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1 Why runtime verification?

Runtime verification [2] is a formal verification technique that has recently become a tool
of choice to complement other techniques such as model checking and unit testing. In a
nutshell, we deploy a monitor M to dynamically monitor some system S while the latter
is in operation (see Figure 1). Based upon a recent snapshot of the input and output
of S, M decides whether or not S behaves according to its specifications. An alarm is
raised if M happens to detect some behaviour that deviates from specifications.
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Figure 1: System monitoring during operation.

Other formal verification techniques suffer one common limitation; namely, that they
attempt to verify the correctness of a system based upon its formal specifications or a
simplified version of the specifications. On the other hand, runtime verification attempts
to remedy this defect by passively monitoring a system of interest S as it is running within
its operating environment. For various systems, there are many advantages in using a
passive monitor. Since S is being monitored for conformance to specifications during its
operation, this increases our confidence in the implementation of S, in addition to the
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confidence resulting from verifying the formal specifications. Verifying the correctness
of the formal specifications of S shows us that in theory S behaves according to our
conception of how it is to behave. However, in practice, certain information is only
available during runtime. In some cases, the behaviours of S depend on its operating
environment, so that S must not be considered as an entity separate from its environment.
Furthermore, a crucial advantage of runtime verification is that the technique can be used
to monitor critical systems, such as to ensure that a computer system grants access only
to those with access privilege.

2 Automatic generation of monitors

The utility 1t12mon is a program for system supervision based on runtime verification. A
description of a 3-valued semantics monitor of real-time properties is contained in [1]. The
current project aims to realize this description by producing a working implementation
in the form of the 1t12mon monitor. Listing 1 shows the usage information for 1t12mon.
The utility translates a linear temporal logic (LTL) formula to a runtime verification
monitor. This implementation uses the Java wrapper LTL2BA4J [5] by Eric Bodden to
translate an LTL formula to the dot format representation of the corresponding Biichi
automaton. Bodden’s Java library is a wrapper around the tool LTL2BA [4] by Denis
Oddoux and Paul Gastin. The dot format representation is then parsed as a directed
graph using the JGraphT [3] library, followed by an emptiness check on the directed
graph representation.

Figure 2 shows two screenshots of a sample execution of 1t12mon with input LTL
formula aUb; i.e. a until b. The left screenshot shows a trace that satisfies this formula;
the right screenshot is an instance of a trace that violates the formula. At present, there
is little support for a configuration file for 1t12mon. It is recommended that your configu-
ration file, if one exists, be named “Itl12monrc”, although this is not a strict requirement.
Each entry in your configuration file must follow the format:

# document your entry
<entryLabel>=’’<entryValue>’’

where the hash symbol # is used for one-line comments.

Usage: java 1tl2mon [-chis] [[-f formulal | [-F filel]]l] [-o file]

c : configuration file for 1tl2mon

f formula : an LTL formula enclosed within quotation marks

F file : reads an LTL formula from the specified file

h : prints this help message

i : output whether or not the initial state is empty

o file : output dot format of Buchi automaton to the specified
file

s : output the dot format of Buchi automaton to the terminal

screen. You can’t use the s switch with the h or i switch

mandatory argument: exactly one of f or F must be present

Listing 1: Usage information for 1t12mon.
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Figure 2: Sample run of 1t12mon corresponding to LTL formula aUb.
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