
COSIVINA: A Matlab Toolbox to Compose, Simulate,

and Visualize Neurodynamic Architectures

Sebastian Schneegans
Institut für Neuroinformatik
Ruhr-Universität Bochum

Version 1.1, March 2013

Contents

1 Introduction 5
1.1 Overview of the Framework . 5
1.2 About this Document . 6
1.3 Object-Oriented Programming and Terminology 6
1.4 Preparing the Framework for Use . 7

I Structure of the Framework 7

2 Element Class 8
2.1 Common Properties . 8

2.1.1 parameters . 8
2.1.2 components . 9
2.1.3 label . 9

2.2 Methods . 9
2.2.1 init . 9
2.2.2 step . 10
2.2.3 close . 10
2.2.4 copy . 10
2.2.5 addInput . 10
2.2.6 getParameterList . 11

2.3 Note on Size Parameters . 11
2.4 Notes on Parameter Changes and Initialization 11

3 Simulator Class 12
3.1 Methods for Creating and Expanding the Simulator 12

3.1.1 Constructor . 12
3.1.2 addElement . 13
3.1.3 copy . 13

3.2 Methods for Running the Simulator . 13
3.2.1 run . 13
3.2.2 init . 14
3.2.3 step . 14

1

3.2.4 close . 14
3.3 Element Access Methods . 14

3.3.1 isElement . 14
3.3.2 getElement . 14
3.3.3 getComponent . 14

3.4 Methods to Assist in Debugging . 15
3.4.1 tryInit . 15
3.4.2 tryStep . 15

4 GUI 15
4.1 GUI Layout . 15
4.2 Parameter Panel . 16
4.3 Methods . 17

4.3.1 Constructor . 17
4.3.2 addVisualization . 18
4.3.3 addControl . 18
4.3.4 connect . 18
4.3.5 run . 18

II Class Reference 20

5 Elements 20
5.1 Dynamic Elements . 20

5.1.1 NeuralField . 20
5.1.2 MemoryTrace . 20
5.1.3 DynamicVariable . 21
5.1.4 SingleNodeDynamics . 21

5.2 Interaction Kernels . 23
5.2.1 GaussKernel1D . 23
5.2.2 GaussKernel2D . 24
5.2.3 MexicanHatKernel1D . 24
5.2.4 LateralInteractions1D . 25
5.2.5 WeightMatrix . 26

5.3 Dimensional Reduction and Expansion . 26
5.3.1 SumDimension . 26
5.3.2 SumAllDimensions . 27
5.3.3 ExpandDimension2D . 27
5.3.4 DiagonalSum . 27
5.3.5 DiagonalExpansion . 28
5.3.6 ScalarToGaussian . 28

5.4 Basic Mathematical Operations . 29
5.4.1 ScaleInput . 29
5.4.2 SumInputs . 29
5.4.3 ShiftInput . 30
5.4.4 PointwiseProduct . 30
5.4.5 Convolution . 30
5.4.6 Interpolation1D . 31

5.5 Output Functions . 31
5.5.1 Sigmoid . 31

2

5.5.2 HalfWaveRectification . 32
5.6 Stimuli . 32

5.6.1 BoostStimulus . 32
5.6.2 GaussStimulus1D . 32
5.6.3 GaussStimulus2D . 33
5.6.4 CustomStimulus . 34
5.6.5 NormalNoise . 34

5.7 History . 34
5.7.1 History . 34
5.7.2 RunningHistory . 35

5.8 Image Acquisition and Processing . 35
5.8.1 CameraGrabber . 35
5.8.2 ImageLoader . 35
5.8.3 ColorExtraction . 36

5.9 Motor control . 37
5.9.1 AttractorDynamics . 37
5.9.2 DynamicRobotController . 37

6 Controls 38
6.1 ParameterSlider . 38
6.2 ParameterSwitchButton . 39
6.3 ParameterDropdownSelector . 39
6.4 GlobalControlButton . 40
6.5 PresetSelector . 40

7 Visualizations 41
7.1 MultiPlot . 41
7.2 XYPlot . 43
7.3 SlicePlot . 44
7.4 ScaledImage . 44
7.5 RGBImage . 45
7.6 SurfacePlot . 45
7.7 KernelPlot . 46

III Examples 46

8 Example A: Building and Running a Simple DNF Architecture 46
8.1 Creating the Architecture . 47
8.2 Initializing and Running the Simulation . 49

9 Example B: Building an Architecture with
Two-Dimensional Fields 51
9.1 Lateral Interactions in Two-Dimensional Fields 51
9.2 Projections between Fields of Different Dimensionality 53

3

10 Example C: Creating and Using a GUI 54
10.1 Creating the GUI Object . 54
10.2 Adding Visualizations . 55
10.3 Adding Controls to Change Element Parameters 56
10.4 Adding Global Controls . 58
10.5 Running a Simulation in the GUI . 59

11 General Hints for Efficient DNF Architectures 61
11.1 Connecting Fields of Different Dimensionality 61
11.2 Scaling and Re-using Operations . 61
11.3 Order of Elements . 61

4

1 Introduction

1.1 Overview of the Framework

The COSIVINA toolbox is intended as a tool to quickly create Dynamic Neural Field (DNF)
architectures in Matlab and simulate their activation time course either in an interactive
mode with a GUI, or in an offline mode. The software was developed at the Institut für
Neuroinformatik at the Ruhr-Universität Bochum, where it is used both in teaching the
concepts of DNFs and in research. It is published under the Simplified BSD License.

The basic idea for the framework is to divide a DNF architecture into individual elements
that can be implemented as objects of different classes. Assume for example we have a
simple one-dimensional dynamic neural field, which has lateral interactions (typically local
excitiation and surround inhibition) and receives several inputs, often modeled as Gaussian
functions. We can then divide this architecture up into the following elements: The dynamic
neural field itself (the distribution of activation that changes according to a dynamic field
equation); the lateral interaction kernel that is convolved with the field; and several Gaussian
stimuli. These elements are connected to each other: The stimuli feed into the neural field,
the element for the lateral interactions receives input from the field and feeds back to it.
Larger architectures containing many neural fields that interact with each other through
mutual projections or other operations can be segmented in the same way.

The dynamics of the architecture (the change of its state over time) is simulated using the
Euler method: The rate of change for each dynamic element is determined for equidistant
time steps and assumed fixed for the duration of the step. The segmentation into elements
is done in such a way that the operation to be performed in each step can be computed for
each element separately, based only on the element’s own state, its direct inputs and the
element’s parameters.

In the framework, an architecture is constructed by adding elements and specifying their
parameters and their connections to each other. The architecture can be run (i.e. the
change of its state over time be simulated) either in individual steps or for a fixed duration.
The states of of all element can then be accessed, analyzed or plotted, their parameters or
states changed, and the simulation continued thereafter. Moreover, the framework offers
tools to create graphical user interfaces (GUIs) that can be used to run the architecture
while visualizing the states (like activation patterns or outputs) of some or all of its elements
online. These GUIs allow online changes of parameters via control elements (sliders, buttons,
and edit fields). The settings of an architecture (its elements, their parameters and the
connections between them) can be stored in a parameter file, and the architecture can
be created again by loading from this file. The framework uses the JSON format (see
www.json.org) to store parameter files, and utilizes the Open Source toolbox JSONlab for
saving and loading these files.

As a typical usage of this framework for research in the field of behavioral/neural mod-
eling, we envision something like the following: You start with an idea for a DNF model
that performs a certain task. You implement that model in the DNF framework, e.g. by
writing a script that creates the required elements and their connectivity, using the provided
classes. Then you create a GUI for this architecture, which shows you the activations of
all fields and maybe the results of some other operations that go on in each step of the
simulation. Add some controls to change inputs to the system and key parameters, and try
it out. You may have to do some debugging of the connectivity before the simulation actu-
ally runs; the framework provides some tools to assist you here. Then find out whether the
architecture behaves the way you expected, at least qualitatively. You may have to change
or add some elements or connections before it looks good. In the next step, to get the actual

5

behavior that you want out of the system, tuning of the parameters will almost certainly be
necessary. The standard GUI allows you to access all parameters of the elements in your
architecture, so that you can change their behavior while the simulation is running. You
may also add more controls to have a more direct way to change some key properties. Store
the parameter settings that are promising in parameter files as you work on the model. At
some point you may want to start running standardized trials with the model, perhaps with
some fixed sequence of inputs. You can then move to running the model in an offline mode
(without the GUI, though perhaps still with some visualization or analysis as the simulation
runs). Just load the architecture from the parameter files and write a script that sets up
the desired time course and the necessary analysis of the results. And from here, you can
switch between GUI and the offline mode to test the model, analyze its behavior, improve
and expand it.

1.2 About this Document

The goal of this document is to enable the users of the COSIVINA toolbox to quickly build
DNF architectures, design GUIs for them, and run their models in the way that is most
appropriate for their requirements. This document does not provide a general introduc-
tion to Dynamic Neural Field Theory, its applications or the underlying mathematics (see
http://www.robotics-school.org/ for introductory lectures and materials).

The document is structured in three major parts: The first describes the key components
of the framework. The second one provides a reference of the available classes, specifically
the elements that can be used to construct an architecture and the controls and visualizations
for the design of a custom GUI. The third part describes in detail the construction of some
example architectures and GUIs and their use for tuning and testing a model. You may
jump directly to this last part to get a quick idea of how to use this framework.

1.3 Object-Oriented Programming and Terminology

Working with the DNF framework does not require detailed knowledge of object-oriented
programming, and providing such knowledge would be beyond the scope of this document
(see the Matlab help for this). We will, however, give a very brief overview of the concepts
and terminology of object-oriented programming in Matlab to facilitate understanding of
our framework. The central idea of object-oriented programming is to structure the program
code (or parts of it) into classes, which combine data structures and functions that act on
them. A class in Matlab can be written as a single m-file that contains a class definition,
which specifies the name of the class and its relationship to other classes. This class definition
is typically followed by a list of persistent variables of this class, called properties. A class
can furthermore define functions, which typically act on these properties. These functions
are called methods of the class.

To use the class and its methods in scripts or other functions, it is typically neces-
sary to instantiate it – that is, to create an object of that class. This can be done by
calling a constructor function for the class, which has the same name as the class it-
self. The constructor call returns a concrete variable, which contains all the properties
of the class (analogous to the fields in a struct). One can access these properties and call
the methods of the class via the dot-notation (in the form objectName.propertyName or
objectName.methodName(...)). Some properties may not be accessible (or not accessible
for writing) except via methods of the class. It is possible and common to instantiate mul-
tiple objects of the same class. These objects then have the same structure and offer the
same methods, but the content of their internal variables may be entirely different.

6

The DNF framework strongly relies on so called handle classes: When a handle class
is created, it is instantiated in memory and a handle to it is returned as variable in the
workspace. This handle allows access to the class’s properties and methods via the dot-
notation in the same way as in non-handle classes. However, when copying this variable,
only the handle to the existing object is copied, not the object itself. This is similar to
graphics handles in Matlab, which can be copied without multiplying the graphics object.
The handle class object itself is destroyed when all handles referring to it are removed from
the workspace.

We will furthermore use some fixed terms below that are specific to our framework (and
not to be confused with general object-oriented programming terminology). In particular,
we will refer to the parameters and components of an element. These two terms refer to
different types of properties of the element classes, that are distinguished by their role for
the behavior of the element, not by their implementation.

1.4 Preparing the Framework for Use

To use the framework, download the compressed Matlab sources and unpack them in a folder
of your choice. Then add the subfolders base, controls, elements, examples (optional),
mathTools, and visualizations to your Matlab path. You can do so manually via the
entry Set Path ... in the Matlab File menu (choose Add with subfolders, then save
the settings for future Matlab sessions), or call the function setpath in the COSIVINA base
directory.

The full functionality of COSIVINA is supported by Matlab R2011a and later. The
framework can also be used with earlier versions (back to at least R2009a), but then requires
a small adjustment to run: In the file base/Element.m, replace the class definition

classdef Element < matlab.mixin.Copyable

with

classdef Element < handle

(both forms are prepared in the file, just comment/uncomment the appropriate line). With
this change, the copy functions of the Element and Simulator classes are no longer func-
tional. Except for this, the framework remains fully functional, including the creation and
use of GUIs for interactive simulations.

In order to save and load architecture settings to/from configuration files, you addition-
ally need the Open Source toolbox JSONlab. You can obtain it from

http://sourceforge.net/projects/iso2mesh/files/jsonlab/

The current version of COSIVINA has been tested with JSONlab versions 0.9.0 and 0.9.1.
The location of this toolbox also needs be added to the Matlab path. The setpath function
will do so if a folder jsonlab exists either as a subfolder in the COSIVINA base folder or
on the same level as the COSIVINA base folder itself.

To test the toolbox, call one of the scripts from the examples folder. For instance, call
launcherOneLayerField.m from the Matlab command line (the launcher... files create a
DNF architecture and accompanying GUI and then run that GUI). This should open a GUI
window with a running DNF model, in which you can change field parameters and input
settings via sliders. Press the Quit button to close the simulation. You can also run the
example scripts, which are explained in detail in the last part of this document.

7

Part I

Structure of the Framework

2 Element Class

Different types of elements (like neural fields, lateral interactions, and projections between
fields) are implemented as different classes in the DNF framework. These classes are all
derived from the abstract superclass Element, which defines a common structure for all
elements.

2.1 Common Properties

2.1.1 parameters

When we talk about the parameters of a class, we refer to a certain subset of its properties
(class variables) which together fully define the behavior of an element. Each element class
contains as one (constant) property a struct named parameters. This struct contains the
names of all parameters of the element together with information about whether they may
be changed during a simulation. It is important to note that this struct does not contain the
parameter values themselves. Instead, it only provides the information which parameters
the element has and how they behave, which is important e.g. to automatically generate
GUI panels that allow manipulation of parameters online. The parameter values themselves
are stored in individual properties of the element class.

For instance, for the class NeuralField, the parameters struct has the following form:

>> NeuralField.parameters

ans =

size: 0

tau: 1

h: 1

beta: 1

This tells us that the elements of this class have four parameters, namely size, tau, h and
beta. The integers following the parameter names inform us whether the parameter may
be changed online, as described in Section 2.4. If we create an object of this class, we get a
list of its properties:

>> nf = NeuralField

ans =

NeuralField handle

Properties:

parameters: [1x1 struct]

components: {’input’ ’activation’ ’output’ ’h’}

defaultOutputComponent: ’output’

size: [1 1]

tau: 10

h: -5

beta: 4

input: []

activation: []

8

output: []

label: ’’

nInputs: 0

inputElements: {}

inputComponents: {}

We see that the four parameters listed above now appear as properties of the object, among
others. Their values are the actual parameter values (e.g. h = -5), in this case the default
values assigned to them by the class constructor.

2.1.2 components

A second subset of properties is called components. These vectors or matrices contain the
state of the element during the simulation (for example, the current activation distribution of
a neural field) or the results of the computation performed by an element in every simulation
step (for example, the convolution of an input with an interaction kernel). These components
can serve as inputs for other elements or be plotted in a GUI’s visualizations. Analogously
to the parameters, there is a single constant property components in each class. We can
view it without actually creating an object of the class:

>> NeuralField.components

ans =

’input’ ’activation’ ’output’ ’h’

This property lists all of the class’s components as a cell of strings.
As shown in this listing, the NeuralField class has the components input,

activation, output, and h. (Note that a single property can serve as both a parame-
ter and a component, as is the case here for the resting level h.) The components are
typically created as empty matrices in the element constructor and then brought to their
correct size during the initialization (see below).

In addition to the component property, each element furthermore has a property
defaultOutputComponent. This string gives the name of the property that is used as the
default when projecting from that element to other elements. For most elements, including
the NeuralField class, the name of this component is simply output:

>> NeuralField.defaultOutputComponent

ans =

output

2.1.3 label

Each element that is added to the architecture in a Simulator object must have a unique
label. A valid label can be any non-empty character string. The label is used to refer to
this element in the simulator, e.g. when specifying the connectivity between elements or
accessing an element for analysis or parameter changes.

2.2 Methods

2.2.1 init

The init method initializes the element. After initialization, all components of the elements
are created as vectors or matrices of the correct size (filled either with zeros or with appro-
priate values), so that they can serve as valid inputs for other elements. The init method

9

furthermore performs all preparatory computations and may prepare internal data struc-
tures for the step method to be executed. For certain elements, it also opens a connection
to hardware or interfaces to other programs.

2.2.2 step

The method step(time, deltaT) performs one simulation step (Euler step) at a simulation
time given by the first argument and of a duration given by the second argument. It fetches
input from other elements and updates the element’s components as applicable. Note: The
arguments time and deltaT are in practice only used by a small subset of element classes,
and ignored in the step functions of other classes.

2.2.3 close

The close method disconnects the element from hardware or external interfaces. In pure
simulation settings, use of this method is generally not necessary. In these cases, calling this
method has no effect.

2.2.4 copy

The copy method creates a shallow copy of an element. The method is inherited from
matlab.mixin.Copyable, the superclass of Element. Since all element classes are handle
classes, a simple assignment does not copy the element, but only creates a new handle to an
existing element. Consider the following example:

h1 = NeuralField(’field u’, 100, 10, -5);

h2 = h1;

h1.tau = 20;

h2.tau

ans =

20

Here, the handles h1 and h2 refer to the same underlying element. When a parameter is
changed via handle h1, the change will also appear when the element is accessed via handle
h2. In contrast, the following code creates an actual copy of the element:

h1 = NeuralField(’field u’, 100, 10, -5);

h2 = h1.copy();

h1.tau = 20;

h2.tau

ans =

10

The two handles now point to different elements, so a parameter change via one handle will
not change the element accessed by the other handle.

2.2.5 addInput

The method addInput(inputHandle, inputComponent, optArg) is used to manually add
an input to an element. The connections in an architecture are in practice stored in such
a way that each element has a list of elements that it receives inputs from, and a list of
the components of these elements that serve as inputs. When creating an architecture, the

10

connections between the elements are typically defined via the addElement function of the
Simulator class (which calls this method internally), such that direct calls of the addInput

method are not necessary in most cases.

2.2.6 getParameterList

This method returns a list of the element’s parameter names as a cell array of strings.

2.3 Note on Size Parameters

At this time, the framework effectively supports one- and two-dimensional DNFs and con-
necting elements. Most elements have a parameter size that indicates the size of the field or
other structure represented by the element. These sizes are described by a two-element vec-
tor, where the first element indicates the number of rows, the second the number of columns
of a matrix (following Matlab conventions). One-dimensional data structures are generally
stored as row vectors, and if a scalar is given as a size parameter, it is interpreted as the
number of columns in a row vector (so a value n given as a size argument is interpreted as
[1, n]).

2.4 Notes on Parameter Changes and Initialization

The elements of the DNF architecture are implemented in a way that attempts to optimize
their run time efficiency in longer simulations. This often requires some auxiliary computa-
tions that take place before the step function is called to make the step function itself run
faster (e.g. the computation of a convolution kernel for lateral interactions). These com-
putations are performed during the initialization of an element. As a side effect, changes
of an element’s parameters do not always have a direct effect on the computation in the
step function, because some parameter values are only used in the auxiliary computations.
Checking for a change in these parameters during each step would be inefficient, therefore
a manual re-initialization may be necessary.

The information which parameters changes require a re-initialization of the element to
take effect is stored in the element classes (it is used to automatically initialize elements
when changes are made via a GUI). You can find this information by viewing the m-file for
the class or by inspecting the parameters struct of a class, for example:

GaussStimulus1D.parameters

ans =

size: 0

sigma: 2

amplitude: 2

position: 2

circular: 2

normalized: 2

This yields a list of the element’s parameters, and for each parameter a number indicating its
changeability status. (Note that these are not the parameter values, and that the parameters
can be listed without having a concrete object of that class.) The meaning of these integer
values is fixed in the constant class ParameterStatus: 0 for fixed, 1 for changeable, 2 for
initialization required. Fixed parameters cannot be changed via a GUI, and changing them
manually during a simulation may require special care (for instance, changing the size of
one element may not be possible without also adjusting the size of other elements). For

11

parameters listed as changeable, changes in parameter value will take effect immediately
without requiring initialization. When changing parameters that are listed as requiring
initialization, the element may show inconsistent behavior if the step function is called
again without prior re-initialization of the element.

When re-initializing connective elements during a simulation, it is advisable to manually
call that element’s step function once after the init function. The reason is the following:
The initialization generally sets the output of the element to a matrix of zeros. This out-
put may then be used in the simulator step by other elements before it is updated to its
proper values. While the system will behave correctly again in the next step, this may for
instance cause a brief lapse of lateral interactions that can change the system’s behavior in
an undesirable way.

For stimulus elements, calling the step function is generally not necessary, since here
the components are already filled with proper values during initialization (which is not
possible for elements that receive inputs from other elements and these in turn are not
yet initialized). For dynamic elements (neural fields and memory traces), all parameters
can be changed without reinitialization. This allows parameter changes during an ongoing
simulation without resetting the state of the elements.

3 Simulator Class

The Simulator class holds all elements of an architecture, manages the connections between
them, allows to run the whole architecture as a coupled dynamic system and provides easy
access to individual components. It furthermore contains methods to save an architecture to
or load it from a configuration file. Below we describe the functions for creating, expanding,
and using a Simulator object.

3.1 Methods for Creating and Expanding the Simulator

3.1.1 Constructor

A new Simulator object can be created by calling the constructor without any arguments,
e.g. sim = Simulator(). Optional arguments can be provided in the form of parameter
name / value pairs (where the parameter name is given as a character string). The parame-
ters ’tZero’ (the starting time of the simulator, default is 0) and ’deltaT’ (the time step,
default is 1) can be set, or an architecture can be loaded from a configuration file in JSON
format by specifying the parameter ’file’ and the filename, or it can be loaded from a
parameter structure by giving the parameter ’struct’ and the struct.

Examples

sim = Simulator(); creates an empty simulator object with default settings

sim = Simulator(’deltaT’, 0.1, ’tZero’, 500); creates an empty simulator object
with a time step of 0.1 and a start time of 500

sim = Simulator(’file’, ’threeLayerArchitecture.json’); creates a simulator ob-
ject by loading the architecture and parameter settings from the specified JSON-file

sim = Simulator(’struct’, threeLayerArchtecture); creates a simulator object by
loading the architecture and parameters from the struct threeLayerArchtecture;
the struct must be a valid parameter struct, created e.g. by loading from a parameter
file using the JSONlab toolbox

12

3.1.2 addElement

This method provides the key capacity of the Simulator class for constructing architectures,
by a adding a new element to the Simulator object. The function is called in the form

sim.addElement(elementHandle, inputLabels, inputComponents,

targetLabels, componentsForTargets)

The element handle is typically created by calling the constructor of the element that is
to be added and providing the necessary parameters for the element. The four following
arguments are all optional, and describe the connectivity of the new element to the existing
elements of the architecture. They can each be either a single string or a cell array of strings,
or be an empty matrix if no connections are to be specified.

• inputLabels - the labels of those existing elements in the architecture from which the
newly added element receives inputs

• inputComponents - the components of the elements specified in inputLabels that
are to be used as inputs for the new element; if the new element receives multi-
ple inputs, both inputLabels and inputComponents should be cell arrays of strings,
with each pair of entries from the two cells specifying one input; the whole argument
inputComponent or individual elements of the cell array may be replaced by an empty
array [], in which case the default output component of the specified input elements
is used

• targetLabels - the labels of those elements in the architecture that are to receive
input from the new element

• componentsForTarget - the components of the new element that should serve as
inputs for the elements specified in targetLabels; analogous to the inputLabels and
inputComponents arguments, multiple targets may be specified through cell arrays of
strings, and componentsForTarget may be omitted if the default output component
of the new element is to be used

3.1.3 copy

Creates a copy of the simulator object and all of its elements. Since the class Simulator

is a handle class, a simple assignment does not copy the object, but only creates a new
handle to the existing object (see 2.2.4 for detailed explanation). The copy method can be
used to create different branches of a simulation, which can be run independently to directly
compare how a model that is in a certain state behaves under different conditions.

For instance, you may have an architecture with a complex working memory represen-
tation, that takes some time to be built. You may then, after forming this representation,
create several copies of the simulator object to test how the model behaves when different
new inputs are applied. This way, you do not need to form the working memory represen-
tation repeatedly, and can be sure that you always start with the exact same state when
comparing different conditions.

3.2 Methods for Running the Simulator

3.2.1 run

The method runs the simulator (i.e. performs simulation steps) until a specified time step is
reached. It can initialize the simulator and close it after finishing if requested. It is called as

13

sim.run(tMax, initialize, close), where the boolean arguments intialize and close

are both optional.
If the simulator is not yet initialized or if an initialization is explicitly requested by

setting the argument initialize to true, the init method is called (see below), which
initializes all elements and sets the time to tZero. Otherwise, the simulation continues from
the current state of the simulator. This means that a single continuous run may be replaced
by multiple successive calls of run (with increasing values for tMax), allowing e.g. to perform
analysis of the simulator’s state or change settings between the individual runs.

If the argument close is supplied and its value is true, all elements are closed after
completion of the run by calling their close method (see close method below).

3.2.2 init

The init method initializes all elements in the simulator object (by calling each element’s
init method), and sets the simulator time property t to the value tZero. It takes no argu-
ments and returns the initialized simulator object. If the simulator was already initialized,
all information about its previous state is lost.

3.2.3 step

The step method performs a single simulation step (updating of the dynamical system’s
state according to the Euler method) by calling each element’s step function, and increments
the simulator’s time property t by deltaT. It takes no arguments and returns the initialized
simulator object.

Note: The elements are processed (i.e. their step functions called) in the order they
were added to the simulator. The order may make a difference for the exact behavior of the
system.

3.2.4 close

The close method terminates all external connections by calling each element’s close

method. Note: The close method is used primarily to disconnect elements that provide
interfaces to hardware. It does not affect most other elements, and is typically not required
in pure simulation settings.

3.3 Element Access Methods

3.3.1 isElement

The method call sim.isElement(s) checks whether the string s is the label of any element
in the object sim, and returns a boolean value.

3.3.2 getElement

The method call sim.getElement(s) returns a handle to the element with label s if such
an element exists in the simulator object, and an empty matrix otherwise.

3.3.3 getComponent

The method call sim.getComponent(s, c) with string arguments s and c returns the com-
ponent with name c of element with label s if such exists. Otherwise it returns an empty
matrix and throws a warning.

14

3.4 Methods to Assist in Debugging

3.4.1 tryInit

The method tryInit performs the same operations as init, but provides additional infor-
mation if the initialization of any element fails. In that case, the label of the element that
caused an error and its properties are displayed. If no errors occur, the method performs a
valid initialization of the simulator object.

3.4.2 tryStep

The method tryStep performs the same operations as step, but provides additional infor-
mation if an error occurs in the step function of any element. In that case, the element
label, its properties, and information about its inputs are displayed to facilitate debugging
(a frequent cause of erros is mismatch between the sizes of connected elements). For actually
running the simulations, the step method should be preferred since it is slightly faster than
tryStep.

4 GUI

The graphical user interface of the framework makes it possible to change parameter values
while a simulation is running, so that the behavior of an architecture can be observed and
adjusted online. Currently there is one type of GUI implemented in the StandardGUI class.
Each StandardGUI object is connected to a single Simulator object. A specific GUI is
built up by arranging visualizations and controls: The visualizations are graphical elements
like plots or images that show selected components of the architecture elements. Controls
can be buttons, sliders, dropdown menus and other objects that are connected to selected
parameters of the architecture elements. Certain controls can globally affect the simulation
that is run in the GUI (e.g. pausing or ending the simulation). As a default interface to
access and change any (non-fixed) parameters, the StandardGUI offers a parameter panel
(implemented in the separate class ParameterPanel). In this panel, an element from the
architecture can be selected via a dropdown menu. All of its parameters are then displayed
and their values can be changed via edit fields.

4.1 GUI Layout

The StandardGUI has one main figure window on which controls and visualizations can be
arranged freely. To make the arrangement of items more convenient, two spatial grids over
this window can be defined: The visualizations grid and the controls grid. When a new
StandardGUI object is created, the positions and sizes of these grids can be specified. The
grid position in the main window must be given in relative coordinates (as four-element
vector, as used e.g. to place plots in Matlab). The grid size is given by a two-element
vector, determining the number of cells vertically and horizontally. An example is shown in
Figure 4.1. The locations of controls and visualizations can then be given as positions in
the respective grid, and a size within the grid can be specified if they should span multiple
grid cells. Alternatively, all positions can also specified manually as relative positions in the
figure.

A position within the grid is described by a two-element vector [v, h] (vertical and
horizontal position), with [1, 1] being the top left cell of the grid. While the typical usage

15

0 10 20 30 40 50 60 70 80 90 100
−15

−10

−5

0

5

10

15

−50 −40 −30 −20 −10 0 10 20 30 40 50
−1

−0.5

0

0.5

1

Figure 1: Layout of the GUI in launcherField1l.m using visualizations and controls grids.
The 2 × 1 visualizations grid (blue) and the 6 × 4 controls grid (red) are overlaid over the
actual GUI.

is to describe positions by integer values in this grid, non-integer real values and values that
fall outside of the specified grid are permissible.

For the visualizations grid, there is an additional parameter visGridPadding that de-
termines a space left between the actual visualization and the border of the grid cell. It is
given relative to the size of the figure window.

Note that the grids for controls and visualizations may also overlap. An example can be
seen in the file launcherCoupling.m, where the controls grid covers the whole window (but
no controls are actually placed in the area occupied by visualizations).

4.2 Parameter Panel

The parameter panel can be opened in a separate figure window via an appropriate button
in the main window. By default, the parameter panel generates a list of all elements in
the connected Simulator object and shows them in a dropdown menu. For the selected
elements, it shows all of its parameters with an edit field containing the parameter values.
The values may be changed for non-fixed element parameters, with the changes taking effect
after the Apply button at the bottom of the panel is clicked. (Note: Changes made for one
element are lost if the selection in the dropdown menu is changed without clicking Apply

first.)
The element list for the parameter panel can be customized by specifying a list of entries

and a list of the corresponding elements or element groups in the StandardGUI constructor.
This customization supports three functions:

• to list the elements in the parameter panel with more descriptive labels than are

16

actually used in the architecture;

• to eliminate elements from the parameter panel’s dropdown menu, e.g. to make the
list more concise by removing entries that do not have any changeable parameters or
that should not be changed by the user;

• to group elements together, such that changes made via the parameter panel affect a
group of elements rather than a single element.

The customization is performed via two parameters elementGroups and elementsInGroups.
The first is a cell array of strings, with each string specifying one entry in the parameter
panel’s dropdown menu (you may use descriptive labels here, the entries do not have to
match the actual element labels). The second parameter elementsInGroups specifies one
or more elements (via their labels) that are to be associated with the corresponding entry
in elementGroups. It is either a cell array of strings (if each menu entry is associated with
only one element) or a cell array of cell arrays of strings (you may also mix string and cell
array of string entries).

4.3 Methods

4.3.1 Constructor

A new StandardGUI object is created by calling the class constructor in the form

StandardGUI(simulatorHandle, figurePosition, pauseDuration, ...

visGridPosition, visGridSize, visGridPadding, ...

controlGridPosition, controlGridSize, ...

elementGroups, elementsInGroups)

All arguments except figurePosition are optional.

• simulatorHandle - handle to the Simulator object that is to be run by the GUI;
if the argument is 0, the GUI will be created without being connected to a specific
simulator; it must then be connected later using the connect method or by specifying
a simulator handle when calling run

• figurePosition - position of the GUI’s main figure window as a four element vector
[posX, posY, width, height]

• pauseDuration - duration of pause for every simulation step (default = 0.1, should
be set lower for computationally costly simulations)

• visGridPosition - position of the visualizations grid in the GUI window in the format
[posX, posY, width, height], in normalized coordinates (relative to figure size)

• visGridSize - grid size of the visualizations grid as a two-element vector [rows,

cols]

• visGridPadding - padding of the visualizations within the grid cells (relative to figure
size), as scalar or as vector [padHor, padVert]

• controlGridPosition - position and size of the controls grid in the main figure window
in relative coordinates (four element vector)

• controlGridSize - grid size of the controls grid (two-element vector)

17

• elementGroups - dropdown menu entries for the parameter panel (cell array of strings)

• elementsInGroups - labels of elements associated with dropdown menu entries (cell
array of strings or cell array of cell array of strings)

4.3.2 addVisualization

The method call

gui.addVisualization(visualization, positionInGrid, sizeInGrid)

adds the visualization specified in the first argument to the GUI. If the second argument
is specified (as a two-element vector [row, col]), the visualization will be placed at this
position in the GUI’s visualization grid. If the third argument is specified (also a two-element
vector), the visualization will span the specified number of grid cells vertically towards the
bottom and horizontally to the right; otherwise, it will cover one grid cell. Alternatively,
the position of the visualization can be specified directly in the visualization object, without
making use of the GUI’s visualizations grid.

4.3.3 addControl

The method call

gui.addControl(control, positionInGrid, sizeInGrid)

adds the control specified in the first argument to the GUI. Position information can be
specified analogously to the addVisualization method.

4.3.4 connect

The method call

gui.connect(simulatorHandle)

sets the simulator object that is connected with the GUI (that is, which is run in the GUI).
The method can be used if no simulator was specified in the constructor call for the GUI, or
if the GUI should be connected to a different simulator than originally specified. An error
is thrown if the new simulator does not contain the elements, parameters, and components
that are specified in the GUI’s controls and visualizations.

4.3.5 run

The method call

gui.run(tMax, initializeSimulation, simulatorHandle)

runs the simulation in the GUI until it reaches simulation time tMax. If not specified, tMax is
set to infinity by default, meaning that the simulation will run until stopped manually from
the GUI. The optional argument intializeSimulation specifies whether the connected
Simulator object should be initialized upon start of the GUI. By default, the Simulator

object is only initialized if it was not initialized before. If the Simulator object is already
initialized, it will continue at its current state. The optional argument simulatorHandle

can be used to specify the simulator object that will be run in the GUI. This can be used if
no simulator was specified when creating the GUI object, or when the GUI should be run

18

with a different simulator object than originally specified (e.g. a new copy of the original
simulator).

Note: If you quit the GUI via a GUI control, or if the GUI stops after reaching a specified
simulation time tMax, the simulator object remains in the state that it last had in the GUI.
If you call the run method again afterwards without explicitly requesting an initialization,
you can continue the simulation from this point.

19

Part II

Class Reference

5 Elements

5.1 Dynamic Elements

5.1.1 NeuralField

Description A dynamic neural field of any size and dimensionality, or a set of dynamic
nodes. In each step, the field activation u(x) is updated according to the Amari equation,
using the sum of all inputs I(x), and the field output f(u(x)) is computed from the activation
via a sigmoid function:

τ u̇(x) = −u(x) + h+ I(x) (1)

f(u(x)) =
1

1 + exp(βu(x))
(2)

Lateral interactions in the field have to be implemented by separate connective elements
that receive input from the field and project back to it.

Parameters

• size - size of the field (determines the size of the three components listed below)

• tau - time constant of the field

• h - field resting level

• beta - steepness parameter of the sigmoid output function

Components

• activation - field activation

• output - field output (sigmoid of the activation)

(Note: The component input that existed for this element in version 1.0 has been removed
to improve performance.)

Inputs The NeuralField may have an arbitrary number of inputs, which have to be either
scalar or have the same size as the field.

5.1.2 MemoryTrace

Description A memory trace for a dynamic neural field of any size and dimensionality,
or for a set of dynamic nodes. The memory trace is typically operated with a significantly
higher time constant (i.e. slower dynamics) than a field. It typically receives the output
of a neural field as input I. If the input at any point exceeds a specified threshold θ, the
memory trace is updated according to the rule

ṁ(x) =

{
1

τbuild
(−m(x) + I(x)), if I(x) > θ
1

τdecay
(−m(x)), else

(3)

If the input is below θ everywhere, the memory trace does not change.

20

Parameters

• size - size of the memory trace

• tauBuild - time constant for the accumulation of the memory trace

• tauDecay - time constant for the decay of the memory trace

• threshold - threshold applied to the input to determine whether and where a memory
trace should accumulate

Components

• output - memory trace

• activeRegions - regions in the current input that exceed the threshold (binary vec-
tor/matrix of the same size as the input)

Inputs The MemoryTrace must have exactly one input whose size matches the element’s
size parameter.

5.1.3 DynamicVariable

Description A matrix of dynamic variables. The summed input is interpreted as a rate
of change, which is scaled with a time constant to change the state of the dynamic variables.
The dynamic variables behave like a field or set of dynamic nodes without a resting level,
that is in the absence of external input they simply maintain their state.

Parameters

• size - size of the matrix of dynamic variables

• tau - time constant

• initialState - state of the dynamic variables at initialization

Components

• state - current state of the dynamic variables

• initialState - state of the dynamic variables at initialization

Inputs The DynamicVariable may have an arbitrary number of inputs, which have to be
either scalar or match the element’s size parameter.

5.1.4 SingleNodeDynamics

Note: This class is intended for easy visualization and analysis of a node’s
dynamic behavior (in particular for creating plots of rate of change vs. possible
activation value, showing attractors and repellors). If you want only the basic
behavior of a discrete dynamic node, use the NeuralField class instead!

21

Description The class creates a single dynamic node with a sigmoid (logistic) output
function, tunable self-excitation and Gaussian noise:

τ u̇ = −u+ h+ cexcf(u) + I + qξ (4)

Here, τ is a time constant, u is the node activation, h its resting level, cexc the strength of
self-excitation (may be negative to create self-inhibition), f is the sigmoid output function,
I is the sum of external inputs, q is the noise level and ξ random variable following a normal
distribution.

In addition, the class computes the rate of change u̇ – given the current external input –
for a range of possible activation values u of the node, and determines approximate attractor
and repellor states within this range (zero crossings of the rate of change). The components
provided by this class can be used in particular for plotting the node dynamics using the
XYPlot visualization (see launcherTwoNeuronSimulator for an example of this).

Parameters

• tau - time constant of the node dynamics

• h - resting level of node activation

• beta - steepness of sigmoid (logistic) output function

• selfExcitation - strength of self-excitation

• noiseLevel - strength of random Gaussian noise in node activation

• range - two-element vector specifying the range of activation values for which the rate
of change is computed

• resolution - resolution (or actually, step size) with which the given range is sampled
for computation of rate of change values

Components

• input - sum of all external inputs to the node

• activation - current activation value

• output - current output of the node (sigmoid of the activation)

• h - resting level of node activation

• rateOfChange - rate of change for the node’s activation in the current step

• samplingPoints - vector of activation values (specified by parameters range and
resolution) for which the rate of change is computed

• sampledRatesOfChange - vector of rates of change, computed at each sampling point
(given the current external input to the node)

• attractorStates - vector of approximate activation values within range at which
attractor states exist (vector may be empty and change size as parameters or inputs
change)

22

• attractorRatesOfChange - vector of rates of change at the attractor states (same
size as attractorStates, all values should be close to zero, provided for plotting
attractors)

• repellorStates - vector of approximate activation values within range at which
repellor states exist (vector may be empty and change size as parameters or inputs
change)

• repellorRatesOfChange - vector of rates of change at the repellor states (same size as
repellorStates, all values should be close to zero, provided for plotting attractors)

Inputs The SingleNodeDynamics can have an arbitrary number of scalar inputs.

5.2 Interaction Kernels

5.2.1 GaussKernel1D

Description Convolves an input with a Gaussian interaction kernel along one dimension
(horizontally). Typically this element is used for one-dimensional inputs, but it may also
be used with two-dimensional inputs if convolution only along the horizontal dimension is
desired (otherwise use GaussKernel2D).

Parameters

• size - size of the input and output of the element

• sigma - width parameter of the Gaussian kernel

• amplitude - amplitude of the Gaussian kernel

• circular - flag indicating whether the convolution is performed in a circular fashion
(i.e., values at the left end of the input can affect the output at the right end and vice
versa); default value is true

• normalized - flag indicating whether the Gaussian kernel is normalized before scaling
it with the amplitude (for a normalized kernel, the amplitude equals the integral over
the kernel; without normalization, the amplitude equals the value of the kernel at the
center); default value is true

• cutoffFactor - sets the cutoff factor for the kernel (to make computation faster, the
kernel function is cut off at a certain multiple of sigma, ignoring those parts of the
kernel where interactions strengths are very small); advised range is 3 to 5 (5 being
the default); set to inf to always use full kernel

Components

• output - result of the input’s convolution with the interaction kernel

• kernel - interaction kernel (incorporating the amplitude parameter)

Inputs The GaussKernel1D must have exactly one input whose size matches the element’s
size parameter.

23

5.2.2 GaussKernel2D

Description Convolves a two-dimensional input with a two-dimensional Gaussian inter-
action kernel. The convolution is internally performed separately along the two dimensions
for computational efficiency.

Parameters

• size - size of the input and output of the element

• sigmaY - width parameter of the Gaussian kernel for the vertical axis

• sigmaX - width parameter of the Gaussian kernel for the horizontal axis

• amplitude - amplitude of the Gaussian kernel

• circularY - flag indicating whether the vertical convolution is performed in a circular
fashion (i.e., values at the left end of the input can affect the output at the right end
and vice versa); default value is true

• circularX - flag indicating whether the horizontal convolution is performed in a cir-
cular fashion; default value is true

• normalized - flag indicating whether the Gaussian kernel is normalized before scaling
it with the amplitude; default value is true

• cutoffFactor - sets the cutoff factor for the kernel (see GaussKernel1D); default value
is 5

Components

• output - the result of the input’s convolution with the interaction kernel

• kernelX - the horizontal component of the interaction kernel (incorporating the
amplitude parameter)

• kernelY - the vertical component of the interaction kernel (incorporating the
amplitude parameter)

Inputs The GaussKernel2D must have exactly one input whose size matches the element’s
size parameter.

5.2.3 MexicanHatKernel1D

Description Convolves the input with a sum of two Gaussian interaction kernels along one
dimension (horizontally). The element can be used in particular to implement an interaction
pattern of local excitation and surround inhibition (”mexican hat”). Typically this element
is used for one-dimensional inputs, but it may also be used with two-dimensional inputs
if convolution only along the horizontal dimension is desired (otherwise use two separate
instances of GaussKernel2D).

24

Parameters

• size - size of the input and output of the element

• sigmaExc - width parameter of the excitatory kernel component

• amplitudeExc - amplitude of the excitatory kernel component

• sigmaInh - width parameter of the inhibitory kernel component

• amplitudeInh - amplitude of the inhibitory kernel component (the inhibitory com-
ponent is subtracted from the excitatory one, so a positive value of amplitudeInh

corresponds to actual inhibition)

• normalized - flag indicating whether each kernel component is normalized before
scaling it with the amplitude; default value is true

• cutoffFactor - sets the cutoff factor for the kernel (see GaussKernel1D); default value
is 5

Inputs The MexicanHatKernel1D must have exactly one input whose size matches the
element’s size parameter.

5.2.4 LateralInteractions1D

Description Combines a Mexican-hat style convolution kernel with a global interaction
component (in which the sum of the input is computed, scaled with a constant factor
and globally added to the output). This class offers a compact form to add the full lat-
eral interactions typically used in DNFs to a model. If no global interactions are needed,
MexicanHatKernel1D should be used instead.

Parameters

• size - size of the input and output of the element

• sigmaExc - width parameter of the excitatory kernel component

• amplitudeExc - amplitude of the excitatory kernel component

• sigmaInh - width parameter of the inhibitory kernel component

• amplitudeInh - amplitude of the inhibitory kernel component (the inhibitory com-
ponent is subtracted from the excitatory one, so a positive value of amplitudeInh

corresponds to actual inhibition)

• amplitudeGlobal - amplitude of the global kernel component (a negative value must
be given to create global inhibition)

• normalized - flag indicating whether each local kernel component is normalized before
scaling it with the amplitude

• cutoffFactor - sets the cutoff factor for the kernel (see GaussKernel1D); default value
is 5

25

Components

• output - result of the input’s convolution with the interaction kernel

• kernel - local interaction kernel (sum of scaled excitatory and inhibitory components)

• amplitudeGlobal - global interaction weight (scalar value)

Inputs The LateralInteractions1D element must have exactly one input whose size
matches the element’s size parameter.

5.2.5 WeightMatrix

Description Connective element that computes its output O by multiplying its input I
(a row vector) with a weight matrix:

O = I ·W (5)

The weight matrix should be specified in the constructor call and determines the size of the
expected input and the produced output. For and input of size [1, N] and an desired output
of size [1,M], the weight matrix must have the size [N,M].

Parameters

• size - size of the output

• weights - weight matrix

Components

• output - result of the matrix multiplication (a row vector)

Inputs The WeightMatrix element must have exactly one input, a row vector whose length
matches the number of rows in the weight matix.

5.3 Dimensional Reduction and Expansion

5.3.1 SumDimension

Description Computes the sum over one or two dimensions of the input.

Parameters

• sumDimensions - dimensions over which the sum is formed (1 for vertical, 2 for hori-
zontal, [1, 2] for both)

• size - size of the element’s output

• amplitude - scalar value that is multiplied with the formed sum

Components

• output - result of the summation and scaling; if the result of the summing operation
is a one-dimensional vector, its shape (row or column vector) is controlled by the
parameter size.

26

Inputs The SumDimension element must have exactly one input. After summing along
the specified dimensions, its size must match the element’s size parameter.

5.3.2 SumAllDimensions

Description Computes separate sums for the horizontal and vertical dimension as well as
the full sum (over both dimensions) for a two-dimensional input.

Parameters

• size - size of the element’s input (from which the output sizes are derived)

Components

• horizontalSum - sum of the input over the horizontal (second) dimension, transposed
to yield a row vector (with size [1, n] for an input of size [n,m])

• verticalSum - sum of the input over the vertical (second) dimension (with size [1,m]
for an input of size [n,m])

• fullSum - sum of the input over both dimensions (yielding a scalar value)

Inputs The SumAllDimensions element must have exactly one input whose size matches
the element’s size parameter.

5.3.3 ExpandDimension2D

Description Expands a one-dimensional input along a specified axis to form a two-
dimensional array.

Parameters

• expandDimension - dimension along which the input is to be expanded (1 for vertical,
2 for horizontal; the input is always transposed in such a way that it runs along the
dimension that is expanded)

• size - size of the element’s output (after expansion)

Components

• output - result of the expansion of the input

Inputs The ExpandDimension2D element must have exactly one input. After expanding
along the specified dimension, its size must match the element’s size parameter. The
orientation of the input is not relevant.

5.3.4 DiagonalSum

Description Computes sum of a square array along the second diagonal.

27

Parameters

• inputSize - size of the two-dimensional input (can be either a scalar value or a two-
element vector with equal entries)

• amplitude - scalar value that is multiplied with the formed sum

Components

• output - the scaled diagonal sum of the input as a row vector (for an input array of
size [n, n], the size of the output is [1, 2n− 1])

Inputs The DiagonalSum element must have exactly one input, a square two-dimensional
array whose size matches the element’s size parameter.

5.3.5 DiagonalExpansion

Description Expands a one dimensional input diagonally into a square matrix. The input
must have an odd number of columns, such that the center of the input is expanded along
the main diagonal of the resulting square matrix.

Parameters

• inputSize - size of the one-dimensional input (must be row vector and the number of
columns must be odd)

• amplitude - scalar value that is multiplied with the input before expansion

Components

• output - the scaled square matrix resulting from the expansion (for an input vector
of size [1, 2n− 1], the output has size [n, n])

5.3.6 ScalarToGaussian

Description Creates a one-dimensional Gaussian output pattern centered on a scalar
input value. The input value can be scaled and an offset added to map the value range of
the scalar to the desired range in the output (the full output has the range [1, size(2)]).
Note: The difference to the element GaussStimulus1D is that ScalarToGaussian receives
an input and is updated in every step, whereas in GaussStimulus1D the position of the
Gaussian is determined by a parameter and the output is only updated if that parameter is
changed.

Parameters

• size - size of the output

• inputScale - scale for the input value; the center of the Gaussian is determined as
position = inputScale · input+ inputOffset

• inputOffset - constant offset for the input value, see above

• sigma - width parameter of the Gaussian

28

• amplitude - strength of the Gaussian

• circular - flag indicating whether the output is defined in a circular fashion (i.e., if
the Gaussian is centered near the left end of the output, it can flow over into the right
end and vice versa); default value is true

• normalized - flag indicating whether the Gaussian output is normalized before scaling
it with the amplitude (for a normalized Gaussian, the integral is one if the amplitude
is one; without normalization, the value at the center is one if the amplitude is one);
default value is false

Components

• output - the Gaussian pattern

• position - the center of the Gaussian (the scaled input with offset added)

Inputs The ScalarToGaussian element takes exactly one input, a scalar value that de-
termines the center of the Gaussian.

5.4 Basic Mathematical Operations

5.4.1 ScaleInput

Description Scales an input with a constant factor.

Parameters

• size - size of the input and output of the element

• amplitude - scalar value with which the input is scaled

Components

• output - result of the scaling (input multiplied with amplitude parameter)

Inputs The ScaleInput element must have exactly one input whose size matches the
element’s size parameter.

5.4.2 SumInputs

Description Computes the sum of multiple inputs.

Parameters

• size - size non-scalar inputs and output of the element

Components

• output - sum of all inputs

Inputs The SumInputs element may have an arbitrary number of inputs, which have to
be either scalar or whose size has to match the element’s size parameter.

29

5.4.3 ShiftInput

Description Shifts an input array by a specified value along the horizontal and/or vertical
axis.

Parameters

• size - size of the input and output of the element

• shiftValue - a two-element integer vector specifying the value by which the input is
shifted along the first (vertical) and second (horizontal) dimension

• amplitude - scalar value that is multiplied with the shifted input

• circular - flag indicating whether the shift should be performed circularly

• fillValue - value with which those parts of the output array are filled that are not
occupied by the shifted input (for non-circular shifts)

Components

• output - the result of shift and scaling operations

Inputs The ShiftInput element must have exactly one input whose size matches the
element’s size parameter.

5.4.4 PointwiseProduct

Description Performs a pointwise multiplication between two inputs of equal size (with
arbitrary dimensionality).

Parameters

• size - size of the two inputs and the output

Components

• output - pointwise product of the inputs

Inputs The PointwiseProduct element takes exactly two inputs, whose size must match
the element’s size parameter.

5.4.5 Convolution

Description Performs a convolution between two one- or two-dimensional inputs. Either
input can be flipped horizontally and vertically (i.e. rotated by 180◦) to effectively perform
a correlation.

30

Parameters

• size - size of the result of the convolution operation

• flipInputs - integer value coding which of the inputs should be flipped; in the con-
structor, two separate boolean arguments are required to indicate separately whether
the first and/or the second input should be flipped before the convolution

• shape - shape of the convolution, as in the Matlab function conv2; can be ’full’, ’same’,
or ’valid’

Components

• output - the result of the convolution

Inputs The Convolution element takes exactly two inputs, and the size of the matrix
resulting from the convolution between them must match the size parameter of the element.

5.4.6 Interpolation1D

Description Computes the output by interpolating from the input at specified positions,
using the Matlab function interp1.

Parameters

• size - size of the output of the element

• interpolationPoints - vector containing the positions at which the input vector
should be interpolated

• method - interpolation method (see Matlab documentation on interp1 for further
information)

• extrapValue - value with which the input is padded for extrapolation (if interpolation
points are outside of the range [1, n], n being the length of the input)

Components

• output - the result of the interpolation

Inputs The Interpolation1D element must have exactly one one-dimensional input.

5.5 Output Functions

5.5.1 Sigmoid

Description Computes the sigmoid (logistic function) of an input of arbitrary size and
dimensionality. The output O is computed from the input I at every position as

O(x) =
1

1 + exp(β(I(x) − θ))
(6)

with threshold θ and steepness parameter β. (Note: A logistic output function with threshold
0 is also implemented in the NeuralField class, so no separate element is required to
compute the field output.)

31

Parameters

• size - size of the input and output of the element

• beta - steepness parameter of the logistic function

• theta - threshold for the logistic function

Components

• output - the sigmoid of the input

Inputs The Sigmoid element must have exactly one input whose size matches the ele-
ment’s size parameter.

5.5.2 HalfWaveRectification

Description Element that applies a positive half-wave rectification to the input x:

O(x) =

{
x if x > 0
0 else

(7)

This can be used as an alternative, non-saturating output function for neural fields or nodes.

Parameters

• size - size of the input and output of the element

Components

• output - the half-wave rectified input

Inputs The HalfWaveRectification element takes exactly one input whose size matches
the element’s size parameter.

5.6 Stimuli

Stimuli do not take any inputs from other elements.

5.6.1 BoostStimulus

Description A scalar stimulus that can be used as a homogenous boost of a neural field.

Parameters

• amplitude - value of the scalar stimulus

Components

• output - that same scalar value

5.6.2 GaussStimulus1D

Description A one-dimensional Gaussian.

32

Parameters

• size - size of the output

• sigma - width parameter of the Gaussian function

• amplitude - strength of the Gaussian stimulus

• position - position of the stimulus center

• circular - flag indicating whether the stimulus is defined in a circular fashion (i.e., if
the stimulus is centered near the left end of the output, it can flow over into the right
end and vice versa); default value is true

• normalized - flag indicating whether the Gaussian stimulus is normalized before scal-
ing it with the amplitude (for a normalized stimulus, the integral is one if the amplitude
is one; without normalization, the value at the center is one if the amplitude is one);
default value is false

Components

• output - the Gaussian stimulus

5.6.3 GaussStimulus2D

Description A two-dimensional Gaussian.

Parameters

• size - size of the output

• sigmaY - width parameter of the Gaussian function along the vertical axis

• sigmaX - width parameter of the Gaussian function along the horizontal axis

• amplitude - strength of the Gaussian stimulus

• positionY - vertical position of the stimulus center

• positionX - horizontal position of the stimulus center

• circularY - flag indicating whether the stimulus is defined in a circular fashion in the
vertical dimension (i.e., if the stimulus is center near the top end of the output, it can
flow over into the bottom end and vice versa); default value is true

• circularX - flag indicating whether the stimulus is defined in a circular fashion in the
horizontal dimension; default value is true

• normalized - flag indicating whether the Gaussian stimulus is normalized before scal-
ing it with the amplitude (for a normalized stimulus, the integral is one if the amplitude
is one; without normalization, the value at the center is one if the amplitude is one);
default value is false

Components

• output - the Gaussian stimulus

33

5.6.4 CustomStimulus

Description A freely defined stimulus pattern of arbitrary dimensionality. The full stim-
ulus pattern is specified directly as a parameter. (Note that this can lead to large parameter
files as the whole pattern needs to be stored.)

Parameters

• size - size of the output

• pattern - the full stimulus pattern (matching the size parameter)

Components

• output - the custom stimulus pattern

5.6.5 NormalNoise

Description Random noise drawn from a normal distribution in every time step.

Parameters

• size - size of the generated output

• amplitude - scalar value with which the noise is scaled

Components

• output - the generated matrix of scaled random values

5.7 History

5.7.1 History

Description Element that stores its input at specified times. A vector of simulation times
[t1, ..., tK] must be specified. The input to the element at those times is then stored in a
K ×N matrix if the input is a vector of size N , or in a N ×M ×K matrix if the input is a
matrix of size N×M . (Note: No input is stored if no Euler step occurs exactly at a specified
time ti, e.g. if ti = 31.5 and the step size of the simulation is 1, with steps occurring at
t = 31 and t = 32.)

Parameters

• size - size of input (at one time step)

• storingTimes - vector of simulation times at which the input is stored

Components

• output - matrix of stored inputs (filled with NaN before inputs are stored)

Inputs The History element must have exactly one input whose size matches the ele-
ment’s size parameter.

34

5.7.2 RunningHistory

Description A continuously updated history of the input to this element over the recent
time steps. At specified intervals, the input to this element is stored into a matrix (same
format as in History) as first row/layer, while the content of all other rows/layers get pushed
back. The oldest stored inputs are lost once the history matrix is full.

Parameters

• size - size of input (at one time step)

• timeSlots - number of time steps that are stored

• interval - interval between storing times (in simulation time; a new input is stored
if simulation time modulo interval is zero)

Components

• output - matrix of stored inputs (filled with NaN before inputs are stored)

Inputs The RunningHistory element must have exactly one input whose size matches the
element’s size parameter.

5.8 Image Acquisition and Processing

5.8.1 CameraGrabber

Description Retrieves a new image from a connected camera in every step. Note: This
class is specific for the cameras used at the INI and requires additional mex files to provide
the actual link to the hardware.

Parameters

• device - device number for the connected camera (typically 0 or 1)

• size - size of the produced image; the image taken from the camera is resized if the
sizes do not match

Components

• image - RGB image of size [size(1), size(2), 3]

5.8.2 ImageLoader

Description Loads images from file, allows switching between different images.

Parameters

• fileNames - cell array of file names; in the constructor a separate string filePath can
be provided as common path to the image files

• size - size of output image; loaded images are resized if their size does not match this
value

• currentSelection - index of the currently selected image file

35

Components

• image - RGB image of size [size(1), size(2), 3]

5.8.3 ColorExtraction

Description Extracts regions of salient color information from an RGB image. The steps
of the color extraction are as follows:

• the region of interest is horizontally resized to match the specified horizontal output
size (the vertical size of the region of interest remains unchanged), and transformed
into HSV color space

• pixels are determined that exceed a specified saturation and value threshold, and
classified according to their hue value into a number discrete colors

• the pixels are summed up vertically to determine for each horizontal position the
number of salient pixels of each color

The result is a matrix of size [nColors, XN], where each row yields the distribution of
salient color pixels over the horizontal axis of the region of interest.

Parameters

• roi - region of interest in the image, within which regions of salient color are ex-
tracted; in the constructor, this region is defined by two arguments imageRangeX and
imageRangeY, giving the horizontal and vertical extent of the roi as a two-element
vector in pixels of the input image

• size - size of the produced, with size = [nColors, NX]

• hueToIndexMap - matrix specifying which ranges of hue values are mapped onto which
discrete colors; the matrix has the form

[hueMin_1, hueMax_1, colorIndex_1; ...

hueMin_2, hueMax_2, colorIndex_2; ...]

where each [hueMin, hueMax] pair defines a range in hue values, and colorIndex is
the row in the output matrix to which this color range is counted; multiple ranges of
hue values may be mapped to a single colorIndex; the total range of hue values is [0,
1]

• saturationThreshold - saturation threshold in HSV color space for a pixel to be
counted toward any of the colors; the total range of saturation values is [0, 1]

• valueThreshold - value threshold in HSV color space a for pixel to be counted toward
any of the colors; the total range of value values is [0, 1]

Components

• output - matrix of salient color distributions

Inputs The ColorExtraction element takes as input one RGB image (matrix of size [M,
N, 3]). The specified roi has to be within the bounds of this image.

36

5.9 Motor control

5.9.1 AttractorDynamics

Description Forms a one-dimensional dynamical system from a space-coded input and
determines the rate of change for a given state of the system. The dynamical system is
defined by scaling shifted sigmoid functions with the space-coded input, producing attractors
in regions of high input.

Parameters

• size - size of the one-dimensional space-coded input

• amplitude - amplitude or scaling factor for the output

Components

• phiDot - rate of change for the given state of the dynamical system

• phiDotAll - vector of the same size of the input, giving the rate of change for all
possible states of the dynamical system

Inputs The AttractorDynamics element takes exactly two inputs: The first is a one-
dimensional space code whose size matches the element’s size parameter, the second is a
scalar value that specifies the current state of the dynamical system.

5.9.2 DynamicRobotController

Description Connects the DNF architecture to an E-Puck robot (requires additional files
for the interface) and allows dynamic control of the robot orientation by specifying its rate
of change.

Parameters

• minWheelVelocity - minimal velocity for both wheels (velocity is set to zero if absolute
value of derived from the orientation dynamics is lower than this value); avoids poor
odometry due to erratic robot movements

• maxWheelVelocity - maximum velocity for both wheels

Components

• position - robot position relative to its starting position (determined from odometry)

• orientation - robot orientation, given in the range [−π, π)

Inputs The DynamicRobotController takes exactly one input that defines the rate of
change for the robot orientation (in rad per second).

37

6 Controls

6.1 ParameterSlider

The ParameterSlider control creates a slider with an accompanying text field in the GUI.
The slider is connected to one or more parameters (belonging to a single element or different
elements). The parameter value is changed whenever the slider is moved. The range of
parameter values covered by the slider as well as a scaling factor for the conversion from
slider position to parameter value can be specified.

The control handle is obtained via the constructor call

ParameterSlider(controlLabel, elementLabels, parameterNames, ...

sliderRange, valueFormat, scalingFactor, toolTip, position)

with the following arguments:

• controlLabel - label for the control displayed in the text field next to the slider

• elementLabels - string or cell array of strings specifying the labels of elements con-
trolled by this slider

• parameterNames - string or cell array of strings specifying the names of the element
parameters controlled by this slider; arguments elementLabels and parameterNames

must have the same size, with each pair of entries fully specifying one controlled
parameter

• sliderRange - two-element vector giving the range of the slider

• valueFormat - string specifying the format of the parameter value displayed next
to the slider (optional, see the Matlab documentation of the fprintf function on
construction of that string)

• scalingFactor - scalar value specifying a conversion factor from the element’s param-
eter value to the slider position (optional)

• tooltip - tooltip displayed when hovering over the control with the mouse (optional)

• position - position of the control in the GUI figure window in relative coordinates
(optional, is overwritten when specifying a grid position in the GUI’s addControl

function)

The slider position is initialized to reflect the value of the first connected parameter and is
adjusted when this parameter value is changed via any other control (within the range of
the slider).

Example

h = ParameterSlider(’h_u’, ’field u’, ’h’, [-10, 0], ’%0.1f’, 1,

’resting level of field u’);

38

6.2 ParameterSwitchButton

The ParameterSwitchButton control creates a labeled toggle button (i.e. the button toggles
between pressed and not pressed when clicked). This control can switch the values of one
or more parameter between two predefined values. Note: The state of the button is not
adjusted when the controlled parameters are changed via another control or the parameter
panel. The button’s state does therefore not necessarily reflect the current parameter values.

The control handle is obtained via the constructor call

ParameterSwitchButton(controlLabel, elementLabels, parameterNames,

offValues, onValues, toolTip, pressedOnInit, position)

with the following unique arguments (see above for a description of the other arguments):

• offValues - scalar or vector specifying for every connected element parameter the
value it should take while the button is not pressed

• onValues - scalar or vector specifying for every connected element parameter the value
it should take while the button is pressed

• pressedOnInit - specifies whether the button should be in the pressed or not pressed
state on initialization of the GUI (default is false)

Example

h = ParameterSlider(’h_u’, ’field u’, ’h’, [-10, 0], ’%0.1f’, 1,

’resting level of field u’);

6.3 ParameterDropdownSelector

The ParameterDropdownSelector control creates a dropdown menu with an accompanying
text field in the GUI. The menu allows to change the values of one or more parameters
between a number of presets.

The control handle is obtained via the constructor call

ParameterDropdownSelector(controlLabel, elementLabels, ...

parameterNames, dropdownValues, dropdownLabels, ...

initialSelection, toolTip, position)

with the following unique arguments (see above for a description of the other arguments):

• dropdownValues - a numerical array or a cell array of numerical arrays specifying the
parameter values associated with each menu entry; if the control is connected to a
single element parameter, this argument should be an array with one valid parameter
value for each item in the dropdown menu; if multiple parameters are connected, it
should be a cell array of such arrays

• dropdownLabels - cell array of strings specifying the menu items in the dropdown
menu (optional, if not specified the dropdownValues for the first connected parameter
are used as labels)

• initialSelection - integer specifying the initial selection in the dropdown menu
(optional, default is 1)

39

Examples

h = ParameterDropdownSelector(’p_sA’, ’stimulus A’, ’position’, ...

[25, 50, 75], {’left’, ’center’, ’right’}, 2, ...

’position of stimulus A’);

h = ParameterDropdownSelector(’d_s’, {’stimulus A’, ’stimulus B’},...

{’position’, ’position’}, {[40, 45, 48], [60, 55, 52]}, ...

{’far’, ’close’, ’very close’}, 1, ’distance between stimuli A and B’);

6.4 GlobalControlButton

The GlobalControlButton control creates a button in the GUI that connects to a property
of any specified object, typically the GUI itself. For the StandardGUI, it can connect to one of
the following boolean properties: pauseSimulation, quitSimulation, resetSimulation,
saveParameters, loadParameters, and paramPanelRequest. The values of these flags are
checked in every cycle of the GUI and appropriate operations will be performed.

The control handle is obtained via the constructor call

GlobalControlButton(controlLabel, controlledObject, ...

propertyName, onValue, offValue, resetAfterPress, ...

toolTip, position)

with the following unique arguments (see above for a description of the other arguments):

• controlledObject - handle to the controlled object

• propertyName - property name that is controlled by the button

• onValue - value that the controlled property should have while the button is pressed

• offValue - value that the controlled property should have while the button is not
pressed

• resetAfterPress - determines the behavior of the button: for false it acts as a
toggle button, for true as a push button; in the latter case, the controlled property
will always be set to the onValue when the button is clicked

Examples

h = addControl(GlobalControlButton(’Pause’, gui, ’pauseSimulation’, ...

true, false, false, ’pause simulation’);

6.5 PresetSelector

The PresetSelector control loads full parameter settings for the model from one of a
set of predefined parameter files. The control consists of a dropdown menu to select a
parameter file (which may be listed with a descriptive label) and a confirmation button.
When the button is pressed, the parameter file connected to the currently selected entry in
the dropdown menu is loaded.

Note: Loading from a parameter file will re-initialize the simulation. The control handle
is obtained via the constructor call

PresetSelector(controlLabel, controlledObject, filePath, presetFiles,

presetLabels, toolTip, position)

40

with the following unique arguments (see above for a description of the other arguments):

• controlledObject - the object that performs the loading operation, which is always
the GUI that the control is part of

• filePath - string specifying a common relative or absolute path for all parameter files
(may be empty if files are located in different folders)

• presetFiles - cell array of strings containing the file names (or complete paths) for
the parameter files

• presetLabels - cell array of strings containing a label for each parameter file to be
shown in the dropdown menu (optional, by default the filenames are used as labels)

Example

h = PresetSelector(’Select’, gui, ’presetsOneLayerField/’, ...

{’preset_stabilized.json’, ’preset_selection.json’, ’preset_memory.json’}, ...

{’stabilized’, ’selection’, ’memory’}, ...

’Load pre-defined parameter settings’);

7 Visualizations

7.1 MultiPlot

The MultiPlot visualization creates a set of axes with one or more plots in it, oriented
either vertically or horizontally.

The visualization handle is obtained via the constructor call

MultiPlot(plotElements, plotComponents, scales, orientation, ...

axesProperties, plotProperties, title, xlabel, ylabel, position)

with the following arguments:

• plotElements - string or cell array of strings (with one entry for each plot) listing the
labels of the elements whose components should be plotted

• plotComponents - string or cell array of strings (with one entry for each plot) listing
the component names that should be plotted for the specified elements; one pair of
entries from plotElements and plotComponents fully specifies the source data for one
plot

• scales - scalar or numeric vector specifying a scaling factor for each plot (optional,
by default all scaling factors are 1)

• orientation - string specifying the orientation of the plot, should be either horizontal
(default) or vertical; for horizontal plots, the component is used as YData of the plot,
for vertical plots it is used as XData; the data for the respective other axis is fixed and
can be set in the plotProperties argument

• axesProperties - cell array containing a list of valid axes settings (as property/value
pairs) that can be applied to the axes handle via the set function (optional, see Matlab
documentation on axes for further information)

41

• plotProperties - cell array of cell arrays containing lists of valid lineseries settings
(as property/value pairs or as a single string specifying the line style) that can be
applied to the plot handles via the set function (see Matlab documentation on the
plot function for further information); the outer cell array must contain one inner cell
array for every plot (optional)

• title - string specifying an axes title (optional)

• xlabel - string specifying an x-axis label (optional)

• ylabel - string specifying a y-axis label (optional)

• position - position of the control in the GUI figure window in relative coordinates (op-
tional, is overwritten when specifying a grid position in the GUI’s addVisualization
function)

It is also possible to create a MultiPlot object without specifying what is to be plotted
(giving empty matricies for arguments in the constructor call that refer to individual plots),
and then add plots individually using the addPlot function. However, this can only be done
before the visualization is added to the GUI. The sequence of function calls then has the
following form:

hMP = MultiPlot([], [], [], ’horizontal’, {...});

hMP.addPlot(...);

hMP.addPlot(...);

gui.addVisualization(hMP, ...);

The method call for adding plots has the form

hMP.addPlot(plotElement, plotComponent, plotProperties, scale)

with arguments

• plotElement - label of the element whose component should be plotted

• plotComponent - name of the element component that should be plotted

• plotProperties - cell array containing a list of valid lineseries settings (as prop-
erty/value pairs or as a single string specifying the line style) that can be applied to
the plot handle via the set function (optional, see Matlab documentation on the plot

function for further information)

• scale - scaling factor for the plot

Example

h = MultiPlot({’field u’, ’field u’, ’stimulus A’}, ...

{’activation’, ’output’, ’output’}, [1, 10, 1], ’horizontal’, ...

{’YLim’, [-10, 10]}, { {’b-’, ’LineWidth’, 2}, {’r-’}, {’g--’} }, ...

’perceptual field’, ’feature value’, ’activation’);

42

7.2 XYPlot

The XYPlot visualization creates a set of axes with one or more plots in it. The difference to
MultiPlot is that here, both the XData and YData of each individual plot can be specified
as either the component of some element, or as a fixed vector. This makes it possible to
plot two components against each other.

The visualization handle is obtained via the constructor call

XYPlot(plotElementsX, plotComponentsOrDataX, ...

plotElementsY, plotComponentsOrDataY, ...

axesProperties, plotProperties, title, xlabel, ylabel, position)

with the following arguments:

• plotElementsX - cell array with one entry for each plot: either the label of the element
(as string) whose component should be used as XData for the plot, or an empty array
[] if the XData is to be a fixed vector (if only a single plot is created, the cell array
may be omitted in this and the following arguments)

• plotComponentsOrDataX - cell array with one entry for each plot: either the compo-
nent name (as string) that should be plotted for the specified element, or the fixed
vector that should be used as XData for that plot

• plotElementsY - cell array specifying the source elements for the plots’ YData, anal-
ogous to the parameter plotElementsX

• plotComponentsOrDataY - cell array specifying the element components or fixed vec-
tors to be used as YData, analogous to the parameter plotComponentsOrDataY

• axesProperties - cell array containing a list of valid axes settings (as property/value
pairs) that can be applied to the axes handle via the set function (optional, see Matlab
documentation on axes for further information)

• plotProperties - cell array of cell arrays containing lists of valid lineseries settings
(as property/value pairs or as a single string specifying the line style) that can be
applied to the plot handles via the set function (see Matlab documentation on the
plot function for further information); the outer cell array must contain one inner cell
array for every plot (optional)

• title - string specifying an axes title (optional)

• xlabel - string specifying an x-axis label (optional)

• ylabel - string specifying a y-axis label (optional)

• position - position of the control in the GUI figure window in relative coordinates (op-
tional, is overwritten when specifying a grid position in the GUI’s addVisualization
function)

As in MultiPlot, it is also possible to first create the visualization without specifying
the sources and properties of the individual plots (placing empty matrices for the arguments
in the constructor), and then to add plots individually through the function addPlot:

hXYP = XYPlot({}, {}, {}, {}, axesProperties, {});

hXYP.addPlot(plotElementX, plotComponentOrDataX, ...

plotElementY, plotComponentOrDataY, plotProperties)

Again, plots can only added before the visualization object itself is added to the GUI.

43

Example

h = XYPlot(’node u’, ’activation’, ’node v’, ’activation’, ...

{’XLim’, [-10, 10], ’YLim’, [-10, 10], ’Box’, ’on’}, ...

{ {’bo’, ’MarkerSize’, 5} }, ...

’phase plot’, ’activation u’, ’activation v’);

7.3 SlicePlot

The SlicePlot visualization plots one-dimensional slices (rows or columns) taken at speci-
fied positions from one or several two-dimensional input matries.

The visualization handle is obtained via the constructor call

SlicePlot(plotElements, plotComponents, plotSlices, ...

sliceOrientations, scales, plotOrientation, ...

axesProperties, plotProperties, ...

title, xlabel, ylabel, position)

with the following unique arguments (see above for a description of the other arguments):

• plotElements - string or cell array of strings listing the labels of the elements from
which slices should be plotted

• plotComponents - string or cell array of strings listing the component names from
which slices should be plotted for the specified elements; one pair of entries from
plotElements and plotComponents fully specifies the source data for one set of slice
plots plotSlices - integer vector or cell of integer vector, specifying for each en-
try in plotElements a set of indices of the rows or columns that should be plotted
sliceOrientations - string or cell array of strings with each entry either ’horizon-
tal’ or ’vertical’, specifying the slice orientation (rows or columns) for each entry in
plotElements

• scales - scalar or numeric vector specifying a scaling factor for each set of slices
(optional, by default all scaling factors are 1)

• plotOrientation - string specifying the orientation of all plots, should be either
horizontal (default) or vertical; for horizontal plots, the slices are used as YData

of the plot, for vertical plots they are used as XData; the data for the respective other
axis is fixed and can be set in the plotProperties argument

Example

h = SlicePlot(’field u’, ’activation’, [25, 50, 75], ’horizontal’, ...

1, ’horizontal’, {’YLim’, [-10, 10]}, {{’r-’}, {’g-’}, {’b-’}}, ...

’three slices through field u’, ’field position’, ’activation’);

7.4 ScaledImage

The ScaledImage visualization plots two-dimensional data using the Matlab imagesc func-
tion. The visualization handle is obtained via the constructor call

ScaledImage(imageElement, imageComponent, imageRange, axesProperties, ...

imageProperties, title, xlabel, ylabel, position)

44

with the following unique arguments (see above for a description of the other arguments):

• imageElement - label of the element whose component should be visualized

• imageComponent - name of the element component that should be plotted

• imageRange - two-element vector specifying the range of the image’s color code

• imageProperties - cell array containing a list of valid image object settings (as prop-
erty/value pairs) that can be applied to the image handle via the set function (op-
tional, see Matlab documentation on the image function for further information)

Example

h = ScaledImage(’field u’, ’activation’, [-10, 10], ...

{’YDir’, ’normal’}, {}, ’perceptual field’, ’position’, ’color’);

7.5 RGBImage

The RGBImage visualization interprets a 3xMxN matrix as an RGB image and displays it via
the Matlab image function. The visualization handle is obtained via the constructor call

RGBImage(RGBImage(imageElement, imageComponent, axesProperties, ...

imageProperties, title, xlabel, ylabel, position))

(see above for a description of the arguments).

Example

h = RGBImage(’camera grabber’, ’output’, {’YDir’, ’normal’}, {}, ...

’camera image’);

7.6 SurfacePlot

The SurfacePlot visualization diplays two-dimensional data either as a mesh or a surface
plot. The visualization handle is obtained via the constructor call

SurfacePlot(plotElement, plotComponent, zLim, plotType, ...

axesProperties, plotProperties, ...

title, xlabel, ylabel, zlabel, position)

with the following unique arguments (see above for a description of the other arguments):

• zLim - range of the plot’s axes in the z-dimension

• plotType - either ’mesh’ or ’surface’ (default)

• plotProperties - cell array containing a list of valid surface object settings (as prop-
erty/value pairs) that can be applied to the surface handle via the set function (op-
tional, see Matlab documentation on the surface function for further information)

• zlabel - string specifying a z-axis label (optional)

45

Example

h = SurfacePlot(’field u’, ’activation’, [-10, 10], {}, {}, ...

’perceptual field’, ’color’, ’position’, ’activation’);

7.7 KernelPlot

The KernelPlot visualization is used to plot an interaction kernel. It can combine different
kernels and global interaction strengths into a single correctly aligned plot: Local interaction
kernels are all centered at zero along the x-axis, capped or padded with zeros as necessary
on both sides to match the specified kernelRange for the plot, and added up. Global
components of interaction kernels are added globally to the plot. The visualization handle
is obtained via the constructor call

KernelPlot(plotElements, plotComponents, kernelTypes, plotRange, ...

axesProperties, plotProperties, title, xlabel, ylabel, position)

with the following unique arguments (see above for a description of the other arguments):

• plotElements - string or cell array of strings specifying the elements that contribute
to the plotted interaction kernel

• plotComponents - string or cell array of strings (with one entry for each plot) listing
the component names for the specified elements; one pair of entries from plotElements

and plotComponents fully specifies one contribution to the plotted interaction kernel

• kernelTypes - cell array of strings, with one entry of either ’local’ or ’global’ for
each entry in plotElements

• plotRange - scalar value determining to which range (positively and negatively from
zero) the kernel should be plotted

• plotProperties - cell array containing a list of valid lineseries settings (as prop-
erty/value pairs or as a single string specifying the line style) that can be applied to
the plot handle via the set function (optional, see Matlab documentation on the plot

function for further information)

Example

h = KernelPlot({’u -> u’, ’u -> u’}, {’kernel’, ’amplitudeGlobal’}, ...

{’local’, ’global’}, 50, {’YLim’, [-1, 1]}, {’r-’, ’LineWidth’, 2}, ...

’kernel plot’, ’distance in feature space’, ’interaction weight’);

Part III

Examples

8 Example A: Building and Running a Simple DNF Ar-
chitecture

In this section we illustrate how a DNF architecture can be built in a Matlab script and
how it can be simulated in the offline mode (without a GUI). You find the complete code
for this example in the COSIVINA folder under examples/exampleA.m.

46

(Note: It is in principle also possible to create a full architecture by directly editing a
parameter file in JSON format, and then loading the settings from that file. If you intend to
do the latter, we suggest that you study the parameter file of an existing architecture. The
JSON format is readable and the storage of the elements in the file largely self-explanatory,
but strict adherence to this format is required to be able to load it from Matlab.)

8.1 Creating the Architecture

As a first step, we create an empty Simulator object by calling the class constructor. The
default settings will be adequate in most cases, so the object (called sim throughout the
example) can be created by calling

sim = Simulator();

When we show the properties of the object (by typing its name in the Matlab command
line), we will see something like this:

sim =

Simulator handle

Properties:

nElements: 0

elements: {}

elementLabels: {}

initialized: 0

deltaT: 1

tZero: 0

t: 0

The object does not contain any elements is not initialized.
We can now successively add elements to the Simulator object. We will begin with a

one-dimensional neural field as first element:

sim.addElement(NeuralField(’field u’, 100, 10, -5, 4));

The addElement method of the Simulator class is used to add the new element to the empty
architecture. The call of the constructor NeuralField returns a handle to a newly created
element with the given parameters. When you want to add an element and are unsure about
the required parameters and their order in the constructor call, you can use the command
window help for all elements (as well as controls and visualizations), for instance:

>> help NeuralField

NeuralField (COSIVINA toolbox)

Creates a dynamic neural field (or set of discrete dynamic nodes) of

arbitrary dimensionality with sigmoid (logistic) output function. The

field activation is updated according to the Amari equation.

Constructor call:

NeuralField(label, size, tau, h, beta)

label - element label

size - field size

tau - time constant (default = 10)

h - resting level (default = -5)

beta - steepness of sigmoid output function (default = 4)

47

In our example, we give this element the label field u, by which it can later be referenced
to set up connections or create visualizations of its components. The next argument to
the NeuralField constructor specifies its size. The scalar argument 100 is interpreted as
specifying a one-dimensional field (which is always stored as a row vector). We could also
have given the argument as [1, 100] to obtain the same result. The other arguments of the
constructor specify further parameters of the field (see the specifications of the this element
class above). Some or all of these may be omitted if they match the default values (as they
do here) and the actual values are to be set e.g. via the GUI.

Note that we can also perform the above operations in two separate steps:

hFieldU = NeuralField(’field u’, 100, 10, -5, 4);

sim.addElement(hFieldU);

Here, we first called the constructor method and obtained an explicit handle hFieldU, and
then added the element to the simulator via this handle. The handle can then later be
used to access the element’s properties (but a handle can also be obtained at any time from
the Simulator object through the getElement method). We will in the following examples
generally use the more compact form of the function call shown above.

The neural field we have added does not have any lateral interactions, we have to add
these as a separate element:

sim.addElement(...

LateralInteractions1D(’u -> u’, 100, 4, 15, 10, 15, 0), ...

’field u’, ’output’, ’field u’, ’output’);

Again, we have created the element itself by calling its constructor. We give the new element
the descriptive label u -> u. Since this element is to be connected to field u, their sizes
must match (several element types exist to couple elements of different sizes or dimensionality
if necessary). This is specified in the second argument to the constructor. The following
arguments determine the interaction strengths and widths. The element handle returned
from the constructor is the first argument to the function addElement. Here, additional
arguments are added to set up the connectivity of the new element. These arguments
specify, in the order they are given: The new element should receive input from field u

(2nd argument), namely the component output of this element (3rd); and it should itself
project back to the element field u (4th), which receives the component output of the new
element as input (5th).

Note that the arguments specifying the connectivity are all character strings. Existing
elements in the architecture can be addressed via their label (this is why a unique label must
be given to every element in an architecture). Components are addressed via their name
(as a character string). This matches the name of the property in the element object (for
instance, every element of class NeuralField has a property output).

Since output is the name of the default output component of both the NeuralField and
the LateralInteractions1D classes (as well as many others), we can simplify the above
call to one of these forms:

sim.addElement(...

LateralInteractions1D(’u -> u’, 100, 4, 15, 10, 15, 0), ...

’field u’, [], ’field u’, []);

% or

sim.addElement(...

LateralInteractions1D(’u -> u’, 100, 4, 15, 10, 15, 0), ...

’field u’, [], ’field u’);

48

We now add two Gaussian stimuli to the architecture:

sim.addElement(GaussStimulus1D(’stim A’, 100, 5, 6, 25), ...

[], [], ’field u’);

sim.addElement(GaussStimulus1D(’stim B’, 100, 5, 8, 75), ...

[], [], ’field u’);

Stimuli do not receive any inputs, therefore the second and third arguments remain empty.
Both stimuli should project to the existing element field u in the architecture, so that is
the fourth argument. One could make it explicit that field u should receive the component
output of the two stimuli as input, but since this is the default anyway, we omit the optional
5th argument. Note that we have to create two separate objects of the GaussStimulus1D
class to add them to the simulator object. It would not be possible, for instance, to create one
object of the GaussStimulus1D class and obtain the handle for it outside of the addElement

function call, and then call the addElement function twice with this same object handle.
These are all elements we will use in the first architecture. When we show the properties

of the object sim again, we will see the following:

sim =

Simulator handle

Properties:

nElements: 4

elements: {[1x1 NeuralField] [1x1 LateralInteractions1D]

[1x1 GaussStimulus1D] [1x1 GaussStimulus1D]}

elementLabels: {’field u’ ’u -> u’ ’stim A’ ’stim B’}

initialized: 0

deltaT: 1

tZero: 0

t: 0

Four elements exist, but the object is still not initialized.

8.2 Initializing and Running the Simulation

The simplest way to run the simulation we have set up is to call the run method of the
Simulator class. We will describe this below, but first, we will show how to perform the
required operations individually. First, the simulator object has to be initialized. If we have
set up a new architecture, it may be helpful to use the tryInit method, which will give us
detailed information if anything goes wrong during initialization:

sim.tryInit();

This should run through without any problems in our example, and the simulator object is
now initialized. We can continue to check our architecture by performing a single simulation
step with the tryStep() function:

sim.tryStep();

If there are any problems in the architecture – such as size mismatches between connected
elements – this function will throw an error and inform us about which element caused the
problem. It also performs an actual step of the simulation. It is mostly sufficient to perform
just one of these trial steps, since most errors should appear immediately when running the
simulation. Again, there should be no problems in the example we give here.

49

If we have used the architecture before (or are confident that everything is correct), we
can omit the previous steps and proceed directly to the actual simulation. Still, we have to
initialize it first:

sim.init();

All elements are now initialized, and all the components have been created as matrices of
the correct size. Some of these are still filled with zeros (e.g. in the connective elements),
some already have meaningful content (true for the dynamic elements and stimuli). For
instance, we can plot one of the Gaussian stimuli in the architecture:

plot(sim.getComponent(’stim A’, ’output’));

We used the getComponent method here to directly access the component output of the
element labeled stim A, and should obtain the plot of a Gaussian curve. In the same way,
we can show the activation of the neural field:

plot(sim.getComponent(’field u’, ’activation’));

Currently, the newly initialized field is at its resting level everywhere. It will change under
the influence of the stimuli when we run the simulation.

We can go through simulation steps manually using the step function, for instance in
this form:

for i = 1 : 10

sim.step();

end

If we plot the neural field activation again in the same way as before, we will see how its
activation has increased locally around the centers of the two stimuli. The steps also counted
up the internal timer of the simulator object:

>> sim.t

ans =

10

If we perform another 10 steps and repeat the plot of the field activation, we can see that
supra-threshold activation peaks have formed and observe the effect of the lateral interactions
in the form of depressed activation around the peaks. For formal analysis, we can also store
these activation patterns at different times during the simulation.

In addition to plotting or storing the state of the system during the simulation, we can
also change the properties of elements. For instance, we can now turn off one of the stimuli
by setting its amplitude parameter to zero. We can do this via a handle for that element
that we obtain through the getElement method. For the change to take effect, it is necessary
in this case to re-initialize the element (because the stimulus is not automatically computed
in each step for efficiency reasons).

hStimB = sim.getElement(’stim B’);

hStimB.amplitude = 0;

hStimB.init();

We can plot the output of the stimulus again to confirm that it is now flat, and can then
continue to run the simulation with further calls of the step function. (To find out which
parameter changes require a re-initialization, see Section 2.4.)

We can simplify the code for performing the simulation by utilizing the run method of
the Simulator class. The operations described above (from the initialization on) can then
be replaced with the following piece of code:

50

sim.run(10, true);

hStimB = sim.getElement(’stim B’);

hStimB.amplitude = 0;

hStimB.init();

sim.run(20, false);

The first call of run initializes the simulator (explicitly requested by setting the second
argument to true) and runs it until it reaches simulation time t = 10. In this case, this
is equivalent to the ten steps that we explicitly performed in a loop above. Note, however,
that it could be a different number of steps depending on the simulator’s tZero and deltaT

parameters. The parameter tZero determines the value to which the simulation time is set
during initialization. The parameter deltaT controls the temporal sampling: For instance,
if we set deltaT = 0.1, the call sim.run(10, true) will perform one hundred steps, but
each will only create a smaller change in the field activation. The final state of the system
will be qualitatively the same, with some numerical differences.

In the second call of run in the piece of code above, we specify that the simulation should
now run until it reaches simulation time 20. The second argument false indicates that the
simulation should not be re-initialized but continue from its previous state. We could also
omit this second argument here, since the run command does by default not perform an
initialization if the simulator is already initialized.

9 Example B: Building an Architecture with
Two-Dimensional Fields

In this example we will describe a second simple architecture, now including two-dimensional
fields and coupling between fields of different dimensionality. We will describe in detail how
lateral interactions are set up in two-dimensional fields and how projections between one-
dimensional and two-dimensional fields can be implemented.

9.1 Lateral Interactions in Two-Dimensional Fields

Mathematically, the lateral interactions in two-dimensional field can be described as a
straightforward extension of the one-dimensional case: The interaction kernel (typically
a Gaussian or difference of Gaussians) is convolved with the field output. However, since
this operation is computationally costly, it is highly desirable to optimize it as far as possible.
One particular method that we use is linear separation of the kernel: If the interaction kernel
can be described as a product of two one-dimensional functions, the costly two-dimensional
convolution can be replaced by two one-dimensional convolutions. This is possible for Gaus-
sian interaction kernels, but not for difference-of-Gaussian kernels (which cannot directly
be described as a product of one-dimensional functions). While in the one-dimensional case
lateral interactions with a Mexican-hat shaped kernel can be computed most efficiently by
a single convolution, for two dimensions it is more efficient to compute the excitatory and
inhibitory part separately. This is reflected in the framework, where only pure Gaussian
interaction kernels are provided for the two-dimensional case and Mexican-hat style inter-
actions have to be constructed manually.

We create an architecture and add a two-dimensional field with the following commands:

sim = Simulator();

51

sim.addElement(NeuralField(’field u’, [100, 150], 10, -5, 4));

The class NeuralField is the same as the one used for one-dimensional fields, the dimen-
sionality is determined by the size parameter, which is set to [100, 150] here. We add
two-dimensional Gaussian stimuli (that have the same size as the field and feed into it) so
that we can create some localized activation in the field:

sim.addElement(GaussStimulus2D(’stim u1’, [100, 150], 5, 5, 8, 30, 50), ...

[], [], ’field u’);

sim.addElement(GaussStimulus2D(’stim u2’, [100, 150], 5, 5, 8, 70, 100), ...

[], [], ’field u’);

For the lateral interactions, we first add a Gaussian excitatory component:

sim.addElement(GaussKernel2D(’u -> u (exc)’, [100, 150], 5, 5, 20), ...

’field u’, ’output’, ’field u’, ’output’);

The parameters of the GaussKernel2D constructor specify that it is adjusted for a input of
size [100, 100], that the sigma parameter of the Gaussian should be 5 in both dimensions,
and that it has an amplitude of 20 (additional optional parameters of the constructor were
omitted). The following arguments to the outer function addElement specify that the kernel
receives input from field u and projects back to it, using the component output for both
projections. The Gaussian inhibitory component of the lateral interactions is added in the
same way, but with a negative amplitude:

sim.addElement(GaussKernel2D(’u -> u (inh)’, [100, 150], 10, 10, -20), ...

’field u’, ’output’, ’field u’, ’output’);

This kernel has a sigma parameter of 10 for both dimensions and an amplitude of -20. Local
projections between two-dimensional fields can be implemented in an analogous fashion
using the GaussKernel2D class.

If we also wish to include global interactions in the two-dimensional field, there are
two element classes available for that: The sumDimension class computes the sum over an
input along one or more specified dimensions. The sumAllDimensions class computes sums
over all possible dimensions of a two-dimensional input, yielding three output components:
The horizontal sum, the vertical sum, and the full sum (the former two are vectors, the
last is a scalar value). Since the computation of sums over large matrices can also be
computationally costly, it is advisable to only compute the sums that are actually needed. In
this example architecture, we will later use the sum of field u along the vertical dimension
as input to a one-dimensional field, and we need the sum over both dimensions for global
lateral interactions within field u. We can most efficiently compute all we need using two
sumDimension elements: The first one sums over the vertical dimension, the second one
computes the sum of the resulting vector over the horizontal dimension:

sim.addElement(SumDimension(’sum u (vert)’, 1, [1, 150], 1.0), ...

’field u’, ’output’);

sim.addElement(SumDimension(’u -> u (global)’, 2, [1, 1], -0.05), ...

’sum u (vert)’, ’output’, ’field u’, ’output’);

We call the first new element sum u (vert). The arguments of this constructor specify
that the sum should be formed along dimension 1 of the input, that it creates an output
of size [1, 100], and that the results should be scaled with a factor of 1.0 (so effectively
not be scaled at all). We do not scale the sum at this point because we want to use for

52

two different interactions, which will both introduce their own scaling. This SumDimension

element receives input from field u, but does for now not project to any other elements.
The second sum is labeled u -> u (global); even though it does not technically form a

direct connection from field u onto itself, it is effectively providing the global component of
the lateral interactions. It computes the sum over the second dimension of its input (which
is the output of sum u (vert)), with the result being a scalar (size [1, 1]). This sum is
scaled with a factor of -0.05, specifying the weight of the inhibitory global interactions.

9.2 Projections between Fields of Different Dimensionality

To describe the typical mechanisms for projections between one- and two-dimensional fields,
we first add a one-dimensional field to the architecture. We assume that this field is defined
over the same space that forms the second (horizontal) dimension of field u. We call this
field field w:

sim.addElement(NeuralField(’field w’, [1, 150], 10, -5, 4));

We further include lateral interactions for this field and a Gaussian stimulus:

sim.addElement(...

LateralInteractions1D(’w -> w’, [1, 150], 5, 15, 12.5, 15, 0, true), ...

’field w’, ’output’, ’field w’, ’output’);

sim.addElement(GaussStimulus1D(’stim w1’, [1, 150], 5, 3, 50, true), ...

[], [], ’field w’, ’output’);

We now want to implement a projection from field u to field w. Since the vertical
dimension of field u has no correspondence in field w, field u is summed over this
dimension first, yielding a one-dimensional output. We already implemented this above by
adding element sum u (vert). The actual projection is now mediated by another Gaussian
interaction kernel (reflecting synaptic spread generally found in biological neural systems):

sim.addElement(GaussKernel1D(’u -> w’, [1, 150], 5, 0.5), ...

’sum u (vert)’, ’output’, ’field w’, ’output’);

The interaction kernel is one-dimensional, with the size parameter matched to field w.
This is the case because the output of field u is already reduced to one dimension by
the summing operation before the interaction kernel is applied. The kernel sigma is set to
five, the amplitude of the projection to 0.25. Note that the amplitude for such projections
from higher- to lower-dimensional fields should typically be chosen rather small, because
the summing operation will yield local amplitudes much larger than the output of a one-
dimensional field.

The reverse projection is likewise mediated by a Gaussian interaction kernel. In this
case, we begin with the convolution, and then expand the result:

sim.addElement(GaussKernel1D(’w -> u’, [1, 150], 5, 5), ...

’field w’, ’output’);

sim.addElement(ExpandDimension2D(’expand w -> u’, 1, [100, 150]), ...

’w -> u’, ’output’, ’field u’, ’output’);

We again use a one-dimensional convolution kernel with size [1, 150], which receives input
from field w. This convolution does initially not project to any other elements, the projec-
tion to field u is only added in the next step. In this step, an ExpandDimension2D element

53

is added to scale the result of the convolution up to the size of field u. The element, la-
beled expand w -> u, receives as input the output component of w -> u, and expands it
along dimension 1 to a size of [100, 150]. To do that, it vertically fills a matrix of the
specified size with copies of the input vector. For expansion along the second dimension,
the ExpandDimension2D would also rotate the input appropriately.

In the script for this example, we then run the simulator and plot the activations at two
points in time. The simulator effectively performs a selection decision between two stimuli
in field u, which is biased by subthreshold input to field w through the bidirectional
coupling between the fields.

10 Example C: Creating and Using a GUI

The GUIs in this framework are created for a specific architecture, and linked to a specific
Simulator object. We will in this example create a simple GUI for the small architecture
described in Example A. To do so, we first create a StandardGUI element, with general GUI
settings specified in the constructor. Then we add a visualization of the field activation and
several control elements to the GUI.

10.1 Creating the GUI Object

The StandardGUI object is created via a constructor call, with arguments specifying global
parameters of the GUI. We assume that a Simulator object with elements as described in
Example A exists in the workspace.

gui = StandardGUI(sim, [50, 50, 700, 500], 0.05, ...

[0.0, 1/3, 1.0, 2/3], [1, 1], 0.1, ...

[0.0, 0.0, 1.0, 1/3], [5, 3]);

The first argument sim is a handle to the Simulator object that is connected to this GUI.
The second argument specifies the figure size and position for the GUI main window on start
up (it can be freely resized while it is running). The third argument specifies the duration of
the pause that is introduced after every simulation step. The value used here is reasonable
for relatively small architectures, where the pause makes it simpler to follow the evolution
of the field activation. For larger architectures and field sizes, this value should be set to
zero, since the computation time slows down the simulation sufficiently for viewing it (or
even more than that).

The arguments in the next line specify the set-up of the visualization grid of the GUI:
We want it to occupy the upper two-thirds of the window, and contain only a single grid cell
(for a single visualization). The last argument in this line specifies a padding around the
visualization. The arguments in the last line analogously specify the settings for the controls
grid: In this example, the grid should cover the bottom third of the GUI main window, with
5 × 3 cells for individual control elements. No padding is provided for the control elements.
There are two more optional arguments for the constructor call which allow customization
of the parameter panel, but we do not use them in this example.

GUI parameters may be changed after the constructor call. For instance, if we find the
pause duration to be inadequate, we can change the behavior of an existing GUI in the
following form:

gui.pauseDuration = 0.025;

Note that changes to the visualization or control grid settings do not affect graphical elements
that have already been added.

54

10.2 Adding Visualizations

The visualizations display one or more element components and are typically updated after
each simulation step. In this example, we include only a single visualization, a plot of the
field activation, output, and stimuli, using the MultiPlot visualization class. We add the
visualization with the following command:

gui.addVisualization(MultiPlot(...

{’field u’, ’field u’, ’stim A’, ’stim B’}, ...

{’activation’, ’output’, ’output’, ’output’}, ...

[1, 10, 1, 1], ’horizontal’, ...

{’YLim’, [-10, 10], ’Box’, ’on’}, ...

{{’b’, ’LineWidth’, 2}, {’r’}, {’g’}, {’g’}}, ...

’field u’, ’field position’, ’activation/ouput/input’), ...

[1, 1]);

The outer method call gui.addVisualization(...) is the generic function for adding a
visualization element to the GUI, with a constrctor call for the MultiPlot object yielding
the first argument. This constructor call takes several arguments to fully specify the plots
and the axes setup. The first two arguments are cell arrays of strings that together specify
what is plotted: Each pair of entries from these cells specifies the source for one plot, with
the first cell array containing the element labels, the second the component names. Here, we
want to plot: The activation of field u, the output of field u, and the outputs of both
stim A and stim B. The third argument of the constructor specifies the scales for these
plots. We scale up the field output tenfold to make changes in this component more visible
(since it only ranges from zero to one). The next argument specifies that the plot should be
oriented horizontally.

Next, we can specify settings for the axes. These are the same axes properties that can
also be provided in the axes call in Matlab, given as a list of property/value pairs in a cell
array. In this case, we set the limits of the y-axis to the range [-10, 10], and specify that
the axes should be enclosed by a box. In a similar way, we can set the properties for each plot
in the following argument. Here, we use a cell array of cell arrays, with one inner cell array
for each individual plot. Within each inner cell array, we can specify line type and color
with a single string (as documented in the Matlab plot function), and/or list property/value
pairs for the plot. In this example, we want the line for the field activation (the first plot)
to be blue and a bit thicker, the other plots to be in red and green, respectively. Finally, in
the last three arguments to the constructor call, we specify axes labels and a title for the
visualization.

There is then one more argument to the outer function: The vector [1, 1] specifies
the position of this visualization within the grid. We could also provide another argument
here specifying a size of the visualization in the grid. For instance, the GUI in the file
launcherCoupling.m uses a 4× 4 visualizations grid, in which two plots of one-dimensional
fields are placed (one horizontal, one vertical), as well as an image for a two-dimensional
field. The arrangement of these visualizations, shown in Figure 10.2, is created as follow:

gui.addVisualization(MultiPlot(...), [4, 2], [1, 3]);

gui.addVisualization(MultiPlot(...), [1, 1], [3, 1]);

gui.addVisualization(ScaledImage(...), [1, 2], [3, 3]);

If one does not want to use the visualizations grid, it is always possible to add an explicit
position argument directly to the constructor call of the visualization element instead. The
position arguments in the call of the addVisualization method should then be omitted.

55

2

3

4

1

1 2 3 4

pos: [1, 2] size: [3, 3]

pos: [4, 2] size: [1, 3]

pos:
[1, 1]
size:
[3, 1]

Figure 2: Arrangement plots (for coupled one-dimensional and two-dimensional fields) in a
4 × 4 visualizations grid.

Since the MultiPlot constructor call can become cluttered if a large number of plots is
created, an alternative method is provided to add plots successively. The call above can be
replaced by the following operations:

hMP = MultiPlot([], [], [], ’horizontal’, ...

{’YLim’, [-10, 10], ’Box’, ’on’}, {}, ...

’field u’, ’field position’, ’activation/ouput/input’);

hMP.addPlot(’field u’, ’activation’, 1, {’b’, ’LineWidth’, 2});

hMP.addPlot(’field u’, ’activation’, 1, {’r’});

hMP.addPlot(’stim A’, ’activation’, 1, {’g’});

hMP.addPlot(’stim B’, ’activation’, 1, {’g’});

gui.addVisualization(hMP, [1, 1]);

Here, the arguments in the constructor call specifying the individual plots and their sources
remain empty, and the plots are then added individually. Note that the visualization element
may only be added to a GUI once it is complete.

10.3 Adding Controls to Change Element Parameters

For tuning the model, it is often convenient to change parameters while the simulation is
running and directly observe the effects. One way to that is via the parameter panel, which
allows access to the elements of all parameters. For settings that are likely to be changed
frequently during the online simulation, an even more direct way to access them is desirable.
To this end, graphical control elements can be added to the GUI. These controls can be
arranged in a control grid analogously to the visualizations grid.

56

We can add a slider to control the resting level of the neural field in the example ar-
chitectures using the addControl method of the StandardGUI class and the controls class
ParameterSlider:

gui.addControl(ParameterSlider(’h’, ’field u’, ’h’, [-10, 0],...

’%0.1f’, 1, ’resting level of field u’), ...

[1, 1]);

The constructor of the ParameterSlider class takes as first argument a descriptive label
that is displayed next to the slider. The label can be chosen freely, and does not need
to match any class or parameter name (it should however be relatively short). The second
argument is the label of the element accessed by this slider, and the third one the name of the
controlled parameter in the element. Here, we want to control the parameter h (the resting
level) of the element labeled field u. The element label must exist in the Simulator object
linked to the GUI, and the element class must have a parameter of the specified name. The
following arguments specify slider range, number format for the display of the parameter
value, scaling factor and tool tip (see Controls Reference for details).

We can add sliders for the lateral interaction strengths in the same way. These controls
are all connected to different parameters of the element u -> u:

gui.addControl(ParameterSlider(’c_exc’, ’u -> u’, ’amplitudeExc’, ...

[0, 40], ’%0.1f’, 1, ’strength of lateral excitation’), [2, 1]);

gui.addControl(ParameterSlider(’c_inh’, ’u -> u’, ’amplitudeInh’, ...

[0, 40], ’%0.1f’, 1, ’strength of lateral inhibition’), [2, 2]);

gui.addControl(ParameterSlider(’c_gi’, ’u -> u’, ’amplitudeGlobal’, ...

[0, 1], ’%0.1f’, -1, ’strength of global inhibition’), [3, 1]);

The sliders are placed in consecutive locations in the grid via the second argument of the
addControl method. Note that in the last line, we created a global inhibition slider (labeled
c gi) with a scaling factor of -1. This means that when we move that slider to the right (to
more positive values), the controlled parameter amplitudeGlobal becomes more negative.

We furthermore add controls for the stimulus settings, with each one slider controlling
stimulus position and one controlling stimulus strength for each of the elements stim A and
stim B:

gui.addControl(ParameterSlider(’p_s1’, ’stim A’, ’position’, ...

[0, 100], ’%0.1f’, 1, ’position of stimulus 1’), [4, 1]);

gui.addControl(ParameterSlider(’c_s1’, ’stim A’, ’amplitude’, ...

[0, 20], ’%0.1f’, 1, ’stength of stimulus 1’), [4, 2]);

gui.addControl(ParameterSlider(’p_s2’, ’stim B’, ’position’, ...

[0, 100], ’%0.1f’, 1, ’position of stimulus 2’), [5, 1]);

gui.addControl(ParameterSlider(’c_s2’, ’stim B’, ’amplitude’, ...

[0, 20], ’%0.1f’, 1, ’stength of stimulus 2’), [5, 2]);

For the position sliders, we adjusted the slider range to the size of field u, such that the
stimuli can be centered at any position in the field.

A single slider may also control multiple parameters. For instance, we can set up a slider
to adjust both stimulus strengths simultaneously with the following command:

gui.addControl(ParameterSlider(’c_s’, {’stim A’, ’stim B’}, ...

{’amplitude’, ’amplitude’}, [0, 20], ’%0.1f’, 1, ...

’stength of both stimuli’), [6, 1]);

57

The controlled elements and parameters are here given as cell arrays of strings, with each pair
of corresponding strings from the two cell arrays fully specifying one parameter controlled
by the slider. We may also want to simply turn stimuli on and off (with a specific strength
for the on state). In this case, we can use the ParameterSwitchButton. Here, we have to
specify the desired values for the controlled parameters for the pressed on non-pressed state
of the button:

gui.addControl(ParameterSwitchButton(’stimuli on’, ...

{’stim A’, ’stim B’}, {’amplitude’, ’amplitude’}, ...

[0, 0], [6, 6]), [6, 2]);

If the last two control elements are implemented in addition to the individual sliders for
the stimulus strength, there is a possibility of conflicts between the controls: For instance, if
the stimulus strengths are set to different values by the individual sliders, the slider position
of the combined slider cannot reflect this. In the framework, this will not lead to errors in
the simulation, but there can be inconsistencies between displayed values on the controls and
the actual parameter values. The behavior of the GUI is as follows: The last control element
that is activated (button clicked, slider moved, etc.) sets all associated parameters to values
specified by this control, other control elements remain unchanged. Similar situations can
also occur if parameters are changed in the parameter panel (although sliders are adjusted
to reflect new values in this case as far as this is possible).

10.4 Adding Global Controls

Special control elements to globally control the simulation can be added in the same way as
the controls to change element parameters. The StandardGUI supports the following control
mechanism:

• pause the simulation

• reset the simulation (by re-initializing all elements and resetting the simulation time)

• open and close the parameter panel

• save parameters to file

• load parameters from file

• quit the simulation

These functions can be performed by setting control flags in the StandardGUI object via
a GlobalControlButton. The controls for these standard functions can be created in the
GUI as follows:

gui.addControl(GlobalControlButton(’Pause’, gui, ...

’pauseSimulation’, true, false, false, ’pause simulation’), ...

[1, 3]);

gui.addControl(GlobalControlButton(’Reset’, gui, ...

’resetSimulation’, true, false, true, ’reset simulation’), ...

[2, 3]);

gui.addControl(GlobalControlButton(’Parameters’, gui, ...

’paramPanelRequest’, true, false, false, ’open parameter panel’), ...

[3, 3]);

58

gui.addControl(GlobalControlButton(’Save’, gui, ...

’saveParameters’, true, false, true, ’save parameter settings’), ...

[4, 3]);

gui.addControl(GlobalControlButton(’Load’, gui, ...

’loadParameters’, true, false, true, ’load parameter settings’), ...

[5, 3]);

gui.addControl(GlobalControlButton(’Quit’, gui, ...

’quitSimulation’, true, false, false, ’quit simulation’), ...

[6, 3]);

The constructor calls for these buttons are generally independent of the type of the GUI and
the simulation, and can just be copied and rearranged in the desired fashion for all GUIs.

An additional form of global control element is implemented in the PresetSelector

class. This control creates a dropdown menu from which one of several prepared parameter
settings can be selected. It invokes the same operation as the Load button used above, but
instead of opening a file selection dialog uses one of a set of predefined files. An example for
its use can be seen in the file launcherField1l preset.

10.5 Running a Simulation in the GUI

The simulation can be run within the GUI by calling

gui.run();

This initializes the GUI, iterates the steps of the associated Simulator object, updates
the visualizations and manages all interface operations. When the GUI window opens,
the simulation immediately and continuously runs: Simulation steps are performed and all
elements are continuously updated. This may not be obvious if the model is in a stable
state, but it is nonetheless taking place. In the example described here, peaks should evolve
in field u under the influence of external inputs and then remain stable.

You can now use the sliders to change parameters (these changes take effect immediately)
and use the global control buttons to affect the behavior of the GUI: You can pause and
unpause the simulation (which will, again, only be obvious while the activation pattern in
the field is actually changing), or reset it (which will cause the peaks to form anew). Note:
If you want to keep the GUI open in the background but are not currently using it, it is
advisable to pause it to reduce CPU usage.

You can open the parameter panel, which gives you access to all elements of the archi-
tecture and all of their parameters (although some may not be changed in the GUI). To
adjust specific parameters via this panel, select the element in the dropdown menu, then set
the parameter value in the edit field (be sure to use Matlab-compatible number formats).
The changes take effect once you click the Apply button at the bottom. Changes are lost if
you close the panel or switch the selected element without clicking Apply first.

The current model parameters can be saved or a stored parameter set be loaded via the
appropriate buttons. A file selection dialog will open to choose a file to save to or load
from (this requires the JSONlab toolbox to be present in the search path). Note that only
the parameters are stored or loaded in this procedure, not the full state of the model (e.g.
activation patterns of the fields are not saved). Upon loading from a configuration file,
the simulation is re-initialized. It is possible to load from a file whose model architecture
does not fully match the one of the current simulation (e.g. after changing some part of
the architecture). In this case, the model architecture of the current simulation remains

59

the same, and only the parameters of elements that have a matching counterpart in the
configuration file are changed.

By default, the simulation runs in the GUI until the GUI is manually terminated (prefer-
ably via the Quit button). The simulation time can be limited by supplying an optional
first argument in the function call, for instance

gui.run(1000);

Note that a reset also sets the simulation time back to its initial value, such that it can keep
the GUI from terminating.

When the GUI is terminated (either by pressing Quit or because it reached its time
limit), the Simulator object in the workspace will contain the final state of the simulation
in the GUI. (Note: This is not guaranteed if the GUI is terminated by other means, like
closing the window or pressing Ctrl-c, but should still work in most cases). We may at this
point for instance inspect individual elements by commands like

plot(sim.getComponent(’u -> u’, ’output’));

We can also save the complete Simulator object to a mat file via the Matlab save command:

save simulatorFile.mat sim

Unlike the configuration files, this file will then preserve the full state of the simulation.
We can now continue the simulation in the GUI at the same point at which is was

terminated with the same function call as before:

gui.run();

The optional second argument of this function allows manual control over re-initialization
of the simulation. The call

gui.run(inf, true);

forces a re-initialization. By default, the simulation is only initialized if it had not been
initialized before. (The first argument is set to infinity here to suppress a time limit.)

Finally, it is possible to create a copy of the Simulator object and then continue the
simulation in the GUI with this copy:

sim2 = sim.copy();

gui.run(inf, false, sim2);

In the call of the run function, we specify the new Simulator object as third argument.
There are now two independent Simulator objects in the workspace, which will likely have
different states after sim2 has been used in the GUI. When the GUI is terminated again,
it is possible to go back to the state at which the copy was made by running the GUI once
more with the original Simulator object:

gui.run(inf, false, sim);

It is also possible to create more copies, for instance to try out the behavior of the model
under different inputs when starting from the same state.

60

11 General Hints for Efficient DNF Architectures

11.1 Connecting Fields of Different Dimensionality

When connecting a higher-dimensional and lower-dimensional field, all computationally
costly operations – such as convolutions – should be performed in the lower dimensional
space whenever possible. This means:

• When projecting from a 2D field to a 1D field, one should first compute the sum over
the 2D field’s output, and then apply the convolution (or other operation) to this sum.

• When projecting from a 1D field to a 2D field, one should first perform the convolution
on the output of the 1D field, and then expand the result of this convolution to two
dimensions.

11.2 Scaling and Re-using Operations

Many connective elements have an amplitude parameters that scales the output of that
element (this is the case for all elements that are expected to be used for direct connections
between fields). If you need to have the output of an element without amplitude parameter
scaled, you can do so by feeding it to an element of class ScaleInput.

The ScaleInput element may also be employed for re-using other elements in multiple
projections: Assume for instance that you have a two-dimensional field that should have
an excitatory projection to itself and to one other two-dimensional field, both mediated
by Gaussian kernels. If the Gaussian for the two projections should have the same width,
it is considerably more efficient to perform the convolution only once, and then scale the
result twice for the different projections. The amplitude of the Gaussian kernel itself should
then be set to 1.0, so that the amplitudes of the ScaleInput elements directly reflect the
amplitude of the respective projection.

11.3 Order of Elements

The step function of the elements in a Simulator object is called in the order that the
elements were added to the object. This order may affect the exact behavior of the whole
dynamical system (although the numerical differences in each step will be small for reason-
able step sizes). We suggest the following standard for element order:

• all external stimuli

• all connective elements between the stimuli and the fields (if connective elements are
set up in a chain, the elements of that chain should be added in descending order)

• all dynamic elements (neural fields and memory traces)

• all connective elements between fields (in descending order for chains of connective
elements)

61

	Introduction
	Overview of the Framework
	About this Document
	Object-Oriented Programming and Terminology
	Preparing the Framework for Use

	I Structure of the Framework
	Element Class
	Common Properties
	parameters
	components
	label

	Methods
	init
	step
	close
	copy
	addInput
	getParameterList

	Note on Size Parameters
	Notes on Parameter Changes and Initialization

	Simulator Class
	Methods for Creating and Expanding the Simulator
	Constructor
	addElement
	copy

	Methods for Running the Simulator
	run
	init
	step
	close

	Element Access Methods
	isElement
	getElement
	getComponent

	Methods to Assist in Debugging
	tryInit
	tryStep

	GUI
	GUI Layout
	Parameter Panel
	Methods
	Constructor
	addVisualization
	addControl
	connect
	run

	II Class Reference
	Elements
	Dynamic Elements
	NeuralField
	MemoryTrace
	DynamicVariable
	SingleNodeDynamics

	Interaction Kernels
	GaussKernel1D
	GaussKernel2D
	MexicanHatKernel1D
	LateralInteractions1D
	WeightMatrix

	Dimensional Reduction and Expansion
	SumDimension
	SumAllDimensions
	ExpandDimension2D
	DiagonalSum
	DiagonalExpansion
	ScalarToGaussian

	Basic Mathematical Operations
	ScaleInput
	SumInputs
	ShiftInput
	PointwiseProduct
	Convolution
	Interpolation1D

	Output Functions
	Sigmoid
	HalfWaveRectification

	Stimuli
	BoostStimulus
	GaussStimulus1D
	GaussStimulus2D
	CustomStimulus
	NormalNoise

	History
	History
	RunningHistory

	Image Acquisition and Processing
	CameraGrabber
	ImageLoader
	ColorExtraction

	Motor control
	AttractorDynamics
	DynamicRobotController

	Controls
	ParameterSlider
	ParameterSwitchButton
	ParameterDropdownSelector
	GlobalControlButton
	PresetSelector

	Visualizations
	MultiPlot
	XYPlot
	SlicePlot
	ScaledImage
	RGBImage
	SurfacePlot
	KernelPlot

	III Examples
	Example A: Building and Running a Simple DNF Architecture
	Creating the Architecture
	Initializing and Running the Simulation

	Example B: Building an Architecture with Two-Dimensional Fields
	Lateral Interactions in Two-Dimensional Fields
	Projections between Fields of Different Dimensionality

	Example C: Creating and Using a GUI
	Creating the GUI Object
	Adding Visualizations
	Adding Controls to Change Element Parameters
	Adding Global Controls
	Running a Simulation in the GUI

	General Hints for Efficient DNF Architectures
	Connecting Fields of Different Dimensionality
	Scaling and Re-using Operations
	Order of Elements

