
Number Theory and Cryptography
using PARI/GP

Minh Van Nguyen
nguyenminh2@gmail.com

25 November 2008

This article uses PARI/GP to study elementary number theory and the RSA public
key cryptosystem. Various PARI/GP commands will be introduced that can help us to
perform basic number theoretic operations such as greatest common divisor and Euler’s
phi function. We then introduce the RSA cryptosystem and use PARI/GP’s built-in
commands to encrypt and decrypt data via the RSA algorithm. It should be noted that
our brief exposition on RSA and cryptography is for educational purposes only. Readers
who require further detailed discussions are encouraged to consult specialized texts such
as [2, 5, 6].

1 What is PARI/GP?

PARI/GP [3] is a computer algebra system that is geared towards research in number
theory. It can be used as a powerful desktop calculator, as a tool to help undergraduate
students study number theory, or as a programming environment for studying number
theoretic cryptosystems. PARI/GP is available free of charge and can be downloaded
from the following website:

http://pari.math.u-bordeaux.fr

The default interface to PARI/GP is command line based, but there are graphical user
interfaces to the software as well. Figure 1 shows sample PARI/GP sessions under Linux
and Windows.

2 Elementary number theory

This section reviews basic concepts from elementary number theory, including the notion
of primes, greatest common divisors, congruences and Euler’s phi function. The num-
ber theoretic concepts and PARI/GP commands introduced will be referred to in later
sections when we present the RSA algorithm.

Prime numbers

Public key cryptography uses many fundamental concepts from number theory, such as
prime numbers and greatest common divisors. A positive integer n > 1 is said to be
prime if its factors are exclusively 1 and itself. In PARI/GP, we can obtain the first 50
prime numbers using the command primes:

1



Figure 1: PARI/GP sessions under Linux (top) and Windows (bottom).

2



PARI/GP
gp > primes(50)

%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,

61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,

211, 223, 227, 229]

Greatest common divisors

Let Z be the set of integers. If a, b ∈ Z, then the greatest common divisor (GCD) of a

and b is the largest positive factor of both a and b. We use gcd(a, b) to denote this largest
positive factor. The GCD of any two distinct primes is 1, and the GCD of 18 and 27 is
9. We can use the command gcd to compute the GCD of any two integers:

PARI/GP
gp > gcd(3, 59)

%2 = 1

gp > gcd(18, 27)

%3 = 9

If gcd(a, b) = 1, we say that a is coprime (or relatively prime) to b. In particular,
gcd(3, 59) = 1 so 3 is coprime to 59.

Congruences

When one integer is divided by a non-zero integer, we usually get a remainder. For
example, upon dividing 23 by 5, we get a remainder of 3; when 8 is divided by 5, the
remainder is again 3. The notion of congruence helps us to describe the situation in which
two integers have the same remainder upon division by a non-zero integer. Let a, b, n ∈ Z

such that n 6= 0. If a and b have the same remainder upon division by n, then we say
that a is congruent to b modulo n and denote this relationship by

a ≡ b (mod n)

This definition is equivalent to saying that n divides the difference of a and b, that is,
n | (a − b). Thus 23 ≡ 8 (mod 5) because when both 23 and 8 are divided by 5, we end
up with a remainder of 3. The command Mod allows us to compute such a remainder:

PARI/GP
gp > Mod(23, 5)

%4 = Mod(3, 5)

gp > Mod(8, 5)

%5 = Mod(3, 5)

Euler’s phi function

Consider all the integers from 1 to 20, inclusive. List all those integers that are coprime
to 20. In other words, we want to find those integers n, where 1 ≤ n ≤ 20, such
that gcd(n, 20) = 1. The latter task can be easily accomplished with some PARI/GP
programming:

3



PARI/GP
gp > for (n = 1, 20, if (gcd(n,20) == 1, print1(n, " ")))

1 3 7 9 11 13 17 19

The above programming statement can be saved into a text file named, for example,
/home/mvngu/totient.gp, organizing it as in Listing 1 to enhance readability.

1 for (n = 1, 20,
2 if (gcd(n,20) == 1,
3 print1(n, " ")
4 )
5 )

Listing 1: Finding all integers 1 ≤ n ≤ 20 such that gcd(n, 20) = 1.

The command \r can be used to read the file containing our programming statements
into PARI/GP:

PARI/GP
gp > \r /home/mvngu/totient.gp

1 3 7 9 11 13 17 19

From the latter list, there are 8 integers in the closed interval [1, 20] that are coprime to
20. Without explicitly generating the list

1 3 7 9 11 13 17 19 (1)

how can we compute the number of integers in [1, 20] that are coprime to 20? This is
where Euler’s phi function comes in handy. Let n ∈ Z be positive. Then Euler’s phi

function counts the number of integers a, with 1 ≤ a ≤ n, such that gcd(a, n) = 1. This
number is denoted by ϕ(n). The command eulerphi implements Euler’s phi function.
To compute ϕ(20) without explicitly generating the list (1), we proceed as follows:

PARI/GP
gp > eulerphi(20)

%27 = 8

3 How to keep a secret?

Cryptography is the science (some might say art) of concealing data. Imagine that we
are composing a confidential email to someone. Having written the email, we can send
it in one of two ways. The first, and usually convenient, way is to simply press the send
button and not care about how our email will be delivered. Sending an email in this
manner is similar to writing our confidential message on a postcard and post it without
enclosing our postcard inside an envelope. Anyone who can access our postcard can
see our message. On the other hand, before sending our email, we can scramble the
confidential message and then press the send button. Scrambling our message is similar
to enclosing our postcard inside an envelope. While not 100% secure, at least we know
that anyone wanting to read our postcard has to open the envelope.

4



In cryptography parlance, our message is called plaintext. The process of scrambling
our message is referred to as encryption. After encrypting our message, the scrambled
version is called ciphertext. From the ciphertext, we can recover our original unscrambled
message via decryption. Figure 2 illustrates the processes of encryption and decryption.
A cryptosystem is comprised of a pair of related encryption and decryption processes.

plaintext ciphertext plaintext
encrypt decrypt

Figure 2: A schema for encryption and decryption.

Table 1 provides a very simple method of scrambling a message written in English and
using only upper case letters, excluding punctuation characters. Formally, let Σ =
{A, B, C, . . . , Z} be the set of capital letters of the English alphabet. Furthermore, let Φ =
{65, 66, 67, . . . , 90} be the American Standard Code for Information Interchange (ASCII)
encodings of the upper case English letters. Then Table 1 explicitly describes the map-
ping f : Σ −→ Φ. (Those who are familiar with ASCII would recognize that f is a
common process for encoding elements of Σ, rather than a cryptographic “scrambling”
process per se.) To scramble a message written using the alphabet Σ, we simply replace
each capital letter of the message with its corresponding ASCII encoding. However, the
scrambling process described in Table 1 provides very little to no cryptographic security
at all, and we strongly discourage its use in practice as a method of encryption.

A B C D E F G H I J K L M

l l l l l l l l l l l l l
65 66 67 68 69 70 71 72 73 74 75 76 77

N O P Q R S T U V W X Y Z

l l l l l l l l l l l l l
78 79 80 81 82 83 84 85 86 87 88 89 90

Table 1: ASCII encodings of English capital letters.

4 Keeping a secret with two keys

The Rivest, Shamir, Adleman (RSA) cryptosystem is an example of a public key cryp-

tosystem. RSA uses a public key to encrypt messages and decryption is performed using
a corresponding private key. We can distribute our public keys, but for security reasons
we should keep our private keys to ourselves. The encryption and decryption processes
draw upon techniques from elementary number theory. Algorithm 1 [6, p.165] outlines
the RSA procedure for encryption and decryption.
The next two sections will step through the RSA algorithm, using PARI/GP to generate
public and private keys, and perform encryption and decryption based on those keys.

5



Choose two primes p and q and let n = pq.1

Let e ∈ Z be positive such that gcd
(

e, ϕ(n)
)

= 1.2

Compute a value for d ∈ Z such that de ≡ 1 (mod ϕ(n)).3

Our public key is the pair (n, e) and our private key is the triple (p, q, d).4

For any non-zero integer m < n, encrypt m using c ≡ me (mod n).5

Decrypt c using m ≡ cd (mod n).6

Algorithm 1: The RSA algorithm for encryption and decryption.

5 Generating public and private keys

Positive integers of the form Mm = 2m − 1 are called Mersenne numbers. If p is prime
and Mp = 2p − 1 is also prime, then Mp is called a Mersenne prime. For example, 31
is prime and M31 = 231 − 1 is a Mersenne prime, as can be verified using the command
isprime(p). This command returns 1 if its argument p is prime; otherwise it returns 0

when p is composite. Indeed, the number M61 = 261 − 1 is also a Mersenne prime. We
can use M31 and M61 to work through step 1 in Algorithm 1:

PARI/GP
gp > p = (2^31) - 1

%6 = 2147483647

gp > isprime(p)

%7 = 1

gp > q = (2^61) - 1

%8 = 2305843009213693951

gp > isprime(q)

%9 = 1

gp > n = p * q

%10 = 4951760154835678088235319297

A word of warning is in order here. In the above code example, the choice of p and q as
Mersenne primes, and with so many digits far apart from each other, is a very bad choice
in terms of cryptographic security. However, we shall continue to use the above chosen
numeric values for p and q for the remainder of this article, always bearing in mind that
they have been chosen for educational purposes only. The reader is encouraged to refer
to [2, 5, 6] for in-depth discussions on the security of RSA, or consult other specialized
texts.

For step 2, we need to find a positive integer that is coprime to ϕ(n). The command
random(n) returns a pseudo-random integer within the closed interval [0, n− 1]. Using a
programming loop, we can compute the required value of e as follows:

PARI/GP
gp > e = random(eulerphi(n));

gp > while (gcd(e, eulerphi(n)) != 1, e = random(eulerphi(n)))

gp > e

%12 = 4048613754158036308925952619

To calculate a value for d in step 3 of Algorithm 1, we use the extended Euclidean
algorithm. By definition of congruence, de ≡ 1 (mod ϕ(n)) is equivalent to

de − k · ϕ(n) = 1

6



where k ∈ Z. From steps 1 and 2, we know the numeric values of e and ϕ(n). The
extended Euclidean algorithm allows us to compute d and −k. In PARI/GP, this can
be accomplished via the command bezout. Given two integers x and y, bezout(x, y)

returns a vector [u, v, g] such that g = gcd(x, y) and ux + vy = g. Having computed
a value for d, we then use the command Mod(d*e, eulerphi(n)) to check that d*e is
indeed congruent to 1 modulo eulerphi(n):

PARI/GP
gp > bezout(e, eulerphi(n))

%13 = [-2467255312924178983708448021, 2017255175378597045689617010, 1]

gp > Mod(-2467255312924178983708448021, eulerphi(n))

%14 = Mod(2484504839605656093165693679, 4951760152529835076874141700)

gp > d = 2484504839605656093165693679

%15 = 2484504839605656093165693679

gp > Mod(d * e, eulerphi(n))

%16 = Mod(1, 4951760152529835076874141700)

Thus, our RSA public key is

(n, e) = (4951760154835678088235319297, 4048613754158036308925952619) (2)

and our corresponding private key is

(p, q, d) = (2147483647, 2305843009213693951, 2484504839605656093165693679)

6 Encryption and decryption

Suppose we want to scramble the message “HELLOWORLD” using RSA encryption. From
Table 1, our message maps to integers of the ASCII encodings as follows:

H E L L O W O R L D

l l l l l l l l l l
72 69 76 76 79 87 79 82 76 68

Table 2: ASCII encodings of HELLOWORLD.

Concatenating all the integers in Table 2, our message can be represented by the integer

m = 72697676798779827668 (3)

There are other more cryptographically secure means for representing our message as an
integer, as opposed to the method presented in this article. The above process is used
for demonstration purposes only and we strongly discourage its use in practice.

To encrypt our message, we raise m to the power of e and reduce the result modulo n.
The command Mod(a^b, n) first computes a^b and then reduces the result modulo n.
If the exponent b is a “large” integer, say with more than 20 digits, then performing
modular exponentiation in this naive manner can take quite some time. Naive modular
exponentiation is inefficient and, when performed using a computer, can quickly consume
a huge quantity of the computer’s memory or result in error messages. For instance, if
we perform naive modular exponentiation using the command Mod(m^e, n), where m is
per (3), and n and e are as in (2), we would get an error message similar to the following:

7



PARI/GP
gp > Mod(m^e, n)

*** length (lg) overflow

1 /* Modular exponentiation using repeated squaring . */
2 /* That is , we want to compute a^b mod n. */
3 modexp(a, b, n) = {
4 local(d, bin);
5 d = 1;
6 bin = binary(b);
7 for (i = 1, length(bin),
8 d = Mod(d*d, n);
9 if (bin[i] == 1,

10 d = Mod(d*a, n);
11 );
12 );
13 return(d);
14 }

Listing 2: PARI/GP function for modular exponentiation via repeated squaring.

There is a trick to efficiently perform modular exponentiation, called the method of
repeated squaring [1, p.879]. Suppose we want to compute ab mod n. First, let d := 1
and obtain the binary representation of b, say (b1, b2, . . . , bk) where each bi ∈ Z2. For
i := 1, . . . , k, let d := d2 mod n and if bi = 1 then let d := da mod n. This algorithm is
implemented in Listing 2, which defines a PARI/GP function called modexp to perform
modular exponentiation using repeated squaring.

The code in Listing 2 can be saved to a file called, say, /home/mvngu/modexp.gp. The
file can then be read into PARI/GP using the command \r. Let us read the above file
into PARI/GP and encrypt our message:

PARI/GP
gp > m = 72697676798779827668

%17 = 72697676798779827668

gp > \r /home/mvngu/modexp.gp

gp > modexp(m, e, n)

%18 = Mod(359367672514946173472712696, 4951760154835678088235319297)

gp > c = 359367672514946173472712696

%19 = 359367672514946173472712696

Thus c = 359367672514946173472712696 is the ciphertext. To recover our plaintext, we
raise c to the power of d and reduce the result modulo n. Again, we use modular expo-
nentiation via repeated squaring in the decryption process:

PARI/GP
gp > modexp(c, d, n)

%22 = Mod(72697676798779827668, 4951760154835678088235319297)

Notice in the last output that the value 72697676798779827668 is the same as the integer
that represents our original message. Hence we have recovered our plaintext.

8



7 What’s next?

This article has demonstrated that the computer algebra system PARI/GP can be used
to study undergraduate number theory and cryptography. As the reader delves further
into number theory or its application to cryptography, software tools such as PARI/GP
would be handy in the learning process. Further information about PARI/GP can be
obtained from its website at http://pari.math.u-bordeaux.fr.

The structure of this article closely follows the tutorial Number Theory and the RSA

Public Key Cryptosystem, written by the same author for the Sage [4] documentation
project. That tutorial can be found online at

http://wiki.sagemath.org/DocumentationProject

Many of the invaluable feedbacks by Martin Albrecht and William Stein to that tutorial
have been incorporated into this article.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, USA, 2nd edition, 2001.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, FL, USA, 1996.

[3] PARI Group. PARI/GP (version 2.3.4), July 2008.
http://pari.math.u-bordeaux.fr.

[4] W. Stein. Sage: Open Source Mathematics Software (version 3.1.4). The Sage Group,
03 November 2008.
http://www.sagemath.org.

[5] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC, Boca Raton,
USA, 3rd edition, 2006.

[6] W. Trappe and L. C. Washington. Introduction to Cryptography with Coding Theory. Pear-
son Prentice Hall, Upper Saddle River, New Jersey, USA, 2nd edition, 2006.

9


