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Abstract

The problem addressed in this paper is the construction of homogeneous polynomial Lyapunov functions (HPLFs) for linear systems
with time-varying structured uncertainties. A su2cient condition for the existence of an HPLF of given degree is formulated in terms
of a linear matrix inequalities (LMI) feasibility problem. This condition turns out to be also necessary in some cases depending on the
dimension of the system and the degree of the Lyapunov function. The maximum ‘∞ norm of the parametric uncertainty for which
there exists a homogeneous polynomial Lyapunov function is computed by solving a generalized eigenvalue problem. The construction
of such Lyapunov functions is e2ciently performed by means of popular convex optimization tools for the solution of problems in LMI
form. Comparisons with other classes of Lyapunov functions through numerical examples taken from the literature show that HPLFs are
a powerful tool for robustness analysis.
? 2003 Published by Elsevier Science Ltd.
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1. Introduction

Lyapunov functions are a standard tool for tackling ro-
bust analysis of linear systems a;ected by time-varying
structured uncertainties. Quadratic Lyapunov functions
have been considered by many authors, since a long time
(see e.g. =Siljak, 1969; Narendra & Taylor, 1973; Zhou
& Khargonekar, 1987). It is, however, widely recognized
that quadratic functions lead to conservative estimates of
the robust stability margin. Hence, nonquadratic Lyapunov
functions have been addressed in the literature. Piece-
wise quadratic Lyapunov functions have been considered
for both linear systems with time-varying perturbations
(Xie, Shishkin, & Fu, 1997) and switching linear systems
(Johansson & Rantzer, 1998). Polyhedral Lyapunov func-
tions have been introduced in Brayton and Tong (1979)
and successively considered by several authors. It has been
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shown that they are not conservative for robust analysis
and synthesis (Blanchini, 1995) of linear systems with
time-varying structured uncertainties. The main drawback
of polyhedral functions is that the computational burden
required by their construction dramatically increases with
the dimension of the system and the number of vertices of
the polytope of matrices describing the uncertainty.
Homogeneous polynomial Lyapunov functions (HPLFs)

are a viable alternative to the above classes of Lyapunov
functions. The fact that this class of Lyapunov functions
can improve robust stability results provided by quadratic
Lyapunov functions has been recognized since long time
(Brockett, 1973). In Zelentsovsky (1994), the use of HPLFs
to prove robust stability of linear systems with time-varying
uncertainties has been considered and an approach based
on the S-procedure has been proposed to enhance the ro-
bustness degree. More recently, it has been shown that for
these systems robust stability is equivalent to the existence
of a smooth Lyapunov function that turns out to be the sum
of squares of homogeneous polynomial forms (Blanchini &
Miani, 1999). This suggests that the computation of HPLFs
can be pursued via the numerical tools in (Chesi, Tesi,
Vicino, & Genesio, 1999; Parrilo, 2000a, b; Chesi, Garulli,
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Tesi, & Vicino, 2003), which rely on the convexity property
of sum of squares of homogeneous forms.
In this paper, the problem of constructing HPLFs is tack-

led by means of convex optimization techniques based on
linear matrix inequalities (LMI) (Boyd, El Ghaoui, Feron,
& Balakrishnan, 1994; Nesterov & Nemirovsky, 1993) and
on certain properties of homogeneous forms which lead to
a suitable matricial representation (Chesi, Tesi, Vicino, &
Genesio, 2001; Chesi et al., 2003). The aim of the paper is
twofold: to formulate conditions for the existence of HPLFs
of given degree in terms of LMI feasibility problems, and to
address the problem of computing the maximum ‘∞ norm
of the parametric uncertainty for which an HPLF exists. Sev-
eral examples are presented, which demonstrate that HPLFs
are a powerful tool for robustness analysis.
The paper is organized as follows. Section 2 contains the

problem formulation and preliminary material on homoge-
neous forms. The existence conditions for HPLFs are pro-
vided in Section 3, where relationships with previous work
are also discussed. Maximization of the ‘∞ norm of the un-
certainty is treated in Section 4, while the computation of
the HPLF achieving the optimal transient performance is
addressed in Section 5. Several numerical examples are pre-
sented in Section 6 and some concluding remarks are given
in Section 7.

2. Problem formulation and preliminaries

Let us consider the uncertain linear system

ẋ(t) = A(w(t))x(t); (1)

where

A(w(t)) =

(
A0 +

s∑
i=1

wi(t)Ai

)
(2)

and A0; : : : ; As ∈Rn×n are given matrices. The uncertain
time-varying parameter vector w(t) = (w1(t); : : : ; ws(t))′ is
assumed to satisfy for all t¿ 0 the constraint

w(t)∈W, co{w1; : : : ; wr}; (3)

where wi ∈Rs, i = 1; : : : ; r, are given vectors and co{·}
denotes the convex hull.
The basic problem addressed in this paper is the con-

struction of a Lyapunov function proving global asymptotic
stability of system (1)–(3). The attention is restricted to a
special class of Lyapunov functions: the homogeneous
polynomial forms of degree 2m.
Before proceeding, let us recall that a function fm(x) is

a homogeneous form of degree m in x∈Rn if

fm(x) =
∑

i1+i2+···+in=m

ci1 ;i2 ;:::;in x
i1
1 x

i2
2 : : : xinn ;

where i1; i2; : : : ; in are nonnegative integers, and ci1 ;i2 ;:::;in ∈R
are weighting coe2cients. The form fm(x) is said positive
if fm(x)¿ 0 ∀x �= 0, and nonnegative if fm(x)¿ 0 ∀x.

Hereafter, the aim will be to Mnd an HPLF of degree 2m,
denoted by v2m(x), such that:

(i) v2m(x)¿ 0 for all x �= 0;
(ii) v̇2m(x)¡ 0 for all x �= 0 and for all w(t)∈W.

We introduce a representation of homogeneous forms that
will be exploited throughout the paper. Let g2m(x) be a ho-
mogeneous form of degree 2m. Then, the square matricial
representation (SMR) of g2m(x) is deMned as g2m(x) =
x{m}′Cgx{m}, where x{m} ∈Rd is the base vector of homo-
geneous forms of degree m in x (containing all monomials
of degree m), and Cg =C′

g ∈Rd×d is a coe2cient matrix. It
is not di2cult to check that the dimension d of x{m} is given
by d=(n+m−1)!=(n−1)!m!. An important property of the
SMR is that matrix Cg is not unique. Indeed, if one consid-
ers the set of matrices L= {L= L′ ∈Rd×d: x{m}′Lx{m} =
0 ∀x∈Rn}, then the family of matrices Cg describing g2m(x)
can be parameterized a2nely as Cg(�) = Cg + L(�), where
�∈RdL is a vector of free parameters and L :RdL → L is
a linear parameterization of L. In Chesi et al. (2003) it is
shown that L is a linear space whose dimension is given
by dL = 1

2 d(d+ 1)− (n+ 2m− 1)!=(n− 1)!(2m)!; more-
over, details can be found in the same reference on how to
generate the complete parameterization L(�). Hereafter, the
representation

g2m(x) = x{m}′Cg(�)x{m} (4)

with x{m} ∈Rd and �∈RdL , will be addressed as the com-
plete SMR (CSMR) of g2m(x).

3. Existence conditions for homogeneous Lyapunov
functions

In this section, conditions for the existence of an HPLF
for system (1)–(3) are provided. Such conditions are based
on the CSMR of homogeneous forms previously introduced
and are expressed as LMIs.

3.1. Su6cient condition

For a generic system ẋ(t) = Ax(t), let us introduce the
extended matrix A{m} ∈Rd×d, deMned by

d
dt

x{m} =
@x{m}

@x
Ax = A{m}x{m}: (5)

Extended matrices play a key role in the so-called power
transformation, which has been extensively used in the
analysis of control systems (Brockett, 1973; Barkin &
Zelentsovsky, 1982, 1983). The following useful proper-
ties of the extended matrix A{m} hold (Brockett, 1973;
Zelentsovsky, 1994):

(I) Let A; B∈Rn×n and �; �∈R. Then
(�A+ �B){m} = �A{m} + �B{m}:
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(II) Let A0;{m} and Ai;{m} denote, respectively, the extended
matrices of A0 and Ai, according to (5). Consider the
extended system

ẋ{m}(t) =

(
A0;{m} +

s∑
i=1

wi(t)Ai;{m}

)
x{m}(t)

= A(w(t)){m}x{m}(t):

Then, for any v2m(x) = x{m}′Vx{m}, one has

d
dt

v2m(x)
∣∣∣∣
ẋ{m}=A(w(t)){m}x{m}

=
d
dt

v2m(x)
∣∣∣∣
ẋ=A(w(t)) x

:

The following result provides a su2cient condition for
establishing the existence of an HPLF of degree 2m for
system (1)–(3).

Theorem 1. Let PAj=A(wj), j=1; : : : ; r and let PAj;{m} denote
the extended matrix of PAj. If the system of LMIs

V ¿ 0;

−V PAj;{m} − PA′
j;{m}V − L(�j)¿ 0; j = 1; : : : ; r (6)

admits a feasible solution V = V ′ ∈Rd×d, �j ∈RdL , j = 1;
: : : ; r, then v2m(x) = x{m}′Vx{m} is an HPLF for (1)–(3).

Proof. If (6) admits solution, then v2m(x) = x{m}′Vx{m} is
positive deMnite. By di;erentiating v2m(x) along the trajec-
tories of the system and exploiting properties (I) and (II)
above, one gets

d
dt

v2m(x)
∣∣∣∣
ẋ{m}= PAj;{m}x{m}

= x{m}′(V PAj;{m} + PA′
j;{m}V )x{m}

= x{m}′(V PAj;{m} + PA′
j;{m}V + L(�j))x{m}; (7)

which is negative deMnite by (6). Observe that the CSMR (4)
has been used in (7). Now, notice that, due to property (I),
matrices PAj;{m} = (A0;{m} +

∑s
i=1 w

j
i Ai;{m}) are the vertices

of the set of extended matrices A0;{m} +
∑s

i=1 wi(t)Ai;{m},
w(t)∈W. Convexity of this set of matrices implies that
v2m(x) is a common HPLF for all matrices of the set. Hence,
property (II) allows one to conclude that v2m(x) is also an
HPLF for system (1).

It is worth observing that (6) is an LMI feasibility problem
(Boyd et al., 1994), which can be solved by e2cient com-
putational tools based on convex optimization (Nesterov
& Nemirovsky, 1993; Gahinet, Nemirovski, Laub, &
Chilali, 1995). Notice that the free variables in (6) are
matrix V=V ′ ∈Rd×d and vectors �j ∈RdL , j=1; : : : ; r, and

therefore their number is equal to d(d + 1)=2 + rdL − 1
(the term −1 is due to the fact that V can be arbitrarily
scaled).

3.2. Necessary and su6cient condition

In some cases, depending on the dimension n of x and the
degree 2m of v2m(x), the su2cient condition provided by
Theorem 1 is also necessary for the existence of an HPLF
for (1)–(3). The next result is central for establishing such
a necessary and su2cient condition.

Lemma 1. Consider the set

E= {(n; 2); n∈N} ∪ {(2; 2m); m∈N} ∪ {(3; 4)}; (8)

where N denotes the set of positive integers. Let x∈Rn

and g2m(x) be a nonnegative homogeneous form of degree
2m. If (n; 2m)∈E, then g2m(x) can be written as the sum of
squares of homogeneous forms of degree m. Moreover, if
g2m(x) is positive, then it admits a positive de=nite SMR,
i.e. there exists a positive de=nite matrix V ∈Rd×d such
that g2m(x) = x{m}′Vx{m}.

Proof. See Appendix A.

Theorem 2. Let (n; 2m) belong to E in (8). Then, there
exists an HPLF of degree 2m for system (1) if and only if
the set of LMIs (6) admits a feasible solution.

Proof. Obviously, it must be proven only that if (n; 2m)∈E
and there exists an HPLF v2m(x) for (1), then (6) admits
a feasible solution. By assumption we have that v2m(x) is
positive deMnite, and −v̇2m(x) is positive deMnite for any
uncertainty w(t)∈W. Hence, due to Lemma 1, there ex-
ists V ¿ 0 such that v2m(x) = x{m}′Vx{m}, and there exist
Vj ¿ 0, j = 1; : : : ; r, such that the time derivative of v2m(x)
evaluated along the trajectories of ẋ{m} = PAj;{m}x{m} sat-
isMes −v̇2m(x) = x{m}′Vjx{m}. Completeness of the CSMR
parameterization (4) implies that there exists �j such that
Vj = −V PAj;{m} − PA′

j;{m}V − L(�j). Therefore (6) admits a
feasible solution.

3.3. Relationships with previous work on HPLF

The use of HPLFs for robust analysis of system (1)–(3)
has been addressed in Zelentsovsky (1994). In that paper,
a result based on the S-procedure is exploited to provide a
su2cient condition for the existence of an HPLF of degree
2m. Although the condition is formulated as the minimiza-
tion of a nondi;erentiable convex function, it can be easily
rewritten as an LMI feasibility problem of the form

V ¿ 0;

−V PAj;{m} − PA′
j;{m}V −

dZ∑
i=1

�ijFi ¿ 0; j = 1; : : : ; r; (9)
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Table 1
Values of dL (left) and dZ (right) for some n and m

m\n 2 3 4 5

2 1 1 6 3 20 6 50 10
3 3 2 27 7 126 16 420 30
4 6 3 75 12 465 31 1990 65
5 10 4 165 18 1310 52 7000 121

where Fi ∈Rd×d, i=1; : : : ; dZ are suitable matrices and dZ=
d−n. The di;erence between (9) and (6) is that the number
of free variables �ij for each LMI in (9) is dZ , which turns
out to be much smaller than dL, the dimension of vector �j

in (6), as clariMed by Table 1.
The larger number of free variables in the LMIs makes

the su2cient condition provided by Theorem 1 much more
powerful. Moreover, the CSMR of homogeneous forms
allows one to formulate the necessary and su2cient condi-
tion of Theorem 2 for the cases in which (n; 2m)∈E. On
the contrary, the condition provided in Zelentsovsky (1994)
is necessary only for the case n= m= 2, in which the two
parameterizations of homogeneous forms coincide (see
Table 1).

4. Computation of the ‘∞ 2m-HPLF stability margin

In the analysis of uncertain systems of type (1)–(2), a key
problem is that of Mnding the largest value of the positive
scalar � for which there exists an HPLF of degree 2m for all
w(t) belonging to the scaled perturbation set �W. In order
to simplify the presentation, we restrict our attention to the
case in which the perturbation set is the ‘∞ box, i.e.

B� = {q∈Rs: |qi|6 �; i = 1; : : : ; s}: (10)

Clearly, B� is equal to � co{u1; : : : ; u2s}, where uj,
j = 1; : : : ; 2s, are the vertices of the unit ‘∞ ball B1. Said
another way, the aim is to compute

�∗2m = sup{�: ∃v2m(x) for (1)–(2); w(t)∈B�}: (11)

In the following, �∗2m will be referred to as the ‘∞ 2m-HPLF
stability margin for system (1)–(2).
We also consider the related problem of computing the

following quantity:

"∗
2m = sup{": ∃v2m(x) for (1)–(2); w(t)∈ PB"}; (12)

PB" = {q∈Rs: 06 qi6 "; i = 1; : : : ; s}: (13)

Notice that "∗
2m di;ers from �∗2m because the perturbation set

is restricted to the positive orthant of the parameter space.
For this reason, it will be referred to as the ‘∞ 2m-HPLF
positive stability margin. It is worth recalling that the above
stability margins �∗2m and "∗

2m are bounded from above by
the well-known ‘∞ state space parametric stability margin.

Let us Mrst focus the attention on problem (11)–(10).
DeMne the matrices Ãj =A(uj)−A0, where uj, j=1; : : : ; 2s

are the vertices of the unit ‘∞ ball B1. Moreover, let Ãj;{m}
denote the extendedmatrix of Ãj. The following result shows
that a lower bound �̂∗2m of the ‘∞ 2m-HPLF stability margin
�∗2m can be computed by solving a quasiconvex optimization
problem.

Theorem 3. Let �̂∗2m be de=ned as

(�̂∗2m)
−1 = inf

z∈R;V=V ′∈Rd×d;
�j∈RdL ; j=0;:::;2s

z

s:t:




V ¿ 0; z ¿ 0

−VA0;{m} − A′
0;{m}V − L(�0)¿ 0

z(−VA0;{m} − A′
0;{m}V − L(�0))

¿VÃj;{m} + Ã′
j;{m}V + L(�j) j = 1; : : : ; 2s:

(14)

Then, �̂∗2m6 �∗2m. Moreover, if (n; 2m) belongs to E, then
�̂∗2m = �∗2m.

Proof. Let v2m(x) = x{m}′Vx{m}. The time derivative of
v2m(x) evaluated for w(t) = z−1uj, is given by

d
dt

v2m(x)
∣∣∣∣
w(t)=z−1uj

= x{m}′[V (A0;{m} + z−1Ãj;{m})

+(A0;{m} + z−1Ãj;{m})′V ]x{m}

= z−1x{m}′[z(VA0;{m} + A′
0;{m}V + L(�0))

+V Ãj;{m} + Ã′
j;{m}V + L(�j)]x{m};

where the CSMR has been exploited by adding the term
zL(�0) + L(�j) inside the square brackets. Hence, the con-
straint in (14) guarantees that v̇2m(x) is negative deMnite.
Since this holds for all w(t) such that ‖w(t)‖∞6 z−1, one
has that �̂∗2m6 �∗2m. Let us assume now that (n; 2m) belongs
to E. From deMnition (11), for any z such that z−1 ¡�∗2m,
there exists a positive deMnite v2m(x) such that −v̇2m(x) is
positive deMnite for w(t): ‖w(t)‖∞6 z−1. From Lemma
1, it follows that −v̇2m(x) admits a positive deMnite SMR
matrix for any w(t)∈Bz−1 and therefore the constraint in
problem (14) admits a feasible solution for any z−1 ¡�∗2m.
Hence �̂∗2m = �∗2m.

Problem (14) is a generalized eigenvalue problem
(GEVP), which has been proven to be a quasiconvex
optimization problem and can be tackled by e2cient opti-
mization tools (Boyd et al., 1994; Nesterov & Nemirovsky,
1993). Notice that the second LMI constraint in (14)
guarantees that the matrix multiplying the generalized
eigenvalue z is positive, as required by the standard form
of the GEVP (see Boyd et al., 1994). Observe that the
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number of free variables in the GEVP (14) is equal to
d(d+ 1)=2 + (2s + 1)dL.
A result similar to Theorem 3 can be obtained for the

‘∞ 2m-HPLF positive stability margin "∗
2m in (12)–(13).

Here, we report the result for the simpler case of a segment
of matrices, because it has been widely addressed in the
literature and it will be useful in the examples presented in
the next section. The aim is to compute the largest value
of " such that there exists an HPLF of degree 2m for the
matrices A0 + w(t)A1, with 06w(t)6 ".

Corollary 1. Let s= 1 in (12)–(13). De=ne "̂∗
2m as

("̂∗
2m)

−1 = min
z∈R;V=V ′∈Rd×d;
�1 ;�2∈RdL

z

s:t:




V ¿ 0; z ¿ 0

−VA0;{m} − A′
0;{m}V − L(�1)¿ 0

z(−VA0;{m} − A′
0;{m}V − L(�1))

¿VA1;{m} + A′
1;{m}V + L(�2):

(15)

Then, "̂∗
2m6 "∗

2m. Moreover, if (n; 2m) belongs to E, then
"̂∗
2m = "∗

2m.

5. Construction of the optimal performance HPLF

Another problem of interest in the robustness analysis of
uncertain systems is that of determining the Lyapunov func-
tion that achieves the best transient performance (see, for
example, Olas, 1994). For a given Lyapunov function v(x),
one can deMne the transient performance index of system
(1)–(3) as

$(v) = sup
x∈Rn\0

sup
w(t)∈W

v̇(x)
v(x)

: (16)

From (16) one has v(x(t))6 v(x(t0))e$(v)(t−t0), thus estab-
lishing the rate of decrease of v. Therefore, it is natural to
select among all feasible Lyapunov functions, the one that
minimizes $(v). For systems of the type (1)–(3), this prob-
lem has been addressed in Olas (1994) within the class of
quadratic Lyapunov functions. Here, the aim is to select the
optimal Lyapunov function among HPLFs of degree 2m, i.e.
to compute

$∗2m = inf
v2m

$(v2m): (17)

The following result shows that an upper bound of $∗2m can
be obtained by solving a GEVP.

Theorem 4. Let $̂∗2m be de=ned as

$̂∗2m = inf
z∈R;V=V ′∈Rd×d;
�j∈RdL ; j=1;:::;r

z

s:t:

{
V ¿ 0;

zV ¿V PAj;{m} + PA′
j;{m}V + L(�j) j = 1; : : : ; r:

(18)

Then, $̂∗2m¿ $∗2m. Moreover, if (n; 2m) belongs to E, then
$̂∗2m = $∗2m.

Proof. Let us assume that there exists z ∈R and V =
V ′ ∈Rd×d satisfying the constraint in (18), for some vec-
tors �j ∈RdL . Then, by setting v2m(x) = x{m}′Vx{m} and
di;erentiating along the trajectories of ẋ{m} = PAj;{m}x{m},
one has

v̇2m(x)
v2m(x)

∣∣∣∣
ẋ{m}= PAj;{m}x{m}

=
x{m}′(V PAj;{m} + PA′

j;{m}V )x{m}

x{m}′Vx{m}

=
x{m}′(V PAj;{m} + PA′

j;{m}V + L(�j))x{m}

x{m}′Vx{m}
6 z

for all j = 1; : : : ; r. Therefore, by exploiting convexity of
W, one can conclude that v̇2m=v2m ¡z for all w(t)∈W and
hence $∗2m6 z. Minimizing with respect to z, one obtains the
upper bound $̂∗2m. Now, let (n; 2m)∈E. DeMnition (17) says
that for any z¿$∗2m there exists a positive deMnite v2m(x)
such that v̇2m(x)=v2m(x)¡z, for all x and for all w(t)∈W.
Then, Lemma 1 implies that zv2m(x)− v̇2m(x) admits a pos-
itive deMnite SMR matrix for any w(t)∈W, and therefore
the constraint in problem (18) admits a feasible solution for
any z¿$∗2m.

6. Examples

Example 1. This example is taken from Zelentsovsky
(1994). Let us consider the matrices

A0 =

(
0 1

−2 −1

)
; A1 =

(
0 0

−1 0

)

and assume we want to compute the ‘∞ 2m-HPLF positive
stability margin "∗

2m, deMned in (12)–(13). Since in this
example n=2, the lower bound provided by the GEVP (15)
is tight, i.e. "̂∗

2m = "∗
2m, as assured by Corollary 1.

In Zelentsovsky (1994), it has been observed that a
quadratic Lyapunov function exists only for "¡ 3:82, and
that this bound can be improved to "¡ 5:73 by solving
problem (9) with m = 2. Table 2 shows the values of "∗

2m
obtained from (15), for some di;erent m.
The same example has been considered also in Blanchini

and Miani (1996) and Xie et al. (1997). In Blanchini and
Miani (1996), a polyhedral Lyapunov function has been
constructed, guaranteeing asymptotic stability for " = 6. In
Xie et al. (1997), a piecewise quadratic Lyapunov function
achieving stability for " = 6:2, has been obtained via a se-
quence of LMI optimizations and a grid search over two free
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Table 2
Values of "∗2m for di;erent m in Example 1

m 2 3 4 5 6 7 8

"∗2m 5.73 6.21 6.39 6.64 6.65 6.78 6.79

parameters. As it can be seen from Table 2, these bounds
are improved by all the HPLFs of degree greater than 2.
Note that the HPLF is obtained by solving one GEVP, with
1
2 (3m

2 + m+ 2) free variables.

Example 2. This example shows that the gap in the
Lyapunov stability margin between our technique and the
one presented in Zelentsovsky (1994) can be very large. Let
us consider the matrices

A0 =




0 1 0

0 0 1

−1 −2 −4


 ; A1 =




−2 0 −1

1 −10 3

3 −4 2




and assume we want to solve the same problem as in
Example 1. Quadratic stability is guaranteed only for "6
1:9042. Let us compute an HPLF of degree 4. Being n =
3 and m = 2 it follows that d = 6 and dL = 6. Then,
vector x{2} and matrix L(�) are, respectively, given by
x{2} = (x21 x1x2 x1x3 x22 x2x3 x23) and

L(�) =




0 0 0 −�1 −�2 −�3

0 2�1 �2 0 −�4 −�5

0 �2 2�3 �4 �5 0

−�1 0 �4 0 0 −�6

−�2 −�4 �5 0 2�6 0

−�3 −�5 0 −�6 0 0




:

The GEVP (15) returns the lower bound "̂∗
4=75:1071.More-

over, since (n; 2m) = (3; 4)∈E, we have from Corollary 1
that "̂∗

4 = "∗
4 .

Using the approach proposed in Zelentsovsky (1994), one
Mnds that the maximum " for which robust stability is guar-
anteed is equal to 17:8347. The remarkable di;erence with
respect to our approach is due to the fact that the parame-
terization of homogeneous forms adopted in Zelentsovsky
(1994) is not complete, as discussed in Section 3.3. Specif-
ically, it is easy to see that in Zelentsovsky (1994) only the
parameters �1; �3; �6 in the matrix L(�) are considered (see
also Table 1).

Example 3. Let us consider the di;erential equation

W%(t) + %̇(t) + k(t)%(t) = 0

and assume that we want to compute the maximum " such
that the solution remains bounded, for all 06 k(t)6 ".

Table 3
Values of "∗2m for di;erent m in Example 3

m 1 2 3 4 5 6
"∗2m 1.00 1.50 1.99 2.29 2.40 2.50

m 7 8 9 10 11 12
"∗2m 2.61 2.66 2.69 2.74 2.77 2.79

By adopting a strategy similar to that proposed in Brockett
(1970), one can determine numerically the maximum value
of ". In particular, one has that such value must satisfy the
equation

√
k exp

{
− 1√

4" − 1
['− arctan(

√
4" − 1)]

}
− 1 = 0

and is equal to "∗ ≈ 3:0448. Clearly, the problem can
be easily tackled in the framework of HPLF by solving
(12)–(13) with s= 1 and

A0 =

(
0 1

0 −1

)
; A1 =

(
0 0

−1 0

)
:

The values of "∗
2m obtained from (15) are reported in

Table 3.
Notice that the values exhibit a growth towards the the-

oretical upper bound "∗. On the other hand, the result in
Blanchini and Miani (1999) guarantees that for any "¡"∗

there exists an HPLF of suitable degree which is also a sum
of squares; hence, it is expected that "∗

2m converges to "∗ as
m approaches inMnity.
Another interesting byproduct of the treatment in Brockett

(1970) is that one can calculate the worst-case sequence
k(t) (which consists of suitable switchings between k(t) =
0 and k(t) = "∗) and the corresponding trajectory of the
system, that represents the limit curve towards which the
level surfaces of the Lyapunov functions are expected to
tend. This is conMrmed by Fig. 1a, where the level curves of
the obtained HPLFs for di;erent values of m are depicted.
Fig. 1b clearly shows that the HPLF corresponding tom=12
is very close to the limit trajectory predicted by the theory.

Example 4. This example has been considered by several
authors (Radziszewski, 1977; Olas, 1994; Blanchini, 1995).
Let us consider system (1)–(2) with s= 1 and matrices

A0 =

(
0 1

−1 −1

)
; A1 =

(
0 0

1 0

)
:

The maximum � for which there exists a Lyapunov function
for system (1)–(2), with w(t)∈B�, has been calculated for
di;erent classes of Lyapunov functions. Notice that the ‘∞
state space stability margin is given by (=1, because A0+A1

is not asymptotically stable, and hence �∗2m6 1, for all m.
In Radziszewski (1977), it has been proven that quadratic
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Fig. 1. Example 3: (a) Level curves of v2m(x) for di;erent m; (b) level
curve of v24(x) and limit trajectory (dashed).

Lyapunov functions can achieve �∗2 =
√
3=2. In Blanchini

(1995), a polyhedral Lyapunov function has been provided,
which guarantees stability for |w(t)|6 � = 0:98. The level
curves of this Lyapunov function have 30 vertices.
By applying Theorem 3 for di;erent values of m, one can

construct HPLFs of increasing degree, trying to improve the
value of the 2m-HPLF stability margin. Observe that also
in this example the lower bound provided by (14) always
coincides with �∗2m because n = 2. For m = 2, one obtains
�∗4 = 0:9771, but for m¿ 3 the result returned by the GEVP
is �̂∗2m = 1, which means that it is possible to construct an
HPLF of degree 6 (or more) for |w(t)|6 � and � arbitrarily
close to 1.

Example 5. This example concerns the computation of an
optimal performance HPLF, in the sense explained in Sec-
tion 5. Let us consider the helicopter model originally pro-
posed in Narendra and Tripathi (1973), and the robust con-
troller designed in Chen and Chen (1991). The resulting
closed-loop uncertain system has four state variables and
three uncertain parameters qi satisfying |q1(t)|6 0:2192,
|q2(t)|6 1:2031, |q3(t)|6 2:0673. The system can be eas-
ily written in form (1)–(3) with r = 8.
In Olas (1994), the problem of computing the quadratic

Lyapunov function achieving the best transient performance,
deMned as in (16), has been addressed. The value obtained
was $=−0:3839. By solving the GEVP problem (18) with

m= 2, one obtains an HPLF of degree four achieving $̂∗4 =
−0:8889. Therefore, once again it can be seen that the
HPLFs outperform the classic approaches based on quadratic
Lyapunov functions. Moreover, this example shows that the
proposed LMI-based procedures are able to handle also quite
complex systems (in this case, a fourth-order uncertain sys-
tem with eight vertices).

7. Conclusions

The construction of HPLFs for linear systems with
time-varying structured uncertainties has been addressed
via LMI optimization techniques. With respect to previous
work on this class of Lyapunov functions, better results
have been obtained by exploiting a complete parameteri-
zation of homogeneous forms of given degree. Moreover,
this allows one to formulate necessary conditions for the
existence of an HPLF in some cases (for example, for all
second-order systems). Comparisons with other classes of
Lyapunov functions are also very promising.
Further investigations on the potentialities of HPLFs

are currently under development. The use of this class
of Lyapunov functions for systems with time-invariant
structured uncertainties, and the possibility of employing
parameter-dependent HPLFs to improve performances in
robustness analysis will be the subject of future research.
Another interesting topic concerns the role of HPLFs in
robust control design procedures.

Appendix A. Proof of Lemma 1

The Mrst part is a well-known property of homogeneous
forms (Hardy, Littlewood, & PXolya, 1988). In order to prove
the second part, let us deMne the normalized minimum of
g2m(x) as

)g = min
x∈Rn

g2m(x)

s:t: ‖x‖= 1:

Obviously, )g ¿ 0 since g2m(x) is positive deMnite. Let us
introduce the homogeneous form h2m(x)=g2m(x)−)g‖x‖2m.
It turns out that h2m(x) is a nonnegative homogeneous form.
Indeed, its normalized minimum is equal to )h= )g− )g=0.
Hence, the Mrst part of this lemma guarantees that h2m(x)
can be expressed as sum of squares of polynomials if
(n; 2m)∈E, i.e.

h2m(x) =
∑
i

f2
m; i(x) =

∑
i

(t′i x
{m})2

= x{m}′
(∑

i

t′i ti

)
x{m} = x{m}′Hx{m};

where fm;i are homogeneous forms of degree m, ti ∈Rd

and H =
∑

i t
′
i ti¿ 0. Therefore, there exists a positive
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semideMnite SMR matrix for h2m(x). Let us deMne the fol-
lowing SMR matrix G of g2m(x): G = H + )gN where N
is the diagonal SMR matrix of ‖x‖2m (such N exists since
the homogeneous form ‖x‖2m contains only monomials with
even powers of the variables xi). Then, let us observe that
N¿ Id since the coe2cients of the monomials in ‖x‖2m are
greater or equal to 1. Therefore, G¿H + )gId ¿ 0, that is
G is positive deMnite.
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