts-Strogatz model and therefore

> ai(ty) >

i£j itj 2K
CG _ #jEV(G) _ #JEV(G) _ (7)
> () o1 NNV
i£i€V(G) i#£§€V(G)

However, for weighted graphs Latora and Marchiori [7] define the network cost as

Z aij&j

i#JEV(G)

> b

i#jeV(G)

Co =

where ¢;; is defined in (9).

Appendix A contains an R [9] script implementing the Latora-Marchiori metrics for
graphs that are unweighted, undirected and connected.
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Figure 3: Normalized global and local efficiencies.

Figure 3 shows a plot of the global and local efficiencies normalized, together with normal-
ized network costs. The results are similar to those reported by Latora and Marchiori.



The metrics were obtained from computer simulation of random edge rewiring of 20
batches of 37 ring lattices, each lattice being a 10-circulant graph on 1000 vertices. That
is, each batch contained 37 ring lattices and therefore a total of 20 x 37 = 740 ring
lattices to be rewired. Edges of the i-th ring lattice of each batch were rewired with the
probability in (2). The Latora-Marchiori metrics (5) and (6) were then calculated on the
rewired 740 graphs. The normalized Fgo, and Ej, corresponding to rewiring probability
p; were obtained using a normalization procedure similar to (3). In particular, let B be
the number of batches with r rewiring probabilities chosen according to (2), let G' be
a k-circulant graph on NN vertices, and let GG, be the connected graph resulting from
rewiring GG with probability p;. For each rewiring probability p;, the normalized local and
global efficiencies are defined by

l Z Eglob(G) 1 Z Eloc(GPi)

and norm,, (Foe) = —
B = Bn(Gy) o) =5 2 5 (@)

normy, (Eglon) =
Gos

where each sum is taken over all graphs G, that have been rewired with probability p;.
The normalized network cost is similarly defined by

1 C
norm,, (Cg) = B g f
Gy, = Cpi

However, by definition of Cg for unweighted, undirected graphs as specified by (7), it is
clear that norm,, (Cg) = 1 for all rewiring probabilities. Further details can be found in
Appendix A.

3.2 Extending the Watts-Strogatz model to weighted networks

This section considers Latora and Marchiori’s [7] generalization of the Watts-Strogatz
model to the case of weighted, undirected networks. The network is a k-circulant graph
on N vertices where N = 1000 and k£ = 6. After generating a ring lattice satisfying
these parameters, one would get a graph G with K = 3000 edges. The Latora-Marchiori
approach, as detailed in “Model 4” of [7], is to randomly eliminate K/2 = 1500 of the
edges of G and then proceed with the rewiring process of the Watts-Strogatz model. The
weight of each edge is defined in terms of the Euclidean distance. In particular, if ¢ and
j are vertices of G for 7,5 = 1,2,..., N then the Euclidean distance between ¢ and j is

~_ 2sin(fi — jlm/N) _ sin(|i — jl7/N)
= (/) sin(7/N) 9)

Note that the metric (9) is specific to ring lattices. The distance between each pair of
neighbouring vertices is ¢;; = 1 and the distance from ¢ to itself is trivially ¢; = 0.
The weight matrix of G is denoted {/;;}, which has zero along the main diagonal and
is symmetric about this diagonal. For unweighted graphs, the geodesic matrix {d;;} is
a matrix of minimum edge counts separating each pair of vertices ¢ and j. If there are
no paths from ¢ to j, where i # j, then Latora and Marchiori [7] define d;; = +o00. In
case ¢ = j, then d;; = 0. On the other hand, for weighted graphs the weight matrix {¢;;}
can be interpreted as the matrix of physical distances. Then d;; is the minimum sum of
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physical distances from 7 to j. Furthermore, d;; = 0 if ¢ = j, and d;; = +00 whenever
there are no paths from ¢ to j.

The following scripts support computer simulation of weighted, undirected networks as
described in “Model 4”:

k_circulant_n.sage — This Sage script generates ring lattices, each with half the
total number of edges removed.

e rewire-lattices.r — This R script can be used to rewire (n, k) ring lattices that
have had 50 percent of their total number of edges removed.

e mat2r.py — This Python script converts text representation of a Latora-Marchiori
network to its R code representation.

e network-metrics-1lm.r — An R script to compute network metrics of weighted,
undirected Latora-Marchiori networks.

Further details on these scripts can be found in Appendix B. Using the above scripts,
the computed network metrics are plotted using R and shown in Figure 4. The results
are qualitatively similar to those reported in [7].

4 Conclusion & further research

In this paper, we have provided verification of results reported in [7]. The reported results
are qualitatively similar to those contained in [7].

In [6], Kaihara formulates the problem of virtual market based supply chain manage-
ment (SCM) in terms of a discrete resource allocation problem, and proposes an algo-
rithm for SCM under a dynamic environment. The simulation reported in [6] concerns
a single input/output circulatory resource flow within a network of two economic agents
and two virtual markets.

As a direction for future research that incorporates a network approach to economics,
we propose to use the Latora-Marchiori network metrics in computer simulations of a
multi-agent network of buyers and sellers. Instead of the edge weight (9), we propose to
use a multi-dimensional version of the Cobb-Douglas or constant elasticity of substitution
functions [5]. Our research approach has the advantage of generalizing [6] to the case of
multiple input and output.

Revision

e 2010-01-09 — Some clarification suggested by David Joyner (US Naval Academy),
including: explaining what is the graph of immediate neighbours of a vertex; and
some improvements to the exposition of the paper.
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Figure 4: Network metrics for weighted, undirected graphs.
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A Latora-Marchiori metrics: unweighted

This appendix presents a script written in the R [9] language for computing local and
global efficiencies and network cost of unweighted, undirected graphs. The graphs in
question have N = 1000 vertices and per-vertex degree k£ = 10. Starting with a 10-
circulant graph G on 1000 vertices, the script rewires G with probability p according to
the Watts-Strogatz random edge rewiring method to produce a rewired connected graph
G’'. The global and local efficiencies of G are then calculated according to (5) and (6),
respectively. The network cost is calculated using (7). The 37 rewiring probabilities are
chosen according to (2).

sw-latora-marchiori.r -- modelling small-world networks
Copyright (C) 2008 Minh Van Nguyen <nguyenminh2@gmail.com>

An R script to model small-world networks. This implements techniques
in the paper:

V. Latora & M. Marchiori. Economic small-world behavior in weighted
networks. The European Physical Journal B, 32(2):249--263, 2003.

which generalizes the approach described in:

D. Watts & S.H. Strogatz. Collective dynamics of "small-world"
networks. Nature, 393(4):440--442, 1998.

Rodolfo Garcia-Flores has written an R script that implements the
Watts-Strogatz model described in (Watts & Strogatz 1998).

Minh Van Nguyen extended Rodolfo’s code based on a generalization
of the Watts-Strogatz model as detailed in the paper
(Latora & Marchiori 2003).

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

HHEHAAAFFFHFFHAHAHAFHRFEFHFFHRAHAFAHRFEFREEHEHEH AR

# Clear memory, removing (almost) everything in the working environment
# without any warning. Be careful with what you wish for.

rm(list = 1s())

# For colours and fonts

library (grDevices)

# For fit, simulate and diagnose exponential-family models for networks
library("ergm")

# For social network analysis

library("sna")

# library("igraph")

USA.



### Problem data

# Actual values should be n = 1000, k = 10. When run with these values,
# the script should take a few hours to complete. Test values can be

# n =20, k = 4

n <- 1000 # vertices

k <- 10 # edges per vertex, MUST BE EVEN.

timesToRepeat <- 20 # should be 20

# Data for a logarithmically-scaled probability vector.
number0fPoints <- 37

minProb <- 1le-4

maxProb <- 1

# Directories and file names

# Subdirectory names to organise I/O.
input <- "input"

output <- "output"

# Files in input directory to search for.
# Output file names
summaryFileName <- "small-world-summary.txt"

# Platform-specific directory separator.
slash <- .Platform$file.sep

# (Relative) subdirectory paths.
outputDir <- paste(".", slash, output, slash, sep = "")
inputDir <- paste(".", slash, input, slash, sep = "")

### Functions

Simulates a circular list. We are only interested in the index i of a
member of this 1list, which has n members. One way to conceptualize this
list is to visualize all n members as arranged in a cycle graph, in
which each member i has an edge connecting it to i + 1, and an edge
connecting it to i - 1. Another way to think about this function is to
interpret it as a simple implementation of the group Z/Zn, where only
the index of each i in Z/Zn is returned.

INPUT:
index -- integer; index of an element in this circular list.
length -- integer > 0; the number of elements in this circular list.
FIXME: Maybe it’s a good idea to implement the case where
length < 0, or provide some sanity checking to take care of that
possibility.

OUTPUT :
If 0 < index <= length, then return index. If index > length, then
return index mod length. Else index < 0, so return index mod length.
If length is 0, then return NaN (not a number).

AUTHOR :
Rodolfo Garcia-Flores
Documentation by Minh Van Nguyen <nguyenminh2@gmail.com>

HHHFAFFFHEFHFAIAHAHFFFEFEFEHEHHH AR

eturnIndex <- function(index, length) {
if ((index > 0) && (index <= length)) {
index

}
else if (index > length) {

11
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[

HHFHHAAFFHEFEFHEAFTHAFTHHHR

[

HHEHHAFHFEHEHFEHHH

index - length * floor(index / length)
¥
else {
(length + index) + length * floor (-1 * index / length)

The re-wiring routine.

INPUT:
aMatrix -- an adjacency matrix.
aProbability -- double; a probability value p such that 0 < p < 1. This
value determines the probability that an edge incident on a vertex
is re-wired.
OUTPUT :

An adjacency matrix with a number of the vertices re-wired.

AUTHOR :
Rodolfo Garcia-Flores
Documentation by Minh Van Nguyen <nguyenminh2@gmail.com>

eWire <- function(aMatrix, aProbability) {

currentMat <- aMatrix
for (i in 1:n) {
for (j in 1:i) {
if ((currentMat[i,j] != 0) && (runif (1) < aProbability)) {

# To vertices different to i and
# different to those already connected,
# preferably to nodes that are isolated.
# This should prevent having isolated regions.
isolatedNodes <- c(1:n)[colSums (currentMat[,]) == 0
nodesAlreadyConnected <- c(1:n)[currentMat[i,] > 0]
excludedNodes <- c(i, nodesAlreadyConnected)
notExcludedNodes <- (1:n)[-excludedNodes]

]

# A list whose first elements are isolated nodes, the rest are
# shuffled, not-excluded values.
validPrioritisedNodes <- c(isolatedNodes,
sample (setdiff (notExcludedNodes,
isolatedNodes)))

# Take first node index in 1list.
newVertex <- validPrioritisedNodes [1]
currentMat [i,j] <- O
currentMat[j,i] <- O
currentMat [i, newVertex] <- 1
currentMat [newVertex, i] <- 1
}
}
}

currentMat

The average efficiency E of a graph G, where the graph has N vertices and
K edges. This function can also be used to calculate the average
efficiency even if G is a complete graph on N vertices. Such a complete
graph is also denoted G"{ideall}, i.e. the ideal case where G has all the
possible

N(N - 1) / 2
edges. Then the global and local efficiencies are defined in terms of E(G)

and E(G"{ideall}). These notions of efficiency of a graph are defined in
the paper (Latora & Marchiori 2003).

12
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HHEHHAHAFFHFEHEFEHATHHR

INPUT:
geodesicMat -- the matrix of the shortest path lengths between pairs of

vertices in G. If i and j are vertices of G, then d_ij denotes the
shortest path length between i and j. If geodesicMat describes the
geodesics of pairs of vertices in an undirected graph, then
geodesicMat is symmetric about the main diagonal. Note that
geodesicMat must be a square matrix, so that its row and column
dimensions both equal the number of vertices in the underlying
graph.

OUTPUT :
the average efficiency E of the graph G.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>

averageEfficiency <- function(geodesicMat) {

[

HHEHAFHFHEFEHEFHATHR

# the number of vertices in geodesicMat
N <- dim(geodesicMat) [1]

E <- NULL
# check for the case that geodesicMat is a 1 x 1 matrix
if (N == 1) {
# harmonicSum <- 0
E <-0
X
else {

# Compute the harmonic sum of lower triangular matrix of geodesicMat,
# excluding the main diagonal.
collLimit <- O
colStart <- 1
rowStart <- 2
harmonicSum <- 0
for (row in rowStart:N) {

collLimit <- collimit + 1

for (col in colStart:colLimit) {

# Avoid the case where there’s no path between vertices i and j. If

# no path exists between i and j, then d_ij = +oo, which is positive
# infinity. As d_ij -> +oo, then (1 / d_ij) -> 0.
if (geodesicMat [row, col] != "Inf") {

harmonicSum <- harmonicSum + (1 / geodesicMat[row, col])
}
}
}

# compute average efficiency
E <- harmonicSum / (N * (N - 1))
}

E

The global efficiency E_glob of a graph G, where the graph has N vertices
and K edges. The notion of global efficiency of a graph is defined in the
paper (Latora & Marchiori 2003). See also the function averageEfficiency,
which defines the average efficiency of G. The measure E_glob is defined
as

E_glob = E(G) / E(G"{ideall)

where G~{ideall} is the complete graph on N vertices. Thus E_glob is a
ratio of the average efficiencies of two types of graphs: (1) the average
efficiency of G itself; (2) the average efficiency of the complete graph

on N vertices, which is the number of vertices in G.

INPUT:

13



geodesicMat -- the matrix of the shortest path lengths between pairs of
vertices in G. If i and j are vertices of G, then d_ij denotes the
shortest path length between i and j. If geodesicMat describes the
geodesics of pairs of vertices in an undirected graph, then
geodesicMat is symmetric about the main diagonal.

OUTPUT :
the global efficiency E_glob of the graph G.

AUTHOR:
Minh Van Nguyen <nguyenminh2@gmail.com>

HHEHHAIAHAHFHHFEHH

globalEfficiency <- function(geodesicMat) {
# the number of vertices in geodesicMat
N <- dim(geodesicMat) [1]

# compute the average efficiency
aveEfficiency <- averageEfficiency(geodesicMat)

# Construct the adjacency matrix of a complete graph on N vertices. By
# definition of complete graphs, a complete graph K_n and its geodesic
# matrix G_dist are equivalent. That is, K_n and G_dist are copies of
# each other. Also, G_dist has 1 everywhere, and O on the main diagonal.
gIdealMat <- matrix(nrow = N, ncol = N)
gldealMat[,] <- 1
for (i in 1:N) {
gIdealMat[i, i] <- O

# compute the average efficiency of the complete graph
aveEfficiencyGIdeal <- averageEfficiency(gIdealMat)

# compute the global efficiency
Eglob <- aveEfficiency / aveEfficiencyGIdeal

[

The adjacency matrix of G_i. If G is an undirected graph and i is a
vertex of G, then G_i is the subgraph of neighbours of i, excluding i
itself.

INPUT:
aMat -- the adjacency matrix of the graph G.
i -- the index of the vertex whose neighbours we want to consider.
Let r and ¢ be the row and column dimensions of aMat, respectively.
Then 1 < i < r or 1 < i < c.

OUTPUT :
the adjacency matrix of G_1i.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>

BHHFHHAFFFFRHRFEHEFEHHFHR

eighboursAdjMat <- function(aMat, i) {
# the row dimension of aMat

## rowNum <- dim(aMat) [1]

# the column dimension of aMat

colNum <- dim(aMat) [2]

# find indices of the immediate neighbours of vertex i
neighIndex <- c()
for (col in 1:collNum) {
if (aMat[i, col] == 1) {
neighIndex <- c(neighIndex, col)

14



316 # Adjacency matrix of neighbours of i, i.e. the adjacency matrix of G_i
317 # in the notation of the paper (Latora & Marchiori 2003).

318 neighAMat <- matrix(nrow = length(neighIndex),

319 ncol = length(neighIndex))

320 neighAMat[,] <- 0

321 for (row in 1:length(neighIndex)) {

322 for (col in row:length(neighIndex)) {

323 if (aMat[neighIndex[row], neighIndex[col]l] == 1) {

324 neighAMat [row, col] <- 1

325 neighAMat [col, row] <- 1

326 }

327 }

328 }

329

330 neighAMat

331 1}

332

333 # The local efficiency E_loc of a graph G, where the graph has N vertices
334 # and K edges. The notion of local efficiency of a graph is defined in the
335 # paper (Latora & Marchiori 2003). See also the function averageEfficiency,
336 # which defines the average efficiency of G. The measure E_loc is defined
337 # as

338 #

339 # E_loc = (1/N) \sum_{i \in G} E(G_i) / E(G"{ideall}_i)

340 #

341 # where G_i is the subgraph of neighbours of vertex i, and G~{ideall}_i is
342 # the complete graph on N_i, which is the number of vertices in G_i. Note
343 # that G_i excludes the vertex i, and only considers the graph formed by
344 # its immediate neighbours.

345 #

346 # INPUT:

347 # aMat -- the adjacency matrix of the graph G. If G is an undirected
348 # graph, then aMat is symmetric about the main diagonal.

349 #

350 # OUTPUT:

351 # the local efficiency E_loc of the graph G.

352 #

353 # AUTHOR:

354 # Minh Van Nguyen <nguyenminh2@gmail.com>

355 #

356 localEfficiency <- function(aMat) {

357 # The number of vertices in the underlying graph G. Thus the column and
358 # row dimensions must be equal.

359 N <- dim(aMat) [1]

360

361 # summing the ratios (EGi / EIdealGi) for all vertices i

362 cumSum <- 0

363 EGi <- O

364 EIdealGi <- O

365 geodesicGi <- 0

366 geodesicIdealGi <- O
367 idealGi <- 0

368 for (i im 1:N) {

the cumulative sum

average efficiency of G_1i

average efficiency of G {ideall}_i
geodesic matrix of G_i

geodesic matrix of G"{ideall}_i
adjacency matrix of G~{ideall}_i

HoHHHHH

369 geodesicGi <- geodist(neighboursAdjMat (aMat, i))$gdist

370 EGi <- averageEfficiency(geodesicGi)

371

372 # Construct the adjacency matrix of a complete graph omn K_i vertices. By
373 # definition of complete graphs, a complete graph K_n and its geodesic
374 # matrix G_dist are equivalent. That is, K_n and G_dist are copies of
375 # each other. Also, G_dist has 1 everywhere, and 0O on the main diagonal.
376 idealGi <- matrix(nrow = dim(geodesicGi)[1], ncol = dim(geodesicGi) [2])
377 idealGil[,] <- 1

378 for (j in 1:dim(idealGi)[1]) {

379 idealGi[j, j] <- 0

380 }

381

15
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geodesicIdealGi <- geodist(idealGi)$gdist
EIdealGi <- averageEfficiency(geodesicIdealGi)

# Prevent division by zero, which is possible when EIdealGi = 0. If
# both EGi and EIdealGi are zero, then we get (0 / 0), which returns
# a NaN for "not a number". Caution: we need to consider four cases:
#
# EGi EIdealGi
# _____________
#0 0 <- (EGi / EIdealGi) = 0
# 0 y1 <- (EGi / EIdealGi) = 0
# x1 0 <- Is it possible to get this case?
# x2 y2 <- (EGi / EIdealGi) \in RR\{0}
#
# where x1, x2, y1, y2 \in RR
if ((EGi == 0)) {
cumSum <- cumSum + O
¥
else {
cumSum <- cumSum + (EGi / EIdealGi)
}

}

Eloc <- cumSum / N

The cost of a network G with N vertices and K edges. For now, we assume
that G is an undirected graph so that its adjacency matrix is symmetric
about the main diagonal. The generalization of the Watts-Strogatz model
contained in (Latora & Marchiori 2003) considers directed as well as
undirected graphs.

INPUT:
adjMat -- the adjacency matrix of G. This adjacency matrix must have
the same dimensions as the matrix of distances of G.
distMat -- the matrix of distances between pairs of vertices. This
distance matrix has the same dimensions as the adjacency matrix of
G.
gamma -- the cost evaluator function, default is "gamma = WS" for the
Watts-Strogatz model. TODO: define further models here apart from
Watts-Strogatz.
OUTPUT :
the cost of the network G.
AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>
etworkCost <- function(adjMat, distMat, gamma = "WS") {
netCost <- 0
if (gamma == "WS") {
N <- dim(adjMat)[1] # the number of vertices
K <- 0 # the number of edges
# For an undirected graph G with adjacency matrix adjMat, both G and
# adjMat are symmetric about the main diagonal. Hence we need only
# consider either the upper triangular or lower triangular matrices,
# excluding entries along the main diagonal, in counting the number of
# edges in G. On the other hand, we can also sum the entries in adjMat
# and divide the result by 2 to get the number of edges in g.
K <- sum(adjMat) / 2

netCost <- (2 * K) / (N * (N - 1))
}

netCost
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The main routine. This is where the network metrics are calculated. For
the Watts-Strogatz model, the network metrics is comprised of the
characteristic path length L and the clustering coefficient C. As regards
the generalization of Watts-Strogatz contained in the paper

(Latora & Marchiori 2003), the network metrics are the local efficiency
E_loc, the global efficiency E_glob, and the network cost C.

INPUT:

regmat -- a regular matrix

probabilities -- a set of re-wiring probabilities
OUTPUT :
AUTHOR :

Minh Van Nguyen <nguyenminh2@gmail.com>

alculateNetworks <- function(regmat, probabilities) {

# A set of adjacency matrices.
nets <- array(NA, dim = c(length(probabilities) + 1, n, n))

# First matrix is the regular matrix.
nets[1,,] <- regmatl[,]

# Re-wire with probability p.
# Put this in a function.
counter <- 1
for (p in probabilities) {
reWiredMat <- array(0, dim = dim(regmat))
while (connectedness (reWiredMat) < 1) {
reWiredMat <- reWire(regmat, p)
print (c("Re-wiring with probability ", p))

nets[counter + 1,,] <- reWiredMatl[,]

# plot(network(reWiredMat, directed=FALSE),
# displaylabels=TRUE, mode="circle")

# par (ask=TRUE)

counter <- counter + 1

}

# This section is for the Latora-Marchiori generalization.

# Global and local efficiencies

Eglob <- NULL

Eloc <- NULL

for (counter in 1:(length(probabilities) + 1)) {
Eglob[counter] <- globalEfficiency(geodist(nets[counter,,])$gdist)
Eloc[counter] <- localEfficiency(nets[counter,,])

3

# structure to return
result <- cbind(Eglob[1] / Eglob, Eloc / Eloc[1])

connectivity matrix of a regular network with no loops

regularMatrix <- matrix (0, nrow = n, ncol = n)
for (i in 1:n) {

for (index in (k / 2):1) {
# Get right the indexes.
jplus <- returnIndex(i + index, n)
jminus <- returnIndex (i - index, n)

17



regularMatrix[i, jplus] <- regularMatrix[i, jminus] <- 1

}
}
dimnames (regularMatrix) [[2]] <- paste("node", (1:n), sep = "-")
dimnames (regularMatrix) [[1]] <- paste("node", (1:n), sep = "-")
# logarithmically-scaled probability vector
factor <- (maxProb / minProb)~ (1 / (numberOfPoints - 1))
probs <- NULL
for (pt in 1:numberO0fPoints) {

probs[pt] <- minProb * factor " (pt - 1)
# Call main routine here timesToRepeat times.
# variable aliases
GE <- 1 # global efficiency
LE <- 2 # local efficiency
# Remember , the first probability is zero, i.e. the regular matrix.
results <- array(NA, dim = c(timesToRepeat, length(probs) + 1, 2))
dimnames (results)[[3]] <- c("L / LRef", "C / CRef")
dimnames (results) [[2]] <- paste("prob", c(0, probs), sep = "-")
dimnames (results) [[1]] <- paste("experiment", (l:timesToRepeat), sep =
for (experiment in 1:timesToRepeat) {

print (c("Executing experiment ", experiment))

results [experiment,,] <- calculateNetworks(regularMatrix, probs)
¥
# averages
GEmeans <- colSums(results[,,GE]) / timesToRepeat
LEmeans <- colSums(results[,,LE]) / timesToRepeat
# Write table of results
summary <- cbind(c(0, probs), GEmeans, LEmeans)
write.table (format (summary, digits = 6, nsmall = 4, justify = "left"),

file = paste(outputDir, summaryFileName, sep = ""), sep =

# plot variables

xdata <- probs

# All except the first value, where prob = 0.
ydata <- cbind (GEmeans[-1], LEmeans[-1])

matplot (xdata, ydata, log = "x",
main = "Global efficiency and local efficiency",
xlab = "prob",
ylab = "Eglob[ref] / Eglob and Eloc / Eloc[ref]",
type = nbn)

18
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B Latora-Marchiori metrics: weighted

This appendix presents a number of scripts written in Python, R [9] and Sage [10] for com-
puting local and global efficiencies and network cost of weighted, undirected graphs. The
graphs in question have N = 1000 vertices and per-vertex degree k = 10. The Sage script
k_circulant_n.sage generates 10-circulant graphs on 1000 vertices, each such graph
with half the total number of edges removed. Using the R script rewire-lattices.r,
the generated graphs can be randomly rewired according to the Watts-Strogatz random
edge rewiring method. The rewired graphs are output to disk in matrix (plain textual)
notation. These graphs can be converted to its R code representation using the Python
script mat2r.py. Finally, using the script network-metrics-1m.r, the global and local
efficiencies of the rewired graphs can be calculated according to (5) and (6), respectively,
taking into account the case that we are dealing with weighted graphs. The network cost
is calculated using (8). The following sections list the contents of the above scripts.

B.1 The script k circulant n.sage

k_circulant_n.sage
Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com>

This Sage script generates ring lattices, each with half the total number
of edges removed. Such graphs can then be rewired as per Watts & Strogatz.
Note that this script does not consider the problem of random edge
rewiring. This script was written and tested using Sage 3.2.x. For more
information about Sage, please visit www.sagemath.org. Before running this
script, make sure that a directory named "networks-half-edges-r" exists
in the current directory.

REFERENCES :
[1] V. Latora & M. Marchiori. Economic small-world behavior in weighted
networks. The European Physical Jourmnal B, 32(2):249--263, 2003.

[2] D. Watts & S.H. Strogatz. Collective dynamics of "small-world"
networks. Nature, 393(4):440--442, 1998.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

HHEHAAHAFFHFFHFAHAFHAFAHRFEHFFHAHAFTHRFEEEEHEHEHH

def to_r(e, g):

Generates R code representation of the (n, k) ring lattice g.
The (n, k) ring lattice g is assumed to have half the total number of

its edges already removed. The R code matrix representation of g is an
adjacency matrix and is written to a text file.
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def

INPUT:
e -- a positive integer index used for name the R script
containing R code matrix representation of g.
g -- an (n, k) ring lattice with half of its total number of edges
removed.
OUTPUT :
Write the R code matrix representation of g to an R script.
nmnn
nVertices = g.order ()
outFile = open("networks-half-edges-r/graph-" + str(e) + ".r", "w")
nrow = g.order ()
ncol = g.order ()
outFile.write("mat <- matrix(nrow = " + str(nrow)
+ ", ncol = " + str(ncol) + ")\n")
for i in xrange (nrow):
row = str(g.adjacency_matrix()[i])
row = "c" + row
outFile.write("mat[" + str(i+1) + ",] <= " 4+ row + "\n")

outFile.close ()

remove _half_edges(n, k):
nnn

Randomly removes half the total number of edges from a k-circulant graph

with n vertices.

A k-circulant graph with n vertices is simply a ring lattice with n
nodes, each of which is connected to its k neighbours. Such a graph
is also referred to as an (n, k) ring lattice. Such random removal is
used in "Model 4" of Latora & Marchiori [2].

INPUT:
n -- the number of vertices.
k -- the number of per-vertex degree (must be an even integer).
OUTPUT :
An (n, k) ring lattice with half of the total number of its edges
removed.

from sage.misc.prandom import choice

adj = [a for a in xrange(l, k/2+1)]
G = graphs.CirculantGraph(n, adj)

# remove half the total number of edges from G
nEdges = list(G.edge_iterator(labels = False))
elimTotal = G.size() / 2
elim = 0
while elim < elimTotal:
edge = choice(nEdges)
G.delete_edge (edge [0], edgel[1l])
while not G.is_connected():
G.add_edge (edge [0], edge[1])
edge = choice(nEdges)
G.delete_edge (edge [0], edgel[1l])
nEdges = 1list(G.edge_iterator(labels = False))
elim += 1

return G

# As used by Watts & Strogatz [1] and Latora & Marchiori [2].

=}

~

1000

As used by Latora & Marchiori [2] in their "Model 4".

6
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# Also known as the number of rewiring probabilities. This number depends
# on how many rewiring probability points you want to use.
nTimes = 37

for i in xrange(nTimes):

print "[Zs] generating network" J (i+1)

g = remove_half_edges(n, k)

print "[%s] converting network to R code" J (i+1)
to_r(i+1l, g)

B.2 The script rewire-lattices.r

HHEHHAHAFAAFAHAFHFFHAHAHARFFEHEFEFHFEFATHRAHAFTHEEEHEH

#
#
#

rewire-lattices.r
Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com>

This R script can be used to rewire (n, k) ring lattices that have had

50 percent of their total number of edges removed. The rewiring process

is per Watts & Strogatz [2]. The resulting rewired networks are used

in "Model 4" of Latora & Marchiori [1]. Before running this script, make
sure that a directory named "networks-dat" exists in the current directory.
For more information about R, please visit www.r-project.org.

REFERENCES:
[1] V. Latora & M. Marchiori. Economic small-world behavior in weighted
networks. The European Physical Journal B, 32(2):249--263, 2003.

[2] D. Watts & S.H. Strogatz. Collective dynamics of "small-world"
networks. Nature, 393(4):440--442, 1998.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Some housekeeping before generating random Latora-Marchiori networks.
Clear memory, removing (almost) everything in the working environment
without any warning. Be careful with what you wish for.

rm(list = 1s())

#

For social network amnalysis

library ("sna")

#
#

For various graph-theoretic operations, in particular, weighted shortest
paths.

library("igraph")

### Functions

49 # Simulates a circular list. We are only interested in the index i of a
50 # member of this 1list, which has n members. One way to conceptualize this
51 # list is to visualize all n members as arranged in a cycle graph, in
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which each member i has an edge connecting it to i + 1, and an edge
connecting it to i - 1. Another way to think about this function is to
interpret it as a simple implementation of the group Z/Zn, where only
the index of each i in Z/Zn is returned.

INPUT:
index -- integer; index of an element in this circular 1list.

length -- integer > 0O; the number of elements in this circular list.

FIXME: Maybe it’s a good idea to implement the case where
length < 0, or provide some sanity checking to take care of that
possibility.

OUTPUT :
If 0 < index <= length, then return index. If index > length, then

return index mod length. Else index < 0O, so return index mod length.

If length is 0, then return NaN (not a number).

AUTHOR:
Rodolfo Garcia-Flores
Documentation by Minh Van Nguyen <nguyenminh2@gmail.com>

eturnIndex <- function(index, length) {
if ((index > 0) && (index <= length)) {
index
¥
else if (index > length) {
index - length * floor(index / length)
}
else {
(length + index) + length * floor (-1 * index / length)

The rewiring routine.

INPUT:
aMatrix -- an adjacency matrix.
aProbability -- double; a probability value p such that 0 < p < 1.
value determines the probability that an edge incident on a vert
is re-wired.

OUTPUT :
An adjacency matrix with a number of the vertices re-wired.

AUTHOR:
Rodolfo Garcia-Flores
Documentation by Minh Van Nguyen <nguyenminh2@gmail.com>

ewire <- function(aMatrix, aProbability) {
currentMat <- aMatrix
for (i in 1:mn) {
for (j in 1:i) {
if ((currentMat[i, j] !'= 0) && (runif (1) < aProbability)) {

# To vertices different to i and
# different to those already connected,
# preferably to nodes that are isolated.
# This should prevent having isolated regions.
isolatedNodes <- c(1:n)[colSums (currentMat[,]) =
nodesAlreadyConnected <- c(l:n)[currentMat[i,] >
excludedNodes <- c(i, nodesAlreadyConnected)
notExcludedNodes <- (1:n)[-excludedNodes]

0]
0]

# A list whose first elements are isolated nodes, the rest are
# shuffled, not-excluded values.
validPrioritisedNodes <- c(isolatedNodes,

22
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sample (setdiff (notExcludedNodes,
isolatedNodes)))

# Take first node index in 1list.
newVertex <- validPrioritisedNodes[1]
currentMat [i, j] <- 0

currentMat [j, i] <- 0

currentMat [i, newVertex] <- 1
currentMat [newVertex, i] <- 1

b
}
b
currentMat
}
# The main routine. This is where the network metrics are calculated. For
# the Watts-Strogatz model, the network metrics is comprised of the
# characteristic path length L and the clustering coefficient C. As regards
# the generalization of Watts-Strogatz contained in the paper
# (Latora & Marchiori 2003), the network metrics are the local efficiency
# E_loc, the global efficiency E_glob, and the network cost C_G.
#
# INPUT:
# regmat -- a regular matrix.
# probabilities -- a set of re-wiring probabilities.
#
# OUTPUT:
#
# AUTHOR:
# Minh Van Nguyen <nguyenminh2@gmail.com>
#
latoraMarchioriGraphs <- function(regMat, probs, experiment) {

for (p in 1:length(probs)) {
# Reads in an (n, k) ring lattice which has 50 percent of its total

# number of edges removed. The matrix is read into memory and named "mat".

source (paste ("networks -half-edges-r/graph-",
experiment, "-", p, ".r", sep = ""))

# rewire with p-th probability

print (c("rewiring with probability ", probs[pl))

rewiredMat <- rewire(mat, probsl[pl)

while (connectedness(rewiredMat) < 1) {
rewiredMat <- rewire(regMat, probs[p]l)

}

# The number 1000 refers both to the column and row dimensions of the
# Latora-Marchiori network.
write.table (1000, file = paste("networks-dat/graph-"
experiment, "-", p, ".dat", sep = ""),
row.names = FALSE, col.names = FALSE)
write.table (1000, file = paste("networks-dat/graph-",
experiment, "-", p, ".dat", sep = ""),
row.names = FALSE, col.names = FALSE, append = TRUE)
write.table (probs([p], file = paste("networks-dat/graph-",
experiment, "-", p, ".dat", sep = ""),
row.names = FALSE, col.names = FALSE, append = TRUE)
write.table(rewiredMat, file = paste("networks-dat/graph-",
experiment, "-", p, ".dat", sep = ""),
row.names = FALSE, col.names = FALSE, append = TRUE)

| -

### Start generate Latora-Marchiori networks here
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# Experimental parameters.

# Actual values should be n = 1000, k = 10 or k = 6. When run with these

# values, the script should take a few hours to complete. Test values can be
# n =20, k = 4

n <- 1000 # vertices

k <- 6 # edges per vertex, MUST BE EVEN.

nTimes <- 20 # should be 20

# data for a logarithmically-scaled probability vector

numPoints <- 37
minProb <- 1le-4
maxProb <- 1

#

logarithmically-scaled probability vector

factor <- (maxProb / minProb) (1 / (numPoints - 1))
probs <- NULL
for (pt in 1:numPoints) {

#

probs[pt] <- minProb * factor “(pt - 1)

Create rewired networks. The rewired networks are written to text fil

for (experiment in 1:nTimes) {

}

print (c("Executing experiment ", experiment))
latoraMarchioriGraphs (matHalfEdges , probs, experiment)

B.3 The script mat2r.py

mat2r.py
Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com>

es.

Convert text representation of a Latora-Marchiori network to its R code

representation. This Python script essentially generates R code to

represent Latora-Marchiori networks stored in text files. Latora-Marchiori
networks are (n, k) ring lattices, each with half the total number of its
edges removed and the resulting network rewired as per Watts & Strogatz [2].

el
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Such networks are used in "Model 4" of Latora & Marchiori [1]. Before

running this Python script, make sure that a directory named "networks-r"

exists in the current directory.

REFERENCES :
[1] V. Latora & M. Marchiori. Economic small-world behavior in weight
networks. The European Physical Journal B, 32(2):249--263, 2003.

[2] D. Watts & S.H. Strogatz. Collective dynamics of "small-world"
networks. Nature, 393(4):440--442, 1998.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
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37 nExperiments = 20
38 nProbs = 37
39 for e in xrange(l, nExperiments + 1):
40 print "generate R code for networks in experiment /[s" J e
41 for p in xrange(l, nProbs + 1):
42 inFile = open("networks-dat/graph-"
43 + str(e) + "-" + str(p) + ".dat", "r")
44 outFile = open("networks-r/graph-"
45 + str(e) + n_n 4 Str(p) + Il.rll, an)
46 nrow = int(inFile.readline().strip())
47 ncol = int(inFile.readline ().strip())
48 rewireProb = float(inFile.readline().strip()) # don’t write to file
49 outFile.write("mat <- matrix(nrow = " + str(nrow)
50 + ", ncol = " + str(mcol) + ")\n")
51 for i in xrange(l, nrow + 1):
52 row = inFile.readline().strip()
53 row = row.replace(" ", ", ")
54 row = "c(" + row + ")"
55 outFile.write("mat[" + str(i) + ",] <= " + row + "\n")
56 inFile.close ()
57 outFile.close ()
B.4 The script network-metrics-1m.r
1 # ---------""""""""""""""""“"“"“" """ — -
2 # network-metrics-lm.r
3 # Copyright (C) 2008, 2009 -- Minh Van Nguyen <nguyenminh2@gmail.com>
4 #
5 # An R script to compute network metrics of Latora-Marchiori networks.
6 # That is, this script calculates the local and global efficiencies and
7 # network cost defined by Latora & Marchiori [1] as generalizations of
8 # the Watts-Strogatz [2] small world network metrics.
9 #
10 # REFERENCES:
11 # [1] V. Latora & M. Marchiori. Economic small-world behavior in weighted
12 # networks. The European Physical Journal B, 32(2):249--263, 2003.
13 #
14 # [2] D. Watts & S.H. Strogatz. Collective dynamics of "small-world"
15 # networks. Nature, 393(4):440--442, 1998.
16 #
17 # This program is free software; you can redistribute it and/or modify
18 # it under the terms of the GNU General Public License as published by
19 # the Free Software Foundation; either version 2 of the License, or
20 # (at your option) any later version.
21 #
22 # This program is distributed in the hope that it will be useful,
23 # but WITHOUT ANY WARRANTY; without even the implied warranty of
24 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 # GNU General Public License for more details.
26 #
27 # You should have received a copy of the GNU General Public License
28 # along with this program; if not, write to the Free Software
29 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30 # ——m-mmm e e —————— -
31
32
33 # Clear memory, removing (almost) everything in the working environment
34 # without any warning. Be careful with what you wish for.
35 rm(list = 1s())
36 library("grDevices") # for colours
37 library("sna" # for social network analysis
38 # For various graph-theoretic operations, in particular, weighted shortest
39 # paths.

25



library("igraph")

### Functions

HHAEHAAHFHFHFHAHAHAFARHRFTHEFEFHFAFHAHFTHERFEEH

The average efficiency E of a graph G, where the graph has N vertices and
K edges. This function can also be used to calculate the average
efficiency even if G is a complete graph on N vertices. Such a complete
graph is also denoted G~{ideal}, i.e. the ideal case where G has all the
possible

N(N - 1) / 2
edges. Then the global and local efficiencies are defined in terms of E(G)

and E(G"{ideall}). These notions of efficiency of a graph are defined in
the paper (Latora & Marchiori 2003).

INPUT:
adjMat -- the adjacency matrix of the underlying graph.
weightedGeoMat -- a matrix of weighted geodesics, or weighted
shortest paths.
level -- whether the average efficiency returned would be used in
computing the local or global efficiency. The parameter level can
take on either of two string arguments: "global" to indicate that
the returned average efficiency is to be used in calculating the
global efficiency of a network; and "local" which signifies that
the returned average efficiency is to be used in calculating the
local efficiency of a network. Default is "global".
OUTPUT :

the average efficiency E of the graph G.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>

averageEfficiency <- function(adjMat, weightedGeoMat) {

# The number of vertices in weightedGeoMat. Thus adjMat and weightedGeoMat
# are both N x N matrices.
N <- dim(weightedGeoMat) [1]

# for storing the average efficiency
E <- NULL

# check for the case that weightedGeoMat is a 1 x 1 matrix
if (N == 1) {
# harmonicSum <- 0
E <-0
3
else {
# Compute the harmonic sum of lower triangular matrix of weightedGeoMat,
# excluding the main diagonal.
collimit <- O
colStart <- 1
rowStart <- 2
harmonicSum <- 0
for (row in rowStart:N) {
collLimit <- collimit + 1
for (col in colStart:colLimit) {
# Avoid the case where there’s no path between vertices i and j. If
# no path exists between i and j, then d_ij = +oo, which is positive
# infinity. As d_ij -> +oo, then (1 / d_ij) -> 0. If adjMat
# represents a totally isolated graph G, then the average efficiency
# of G is O.
if (weightedGeoMat [row, col] != "Inf") {
harmonicSum <- harmonicSum + (1 / weightedGeoMat[row, col])
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106 }

107 }

108 }

109

110 # compute average efficiency

111 E <- harmonicSum / (N * (N - 1))

112 }

113

114 E

115 }

116

117

118 # The global efficiency E_glob of a graph G, where the graph has N vertices
119 # and K edges. The notion of global efficiency of a graph is defined in the
120 # paper (Latora & Marchiori 2003). See also the function averageEfficiency,
121 # which defines the average efficiency of G. The measure E_glob is defined
122 # as

123 #

124 # E_glob = E(G) / E(G"{ideall})

125 #

126 # where G~{ideall} is the complete graph on N vertices. Thus E_glob is a

127 # ratio of the average efficiencies of two types of graphs: (1) the average
128 # efficiency of G itself; (2) the average efficiency of the complete graph
129 # on N vertices, which is the number of vertices in G.

130 #

131 # INPUT:

132 # adjMat -- an N x N adjacency matrix of G.

133 # weightMat -- an N x N weight matrix of G. See the function weightMatrix
134 # for further details.

135 #

136 # OUTPUT:

137 # the global efficiency E_glob of the graph G.

138 #

139 # AUTHOR:

140 # Minh Van Nguyen <nguyenminh2@gmail.com>

141 #

142 globalEfficiency <- function(adjMat, weightMat) {

143 # The number of vertices in the underlying graph G. Thus the column and
144 # row dimensions must be equal.

145 N <- dim(adjMat) [1]

146

147 # matrix of weighted geodesics for G

148 weightedGeoMat <- weightedGeodesics(adjMat, weightMat)
149 # average efficiency of G

150 aveEfficiency <- averageEfficiency(adjMat, weightedGeoMat)

151

152 # Construct the adjacency matrix of a complete graph on N vertices. By
153 # definition of complete graphs, a complete graph K_n and its geodesic
154 # matrix G_dist are equivalent. That is, K_n and G_dist are copies of
155 # each other. Also, G_dist has 1 everywhere, and O on the main diagonal.

156 gldealMat <- matrix(l, nrow = N, ncol = N)
157 for (i im 1:N) {
158 gldealMat[i, i] <- O

}

159

160

161 # matrix of weighted geodesics for G {ideall}

162 weightedGeoMat <- weightedGeodesics(gIdealMat, weightMat)

163 # average efficiency of G~{ideal}
164 aveEfficiencyGIdeal <- averageEfficiency(gIldealMat, weightedGeoMat)

166 # compute the global efficiency
167 Eglob <- aveEfficiency / aveEfficiencyGIdeal

171 # Let adjMat be an adjacency matrix of an undirected graph G. For a given
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vertex 1 of G, find the indices of the immediate neighbours of i.
INPUT:

adjMat -- an adjacency matrix of an undirected graph G.

i -- a vertex of G.
OUTPUT :

a vector containing vertices that are immediate neighbours of 1i.

AUTHOR:
Minh Van Nguyen <nguyenminh2@gmail.com>

immediateNeighbours <- function(adjMat, i) {

BHHFHHAFAAFFFFHFFHAHAHFFEH

# The column dimension of adjMat. As adjMat is an adjacency matrix, it
# doesn’t matter if we get either of its row or column dimensions.
colNum <- dim(adjMat) [2]

# for storing indices of the immediate neighbours of vertex i
neighIndex <- c()

# find indices of the immediate neighbours of vertex 1
for (col in 1:colNum) {
if (adjMat[i, col]l == 1) {
neighIndex <- c(neighIndex, col)

}

neighIndex

The adjacency matrix of G_i. If G is an undirected graph and i is a
vertex of G, then G_i is the subgraph of neighbours of i, excluding i
itself.

INPUT:
aMat -- the adjacency matrix of the graph G.
i -- the index of the vertex whose neighbours we want to consider.
Let r and ¢ be the row and column dimensions of aMat, respectively.
Then 1 < i < r or 1 < i < c.
OUTPUT :

an adjacency matrix of G_i. If i is an isolated vertex, then return

an n x n zero matrix. If i is not isolated but all vertices in G_i are
isolated from each other, then return an n x n zero matrix. Else we know

that i is not isolated and there is a pair of vertices in G_i that
is connected by an edge; in this case, return an n x n matrix where
n > 0.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>

eighboursAdjMat <- function(aMat, i) {

# The column dimension of aMat. As aMat is an adjacency matrix, it
# doesn’t matter if we get either of its row or column dimensions.
colNum <- dim(aMat) [2]

# an adjacency matrix of the neighbours of vertex i
neighAMat <- NULL

# for storing indices of the immediate neighbours of vertex i
neighIndex <- NULL

# check if i is an isolated vertex

if (sum(aMat[i, 1) == 0) {
# If i is an isolated vertex, then return an n x n zero matrix, which
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# is of the same dimensions as those of aMat.
neighAMat <- matrix (0, nrow = dim(aMat)[1], ncol = dim(aMat) [2])

# now we know that 1 is connected to at least another vertex
else {

# get indices of the immediate neighbours of i

neighIndex <- immediateNeighbours (aMat, i)

The variables neighRowIndex and neighColIndex should be vectors of
equal length. Let neighRowIndex be of length n, then neighColIndex
also has length n. For k = 1,...,n, neighRowIndex[k] and
neighColIndex [k] refer to vertices that are immediate neighbours of
vertex i, and such that neighRowIndex[k] and neighColIndex[k] are
connected by an (undirected) edge.
neighRowIndex <- NULL
neighColIndex <- NULL
for (row in 1:length(neighlIndex)) {
for (col in row:length(neighIndex)) {
if (aMat[neighIndex[row], neighIndex[col]l] == 1) {
neighRowIndex <- c(neighRowIndex, neighIndex[row])
neighColIndex <- c(neighColIndex, neighIndex[coll])

HHHFEHHH

}
}

If i is not an isolated vertex, then the length of the vector
neighIndex is > 0. Let G_i be the subgraph of the neighbours of i. If
all vertices of G_i are isolated, then each of the vectors
neighRowIndex and neighColIndex has a length of zero. In this case,
neighAMat is a 2 x 0 matrix.

neighAMat <- matrix(0, nrow = 2, ncol = length(neighRowIndex))
neighAMat [1,] <- neighRowIndex

neighAMat [2,] <- neighColIndex

HHEHHFH -

# check if G_i is totally isolated

if (dim(neighAMat)[2] == 0) {
# If G_i is totally isolated, then return an n x n zero matrix, which
# is of the same dimensions as those of aMat.
neighAMat <- matrix (0, nrow = dim(aMat)[1], ncol = dim(aMat) [2])

# now we know that at least one pair of vertices in G_i are connected
else {
neighAdjMat <- matrix (0, nrow = dim(aMat)[1], ncol = dim(aMat)[2])
for (col in 1:dim(mneighAMat) [2]) {
neighAdjMat [neighAMat [1, col], neighAMat[2, col]l] <- 1
neighAdjMat [neighAMat [2, col], neighAMat[1, col]] <- 1

neighAMat <- neighAdjMat
3
X

neighAMat

The local efficiency E_loc of a graph G, where the graph has N vertices
and K edges. The notion of local efficiency of a graph is defined in the
paper (Latora & Marchiori 2003). See also the function averageEfficiency,
which defines the average efficiency of G. The measure E_loc is defined
as

E_loc = (1/N) \sum_{i \in G} E(G_i) / E(G"{ideall}_i)
where G_i is the subgraph of neighbours of vertex i, and G"{ideall}_i is

the complete graph on N_i, which is the number of vertices in G_i. Note
that G_i excludes the vertex i, and only considers the graph formed by
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its immediate neighbours.

INPUT:

aMat -- the adjacency matrix of the graph G. If G is an undirected

graph, then aMat is symmetric about the main diagonal.

the local efficiency E_loc of the graph G.

AUTHOR:

#

#

#

#

#

#

# OUTPUT:
#

#

#

# Minh Van Nguyen <nguyenminh2@gmail.com>
#

1

ocalEfficiency <- function(aMat, weightMat) {

# The number of vertices in the underlying graph G. Thus the column and

# row dimensions must be equal.
N <- dim(aMat) [1]

# summing the ratios (EGi / EIdealGi) for all vertices i
cumSum <- 0 the cumulative sum
EGi <- O average efficiency of G_i
EIdealGi <- 0 average efficiency of G"{ideall}_i
idealGi <- 0 adjacency matrix of G {ideall}_i
for (i in 1:N) {

# adjacency matrix of G_i

neighl <- neighboursAdjMat (aMat, i)

# matrix of weighted geodesics for G_i

weightedGeoMat <- weightedGeodesics(neighl, weightMat)

# average efficiency of G_i

EGi <- averageEfficiency(neighl, weightedGeoMat)

HHHH

# Construct the adjacency matrix of a complete graph on K_i vertices.
# definition of complete graphs, a complete graph K_n and its geodesic

# matrix G_dist are equivalent, provided that K_n is unweighted.
idealGi <- matrix (0, nrow = N, ncol = N)
neighIndex <- immediateNeighbours (aMat, i)
for (j in 1:length(neighIndex)) {
for (k in j:length(neighIndex)) A
idealGi[neighIndex[j], neighIndex[k]] <- 1
idealGi[neighIndex[k], neighIndex[j]] <- 1
}
# do this since we want zeros along the main diagonal
idealGi[neighIndex[j], neighIndex[j]] <- O
3

# matrix of weighted geodesics for G {ideall}_i
weightedGeoMat <- weightedGeodesics(idealGi, weightMat)
# average efficiency of G {ideall}_i

EIdealGi <- averageEfficiency(idealGi, weightedGeoMat)

Prevent division by zero, which is possible when EIdealGi = O.

EGi EIdealGi

0 <- (EGi / EIdealGi) = 0 because we say so
0 y1 <- (EGi / EIdealGi) = 0
x1 0 <- Is it possible to get this case?
x2 y2 <- (EGi / EIdealGi) \in RR\{0}

where x1, x2, y1, y2 \in RR are non-zero and RR is the set of
real numbers.
if (EGi == 0) {
cumSum <- cumSum + O
}

else {

HEHHFHHHFEHHHFEFEHHER
o
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cumSum <- cumSum + (EGi / EIdealGi)
}
}

Eloc <- cumSum / N

The cost of a network G with N vertices and K edges. For now, we assume
that G is an undirected graph so that its adjacency matrix is symmetric
about the main diagonal. The generalization of the Watts-Strogatz model
contained in (Latora & Marchiori 2003) considers directed as well as
undirected graphs.

INPUT:
adjMat -- the adjacency matrix of G. This adjacency matrix must have
the same dimensions as the matrix of distances of G.
distMat -- the matrix of distances between pairs of vertices. This
distance matrix has the same dimensions as the adjacency matrix of
G.

OQUTPUT :
the cost of the network G.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>

etworkCost <- function(adjMat, distMat) {

netCost <- 0
numerator <- 0
denominator <- 0

N <- dim(adjMat) [1]

for (row in 2:N) {
for (col in 1:(row - 1)) {
numerator <- numerator + (adjMat[row, col] * distMat[row, col])
denominator <- denominator + (distMat[row, coll)

}
}

netCost <- numerator / denominator

The weight matrix of a ring lattice G that has N vertices. This weight is
defined in terms of the Euclidean distance between pairs of nodes. If i
and j are vertices of G, then the distance between i and j is

1.ij = [2 * sin(li - j| pi / N)] / [2 * sin(pi / N)]
= sin(li - jl| pi / N) / sin(pi / N)

The distance between each pair of neighbouring vertices is 1_ij = 1 and

the distance from i to itself is trivially 1_ii = 0. The weight matrix

of G is denoted {1_ij}, which has zero along the main diagonal and is
symmetric about this diagonal.

INPUT:
n -- an integer > 0; this is the number of vertices of the ring
lattice G
OUTPUT :

the weight matrix {1_ij} of G. If n <= 0O, then return NULL.

AUTHOR :
Minh Van Nguyen <nguyenminh2@gmail.com>
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436 weightMatrix <- function(mn) {
437 weightMat <- NULL

438

439 if (n > 0) {

440 # construct an n x n matrix with zero everywhere

441 weightMat <- matrix (0, nrow = n, ncol = n)

442

443 # Calculate the Euclidean distances on the ring lattice. Perhaps we
444 # need only to consider either of the lower triangular or upper
445 # triangular matrices, excluding the main diagonal.

446 for (row in 1:n) {

447 for (col in 1:n) {

448 if (row !'= col) {

449 # numerator <- 2 * sin((abs(row - col) * pi) / n)

450 # denominator <- 2 * sin(pi / n)

451 numerator <- sin((abs(row - col) * pi) / n)

452 denominator <- sin(pi / n)

453 weightMat [row, col] <- numerator / denominator

454 }

455 }

456 }

457 } else {
458 weightMat <- NULL
}

459

460

461 weightMat

462 }

463

464

465 # A matrix of weighted shortest paths for a weighted ring lattice G. The
466 # lattice G has N vertices and a degree of k per vertex.

467 #

468 # INPUT:

469 # adjMat -- the adjacency matrix of G. If G is undirected, then adjMat
470 # is symmetric about the main diagonal. The adjacency matrix of G
471 # must have the same dimensions as the weight matrix of G.

472 # weightMat -- a matrix of edge weights. This is an N x N matrix,

473 # where N is the number of vertices in G. If G is undirected, then
474 # weightMat is symmetric about the main diagonal. The adjacency

475 # matrix of G must have the same dimensions as the weight matrix of G.
476 #

477 # OUTPUT:

478 # an N x N matrix of weighted shortest paths. If G is totally isolated,
479 # then return an N x N matrix with +oo everywhere, and zero along the
480 # main diagonal. Else G has an (undirected) edge connecting a pair of
481 # its vertices, so we return an N x N matrix of weighted shortest paths.
482 #

483 # AUTHOR:

484 # Minh Van Nguyen <nguyenminh2@gmail.com>

485 #

486 weightedGeodesics <- function(adjMat, weightMat) {

487 N <- dim(adjMat) [1]
488 weightedGeo <- NULL

489

490 # Check for totally isolated graphs. The graph G represented by adjMat is
491 # totally isolated if all its vertices are isolated from each other. For
492 # a totally isolated graph G of dimensions N x N, its corresponding

493 # matrix of weighted geodesics is an N x N matrix with +oo (positive

494 # infinity) everywhere, and zero along the main diagonal.

495 if (sum(adjMat) == 0) {

496 weightedGeo <- matrix(Inf, nrow = N, ncol = N)

497 for (i in 1:N) {

498 weightedGeo[i, i] <- 0

499 }

500 }

501 # Now we know that G is not totally isolated, so at least one pair of
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# vertices in G is connected by an (undirected) edge. Then proceed to
# find the matrix of weighted geodesics corresponding to G.
else {
collimit <- O
colStart <- 1
rowStart <- 2
startVertex <- c()
endVertex <- c()
edgeWeight <- c()
# As weightMat is symmetric about the main diagonal, we only need to
# consider its lower (or upper) triangular matrix, excluding entries
# along the main diagonal.
for (row in rowStart:N) {
collLimit <- collimit + 1
for (col in colStart:colLimit) {
if (adjMat[row, col] == 1) {
startVertex <- c(startVertex, row)
endVertex <- c(endVertex, col)
edgeWeight <- c(edgeWeight, weightMat [row, coll)
¥
}
}
e <- c(Q)
for (i in 1:length(startVertex)) {
e <- c(e, startVertex[i], endVertex[i], edgeWeight[i])
}
emat <- matrix(mc = 3, byrow = TRUE, e)
for (row in 1:dim(emat)[1]) {
emat [row, 1] <- emat[row, 1] - 1
emat [row, 2] <- emat[row, 2] - 1
}
g <- add.edges(graph.empty(N, directed = FALSE),
t(emat[, 1:2]), weight = emat[, 3])
weightedGeo <- shortest.paths(g)
}
weightedGeo

The main routine. This is where the network metrics are calculated. For
the Watts-Strogatz model, the network metrics is comprised of the

characteristic path length L and the clustering coefficient C.

the generalization of Watts-Strogatz contained in the paper
(Latora & Marchiori 2003), the network metrics are the local efficiency

E_loc, the global efficiency E_glob, and the network cost C_G.
INPUT:

regmat -- a regular matrix.

probabilities -- a set of re-wiring probabilities.

weightMat -- a matrix of edge weights.

experiment -- n-th experiment
OUTPUT :

Network metrics using the measures described in Latora & Marchiori
AUTHOR :

#

Minh Van Nguyen <nguyenminh2@gmail.com>

set of adjacency matrices

nets <- array(NA, dim = c(length(probabilities) + 1, n, n))

#

first matrix is regular matrix

nets[1,,] <- regmatl,]
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[1].

alculateNetworks <- function(regmat, probabilities, weightMat, experiment) {



# read in rewired networks for the specified experiment number
print("read in rewired networks")

counter <- 1

for (p in 1:length(probabilities)) {

# Read in rewired network into memory and the resulting object is named

# "mat".

source (paste ("networks-r/graph-", experiment, "-", p, ".r", sep = ""))

nets[counter + 1,,] <- matl[,]
counter <- counter + 1

}

# This section is for the Latora-Marchiori generalization.

# Global and local efficiencies, and network cost

Eglob <- NULL

Eloc <- NULL

netCost <- NULL

for (counter in 1:(length(probabilities) + 1)) {
print (c("metrics for n-th rewiring probability ", counter))
Eglob[counter] <- globalEfficiency(nets[counter,,], weightMat)
Eloc[counter] <- localEfficiency(nets[counter,,], weightMat)
netCost [counter] <- networkCost (nets[counter,,],

weightedGeodesics (nets [counter,,],
weightMat))
¥

# the structure to return

result <- cbind(Eglob[1] / Eglob,
Eloc / Eloc[1],
netCost / netCost[1])

Simulates a circular list. We are only interested in the index i of a
member of this list, which has n members. One way to conceptualize this
list is to visualize all n members as arranged in a cycle graph, in
which each member i has an edge connecting it to i + 1, and an edge
connecting it to i - 1. Another way to think about this function is to
interpret it as a simple implementation of the group Z/Zn, where only
the index of each i in Z/Zn is returned.

INPUT:
index -- integer; index of an element in this circular list.
length -- integer > 0O; the number of elements in this circular list.
FIXME: Maybe it’s a good idea to implement the case where
length < 0, or provide some sanity checking to take care of that
possibility.

OUTPUT :
If 0 < index <= length, then return index. If index > length, then
return index mod length. Else index < 0, so return index mod length.
If length is 0, then return NaN (not a number).

AUTHOR:
Rodolfo Garcia-Flores
Documentation by Minh Van Nguyen <nguyenminh2@gmail.com>

eturnIndex <- function(index, length) {

if ((index > 0) && (index <= length)) {
index

}

else if (index > length) {
index - length * floor(index / length)
}

else {
(length + index) + length * floor (-1 * index / length)
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### Main script

# Actual values should be n = 1000, k = 10. When run with these values,
# the script should take a few hours to complete. Test values can be

# n =20, k = 4

n <- 1000 # vertices

k <- 6 # edges per vertex, MUST BE EVEN.

nTimes <- 20 # should be 20

# data for a logarithmically-scaled probability vector
nPoints <- 37

minProb <- 1le-4

maxProb <- 1

# output file name
summaryFileName <- "small-world-summary.txt"

# connectivity matrix of a regular network with no loops
regularMatrix <- matrix (0, nrow = n, ncol = n)
for (i in 1:n) {
for (index in (k/2):1) {
# Get right the indexes.
jplus <- returnIndex(i + index, n)
jminus <- returnIndex (i - index, n)
regularMatrix[i, jplus] <- regularMatrix[i, jminus] <- 1
X
}

# logarithmically-scaled probability vector
factor <- (maxProb / minProb)~(1 / (nPoints - 1))
probs <- NULL
for (pt in 1:nPoints) {

probs[pt] <- minProb * factor " (pt - 1)

# variable aliases

numMeasures <- 3 # how many measures
GE <- 1 # global efficiency
LE <- 2 # local efficiency
NC <- 3 # network cost

# weight matrix of the ring lattice
weightMat <- weightMatrix(n)

# first probability is zero, i.e. the regular matrix
results <- array(NA, dim = c(nTimes, length(probs) + 1, numMeasures))

for (experiment in 1:4) {

print (c("network metrics for experiment ", experiment))

results [experiment,,] <- calculateNetworks(regularMatrix,
probs,
weightMat,

experiment)

}

# averages

GEmeans <- colSums(results[,,GE]) / nTimes
LEmeans <- colSums (results[,,LE]) / nTimes
NCmeans <- colSums(results[,,NC]) / nTimes

# write table of results
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700
701
702
703
704

summary <- cbind(c(0, probs), GEmeans, LEmeans, NCmeans)
write.table (summary, file = summaryFileName, sep = "\t")

# plot variables
# insert plotting code here
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