
Dynamics of Negotiation in a Network of Intelligent

Software Agents: Technical Report∗

Minh Van Nguyen
nguyenminh2@gmail.com

27 February 2009

1 Early studies of social networks

Milgram [8] is one of the early quantitative studies of the structure of social networks.
The study describes an experiment in which Milgram wished to send a number of letters
to his friend in another city. The letters were first distributed to a random selection of
people. These people were instructed to deliver the letters to the addressee, under the
conditions that the letters must be passed from person to person, and the passers were
permitted to only deliver the letters to people whom they knew on a first-name basis.
For those letters that eventually reached the intended addressee, it was found that on
average six steps were required for a letter to reach its destination. The path length
of six within social networks is colloquially known as the “six degrees of separation”.
Within mathematical circles, a similar type of social network is found in the scientific
collaboration network of Erdös numbers [2].

2 Watts-Strogatz small-world networks

Watts and Strogatz [11] study a class of networks that has become known as small-world
networks. The Watts-Strogatz model considers a generic graph G having N vertices and
K edges, and satisfying the following properties:

1. G is an unweighted or topological graph.

2. G is simple in that it has no loops and no multiple edges.

3. G is sparse in the sense that K � N(N − 1)

2
.

4. G is connected such that there is a path between any distinct pair of vertices.

∗The author acknowledges financial support from the Commonwealth Scientific and Industrial Re-
search Organisation (CSIRO) during this project. The project was carried out while the author was a
2008/2009 Summer Research Scholar within CSIRO’s Mathematical and Information Sciences division,
supervised by CSIRO research scientist Dr Rodolfo Garcia-Flores.

1

For a random graph, the quantities N and K must satisfy

N � K � ln(N)� 1

where K � ln(N) guarantees that the graph is connected [1].

2.1 Characteristic path length and clustering coefficient

Watts and Strogatz [11] analyze the structure of such a network by means of two quan-
tities: the characteristic path length L; and the clustering coefficient C. Let {dij} be the
geodesic matrix of G, i.e. the matrix of shortest edge counts between pairs of vertices in
G. Then the characteristic path length L is defined as the average shortest path between
distinct pairs of vertices in G:

L(G) =
1

N(N − 1)

∑
i 6=j∈V (G)

dij (1)

which is a global property of G. Furthermore, Watts and Strogatz also consider a local
property of G, called the clustering coefficient. To define the clustering coefficient of G,
they first introduce the local clustering coefficient Ci of vertex i:

Ci =
Ki

Ni(Ni − 1)/2

where Ki is the number of edges in the graph of immediate neighbours of i and Ni is
the number of immediate neighbours of vertex i. The graph of immediate neighbours of
i is a subgraph of G. It consists of all vertices (6= i) that are adjacent to i, preserving
the adjacency relation among those vertices as found in the supergraph G. Then the
clustering coefficient C of G is defined by

C(G) =
1

N

∑
i∈V (G)

Ci

where the sum is taken over all vertices i of G. The quantity C can be interpreted to
mean the average cliquishness of vertices in G, hence C is known as a local property of
G.

2.2 The Watts-Strogatz model

In [11], Watts and Strogatz propose an edge rewiring method for constructing a class of
graphs that interpolate between a regular lattice and a random graph. Known as the
Watts-Strogatz model, the method starts with a one-dimensional lattice G having N ver-
tices, periodic boundary conditions, and each vertex connecting to its k neighbours for
some even k. Identify the vertex set V (G) with the elements of the ring Z/NZ for some
fixed integer N > 2. The lattice can be conceptualized as a circulant graph, where each
vertex i ∈ Z/NZ is linked by an edge with each of the vertices i + j and i − j for each
j ∈ {1, 2, . . . , k/2}, where vertex arithmetic is performed modulo N . We refer to such a
graph as a k-circulant graph on N vertices, or a ring lattice of N nodes and per-vertex

2

degree k. Small-world networks are graphs that are intermediate between regular ring
lattices and Erdös-Rényi [3] random graphs. Figure 1 illustrates the interpolation from a
ring lattice with rewiring probability p = 0 to an Erdös-Rényi random graph where the
rewiring probability is p = 1. The graphs are produced using Sage’s [10] interface to the
NetworkX [4] Python package.

Figure 1: From a regular ring lattice (left) to a random graph (right).

Given a k-circulant graph on N vertices, the Watts-Strogatz rewiring procedure is as
follows. Let the probability of choosing a vertex be uniformly distributed. Rewire each
vertex with probability p to another vertex chosen at random. The rewiring must result
in a graph that:

1. has no multiple edges;

2. has no loops; and

3. the number of edges does not change.

The Watts-Strogatz model does not specifically require that a rewired graph be connected,
hence the result of one round of random edge rewiring may be a disconnected graph.
However, by definition of the characteristic path length in (1), the underlying graph
must be connected, otherwise the geodesic matrix {dij} has ∞ as one of its entries.

Figure 2 shows a plot of the characteristic path lengths and clustering coefficients nor-
malized. The horizontal axis follows a log scale. The plotted metrics were obtained in
an effort to verify by computer simulation results reported in [11]. The ring lattice in
question is a 10-circulant graph on 1000 vertices with 37 rewiring probability points. The
rewiring probabilities are chosen as follows. Let G be a k-circulant graph on N vertices.
For i = 1, 2, . . . , r the i-th rewiring probability pi is given by

pi = pmin × F i−1 with F =

(
pmax

pmin

)1/(r−1)

(2)

where pmin and pmax are the minimum and maximum rewiring probabilities, respectively.

3

Figure 2: Normalized characteristic path lengths and clustering coefficients.

Next, we describe the procedure for normalizing L and C. Let B be the number of batches
of r ring lattices to be rewired with probabilities chosen according to (2). That is, each
batch contains r k-circulant graphs on N vertices and the i-th graph from each batch is
to be rewired with probability pi. In particular, our computer simulation rewired a total
of Br = 20 × 37 = 740 ring lattices. Define Gpi

as the connected graph resulting from
rewiring G with probability pi. For each rewiring probability pi, define the normalized
characteristic path length (respectively clustering coefficient) by

normpi
(L) =

1

B

∑
Gpi

L(Gpi
)

L(G)
and normpi

(C) =
1

B

∑
Gpi

C(Gpi
)

C(G)
(3)

where each sum is taken over all graphs Gpi
. From Figure 2, we note that there is

a range of rewiring probabilities that result in connected graphs with high C and a
rapid decrease in L. This is qualitatively consistent with results reported in [11]. The
decrease in L is attributed to a number of vertices with links to distant vertices, while
the value of C remains high because only a relatively small proportion of vertices have
long-range connections. This phenomenon of graphs having the twin characteristics of
high cliquishness and low average path length is referred to as the small-world effect.

4

3 Generalizing the Watts-Strogatz model

Whereas [11] uses the characteristic path length L and clustering coefficient C to study
small-world networks, Latora and Marchiori [7] generalize the method by using the notions
of local and global efficiencies as defined in section 3.1. The generalization is applicable
to both directed and undirected graphs, as well as weighted and unweighted graphs.
For weighted graphs, the weight can be a cost associated with the edge connecting two
vertices. A graph G with low cost is said to be economic, while G is said to exhibit
small-world behaviour provided that it has high efficiency at both the local and global
levels. If G has these two properties—both economic and efficiency—then it is referred
to as an economic small-world.

3.1 Global and local efficiencies and network cost

Let G be a graph (either weighted or unweighted) having N vertices and K edges. To
define local and global efficiencies, Latora and Marchiori [7] introduce the concept of
average efficiency. If i and j are distinct vertices of G, let dij be the shortest path length
between i and j. Then the average efficiency of G is

E(G) =
1

N(N − 1)

∑
i 6=j∈V (G)

1

dij

(4)

Let κN be the complete graph on N vertices so that E(κN) is the average efficiency of
κN . Define the global efficiency of G as

Eglob =
E(G)

E(κN)
(5)

For each vertex i of G, let Gi be the subgraph of neighbours of i. Then vertex i is excluded
from the vertex set Vi of Gi. Define the local efficiency of G by

Eloc =
1

N

∑
i∈V (G)

E(Gi)

E(κ|Vi|)
(6)

where |Vi| is the cardinality of Vi. Note that the metrics (4), (5) and (6) are also applicable
to directed graphs as well as weighted graphs. The cost of G can be defined as

CG =

∑
i 6=j∈V (G)

aijγ(`ij)∑
i 6=j∈V (G)

γ(`ij)

where {aij} and {`ij} are the adjacency and weight matrices of G, respectively. In the
Watts-Strogatz model, the weight `ij assigned to the edge connecting vertices i and j is
`ij = 1. The cost evaluator function γ measures the cost needed to set up a connection
with a given length. The Watts-Strogatz model assumes γ to be the identity function

5

γ(`ij) = `ij = 1 for all i 6= j. Thus {aij} = {`ij} holds for the specific case of the
Watts-Strogatz model and therefore

CG =

∑
i 6=j∈V (G)

aijγ(`ij)∑
i 6=j∈V (G)

γ(`ij)
=

∑
i 6=j∈V (G)

aij∑
i 6=j∈V (G)

1
=

2K

N(N − 1)
(7)

However, for weighted graphs Latora and Marchiori [7] define the network cost as

CG =

∑
i 6=j∈V (G)

aij`ij∑
i 6=j∈V (G)

`ij
(8)

where `ij is defined in (9).

Appendix A contains an R [9] script implementing the Latora-Marchiori metrics for
graphs that are unweighted, undirected and connected.

Figure 3: Normalized global and local efficiencies.

Figure 3 shows a plot of the global and local efficiencies normalized, together with normal-
ized network costs. The results are similar to those reported by Latora and Marchiori.

6

The metrics were obtained from computer simulation of random edge rewiring of 20
batches of 37 ring lattices, each lattice being a 10-circulant graph on 1000 vertices. That
is, each batch contained 37 ring lattices and therefore a total of 20 × 37 = 740 ring
lattices to be rewired. Edges of the i-th ring lattice of each batch were rewired with the
probability in (2). The Latora-Marchiori metrics (5) and (6) were then calculated on the
rewired 740 graphs. The normalized Eglob and Eloc corresponding to rewiring probability
pi were obtained using a normalization procedure similar to (3). In particular, let B be
the number of batches with r rewiring probabilities chosen according to (2), let G be
a k-circulant graph on N vertices, and let Gpi

be the connected graph resulting from
rewiring G with probability pi. For each rewiring probability pi, the normalized local and
global efficiencies are defined by

normpi
(Eglob) =

1

B

∑
Gpi

Eglob(G)

Eglob(Gpi
)

and normpi
(Eloc) =

1

B

∑
Gpi

Eloc(Gpi
)

Eloc(G)

where each sum is taken over all graphs Gpi
that have been rewired with probability pi.

The normalized network cost is similarly defined by

normpi
(CG) =

1

B

∑
Gpi

CG

CGpi

However, by definition of CG for unweighted, undirected graphs as specified by (7), it is
clear that normpi

(CG) = 1 for all rewiring probabilities. Further details can be found in
Appendix A.

3.2 Extending the Watts-Strogatz model to weighted networks

This section considers Latora and Marchiori’s [7] generalization of the Watts-Strogatz
model to the case of weighted, undirected networks. The network is a k-circulant graph
on N vertices where N = 1000 and k = 6. After generating a ring lattice satisfying
these parameters, one would get a graph G with K = 3000 edges. The Latora-Marchiori
approach, as detailed in “Model 4” of [7], is to randomly eliminate K/2 = 1500 of the
edges of G and then proceed with the rewiring process of the Watts-Strogatz model. The
weight of each edge is defined in terms of the Euclidean distance. In particular, if i and
j are vertices of G for i, j = 1, 2, . . . , N then the Euclidean distance between i and j is

`ij =
2 sin(|i− j|π/N)

2 sin(π/N)
=

sin(|i− j|π/N)

sin(π/N)
(9)

Note that the metric (9) is specific to ring lattices. The distance between each pair of
neighbouring vertices is `ij = 1 and the distance from i to itself is trivially `ii = 0.
The weight matrix of G is denoted {`ij}, which has zero along the main diagonal and
is symmetric about this diagonal. For unweighted graphs, the geodesic matrix {dij} is
a matrix of minimum edge counts separating each pair of vertices i and j. If there are
no paths from i to j, where i 6= j, then Latora and Marchiori [7] define dij = +∞. In
case i = j, then dij = 0. On the other hand, for weighted graphs the weight matrix {`ij}
can be interpreted as the matrix of physical distances. Then dij is the minimum sum of

7

physical distances from i to j. Furthermore, dij = 0 if i = j, and dij = +∞ whenever
there are no paths from i to j.

The following scripts support computer simulation of weighted, undirected networks as
described in “Model 4”:

• k_circulant_n.sage — This Sage script generates ring lattices, each with half the
total number of edges removed.

• rewire-lattices.r — This R script can be used to rewire (n, k) ring lattices that
have had 50 percent of their total number of edges removed.

• mat2r.py — This Python script converts text representation of a Latora-Marchiori
network to its R code representation.

• network-metrics-lm.r — An R script to compute network metrics of weighted,
undirected Latora-Marchiori networks.

Further details on these scripts can be found in Appendix B. Using the above scripts,
the computed network metrics are plotted using R and shown in Figure 4. The results
are qualitatively similar to those reported in [7].

4 Conclusion & further research

In this paper, we have provided verification of results reported in [7]. The reported results
are qualitatively similar to those contained in [7].

In [6], Kaihara formulates the problem of virtual market based supply chain manage-
ment (SCM) in terms of a discrete resource allocation problem, and proposes an algo-
rithm for SCM under a dynamic environment. The simulation reported in [6] concerns
a single input/output circulatory resource flow within a network of two economic agents
and two virtual markets.

As a direction for future research that incorporates a network approach to economics,
we propose to use the Latora-Marchiori network metrics in computer simulations of a
multi-agent network of buyers and sellers. Instead of the edge weight (9), we propose to
use a multi-dimensional version of the Cobb-Douglas or constant elasticity of substitution
functions [5]. Our research approach has the advantage of generalizing [6] to the case of
multiple input and output.

Revision

• 2010-01-09 — Some clarification suggested by David Joyner (US Naval Academy),
including: explaining what is the graph of immediate neighbours of a vertex; and
some improvements to the exposition of the paper.

8

Figure 4: Network metrics for weighted, undirected graphs.

9

A Latora-Marchiori metrics: unweighted

This appendix presents a script written in the R [9] language for computing local and
global efficiencies and network cost of unweighted, undirected graphs. The graphs in
question have N = 1000 vertices and per-vertex degree k = 10. Starting with a 10-
circulant graph G on 1000 vertices, the script rewires G with probability p according to
the Watts-Strogatz random edge rewiring method to produce a rewired connected graph
G′. The global and local efficiencies of G′ are then calculated according to (5) and (6),
respectively. The network cost is calculated using (7). The 37 rewiring probabilities are
chosen according to (2).

1 # sw-latora -marchiori.r -- modelling small -world networks
2 # Copyright (C) 2008 Minh Van Nguyen <nguyenminh2@gmail.com >
3 #
4 # An R script to model small -world networks. This implements techniques
5 # in the paper:
6 #
7 # V. Latora & M. Marchiori. Economic small -world behavior in weighted
8 # networks. The European Physical Journal B, 32(2):249 - -263 , 2003.
9 #

10 # which generalizes the approach described in:
11 #
12 # D. Watts & S.H. Strogatz. Collective dynamics of "small -world"
13 # networks. Nature , 393(4):440 - -442 , 1998.
14 #
15 # Rodolfo Garcia -Flores has written an R script that implements the
16 # Watts -Strogatz model described in (Watts & Strogatz 1998).
17 #
18 # Minh Van Nguyen extended Rodolfo ’s code based on a generalization
19 # of the Watts -Strogatz model as detailed in the paper
20 # (Latora & Marchiori 2003).
21 #
22 # This program is free software; you can redistribute it and/or modify
23 # it under the terms of the GNU General Public License as published by
24 # the Free Software Foundation; either version 2 of the License , or
25 # (at your option) any later version.
26 #
27 # This program is distributed in the hope that it will be useful ,
28 # but WITHOUT ANY WARRANTY; without even the implied warranty of
29 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 # GNU General Public License for more details.
31 #
32 # You should have received a copy of the GNU General Public License
33 # along with this program; if not , write to the Free Software
34 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA 02111 -1307 , USA.
35
36
37 # Clear memory , removing (almost) everything in the working environment
38 # without any warning. Be careful with what you wish for.
39 rm(list = ls())
40 # For colours and fonts
41 library(grDevices)
42 # For fit , simulate and diagnose exponential -family models for networks
43 library ("ergm")
44 # For social network analysis
45 library ("sna")
46 # library (" igraph ")
47
48
49 # ===
50 # 1. SETUP (DATA , MODELS AND FUNCTIONS)
51 # ===

10

52
53
54 ### Problem data
55
56
57 # Actual values should be n = 1000, k = 10. When run with these values ,
58 # the script should take a few hours to complete. Test values can be
59 # n = 20, k = 4
60 n <- 1000 # vertices
61 k <- 10 # edges per vertex , MUST BE EVEN.
62 timesToRepeat <- 20 # should be 20
63
64 # Data for a logarithmically -scaled probability vector.
65 numberOfPoints <- 37
66 minProb <- 1e-4
67 maxProb <- 1
68
69 # Directories and file names
70 # Subdirectory names to organise I/O.
71 input <- "input"
72 output <- "output"
73
74 # Files in input directory to search for.
75 # Output file names
76 summaryFileName <- "small -world -summary.txt"
77
78 # Platform -specific directory separator.
79 slash <- .Platform$file.sep
80
81 # (Relative) subdirectory paths.
82 outputDir <- paste (".", slash , output , slash , sep = "")
83 inputDir <- paste (".", slash , input , slash , sep = "")
84
85
86 ### Functions
87
88
89 # Simulates a circular list. We are only interested in the index i of a
90 # member of this list , which has n members. One way to conceptualize this
91 # list is to visualize all n members as arranged in a cycle graph , in
92 # which each member i has an edge connecting it to i + 1, and an edge
93 # connecting it to i - 1. Another way to think about this function is to
94 # interpret it as a simple implementation of the group Z/Zn, where only
95 # the index of each i in Z/Zn is returned.
96 #
97 # INPUT:
98 # index -- integer; index of an element in this circular list.
99 # length -- integer > 0; the number of elements in this circular list.

100 # FIXME: Maybe it’s a good idea to implement the case where
101 # length < 0, or provide some sanity checking to take care of that
102 # possibility.
103 #
104 # OUTPUT:
105 # If 0 < index <= length , then return index. If index > length , then
106 # return index mod length. Else index < 0, so return index mod length.
107 # If length is 0, then return NaN (not a number).
108 #
109 # AUTHOR:
110 # Rodolfo Garcia -Flores
111 # Documentation by Minh Van Nguyen <nguyenminh2@gmail.com >
112 #
113 returnIndex <- function(index , length) {
114 if ((index > 0) && (index <= length)) {
115 index
116 }
117 else if (index > length) {

11

118 index - length * floor(index / length)
119 }
120 else {
121 (length + index) + length * floor(-1 * index / length)
122 }
123 }
124
125 # The re-wiring routine.
126 #
127 # INPUT:
128 # aMatrix -- an adjacency matrix.
129 # aProbability -- double; a probability value p such that 0 < p < 1. This
130 # value determines the probability that an edge incident on a vertex
131 # is re-wired.
132 #
133 # OUTPUT:
134 # An adjacency matrix with a number of the vertices re-wired.
135 #
136 # AUTHOR:
137 # Rodolfo Garcia -Flores
138 # Documentation by Minh Van Nguyen <nguyenminh2@gmail.com >
139 #
140 reWire <- function(aMatrix , aProbability) {
141 currentMat <- aMatrix
142 for (i in 1:n) {
143 for (j in 1:i) {
144 if ((currentMat[i,j] != 0) && (runif (1) < aProbability)) {
145 # To vertices different to i and
146 # different to those already connected ,
147 # preferably to nodes that are isolated.
148 # This should prevent having isolated regions.
149 isolatedNodes <- c(1:n)[colSums(currentMat [,]) == 0]
150 nodesAlreadyConnected <- c(1:n)[currentMat[i,] > 0]
151 excludedNodes <- c(i, nodesAlreadyConnected)
152 notExcludedNodes <- (1:n)[- excludedNodes]
153
154 # A list whose first elements are isolated nodes , the rest are
155 # shuffled , not -excluded values.
156 validPrioritisedNodes <- c(isolatedNodes ,
157 sample(setdiff(notExcludedNodes ,
158 isolatedNodes)))
159
160 # Take first node index in list.
161 newVertex <- validPrioritisedNodes [1]
162 currentMat[i,j] <- 0
163 currentMat[j,i] <- 0
164 currentMat[i, newVertex] <- 1
165 currentMat[newVertex , i] <- 1
166 }
167 }
168 }
169 currentMat
170 }
171
172 # The average efficiency E of a graph G, where the graph has N vertices and
173 # K edges. This function can also be used to calculate the average
174 # efficiency even if G is a complete graph on N vertices. Such a complete
175 # graph is also denoted G^{ideal}, i.e. the ideal case where G has all the
176 # possible
177 #
178 # N(N - 1) / 2
179 #
180 # edges. Then the global and local efficiencies are defined in terms of E(G)
181 # and E(G^{ideal }). These notions of efficiency of a graph are defined in
182 # the paper (Latora & Marchiori 2003).
183 #

12

184 # INPUT:
185 # geodesicMat -- the matrix of the shortest path lengths between pairs of
186 # vertices in G. If i and j are vertices of G, then d_ij denotes the
187 # shortest path length between i and j. If geodesicMat describes the
188 # geodesics of pairs of vertices in an undirected graph , then
189 # geodesicMat is symmetric about the main diagonal. Note that
190 # geodesicMat must be a square matrix , so that its row and column
191 # dimensions both equal the number of vertices in the underlying
192 # graph.
193 #
194 # OUTPUT:
195 # the average efficiency E of the graph G.
196 #
197 # AUTHOR:
198 # Minh Van Nguyen <nguyenminh2@gmail.com >
199 #
200 averageEfficiency <- function(geodesicMat) {
201 # the number of vertices in geodesicMat
202 N <- dim(geodesicMat)[1]
203 E <- NULL
204
205 # check for the case that geodesicMat is a 1 x 1 matrix
206 if (N == 1) {
207 # harmonicSum <- 0
208 E <- 0
209 }
210 else {
211 # Compute the harmonic sum of lower triangular matrix of geodesicMat ,
212 # excluding the main diagonal.
213 colLimit <- 0
214 colStart <- 1
215 rowStart <- 2
216 harmonicSum <- 0
217 for (row in rowStart:N) {
218 colLimit <- colLimit + 1
219 for (col in colStart:colLimit) {
220 # Avoid the case where there ’s no path between vertices i and j. If
221 # no path exists between i and j, then d_ij = +oo, which is positive
222 # infinity. As d_ij -> +oo , then (1 / d_ij) -> 0.
223 if (geodesicMat[row , col] != "Inf") {
224 harmonicSum <- harmonicSum + (1 / geodesicMat[row , col])
225 }
226 }
227 }
228
229 # compute average efficiency
230 E <- harmonicSum / (N * (N - 1))
231 }
232
233 E
234 }
235
236 # The global efficiency E_glob of a graph G, where the graph has N vertices
237 # and K edges. The notion of global efficiency of a graph is defined in the
238 # paper (Latora & Marchiori 2003). See also the function averageEfficiency ,
239 # which defines the average efficiency of G. The measure E_glob is defined
240 # as
241 #
242 # E_glob = E(G) / E(G^{ideal })
243 #
244 # where G^{ideal} is the complete graph on N vertices. Thus E_glob is a
245 # ratio of the average efficiencies of two types of graphs: (1) the average
246 # efficiency of G itself; (2) the average efficiency of the complete graph
247 # on N vertices , which is the number of vertices in G.
248 #
249 # INPUT:

13

250 # geodesicMat -- the matrix of the shortest path lengths between pairs of
251 # vertices in G. If i and j are vertices of G, then d_ij denotes the
252 # shortest path length between i and j. If geodesicMat describes the
253 # geodesics of pairs of vertices in an undirected graph , then
254 # geodesicMat is symmetric about the main diagonal.
255 #
256 # OUTPUT:
257 # the global efficiency E_glob of the graph G.
258 #
259 # AUTHOR:
260 # Minh Van Nguyen <nguyenminh2@gmail.com >
261 #
262 globalEfficiency <- function(geodesicMat) {
263 # the number of vertices in geodesicMat
264 N <- dim(geodesicMat)[1]
265
266 # compute the average efficiency
267 aveEfficiency <- averageEfficiency(geodesicMat)
268
269 # Construct the adjacency matrix of a complete graph on N vertices. By
270 # definition of complete graphs , a complete graph K_n and its geodesic
271 # matrix G_dist are equivalent. That is, K_n and G_dist are copies of
272 # each other. Also , G_dist has 1 everywhere , and 0 on the main diagonal.
273 gIdealMat <- matrix(nrow = N, ncol = N)
274 gIdealMat [,] <- 1
275 for (i in 1:N) {
276 gIdealMat[i, i] <- 0
277 }
278
279 # compute the average efficiency of the complete graph
280 aveEfficiencyGIdeal <- averageEfficiency(gIdealMat)
281
282 # compute the global efficiency
283 Eglob <- aveEfficiency / aveEfficiencyGIdeal
284 }
285
286 # The adjacency matrix of G_i. If G is an undirected graph and i is a
287 # vertex of G, then G_i is the subgraph of neighbours of i, excluding i
288 # itself.
289 #
290 # INPUT:
291 # aMat -- the adjacency matrix of the graph G.
292 # i -- the index of the vertex whose neighbours we want to consider.
293 # Let r and c be the row and column dimensions of aMat , respectively.
294 # Then 1 < i < r or 1 < i < c.
295 #
296 # OUTPUT:
297 # the adjacency matrix of G_i.
298 #
299 # AUTHOR:
300 # Minh Van Nguyen <nguyenminh2@gmail.com >
301 #
302 neighboursAdjMat <- function(aMat , i) {
303 # the row dimension of aMat
304 ## rowNum <- dim(aMat)[1]
305 # the column dimension of aMat
306 colNum <- dim(aMat)[2]
307
308 # find indices of the immediate neighbours of vertex i
309 neighIndex <- c()
310 for (col in 1: colNum) {
311 if (aMat[i, col] == 1) {
312 neighIndex <- c(neighIndex , col)
313 }
314 }
315

14

316 # Adjacency matrix of neighbours of i, i.e. the adjacency matrix of G_i
317 # in the notation of the paper (Latora & Marchiori 2003).
318 neighAMat <- matrix(nrow = length(neighIndex),
319 ncol = length(neighIndex))
320 neighAMat [,] <- 0
321 for (row in 1: length(neighIndex)) {
322 for (col in row:length(neighIndex)) {
323 if (aMat[neighIndex[row], neighIndex[col]] == 1) {
324 neighAMat[row , col] <- 1
325 neighAMat[col , row] <- 1
326 }
327 }
328 }
329
330 neighAMat
331 }
332
333 # The local efficiency E_loc of a graph G, where the graph has N vertices
334 # and K edges. The notion of local efficiency of a graph is defined in the
335 # paper (Latora & Marchiori 2003). See also the function averageEfficiency ,
336 # which defines the average efficiency of G. The measure E_loc is defined
337 # as
338 #
339 # E_loc = (1/N) \sum_{i \in G} E(G_i) / E(G^{ideal }_i)
340 #
341 # where G_i is the subgraph of neighbours of vertex i, and G^{ideal }_i is
342 # the complete graph on N_i, which is the number of vertices in G_i. Note
343 # that G_i excludes the vertex i, and only considers the graph formed by
344 # its immediate neighbours.
345 #
346 # INPUT:
347 # aMat -- the adjacency matrix of the graph G. If G is an undirected
348 # graph , then aMat is symmetric about the main diagonal.
349 #
350 # OUTPUT:
351 # the local efficiency E_loc of the graph G.
352 #
353 # AUTHOR:
354 # Minh Van Nguyen <nguyenminh2@gmail.com >
355 #
356 localEfficiency <- function(aMat) {
357 # The number of vertices in the underlying graph G. Thus the column and
358 # row dimensions must be equal.
359 N <- dim(aMat)[1]
360
361 # summing the ratios (EGi / EIdealGi) for all vertices i
362 cumSum <- 0 # the cumulative sum
363 EGi <- 0 # average efficiency of G_i
364 EIdealGi <- 0 # average efficiency of G^{ideal }_i
365 geodesicGi <- 0 # geodesic matrix of G_i
366 geodesicIdealGi <- 0 # geodesic matrix of G^{ideal }_i
367 idealGi <- 0 # adjacency matrix of G^{ ideal}_i
368 for (i in 1:N) {
369 geodesicGi <- geodist(neighboursAdjMat(aMat , i))$ gdist
370 EGi <- averageEfficiency(geodesicGi)
371
372 # Construct the adjacency matrix of a complete graph on K_i vertices. By
373 # definition of complete graphs , a complete graph K_n and its geodesic
374 # matrix G_dist are equivalent. That is, K_n and G_dist are copies of
375 # each other. Also , G_dist has 1 everywhere , and 0 on the main diagonal.
376 idealGi <- matrix(nrow = dim(geodesicGi)[1], ncol = dim(geodesicGi)[2])
377 idealGi[,] <- 1
378 for (j in 1:dim(idealGi)[1]) {
379 idealGi[j, j] <- 0
380 }
381

15

382 geodesicIdealGi <- geodist(idealGi)$gdist
383 EIdealGi <- averageEfficiency(geodesicIdealGi)
384
385 # Prevent division by zero , which is possible when EIdealGi = 0. If
386 # both EGi and EIdealGi are zero , then we get (0 / 0), which returns
387 # a NaN for "not a number ". Caution: we need to consider four cases:
388 #
389 # EGi EIdealGi
390 # -------------
391 # 0 0 <- (EGi / EIdealGi) = 0
392 # 0 y1 <- (EGi / EIdealGi) = 0
393 # x1 0 <- Is it possible to get this case?
394 # x2 y2 <- (EGi / EIdealGi) \in RR\{0}
395 #
396 # where x1, x2, y1, y2 \in RR
397 if ((EGi == 0)) {
398 cumSum <- cumSum + 0
399 }
400 else {
401 cumSum <- cumSum + (EGi / EIdealGi)
402 }
403 }
404
405 Eloc <- cumSum / N
406 }
407
408 # The cost of a network G with N vertices and K edges. For now , we assume
409 # that G is an undirected graph so that its adjacency matrix is symmetric
410 # about the main diagonal. The generalization of the Watts -Strogatz model
411 # contained in (Latora & Marchiori 2003) considers directed as well as
412 # undirected graphs.
413 #
414 # INPUT:
415 # adjMat -- the adjacency matrix of G. This adjacency matrix must have
416 # the same dimensions as the matrix of distances of G.
417 # distMat -- the matrix of distances between pairs of vertices. This
418 # distance matrix has the same dimensions as the adjacency matrix of
419 # G.
420 # gamma -- the cost evaluator function , default is "gamma = WS" for the
421 # Watts -Strogatz model. TODO: define further models here apart from
422 # Watts -Strogatz.
423 #
424 # OUTPUT:
425 # the cost of the network G.
426 #
427 # AUTHOR:
428 # Minh Van Nguyen <nguyenminh2@gmail.com >
429 #
430 networkCost <- function(adjMat , distMat , gamma = "WS") {
431 netCost <- 0
432 if (gamma == "WS") {
433 N <- dim(adjMat)[1] # the number of vertices
434 K <- 0 # the number of edges
435
436 # For an undirected graph G with adjacency matrix adjMat , both G and
437 # adjMat are symmetric about the main diagonal. Hence we need only
438 # consider either the upper triangular or lower triangular matrices ,
439 # excluding entries along the main diagonal , in counting the number of
440 # edges in G. On the other hand , we can also sum the entries in adjMat
441 # and divide the result by 2 to get the number of edges in g.
442 K <- sum(adjMat) / 2
443
444 netCost <- (2 * K) / (N * (N - 1))
445 }
446
447 netCost

16

448 }
449
450 # The main routine. This is where the network metrics are calculated. For
451 # the Watts -Strogatz model , the network metrics is comprised of the
452 # characteristic path length L and the clustering coefficient C. As regards
453 # the generalization of Watts -Strogatz contained in the paper
454 # (Latora & Marchiori 2003) , the network metrics are the local efficiency
455 # E_loc , the global efficiency E_glob , and the network cost C.
456 #
457 # INPUT:
458 # regmat -- a regular matrix
459 # probabilities -- a set of re-wiring probabilities
460 #
461 # OUTPUT:
462 #
463 # AUTHOR:
464 # Minh Van Nguyen <nguyenminh2@gmail.com >
465 #
466 calculateNetworks <- function(regmat , probabilities) {
467 # A set of adjacency matrices.
468 nets <- array(NA , dim = c(length(probabilities) + 1, n, n))
469
470 # First matrix is the regular matrix.
471 nets[1,,] <- regmat[,]
472
473 # Re -wire with probability p.
474 # Put this in a function.
475 counter <- 1
476 for (p in probabilities) {
477 reWiredMat <- array(0, dim = dim(regmat))
478 while(connectedness(reWiredMat) < 1) {
479 reWiredMat <- reWire(regmat , p)
480 print(c("Re-wiring with probability ", p))
481 }
482 nets[counter + 1,,] <- reWiredMat [,]
483 # plot(network(reWiredMat , directed=FALSE),
484 # displaylabels=TRUE , mode=" circle ")
485 # par(ask=TRUE)
486 counter <- counter + 1
487 }
488
489 # This section is for the Latora -Marchiori generalization.
490 # Global and local efficiencies
491 Eglob <- NULL
492 Eloc <- NULL
493 for (counter in 1:(length(probabilities) + 1)) {
494 Eglob[counter] <- globalEfficiency(geodist(nets[counter ,,])$ gdist)
495 Eloc[counter] <- localEfficiency(nets[counter ,,])
496 }
497
498 # structure to return
499 result <- cbind(Eglob [1] / Eglob , Eloc / Eloc [1])
500 }
501
502
503 # ===
504 # 2. MAIN SCRIPT
505 # ===
506
507 # connectivity matrix of a regular network with no loops
508 regularMatrix <- matrix(0, nrow = n, ncol = n)
509 for (i in 1:n) {
510 for (index in (k / 2):1) {
511 # Get right the indexes.
512 jplus <- returnIndex(i + index , n)
513 jminus <- returnIndex(i - index , n)

17

514 regularMatrix[i, jplus] <- regularMatrix[i, jminus] <- 1
515 }
516 }
517 dimnames(regularMatrix)[[2]] <- paste ("node", (1:n), sep = "-")
518 dimnames(regularMatrix)[[1]] <- paste ("node", (1:n), sep = "-")
519
520 # logarithmically -scaled probability vector
521 factor <- (maxProb / minProb)^(1 / (numberOfPoints - 1))
522 probs <- NULL
523 for (pt in 1: numberOfPoints) {
524 probs[pt] <- minProb * factor ^(pt - 1)
525 }
526
527 # Call main routine here timesToRepeat times.
528 # variable aliases
529 GE <- 1 # global efficiency
530 LE <- 2 # local efficiency
531
532 # Remember , the first probability is zero , i.e. the regular matrix.
533 results <- array(NA , dim = c(timesToRepeat , length(probs) + 1, 2))
534 dimnames(results)[[3]] <- c("L / LRef", "C / CRef")
535 dimnames(results)[[2]] <- paste ("prob", c(0, probs), sep = "-")
536 dimnames(results)[[1]] <- paste (" experiment", (1: timesToRepeat), sep = "-")
537 for (experiment in 1: timesToRepeat) {
538 print(c(" Executing experiment ", experiment))
539 results[experiment ,,] <- calculateNetworks(regularMatrix , probs)
540 }
541
542 # averages
543 GEmeans <- colSums(results[,,GE]) / timesToRepeat
544 LEmeans <- colSums(results[,,LE]) / timesToRepeat
545
546 # Write table of results
547 summary <- cbind(c(0, probs), GEmeans , LEmeans)
548 write.table(format(summary , digits = 6, nsmall = 4, justify = "left"),
549 file = paste(outputDir , summaryFileName , sep = ""), sep = "\t")
550
551 # plot variables
552 xdata <- probs
553 # All except the first value , where prob = 0.
554 ydata <- cbind(GEmeans[-1], LEmeans [-1])
555 matplot(xdata , ydata , log = "x",
556 main = "Global efficiency and local efficiency",
557 xlab = "prob",
558 ylab = "Eglob[ref] / Eglob and Eloc / Eloc[ref]",
559 type = "b")

18

B Latora-Marchiori metrics: weighted

This appendix presents a number of scripts written in Python, R [9] and Sage [10] for com-
puting local and global efficiencies and network cost of weighted, undirected graphs. The
graphs in question have N = 1000 vertices and per-vertex degree k = 10. The Sage script
k_circulant_n.sage generates 10-circulant graphs on 1000 vertices, each such graph
with half the total number of edges removed. Using the R script rewire-lattices.r,
the generated graphs can be randomly rewired according to the Watts-Strogatz random
edge rewiring method. The rewired graphs are output to disk in matrix (plain textual)
notation. These graphs can be converted to its R code representation using the Python
script mat2r.py. Finally, using the script network-metrics-lm.r, the global and local
efficiencies of the rewired graphs can be calculated according to (5) and (6), respectively,
taking into account the case that we are dealing with weighted graphs. The network cost
is calculated using (8). The following sections list the contents of the above scripts.

B.1 The script k circulant n.sage

1 # ---
2 # k_circulant_n.sage
3 # Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com >
4 #
5 # This Sage script generates ring lattices , each with half the total number
6 # of edges removed. Such graphs can then be rewired as per Watts & Strogatz.
7 # Note that this script does not consider the problem of random edge
8 # rewiring. This script was written and tested using Sage 3.2.x. For more
9 # information about Sage , please visit www.sagemath.org. Before running this

10 # script , make sure that a directory named "networks -half -edges -r" exists
11 # in the current directory.
12 #
13 # REFERENCES:
14 # [1] V. Latora & M. Marchiori. Economic small -world behavior in weighted
15 # networks. The European Physical Journal B, 32(2):249 - -263 , 2003.
16 #
17 # [2] D. Watts & S.H. Strogatz. Collective dynamics of "small -world"
18 # networks. Nature , 393(4):440 - -442 , 1998.
19 #
20 # This program is free software; you can redistribute it and/or modify
21 # it under the terms of the GNU General Public License as published by
22 # the Free Software Foundation; either version 2 of the License , or
23 # (at your option) any later version.
24 #
25 # This program is distributed in the hope that it will be useful ,
26 # but WITHOUT ANY WARRANTY; without even the implied warranty of
27 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 # GNU General Public License for more details.
29 #
30 # You should have received a copy of the GNU General Public License
31 # along with this program; if not , write to the Free Software
32 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA 02111 -1307 , USA.
33 # ---
34
35
36 def to_r(e, g):
37 """
38 Generates R code representation of the (n, k) ring lattice g.
39
40 The (n, k) ring lattice g is assumed to have half the total number of
41 its edges already removed. The R code matrix representation of g is an
42 adjacency matrix and is written to a text file.

19

43
44 INPUT:
45 e -- a positive integer index used for name the R script
46 containing R code matrix representation of g.
47 g -- an (n, k) ring lattice with half of its total number of edges
48 removed.
49
50 OUTPUT:
51 Write the R code matrix representation of g to an R script.
52 """
53 nVertices = g.order ()
54 outFile = open("networks -half -edges -r/graph -" + str(e) + ".r", "w")
55 nrow = g.order ()
56 ncol = g.order ()
57 outFile.write("mat <- matrix(nrow = " + str(nrow)
58 + ", ncol = " + str(ncol) + ")\n")
59 for i in xrange(nrow):
60 row = str(g.adjacency_matrix ()[i])
61 row = "c" + row
62 outFile.write("mat[" + str(i+1) + ",] <- " + row + "\n")
63 outFile.close()
64
65 def remove_half_edges(n, k):
66 """
67 Randomly removes half the total number of edges from a k-circulant graph
68 with n vertices.
69
70 A k-circulant graph with n vertices is simply a ring lattice with n
71 nodes , each of which is connected to its k neighbours. Such a graph
72 is also referred to as an (n, k) ring lattice. Such random removal is
73 used in "Model 4" of Latora & Marchiori [2].
74
75 INPUT:
76 n -- the number of vertices.
77 k -- the number of per -vertex degree (must be an even integer).
78
79 OUTPUT:
80 An (n, k) ring lattice with half of the total number of its edges
81 removed.
82 """
83 from sage.misc.prandom import choice
84
85 adj = [a for a in xrange(1, k/2+1)]
86 G = graphs.CirculantGraph(n, adj)
87
88 # remove half the total number of edges from G
89 nEdges = list(G.edge_iterator(labels = False))
90 elimTotal = G.size() / 2
91 elim = 0
92 while elim < elimTotal:
93 edge = choice(nEdges)
94 G.delete_edge(edge[0], edge [1])
95 while not G.is_connected ():
96 G.add_edge(edge[0], edge [1])
97 edge = choice(nEdges)
98 G.delete_edge(edge[0], edge [1])
99 nEdges = list(G.edge_iterator(labels = False))

100 elim += 1
101
102 return G
103
104 # As used by Watts & Strogatz [1] and Latora & Marchiori [2].
105 n = 1000
106
107 # As used by Latora & Marchiori [2] in their "Model 4".
108 k = 6

20

109
110 # Also known as the number of rewiring probabilities. This number depends
111 # on how many rewiring probability points you want to use.
112 nTimes = 37
113
114 for i in xrange(nTimes):
115 print "[%s] generating network" % (i+1)
116 g = remove_half_edges(n, k)
117 print "[%s] converting network to R code" % (i+1)
118 to_r(i+1, g)

B.2 The script rewire-lattices.r

1 # ---
2 # rewire -lattices.r
3 # Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com >
4 #
5 # This R script can be used to rewire (n, k) ring lattices that have had
6 # 50 percent of their total number of edges removed. The rewiring process
7 # is per Watts & Strogatz [2]. The resulting rewired networks are used
8 # in "Model 4" of Latora & Marchiori [1]. Before running this script , make
9 # sure that a directory named "networks -dat" exists in the current directory.

10 # For more information about R, please visit www.r-project.org.
11 #
12 # REFERENCES:
13 # [1] V. Latora & M. Marchiori. Economic small -world behavior in weighted
14 # networks. The European Physical Journal B, 32(2):249 - -263 , 2003.
15 #
16 # [2] D. Watts & S.H. Strogatz. Collective dynamics of "small -world"
17 # networks. Nature , 393(4):440 - -442 , 1998.
18 #
19 # This program is free software; you can redistribute it and/or modify
20 # it under the terms of the GNU General Public License as published by
21 # the Free Software Foundation; either version 2 of the License , or
22 # (at your option) any later version.
23 #
24 # This program is distributed in the hope that it will be useful ,
25 # but WITHOUT ANY WARRANTY; without even the implied warranty of
26 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 # GNU General Public License for more details.
28 #
29 # You should have received a copy of the GNU General Public License
30 # along with this program; if not , write to the Free Software
31 # Foundation , Inc., 59 Temple Place - Suite 330, Boston , MA 02111 -1307 , USA.
32 # ---
33
34
35 # Some housekeeping before generating random Latora -Marchiori networks.
36 # Clear memory , removing (almost) everything in the working environment
37 # without any warning. Be careful with what you wish for.
38 rm(list = ls())
39 # For social network analysis
40 library ("sna")
41 # For various graph -theoretic operations , in particular , weighted shortest
42 # paths.
43 library (" igraph ")
44
45
46 ### Functions
47
48
49 # Simulates a circular list. We are only interested in the index i of a
50 # member of this list , which has n members. One way to conceptualize this
51 # list is to visualize all n members as arranged in a cycle graph , in

21

52 # which each member i has an edge connecting it to i + 1, and an edge
53 # connecting it to i - 1. Another way to think about this function is to
54 # interpret it as a simple implementation of the group Z/Zn, where only
55 # the index of each i in Z/Zn is returned.
56 #
57 # INPUT:
58 # index -- integer; index of an element in this circular list.
59 # length -- integer > 0; the number of elements in this circular list.
60 # FIXME: Maybe it’s a good idea to implement the case where
61 # length < 0, or provide some sanity checking to take care of that
62 # possibility.
63 #
64 # OUTPUT:
65 # If 0 < index <= length , then return index. If index > length , then
66 # return index mod length. Else index < 0, so return index mod length.
67 # If length is 0, then return NaN (not a number).
68 #
69 # AUTHOR:
70 # Rodolfo Garcia -Flores
71 # Documentation by Minh Van Nguyen <nguyenminh2@gmail.com >
72 #
73 returnIndex <- function(index , length) {
74 if ((index > 0) && (index <= length)) {
75 index
76 }
77 else if (index > length) {
78 index - length * floor(index / length)
79 }
80 else {
81 (length + index) + length * floor(-1 * index / length)
82 }
83 }
84
85
86 # The rewiring routine.
87 #
88 # INPUT:
89 # aMatrix -- an adjacency matrix.
90 # aProbability -- double; a probability value p such that 0 < p < 1. This
91 # value determines the probability that an edge incident on a vertex
92 # is re-wired.
93 #
94 # OUTPUT:
95 # An adjacency matrix with a number of the vertices re-wired.
96 #
97 # AUTHOR:
98 # Rodolfo Garcia -Flores
99 # Documentation by Minh Van Nguyen <nguyenminh2@gmail.com >

100 #
101 rewire <- function(aMatrix , aProbability) {
102 currentMat <- aMatrix
103 for (i in 1:n) {
104 for (j in 1:i) {
105 if ((currentMat[i, j] != 0) && (runif (1) < aProbability)) {
106 # To vertices different to i and
107 # different to those already connected ,
108 # preferably to nodes that are isolated.
109 # This should prevent having isolated regions.
110 isolatedNodes <- c(1:n)[colSums(currentMat [,]) == 0]
111 nodesAlreadyConnected <- c(1:n)[currentMat[i,] > 0]
112 excludedNodes <- c(i, nodesAlreadyConnected)
113 notExcludedNodes <- (1:n)[- excludedNodes]
114
115 # A list whose first elements are isolated nodes , the rest are
116 # shuffled , not -excluded values.
117 validPrioritisedNodes <- c(isolatedNodes ,

22

118 sample(setdiff(notExcludedNodes ,
119 isolatedNodes)))
120
121 # Take first node index in list.
122 newVertex <- validPrioritisedNodes [1]
123 currentMat[i, j] <- 0
124 currentMat[j, i] <- 0
125 currentMat[i, newVertex] <- 1
126 currentMat[newVertex , i] <- 1
127 }
128 }
129 }
130
131 currentMat
132 }
133
134
135 # The main routine. This is where the network metrics are calculated. For
136 # the Watts -Strogatz model , the network metrics is comprised of the
137 # characteristic path length L and the clustering coefficient C. As regards
138 # the generalization of Watts -Strogatz contained in the paper
139 # (Latora & Marchiori 2003) , the network metrics are the local efficiency
140 # E_loc , the global efficiency E_glob , and the network cost C_G.
141 #
142 # INPUT:
143 # regmat -- a regular matrix.
144 # probabilities -- a set of re-wiring probabilities.
145 #
146 # OUTPUT:
147 #
148 # AUTHOR:
149 # Minh Van Nguyen <nguyenminh2@gmail.com >
150 #
151 latoraMarchioriGraphs <- function(regMat , probs , experiment) {
152 for (p in 1: length(probs)) {
153 # Reads in an (n, k) ring lattice which has 50 percent of its total
154 # number of edges removed. The matrix is read into memory and named "mat".
155 source(paste("networks -half -edges -r/graph -",
156 experiment , "-", p, ".r", sep = ""))
157
158 # rewire with p-th probability
159 print(c(" rewiring with probability ", probs[p]))
160 rewiredMat <- rewire(mat , probs[p])
161 while (connectedness(rewiredMat) < 1) {
162 rewiredMat <- rewire(regMat , probs[p])
163 }
164 # The number 1000 refers both to the column and row dimensions of the
165 # Latora -Marchiori network.
166 write.table (1000 , file = paste ("networks -dat/graph -",
167 experiment , "-", p, ".dat", sep = ""),
168 row.names = FALSE , col.names = FALSE)
169 write.table (1000 , file = paste ("networks -dat/graph -",
170 experiment , "-", p, ".dat", sep = ""),
171 row.names = FALSE , col.names = FALSE , append = TRUE)
172 write.table(probs[p], file = paste ("networks -dat/graph -",
173 experiment , "-", p, ".dat", sep = ""),
174 row.names = FALSE , col.names = FALSE , append = TRUE)
175 write.table(rewiredMat , file = paste ("networks -dat/graph -",
176 experiment , "-", p, ".dat", sep = ""),
177 row.names = FALSE , col.names = FALSE , append = TRUE)
178 }
179 }
180
181
182 ### Start generate Latora -Marchiori networks here
183

23

184 # Experimental parameters.
185 # Actual values should be n = 1000, k = 10 or k = 6. When run with these
186 # values , the script should take a few hours to complete. Test values can be
187 # n = 20, k = 4
188 n <- 1000 # vertices
189 k <- 6 # edges per vertex , MUST BE EVEN.
190 nTimes <- 20 # should be 20
191
192 # data for a logarithmically -scaled probability vector
193 numPoints <- 37
194 minProb <- 1e-4
195 maxProb <- 1
196
197
198 # logarithmically -scaled probability vector
199 factor <- (maxProb / minProb)^(1 / (numPoints - 1))
200 probs <- NULL
201 for (pt in 1: numPoints) {
202 probs[pt] <- minProb * factor ^(pt - 1)
203 }
204
205 # Create rewired networks. The rewired networks are written to text files.
206 for (experiment in 1: nTimes) {
207 print(c(" Executing experiment ", experiment))
208 latoraMarchioriGraphs(matHalfEdges , probs , experiment)
209 }

B.3 The script mat2r.py

1 # ---
2 # mat2r.py
3 # Copyright (C) 2009 Minh Van Nguyen <nguyenminh2@gmail.com >
4 #
5 # Convert text representation of a Latora -Marchiori network to its R code
6 # representation. This Python script essentially generates R code to
7 # represent Latora -Marchiori networks stored in text files. Latora -Marchiori
8 # networks are (n, k) ring lattices , each with half the total number of its
9 # edges removed and the resulting network rewired as per Watts & Strogatz [2].

10 # Such networks are used in "Model 4" of Latora & Marchiori [1]. Before
11 # running this Python script , make sure that a directory named "networks -r"
12 # exists in the current directory.
13 #
14 # REFERENCES:
15 # [1] V. Latora & M. Marchiori. Economic small -world behavior in weighted
16 # networks. The European Physical Journal B, 32(2):249 - -263 , 2003.
17 #
18 # [2] D. Watts & S.H. Strogatz. Collective dynamics of "small -world"
19 # networks. Nature , 393(4):440 - -442 , 1998.
20 #
21 # This program is free software; you can redistribute it and/or modify
22 # it under the terms of the GNU General Public License as published by
23 # the Free Software Foundation; either version 2 of the License , or
24 # (at your option) any later version.
25 #
26 # This program is distributed in the hope that it will be useful ,
27 # but WITHOUT ANY WARRANTY; without even the implied warranty of
28 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
29 # GNU General Public License for more details.
30 #
31 # You should have received a copy of the GNU General Public License
32 # along with this program; if not , write to the Free Software
33 # Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
34 # ---
35

24

36
37 nExperiments = 20
38 nProbs = 37
39 for e in xrange(1, nExperiments + 1):
40 print "generate R code for networks in experiment %s" % e
41 for p in xrange(1, nProbs + 1):
42 inFile = open("networks -dat/graph -"
43 + str(e) + "-" + str(p) + ".dat", "r")
44 outFile = open("networks -r/graph -"
45 + str(e) + "-" + str(p) + ".r", "w")
46 nrow = int(inFile.readline (). strip ())
47 ncol = int(inFile.readline (). strip ())
48 rewireProb = float(inFile.readline (). strip ()) # don ’t write to file
49 outFile.write("mat <- matrix(nrow = " + str(nrow)
50 + ", ncol = " + str(ncol) + ")\n")
51 for i in xrange(1, nrow + 1):
52 row = inFile.readline (). strip()
53 row = row.replace (" ", ", ")
54 row = "c(" + row + ")"
55 outFile.write("mat[" + str(i) + ",] <- " + row + "\n")
56 inFile.close()
57 outFile.close()

B.4 The script network-metrics-lm.r

1 # ---
2 # network -metrics -lm.r
3 # Copyright (C) 2008, 2009 -- Minh Van Nguyen <nguyenminh2@gmail.com >
4 #
5 # An R script to compute network metrics of Latora -Marchiori networks.
6 # That is, this script calculates the local and global efficiencies and
7 # network cost defined by Latora & Marchiori [1] as generalizations of
8 # the Watts -Strogatz [2] small world network metrics.
9 #

10 # REFERENCES:
11 # [1] V. Latora & M. Marchiori. Economic small -world behavior in weighted
12 # networks. The European Physical Journal B, 32(2):249 - -263 , 2003.
13 #
14 # [2] D. Watts & S.H. Strogatz. Collective dynamics of "small -world"
15 # networks. Nature , 393(4):440 - -442 , 1998.
16 #
17 # This program is free software; you can redistribute it and/or modify
18 # it under the terms of the GNU General Public License as published by
19 # the Free Software Foundation; either version 2 of the License , or
20 # (at your option) any later version.
21 #
22 # This program is distributed in the hope that it will be useful ,
23 # but WITHOUT ANY WARRANTY; without even the implied warranty of
24 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 # GNU General Public License for more details.
26 #
27 # You should have received a copy of the GNU General Public License
28 # along with this program; if not , write to the Free Software
29 # Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
30 # ---
31
32
33 # Clear memory , removing (almost) everything in the working environment
34 # without any warning. Be careful with what you wish for.
35 rm(list = ls())
36 library (" grDevices ") # for colours
37 library ("sna") # for social network analysis
38 # For various graph -theoretic operations , in particular , weighted shortest
39 # paths.

25

40 library (" igraph ")
41
42
43 ### Functions
44
45
46 # The average efficiency E of a graph G, where the graph has N vertices and
47 # K edges. This function can also be used to calculate the average
48 # efficiency even if G is a complete graph on N vertices. Such a complete
49 # graph is also denoted G^{ideal}, i.e. the ideal case where G has all the
50 # possible
51 #
52 # N(N - 1) / 2
53 #
54 # edges. Then the global and local efficiencies are defined in terms of E(G)
55 # and E(G^{ideal }). These notions of efficiency of a graph are defined in
56 # the paper (Latora & Marchiori 2003).
57 #
58 # INPUT:
59 # adjMat -- the adjacency matrix of the underlying graph.
60 # weightedGeoMat -- a matrix of weighted geodesics , or weighted
61 # shortest paths.
62 # level -- whether the average efficiency returned would be used in
63 # computing the local or global efficiency. The parameter level can
64 # take on either of two string arguments: "global" to indicate that
65 # the returned average efficiency is to be used in calculating the
66 # global efficiency of a network; and "local" which signifies that
67 # the returned average efficiency is to be used in calculating the
68 # local efficiency of a network. Default is "global ".
69 #
70 # OUTPUT:
71 # the average efficiency E of the graph G.
72 #
73 # AUTHOR:
74 # Minh Van Nguyen <nguyenminh2@gmail.com >
75 #
76 averageEfficiency <- function(adjMat , weightedGeoMat) {
77 # The number of vertices in weightedGeoMat. Thus adjMat and weightedGeoMat
78 # are both N x N matrices.
79 N <- dim(weightedGeoMat)[1]
80
81 # for storing the average efficiency
82 E <- NULL
83
84 # check for the case that weightedGeoMat is a 1 x 1 matrix
85 if (N == 1) {
86 # harmonicSum <- 0
87 E <- 0
88 }
89 else {
90 # Compute the harmonic sum of lower triangular matrix of weightedGeoMat ,
91 # excluding the main diagonal.
92 colLimit <- 0
93 colStart <- 1
94 rowStart <- 2
95 harmonicSum <- 0
96 for (row in rowStart:N) {
97 colLimit <- colLimit + 1
98 for (col in colStart:colLimit) {
99 # Avoid the case where there ’s no path between vertices i and j. If

100 # no path exists between i and j, then d_ij = +oo, which is positive
101 # infinity. As d_ij -> +oo, then (1 / d_ij) -> 0. If adjMat
102 # represents a totally isolated graph G, then the average efficiency
103 # of G is 0.
104 if (weightedGeoMat[row , col] != "Inf") {
105 harmonicSum <- harmonicSum + (1 / weightedGeoMat[row , col])

26

106 }
107 }
108 }
109
110 # compute average efficiency
111 E <- harmonicSum / (N * (N - 1))
112 }
113
114 E
115 }
116
117
118 # The global efficiency E_glob of a graph G, where the graph has N vertices
119 # and K edges. The notion of global efficiency of a graph is defined in the
120 # paper (Latora & Marchiori 2003). See also the function averageEfficiency ,
121 # which defines the average efficiency of G. The measure E_glob is defined
122 # as
123 #
124 # E_glob = E(G) / E(G^{ideal })
125 #
126 # where G^{ideal} is the complete graph on N vertices. Thus E_glob is a
127 # ratio of the average efficiencies of two types of graphs: (1) the average
128 # efficiency of G itself; (2) the average efficiency of the complete graph
129 # on N vertices , which is the number of vertices in G.
130 #
131 # INPUT:
132 # adjMat -- an N x N adjacency matrix of G.
133 # weightMat -- an N x N weight matrix of G. See the function weightMatrix
134 # for further details.
135 #
136 # OUTPUT:
137 # the global efficiency E_glob of the graph G.
138 #
139 # AUTHOR:
140 # Minh Van Nguyen <nguyenminh2@gmail.com >
141 #
142 globalEfficiency <- function(adjMat , weightMat) {
143 # The number of vertices in the underlying graph G. Thus the column and
144 # row dimensions must be equal.
145 N <- dim(adjMat)[1]
146
147 # matrix of weighted geodesics for G
148 weightedGeoMat <- weightedGeodesics(adjMat , weightMat)
149 # average efficiency of G
150 aveEfficiency <- averageEfficiency(adjMat , weightedGeoMat)
151
152 # Construct the adjacency matrix of a complete graph on N vertices. By
153 # definition of complete graphs , a complete graph K_n and its geodesic
154 # matrix G_dist are equivalent. That is, K_n and G_dist are copies of
155 # each other. Also , G_dist has 1 everywhere , and 0 on the main diagonal.
156 gIdealMat <- matrix(1, nrow = N, ncol = N)
157 for (i in 1:N) {
158 gIdealMat[i, i] <- 0
159 }
160
161 # matrix of weighted geodesics for G^{ideal}
162 weightedGeoMat <- weightedGeodesics(gIdealMat , weightMat)
163 # average efficiency of G^{ideal}
164 aveEfficiencyGIdeal <- averageEfficiency(gIdealMat , weightedGeoMat)
165
166 # compute the global efficiency
167 Eglob <- aveEfficiency / aveEfficiencyGIdeal
168 }
169
170
171 # Let adjMat be an adjacency matrix of an undirected graph G. For a given

27

172 # vertex i of G, find the indices of the immediate neighbours of i.
173 #
174 # INPUT:
175 # adjMat -- an adjacency matrix of an undirected graph G.
176 # i -- a vertex of G.
177 #
178 # OUTPUT:
179 # a vector containing vertices that are immediate neighbours of i.
180 #
181 # AUTHOR:
182 # Minh Van Nguyen <nguyenminh2@gmail.com >
183 #
184 immediateNeighbours <- function(adjMat , i) {
185 # The column dimension of adjMat. As adjMat is an adjacency matrix , it
186 # doesn ’t matter if we get either of its row or column dimensions.
187 colNum <- dim(adjMat)[2]
188
189 # for storing indices of the immediate neighbours of vertex i
190 neighIndex <- c()
191
192 # find indices of the immediate neighbours of vertex i
193 for (col in 1: colNum) {
194 if (adjMat[i, col] == 1) {
195 neighIndex <- c(neighIndex , col)
196 }
197 }
198
199 neighIndex
200 }
201
202
203 # The adjacency matrix of G_i. If G is an undirected graph and i is a
204 # vertex of G, then G_i is the subgraph of neighbours of i, excluding i
205 # itself.
206 #
207 # INPUT:
208 # aMat -- the adjacency matrix of the graph G.
209 # i -- the index of the vertex whose neighbours we want to consider.
210 # Let r and c be the row and column dimensions of aMat , respectively.
211 # Then 1 < i < r or 1 < i < c.
212 #
213 # OUTPUT:
214 # an adjacency matrix of G_i. If i is an isolated vertex , then return
215 # an n x n zero matrix. If i is not isolated but all vertices in G_i are
216 # isolated from each other , then return an n x n zero matrix. Else we know
217 # that i is not isolated and there is a pair of vertices in G_i that
218 # is connected by an edge; in this case , return an n x n matrix where
219 # n > 0.
220 #
221 # AUTHOR:
222 # Minh Van Nguyen <nguyenminh2@gmail.com >
223 #
224 neighboursAdjMat <- function(aMat , i) {
225 # The column dimension of aMat. As aMat is an adjacency matrix , it
226 # doesn ’t matter if we get either of its row or column dimensions.
227 colNum <- dim(aMat)[2]
228
229 # an adjacency matrix of the neighbours of vertex i
230 neighAMat <- NULL
231
232 # for storing indices of the immediate neighbours of vertex i
233 neighIndex <- NULL
234
235 # check if i is an isolated vertex
236 if (sum(aMat[i,]) == 0) {
237 # If i is an isolated vertex , then return an n x n zero matrix , which

28

238 # is of the same dimensions as those of aMat.
239 neighAMat <- matrix(0, nrow = dim(aMat)[1], ncol = dim(aMat)[2])
240 }
241 # now we know that i is connected to at least another vertex
242 else {
243 # get indices of the immediate neighbours of i
244 neighIndex <- immediateNeighbours(aMat , i)
245
246 # The variables neighRowIndex and neighColIndex should be vectors of
247 # equal length. Let neighRowIndex be of length n, then neighColIndex
248 # also has length n. For k = 1,...,n, neighRowIndex[k] and
249 # neighColIndex[k] refer to vertices that are immediate neighbours of
250 # vertex i, and such that neighRowIndex[k] and neighColIndex[k] are
251 # connected by an (undirected) edge.
252 neighRowIndex <- NULL
253 neighColIndex <- NULL
254 for (row in 1: length(neighIndex)) {
255 for (col in row:length(neighIndex)) {
256 if (aMat[neighIndex[row], neighIndex[col]] == 1) {
257 neighRowIndex <- c(neighRowIndex , neighIndex[row])
258 neighColIndex <- c(neighColIndex , neighIndex[col])
259 }
260 }
261 }
262
263 # If i is not an isolated vertex , then the length of the vector
264 # neighIndex is > 0. Let G_i be the subgraph of the neighbours of i. If
265 # all vertices of G_i are isolated , then each of the vectors
266 # neighRowIndex and neighColIndex has a length of zero. In this case ,
267 # neighAMat is a 2 x 0 matrix.
268 neighAMat <- matrix(0, nrow = 2, ncol = length(neighRowIndex))
269 neighAMat [1,] <- neighRowIndex
270 neighAMat [2,] <- neighColIndex
271
272 # check if G_i is totally isolated
273 if (dim(neighAMat)[2] == 0) {
274 # If G_i is totally isolated , then return an n x n zero matrix , which
275 # is of the same dimensions as those of aMat.
276 neighAMat <- matrix(0, nrow = dim(aMat)[1], ncol = dim(aMat)[2])
277 }
278 # now we know that at least one pair of vertices in G_i are connected
279 else {
280 neighAdjMat <- matrix(0, nrow = dim(aMat)[1], ncol = dim(aMat)[2])
281 for (col in 1:dim(neighAMat)[2]) {
282 neighAdjMat[neighAMat [1, col], neighAMat [2, col]] <- 1
283 neighAdjMat[neighAMat [2, col], neighAMat [1, col]] <- 1
284 }
285 neighAMat <- neighAdjMat
286 }
287 }
288
289 neighAMat
290 }
291
292
293 # The local efficiency E_loc of a graph G, where the graph has N vertices
294 # and K edges. The notion of local efficiency of a graph is defined in the
295 # paper (Latora & Marchiori 2003). See also the function averageEfficiency ,
296 # which defines the average efficiency of G. The measure E_loc is defined
297 # as
298 #
299 # E_loc = (1/N) \sum_{i \in G} E(G_i) / E(G^{ideal }_i)
300 #
301 # where G_i is the subgraph of neighbours of vertex i, and G^{ideal }_i is
302 # the complete graph on N_i, which is the number of vertices in G_i. Note
303 # that G_i excludes the vertex i, and only considers the graph formed by

29

304 # its immediate neighbours.
305 #
306 # INPUT:
307 # aMat -- the adjacency matrix of the graph G. If G is an undirected
308 # graph , then aMat is symmetric about the main diagonal.
309 #
310 # OUTPUT:
311 # the local efficiency E_loc of the graph G.
312 #
313 # AUTHOR:
314 # Minh Van Nguyen <nguyenminh2@gmail.com >
315 #
316 localEfficiency <- function(aMat , weightMat) {
317 # The number of vertices in the underlying graph G. Thus the column and
318 # row dimensions must be equal.
319 N <- dim(aMat)[1]
320
321 # summing the ratios (EGi / EIdealGi) for all vertices i
322 cumSum <- 0 # the cumulative sum
323 EGi <- 0 # average efficiency of G_i
324 EIdealGi <- 0 # average efficiency of G^{ideal }_i
325 idealGi <- 0 # adjacency matrix of G^{ ideal}_i
326 for (i in 1:N) {
327 # adjacency matrix of G_i
328 neighI <- neighboursAdjMat(aMat , i)
329 # matrix of weighted geodesics for G_i
330 weightedGeoMat <- weightedGeodesics(neighI , weightMat)
331 # average efficiency of G_i
332 EGi <- averageEfficiency(neighI , weightedGeoMat)
333
334 # Construct the adjacency matrix of a complete graph on K_i vertices. By
335 # definition of complete graphs , a complete graph K_n and its geodesic
336 # matrix G_dist are equivalent , provided that K_n is unweighted.
337 idealGi <- matrix(0, nrow = N, ncol = N)
338 neighIndex <- immediateNeighbours(aMat , i)
339 for (j in 1: length(neighIndex)) {
340 for (k in j:length(neighIndex)) {
341 idealGi[neighIndex[j], neighIndex[k]] <- 1
342 idealGi[neighIndex[k], neighIndex[j]] <- 1
343 }
344 # do this since we want zeros along the main diagonal
345 idealGi[neighIndex[j], neighIndex[j]] <- 0
346 }
347
348 # matrix of weighted geodesics for G^{ideal }_i
349 weightedGeoMat <- weightedGeodesics(idealGi , weightMat)
350 # average efficiency of G^{ideal }_i
351 EIdealGi <- averageEfficiency(idealGi , weightedGeoMat)
352
353 # Prevent division by zero , which is possible when EIdealGi = 0. If
354 # both EGi and EIdealGi are zero , then we get (0 / 0), which returns
355 # a NaN for "not a number ". CAUTION: we need to consider four cases:
356 #
357 # EGi EIdealGi
358 # -------------
359 # 0 0 <- (EGi / EIdealGi) = 0 because we say so
360 # 0 y1 <- (EGi / EIdealGi) = 0
361 # x1 0 <- Is it possible to get this case?
362 # x2 y2 <- (EGi / EIdealGi) \in RR\{0}
363 #
364 # where x1, x2, y1, y2 \in RR are non -zero and RR is the set of
365 # real numbers.
366 if (EGi == 0) {
367 cumSum <- cumSum + 0
368 }
369 else {

30

370 cumSum <- cumSum + (EGi / EIdealGi)
371 }
372 }
373
374 Eloc <- cumSum / N
375 }
376
377
378 # The cost of a network G with N vertices and K edges. For now , we assume
379 # that G is an undirected graph so that its adjacency matrix is symmetric
380 # about the main diagonal. The generalization of the Watts -Strogatz model
381 # contained in (Latora & Marchiori 2003) considers directed as well as
382 # undirected graphs.
383 #
384 # INPUT:
385 # adjMat -- the adjacency matrix of G. This adjacency matrix must have
386 # the same dimensions as the matrix of distances of G.
387 # distMat -- the matrix of distances between pairs of vertices. This
388 # distance matrix has the same dimensions as the adjacency matrix of
389 # G.
390 #
391 # OUTPUT:
392 # the cost of the network G.
393 #
394 # AUTHOR:
395 # Minh Van Nguyen <nguyenminh2@gmail.com >
396 #
397 networkCost <- function(adjMat , distMat) {
398 netCost <- 0
399 numerator <- 0
400 denominator <- 0
401 N <- dim(adjMat)[1]
402
403 for (row in 2:N) {
404 for (col in 1:(row - 1)) {
405 numerator <- numerator + (adjMat[row , col] * distMat[row , col])
406 denominator <- denominator + (distMat[row , col])
407 }
408 }
409
410 netCost <- numerator / denominator
411 }
412
413
414 # The weight matrix of a ring lattice G that has N vertices. This weight is
415 # defined in terms of the Euclidean distance between pairs of nodes. If i
416 # and j are vertices of G, then the distance between i and j is
417 #
418 # l_ij = [2 * sin(|i - j| pi / N)] / [2 * sin(pi / N)]
419 # = sin(|i - j| pi / N) / sin(pi / N)
420 #
421 # The distance between each pair of neighbouring vertices is l_ij = 1 and
422 # the distance from i to itself is trivially l_ii = 0. The weight matrix
423 # of G is denoted {l_ij}, which has zero along the main diagonal and is
424 # symmetric about this diagonal.
425 #
426 # INPUT:
427 # n -- an integer > 0; this is the number of vertices of the ring
428 # lattice G
429 #
430 # OUTPUT:
431 # the weight matrix {l_ij} of G. If n <= 0, then return NULL.
432 #
433 # AUTHOR:
434 # Minh Van Nguyen <nguyenminh2@gmail.com >
435 #

31

436 weightMatrix <- function(n) {
437 weightMat <- NULL
438
439 if (n > 0) {
440 # construct an n x n matrix with zero everywhere
441 weightMat <- matrix(0, nrow = n, ncol = n)
442
443 # Calculate the Euclidean distances on the ring lattice. Perhaps we
444 # need only to consider either of the lower triangular or upper
445 # triangular matrices , excluding the main diagonal.
446 for (row in 1:n) {
447 for (col in 1:n) {
448 if (row != col) {
449 # numerator <- 2 * sin((abs(row - col) * pi) / n)
450 # denominator <- 2 * sin(pi / n)
451 numerator <- sin((abs(row - col) * pi) / n)
452 denominator <- sin(pi / n)
453 weightMat[row , col] <- numerator / denominator
454 }
455 }
456 }
457 } else {
458 weightMat <- NULL
459 }
460
461 weightMat
462 }
463
464
465 # A matrix of weighted shortest paths for a weighted ring lattice G. The
466 # lattice G has N vertices and a degree of k per vertex.
467 #
468 # INPUT:
469 # adjMat -- the adjacency matrix of G. If G is undirected , then adjMat
470 # is symmetric about the main diagonal. The adjacency matrix of G
471 # must have the same dimensions as the weight matrix of G.
472 # weightMat -- a matrix of edge weights. This is an N x N matrix ,
473 # where N is the number of vertices in G. If G is undirected , then
474 # weightMat is symmetric about the main diagonal. The adjacency
475 # matrix of G must have the same dimensions as the weight matrix of G.
476 #
477 # OUTPUT:
478 # an N x N matrix of weighted shortest paths. If G is totally isolated ,
479 # then return an N x N matrix with +oo everywhere , and zero along the
480 # main diagonal. Else G has an (undirected) edge connecting a pair of
481 # its vertices , so we return an N x N matrix of weighted shortest paths.
482 #
483 # AUTHOR:
484 # Minh Van Nguyen <nguyenminh2@gmail.com >
485 #
486 weightedGeodesics <- function(adjMat , weightMat) {
487 N <- dim(adjMat)[1]
488 weightedGeo <- NULL
489
490 # Check for totally isolated graphs. The graph G represented by adjMat is
491 # totally isolated if all its vertices are isolated from each other. For
492 # a totally isolated graph G of dimensions N x N, its corresponding
493 # matrix of weighted geodesics is an N x N matrix with +oo (positive
494 # infinity) everywhere , and zero along the main diagonal.
495 if (sum(adjMat) == 0) {
496 weightedGeo <- matrix(Inf , nrow = N, ncol = N)
497 for (i in 1:N) {
498 weightedGeo[i, i] <- 0
499 }
500 }
501 # Now we know that G is not totally isolated , so at least one pair of

32

502 # vertices in G is connected by an (undirected) edge. Then proceed to
503 # find the matrix of weighted geodesics corresponding to G.
504 else {
505 colLimit <- 0
506 colStart <- 1
507 rowStart <- 2
508 startVertex <- c()
509 endVertex <- c()
510 edgeWeight <- c()
511
512 # As weightMat is symmetric about the main diagonal , we only need to
513 # consider its lower (or upper) triangular matrix , excluding entries
514 # along the main diagonal.
515 for (row in rowStart:N) {
516 colLimit <- colLimit + 1
517 for (col in colStart:colLimit) {
518 if (adjMat[row , col] == 1) {
519 startVertex <- c(startVertex , row)
520 endVertex <- c(endVertex , col)
521 edgeWeight <- c(edgeWeight , weightMat[row , col])
522 }
523 }
524 }
525
526 e <- c()
527 for (i in 1: length(startVertex)) {
528 e <- c(e, startVertex[i], endVertex[i], edgeWeight[i])
529 }
530 emat <- matrix(nc = 3, byrow = TRUE , e)
531 for (row in 1:dim(emat)[1]) {
532 emat[row , 1] <- emat[row , 1] - 1
533 emat[row , 2] <- emat[row , 2] - 1
534 }
535 g <- add.edges(graph.empty(N, directed = FALSE),
536 t(emat[, 1:2]) , weight = emat[, 3])
537 weightedGeo <- shortest.paths(g)
538 }
539
540 weightedGeo
541 }
542
543
544 # The main routine. This is where the network metrics are calculated. For
545 # the Watts -Strogatz model , the network metrics is comprised of the
546 # characteristic path length L and the clustering coefficient C. As regards
547 # the generalization of Watts -Strogatz contained in the paper
548 # (Latora & Marchiori 2003) , the network metrics are the local efficiency
549 # E_loc , the global efficiency E_glob , and the network cost C_G.
550 #
551 # INPUT:
552 # regmat -- a regular matrix.
553 # probabilities -- a set of re-wiring probabilities.
554 # weightMat -- a matrix of edge weights.
555 # experiment -- n-th experiment
556 #
557 # OUTPUT:
558 # Network metrics using the measures described in Latora & Marchiori [1].
559 #
560 # AUTHOR:
561 # Minh Van Nguyen <nguyenminh2@gmail.com >
562 #
563 calculateNetworks <- function(regmat , probabilities , weightMat , experiment) {
564 # set of adjacency matrices
565 nets <- array(NA, dim = c(length(probabilities) + 1, n, n))
566 # first matrix is regular matrix
567 nets[1,,] <- regmat[,]

33

568
569 # read in rewired networks for the specified experiment number
570 print("read in rewired networks ")
571 counter <- 1
572 for (p in 1: length(probabilities)) {
573 # Read in rewired network into memory and the resulting object is named
574 # "mat".
575 source(paste("networks -r/graph -", experiment , "-", p, ".r", sep = ""))
576 nets[counter + 1,,] <- mat[,]
577 counter <- counter + 1
578 }
579
580 # This section is for the Latora -Marchiori generalization.
581 # Global and local efficiencies , and network cost
582 Eglob <- NULL
583 Eloc <- NULL
584 netCost <- NULL
585 for (counter in 1:(length(probabilities) + 1)) {
586 print(c(" metrics for n-th rewiring probability ", counter))
587 Eglob[counter] <- globalEfficiency(nets[counter ,,], weightMat)
588 Eloc[counter] <- localEfficiency(nets[counter ,,], weightMat)
589 netCost[counter] <- networkCost(nets[counter ,,],
590 weightedGeodesics(nets[counter ,,],
591 weightMat))
592 }
593
594 # the structure to return
595 result <- cbind(Eglob [1] / Eglob ,
596 Eloc / Eloc[1],
597 netCost / netCost [1])
598 }
599
600
601 # Simulates a circular list. We are only interested in the index i of a
602 # member of this list , which has n members. One way to conceptualize this
603 # list is to visualize all n members as arranged in a cycle graph , in
604 # which each member i has an edge connecting it to i + 1, and an edge
605 # connecting it to i - 1. Another way to think about this function is to
606 # interpret it as a simple implementation of the group Z/Zn, where only
607 # the index of each i in Z/Zn is returned.
608 #
609 # INPUT:
610 # index -- integer; index of an element in this circular list.
611 # length -- integer > 0; the number of elements in this circular list.
612 # FIXME: Maybe it’s a good idea to implement the case where
613 # length < 0, or provide some sanity checking to take care of that
614 # possibility.
615 #
616 # OUTPUT:
617 # If 0 < index <= length , then return index. If index > length , then
618 # return index mod length. Else index < 0, so return index mod length.
619 # If length is 0, then return NaN (not a number).
620 #
621 # AUTHOR:
622 # Rodolfo Garcia -Flores
623 # Documentation by Minh Van Nguyen <nguyenminh2@gmail.com >
624 #
625 returnIndex <- function(index , length) {
626 if ((index > 0) && (index <= length)) {
627 index
628 }
629 else if (index > length) {
630 index - length * floor(index / length)
631 }
632 else {
633 (length + index) + length * floor(-1 * index / length)

34

634 }
635 }
636
637
638 ### Main script
639
640
641 # Actual values should be n = 1000, k = 10. When run with these values ,
642 # the script should take a few hours to complete. Test values can be
643 # n = 20, k = 4
644 n <- 1000 # vertices
645 k <- 6 # edges per vertex , MUST BE EVEN.
646 nTimes <- 20 # should be 20
647
648 # data for a logarithmically -scaled probability vector
649 nPoints <- 37
650 minProb <- 1e-4
651 maxProb <- 1
652
653 # output file name
654 summaryFileName <- "small -world -summary.txt"
655
656 # connectivity matrix of a regular network with no loops
657 regularMatrix <- matrix(0, nrow = n, ncol = n)
658 for (i in 1:n) {
659 for (index in (k/2):1) {
660 # Get right the indexes.
661 jplus <- returnIndex(i + index , n)
662 jminus <- returnIndex(i - index , n)
663 regularMatrix[i, jplus] <- regularMatrix[i, jminus] <- 1
664 }
665 }
666
667 # logarithmically -scaled probability vector
668 factor <- (maxProb / minProb)^(1 / (nPoints - 1))
669 probs <- NULL
670 for (pt in 1: nPoints) {
671 probs[pt] <- minProb * factor ^(pt - 1)
672 }
673
674 # variable aliases
675 numMeasures <- 3 # how many measures
676 GE <- 1 # global efficiency
677 LE <- 2 # local efficiency
678 NC <- 3 # network cost
679
680 # weight matrix of the ring lattice
681 weightMat <- weightMatrix(n)
682
683 # first probability is zero , i.e. the regular matrix
684 results <- array(NA , dim = c(nTimes , length(probs) + 1, numMeasures))
685
686 for (experiment in 1:4) {
687 print(c(" network metrics for experiment ", experiment))
688 results[experiment ,,] <- calculateNetworks(regularMatrix ,
689 probs ,
690 weightMat ,
691 experiment)
692 }
693
694 # averages
695 GEmeans <- colSums(results[,,GE]) / nTimes
696 LEmeans <- colSums(results[,,LE]) / nTimes
697 NCmeans <- colSums(results[,,NC]) / nTimes
698
699 # write table of results

35

700 summary <- cbind(c(0, probs), GEmeans , LEmeans , NCmeans)
701 write.table(summary , file = summaryFileName , sep = "\t")
702
703 # plot variables
704 # insert plotting code here

References

[1] B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
[2] R. D. Castro and J. W. Grossman. Famous trails to Paul Erdös. Mathematical Intelligencer,

21:51–63, 1999.
[3] P. Erdös and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.
[4] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,

and functions using NetworkX. In G. Varoquaux, T. Vaught, and J. Millman, editors,
Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena,
CA, USA, 2008. http://networkx.lanl.gov.

[5] M. D. Intriligator. Mathematical Optimization and Economic Theory. Prentice-Hall, En-
glewood Cliffs, NJ, USA, 1971.

[6] T. Kaihara. Multi-agent based supply chain modelling with dynamic environment. Inter-
national Journal of Production Economics, 85:263–269, 2003.

[7] V. Latora and M. Marchiori. Economic small-world behavior in weighted networks. The
European Physical Journal B, 32(2):249–263, 2003.

[8] S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.
[9] R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0,
http://www.r-project.org.

[10] W. A. Stein et al. Sage Mathematics Software (Version 3.2.3). The Sage Development
Team, 2009. http://www.sagemath.org.

[11] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1998.

36

