A Runtime Verification Framework
for Access Control

Minh Van Nguyen

nguyenminh2@gmail . com

01 February 2008

1 Why runtime verification?

Runtime verification [2] is a formal verification technique that has recently become a tool
of choice to complement other techniques such as model checking and unit testing. In a
nutshell, we deploy a monitor M to dynamically monitor some system S while the latter
is in operation (see Figure 1). Based upon a recent snapshot of the input and output
of S, M decides whether or not S behaves according to its specifications. An alarm is
raised if M happens to detect some behaviour that deviates from specifications.

monitor M

system S | NN ¢ e eeee
I/O channel

Figure 1: System monitoring during operation.

Other formal verification techniques suffer one common limitation; namely, that they
attempt to verify the correctness of a system based upon its formal specifications or a
simplified version of the specifications. On the other hand, runtime verification attempts
to remedy this defect by passively monitoring a system of interest S as it is running within
its operating environment. For various systems, there are many advantages in using a
passive monitor. Since S is being monitored for conformance to specifications during its
operation, this increases our confidence in the implementation of S, in addition to the

QOO0 U= W -

confidence resulting from verifying the formal specifications. Verifying the correctness
of the formal specifications of S shows us that in theory S behaves according to our
conception of how it is to behave. However, in practice, certain information is only
available during runtime. In some cases, the behaviours of S depend on its operating
environment, so that S must not be considered as an entity separate from its environment.
Furthermore, a crucial advantage of runtime verification is that the technique can be used
to monitor critical systems, such as to ensure that a computer system grants access only
to those with access privilege.

2 Automatic generation of monitors

The utility 1t12mon is a program for system supervision based on runtime verification. A
description of a 3-valued semantics monitor of real-time properties is contained in [1]. The
current project aims to realize this description by producing a working implementation
in the form of the 1t12mon monitor. Listing 1 shows the usage information for 1t12mon.
The utility translates a linear temporal logic (LTL) formula to a runtime verification
monitor. This implementation uses the Java wrapper LTL2BA4J [5] by Eric Bodden to
translate an LTL formula to the dot format representation of the corresponding Biichi
automaton. Bodden’s Java library is a wrapper around the tool LTL2BA [4] by Denis
Oddoux and Paul Gastin. The dot format representation is then parsed as a directed
graph using the JGraphT [3] library, followed by an emptiness check on the directed
graph representation.

Figure 2 shows two screenshots of a sample execution of 1t12mon with input LTL
formula aUb; i.e. a until b. The left screenshot shows a trace that satisfies this formula;
the right screenshot is an instance of a trace that violates the formula. At present, there
is little support for a configuration file for 1t12mon. It is recommended that your configu-
ration file, if one exists, be named “Itl12monrc”, although this is not a strict requirement.
Each entry in your configuration file must follow the format:

document your entry
<entryLabel>=’’<entryValue>’’

where the hash symbol # is used for one-line comments.

Usage: java 1tl2mon [-chis] [[-f formulal | [-F filel]]l] [-o file]

c : configuration file for 1tl2mon

f formula : an LTL formula enclosed within quotation marks

F file : reads an LTL formula from the specified file

h : prints this help message

i : output whether or not the initial state is empty

o file : output dot format of Buchi automaton to the specified
file

s : output the dot format of Buchi automaton to the terminal

screen. You can’t use the s switch with the h or i switch

mandatory argument: exactly one of f or F must be present

Listing 1: Usage information for 1t12mon.

_A-nx

Phi: alUb J
lating trace |

Monitoring a satisfying trace

[a]
SAT
SAT

Figure 2: Sample run of 1t12mon corresponding to LTL formula aUb.

References

[1] Bauer, Andreas, Martin Leucker and Christian Schallhart. “Monitoring of Real-Time
Properties” in S Arun-Kumar and N Garg (eds.). FSTTCS 2006: Foundations of Soft-
ware Technology and Theoretical Computer Science (LNCS 4337). Springer-Verlag,
2006, pp.260-272.

[2] Colin, S and L Mariani. “Run-Time Verification”, chapter 18 in M Broy, B Jonsson,
J-P Katoen, M Leucker and A Pretschner (eds.). Model-based Testing of Reactive
Systems. LNCS 3472, Springer, 2005.

[3] JGraphT - Java graph library
http://jgrapht.sourceforge.net/
Viewed 29 January 2008

[4] LTL2BA: fast translation from LTL formulae to Biichi automata
http://www.lsv.ens-cachan.fr/ gastin/1ltl2ba/
Viewed 29 January 2008

[5] LTL2BA4J - Java bridge to 1t12ba
http://www.sable.mcgill.ca/ ebodde/rv//1t12ba4dj/
Viewed 29 January 2008

