A Runtime Verification Framework for Access Control

Minh Van Nguyen
ANU Summer Research Scholar 2007/2008
nguyenminh2@gmail.com

30 January 2008

Why runtime verification?

dynamically monitor systems

Figure 1: System monitoring during operation.

- advantages:
 - increases confidence on implementation
 - information available at runtime
 - behaviours dependent on operating environment
 - security concerns, critical systems

Specifying system requirements using LTL

Figure 2: $\mathbf{X}\phi$: ϕ holds at the ne \mathbf{X} t state.

Figure 3: $\mathbf{G}\phi$: ϕ holds \mathbf{G} lobally.

Figure 4: $\mathbf{F}\phi$: Finally ϕ holds.

Figure 5: $\psi \mathbf{U} \phi$: ψ holds Until ϕ holds.

LTL and Büchi automata

- ullet finite-state automaton: $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$
- ullet Büchi automaton: ${\cal A}$ with infinite inputs

Figure 6: Büchi automata for **X**, **G**, **F**, **U** respectively.

Model checking using Büchi automata

- infinite sequence w, so $w \models \varphi$ or $w \not\models \varphi$ for some φ ; finite prefix u of w
- three-valued LTL

$$[u \models \varphi] = \begin{cases} \top & \text{if } uw' \models \varphi \\ \bot & \text{if } uw' \not\models \varphi \\ ? & \text{otherwise} \end{cases}$$

ullet generate \mathcal{A}^{φ} and $\mathcal{A}^{\neg \varphi}$, then input u

φ	$\neg \varphi$	value
SAT	SAT	?
SAT	UNSAT	T
UNSAT	SAT	\perp

Table 1: Satisfiability criteria in 3-valued LTL.

References

- 1. Bauer, Andreas. "Model-Based Runtime Analysis of Distributed Reactive Systems". PhD thesis, Institut für Informatik, Technische Universität München, 2007.
- 2. Bauer, Andreas, Martin Leucker and Christian Schallhart. "Monitoring of Real-Time Properties" in S Arun-Kumar and N Garg (eds.). FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science (LNCS 4337). Springer-Verlag, 2006, pp.260–272.
- 3. Hopcroft, John E and Jeffrey D Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Publishing Company, 1979.
- 4. JGraphT Java graph library
 http://jgrapht.sourceforge.net/
 Viewed 19 December 2007

- 5. LTL2BA: fast translation from LTL formulae to Büchi automata http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/Viewed 20 December 2007
- 6. LTL2BA4J Java bridge to ltl2ba http://www.sable.mcgill.ca/~ebodde/rv//ltl2ba4j/ Viewed 29 January 2008

Thank You