
A semi-analytic galaxy formation code.
Analyzing Galacticus Outputs Using Perl.

© 2009, 2010 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Andrew Benson

Contents

1 About Galacticus 1
1.0.1 License . 1

2 Extracting and Analyzing Results 3
2.1 General Structure of Output File . 3

2.1.1 UUID . 3
2.1.2 Build Information . 3
2.1.3 Filters . 5
2.1.4 Parameters . 5
2.1.5 Version . 5
2.1.6 globalHistory . 6
2.1.7 Outputs . 6

nodeData group . 6
mergerTree datasets . 7
mergerTree subgroups . 7

2.1.8 Optional Outputs . 7
Redshifts . 7
Mass Accretion Histories . 7
Merger Tree Dump . 8
Conditional Mass Functions . 8
Pre-Evolution Merger Trees . 8

2.2 Perl Module for Data Extraction . 9
2.2.1 Derived Properties . 10

Available Derived Properties . 11
2.2.2 Galaxy Clustering via the Halo Model . 14

2.3 Topics in Analysis of Galacticus Outputs . 14
2.3.1 Building Volume Limited Samples . 14

Building Redshift Catalogs . 15
2.4 Postprocessing Scripts . 15
2.5 Reprocessing Through Dust Using Grasil . 15

2.5.1 Using the Galacticus::Grasil Module . 16
2.6 Meta-Data in Plots . 17
2.7 Perl Statistics Modules . 18

2.7.1 Statistics::Histograms . 18
2.8 On-The-Fly Analysis . 18

2.8.1 ALFALFA HI Mass Function . 20

3 Plotting Support 23
3.1 Plotting with Gnuplot . 23
3.2 Merger Tree Diagrams with dot . 25

iii

4 Tutorials 27
4.1 Running Galacticus on N-body Merger Trees . 27

4.1.1 Setting Input Parameters . 27
4.1.2 Further Details . 30

Node Positions . 31
Virial Orbits . 31
Merging Times and Targets . 31
Subhalo Indices . 32
Subhalo Masses . 32
Node Spins . 33
Node Scale Radii . 33
Miscellaneous N-body Properties . 34
Subhalo Promotion . 34
“Fly-by” Halos . 34

4.1.3 Using Particles to Track Unresolved Subhalos . 34
4.1.4 Handling of Extremely Large Merger Tree Forests 35
4.1.5 Analyzing the Output . 35

Positions and Velocities . 35
Subhalo Masses . 36

4.2 Generating Mock Catalogs with Lightcones from the Millennium Simulation 36
4.3 Using the Instantaneous Recycling Approximation . 37
4.4 Computing Dust Attenuated Luminosities for All Galaxies 38
4.5 Computing Dust Attenuation and Emission Using Galacticus+Grasil 38
4.6 Outputting Stellar Luminosities . 40

4.6.1 Postprocessing of Stellar Spectra . 41
4.6.2 Migrating Parameter Files to a New Version . 42
4.6.3 Computing Emission Lines . 42
4.6.4 Reionization Calculations . 43

Glossary 47

Acronyms 49

1 About Galacticus

Galacticus is a semi-analytic model of galaxy formation. This document describes a collection of
modules implemented in Perl designed for interacting with and analyzing the output of Galacticus
models.

1.0.1 License
Copyright 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, Andrew Benson <abenson@carnegiescience.edu>

Galacticus is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

Galacticus is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with Galacticus. If not,

see <http://www.gnu.org/licenses/>.

1

mailto:abenson@carnegiescience.edu
http://www.gnu.org/licenses/

2 Extracting and Analyzing Results

Galacticus stores its output in an HDF5 file. The contents of this file can be viewed and manipulated
using a variety of ways including:

HDFView This is a graphical viewer for exploring the contents of HDF5 files;

HDF5 Command Line Tools A set of tools which can be used to extract data from HDF5 files (h5dump
and h5ls are particularly useful);

C++ and Fortran 90 APIs Allow access to and manipulation of data in HDF5 files;

h5py A Python interface to HDF5 files.

In the remainder of this section the structure of Galacticus HDF5 files is described and a general-
purpose Perl module which we use to extract data in a convenient manner is outlined.

2.1 General Structure of Output File
Figure 2.1 shows the structure of a typical Galacticus output file. The various groups and subgroups
are described below.

2.1.1 UUID
The UUID (Universally Unique Identifier) is a unique identifier assigned to each Galacticus model that
is run. It allows identification of a given model and can be referenced from, for example, an external
database. Using the Galacticus::HDF5 Perl module (see §2.2), the UUID can be loaded into the data
structure using:

&HDF5::Get_UUID($model);

The UUID is then available as $model->{’uuid’}.

2.1.2 Build Information
Galacticus automatically stores various information about how it was built in the Build group at-
tributes. Currently, included attributes consist of:

FGSL_library_version The version number of the FGSL library;

FoX_library_version The version number of the FoX library;

GSL_library_version The version number of the GSL library;

HDF5_library_version The version number of the HDF5 library;

make_CCOMPILER The C compiler command used;

make_CCOMPILER_VERSION The C compiler version information;

3

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/products/hdf5_tools/index.html#h5dist
http://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Dump
http://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Ls
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html#F90andCPPlus
http://code.google.com/p/h5py/
https://secure.wikimedia.org/wikipedia/en/wiki/Universally_unique_identifier

2 Extracting and Analyzing Results

outputFile.hdf5
|
+-> UUID Attribute {1}
|
+-> Build Group
| |
| +-> FGSL_library_version Attribute {1}
| +-> FoX_library_version Attribute {1}
| +-> GSL_library_version Attribute {1}
| +-> HDF5_library_version Attribute {1}
| +-> make_CCOMPILER Attribute {1}
| +-> make_CCOMPILER_VERSION Attribute {1}
| +-> make_CFLAGS Attribute {1}
| +-> make_CPPCOMPILER Attribute {1}
| +-> make_CPPCOMPILER_VERSION Attribute {1}
| +-> make_CPPFLAGS Attribute {1}
| +-> make_FCCOMPILER Attribute {1}
| +-> make_FCCOMPILER_VERSION Attribute {1}
| +-> make_FCFLAGS Attribute {1}
| +-> make_FCFLAGS_NOOPT Attribute {1}
| +-> make_MODULETYPE Attribute {1}
| +-> make_PREPROCESSOR Attribute {1}
| +-> sourceChangeSetDiff Dataset {1}
| +-> sourceChangeSetMerge Dataset {1}
|
+-> Outputs Group
| |
| +-> Output1 Group
| | |
| | +-> nodeData Group
| | | |
| | | +-> nodeProperty1 Dataset {<nodeCount>}
| | | +-> ... Dataset {<nodeCount>}
| | | +-> ... Dataset {<nodeCount>}
| | | +-> ... Dataset {<nodeCount>}
| | | +-> nodePropertyN Dataset {<nodeCount>}
| | |
| | +-> mergerTreeCount Dataset {<treeCount>}
| | |
| | +-> mergerTreeIndex Dataset {<treeCount>}
| | |
| | +-> mergerTreeStartIndex Dataset {<treeCount>}
| | |
| | +-> mergerTreeWeight Dataset {<treeCount>}
| | |
| | +-> mergerTree1 Group [optional]
| | | |
| | | +-> nodeProperty1 Reference
| | | +-> ... Reference
| | | +-> ... Reference
| | | +-> ... Reference
| | | +-> nodePropertyN Reference
| | |
| | x-> ... Group [optional]
| | x-> ... Group [optional]
| | x-> ... Group [optional]
| | x-> mergerTree<treeCount> Group [optional]
| | |
| | +-> outputExpansionFactor Attribute {1}
| | +-> outputTime Attribute {1}
| |
| x-> Output2 Group
|
+-> Filters Group
| |
| +-> name Dataset {<filterCount>}
| +-> wavelengthEffective Dataset {<filterCount>}
|
+-> Parameters Group
| |
| +-> inputParameter1 Attribute {}
| +-> ... Attribute {}
| +-> ... Attribute {}
| +-> ... Attribute {}
| +-> inputParameterN Attribute {}
| +-> inputParameter1 Group
| |
| +-> subInputParameter1 Attribute {}
| +-> ... Attribute {}
| +-> subInputParameterN Attribute {}
| x-> ... Attribute {}
| x-> ... Attribute {}
| x-> ... Attribute {}
| x-> inputParameterN Group
|
+-> Version Group
| |
| +-> runTime Attribute {1}
| +-> versionMajor Attribute {1}
| +-> versionMinor Attribute {1}
| +-> versionRevision Attribute {1}
| +-> hgRevision Attribute {1}
| +-> hgHash Attribute {1}
| +-> runByName Attribute {1}
| +-> runByEmail Attribute {1}
|
+-> globalHistory Group

|
+-> historyExpansion Dataset {<historyCount>}
+-> historyStarFormationRate Dataset {<historyCount>}
+-> historyTime Dataset {<historyCount>}

Figure 2.1: Structure of a Galacticus HDF5 output file. <treeCount> is the total number of merger
trees present in a given output, and <nodeCount is the total number of nodes (in all trees)
present in an output.

4

2.1 General Structure of Output File

make_CFLAGS The flags passed to the C compiler;

make_CPPCOMPILER The C++ compiler command used;

make_CPPCOMPILER_VERSION The C++ compiler version information;

make_CPPFLAGS The flags passed to the C++ compiler;

make_FCCOMPILER The Fortran compiler command used;

make_FCCOMPILER_VERSION The Fortran compiler version information;

make_FCFLAGS The flags passed to the Fortran compiler;

make_FCFLAGS_NOOPT The flags passed to the Fortran compiler for unoptimized compiles;

make_MODULETYPE The Fortran module type identifier string;

make_PREPROCESSOR The preprocessor command used.

Additionally, two datasets are included which store details of the Galacticus source changeset.
sourceChangeSetMerge contains the output of “hg bundle -t none”, that is, it contains a Mercurial
changegroup that incorporates any changes made to the current branch relative to the main Galacti-
cus branch. sourceChangeSetDiff contains the output of “hg diff”, that is, all differences between the
source code in the working directory and that which has been committed to Mercurial. Used together,
these two datasets allow the precise source code used to run the model to be recovered from the main
branch Galacticus source.

2.1.3 Filters
For each broadband filter used in the Galacticus model run an entry is added to the datasets in this
group. Currently, two datasets are generated:

name The name of each filter used.

wavelengthEffective The effective wavelength, λeff (defined as λeff =
∫∞

0
λR(λ)dλ

/ ∫∞
0
R(λ)dλ, where

R(λ) is the filter response) of the filter in Å.

2.1.4 Parameters
The Parameters group contains a record of all parameter values (either input or default) that were used
for this Galacticus run. The group contains a long list of attributes, each attribute named for the
corresponding parameter and with a single entry giving the value of that parameter. If a parameter has
subparameters, a group is created having the same name as the parameter, which will contain attributes
corresponding to each subparameter. The scripts/aux/Extract_Parameter_File.pl script can be used
to extract these parameter values to an XML file suitable for re-input into Galacticus.

2.1.5 Version
The Version group contains a record of the Galacticus version used for this model, storing the major
and minor version numbers, the revision number and the Mercurial revision and hash (if the code is be-
ing maintained using Mercurial, otherwise a value of −1 is entered or the revision and the hash attribute
is empty). Additionally, the time at which the model was run is stored and, if the galacticusConfig.xml
file (see §3.1) is present and contains contact details, the name and e-mail address of the person who ran
the model.

5

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.3.1

2 Extracting and Analyzing Results

2.1.6 globalHistory
The globalHistory group stores volume averaged properties of the model universe as a function of time.
Currently, the properties stored are:

historyTime Cosmic time (in Gyr);

historyExpansion Expansion factor;

historyStarFormationRate Volume averaged star formation rate (in M�/Gyr/Mpc3).

historyDiskStarFormationRate Volume averaged star formation rate in disks (in M�/Gyr/Mpc3).

historySpheroidStarFormationRate Volume averaged star formation rate in spheroids (inM�/Gyr/Mpc3).

historyStellarDensity Volume averaged stellar mass density (in M�/Mpc3).

historyDiskStellarDensity Volume averaged stellar mass density in disks (in M�/Mpc3).

historySpheroidStellarDensity Volume averaged stellar mass density in spheroids (in M�/Mpc3).

historyGasDensity Volume averaged cooled gas density (in M�/Mpc3).

historyNodeDensity Volume averaged resolved node density (in M�/Mpc3).

Dimensionful datasets have a unitsInSI attribute which gives their units in the SI system.

2.1.7 Outputs
The Outputs group contains one or more sub-groups corresponding to the output times requested from
Galacticus. Each sub-group contains the following information:

outputTime (attribute) The cosmic time (in Gyr) at this output;

outputExpansionFactor (attribute) The expansion factor at this output;

nodeData A group of node properties as described below.

mergerTree subgroups (optional) A set of mergerTree groups as described below.

Output is controlled by parameters given within the mergerTreeOutput section of the parameter file.
Current options are:

outputMergerTrees If true then each merger tree is output to the relevant sub-group at each output
time (see §2.1.7). Otherwise merger trees are not output. [Default: true.]

outputReferences If true then an HDF5 reference dataset is written for each merger tree subgroup (see
§2.1.7). [Default: false.]

galacticFilterMethod A “galactic filter” (see §17.4.1) which is applied to each node in the tree to
determine whether or not it should be output. By combinding multiple filters it is possible to
construct arbitrarily complex criteria for output. [Default: always.]

nodeData group

The nodeData group contains all data from nodes in all merger trees. The group consists of a collection
of datasets each of which lists a property of all nodes in the trees which exist at the output time. Where
relevant, each dataset contains an attribute, unitsInSI, which gives the units of the dataset in the SI
system.

6

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.1433

2.1 General Structure of Output File

mergerTree datasets

To allow locating of nodes belonging to a given merger tree in the datasets in the nodeData group, the
mergerTreeStartIndex and mergerTreeCount datasets list the starting index of each tree’s nodes in
the nodeData datasets, and the number of nodes belonging to each tree respectively. Additionally, the
mergerTreeWeight dataset lists the volumeWeight property for each tree (see §2.1.7) which gives the
weight (in Mpc−3) which should be assigned to this tree (and all nodes in it) to create a volume-averaged
sample (see §2.3.1). Finally, the mergerTreeIndex dataset gives the index of each tree stored in the
nodeData datasets.

mergerTree subgroups

These subgroups will be present if the [mergerTreeOutputReferences] parameter is set to true. Each
mergerTree subgroup contains HDF5 references to all data on a single merger tree. The group consists
of a collection of scalar references each of which points to the appropriate region of the corresponding
dataset in the nodeData group. Additionally, the volumeWeight attribute of this group gives the weight
(in Mpc−3) which should be assigned to this tree (and all nodes in it) to create a volume-averaged sample.
(A second attribute, volumeWeightUnitsInSI, gives the units of volumeWeight in the SI system.)

2.1.8 Optional Outputs
Numerous other quantities can be optionally output. These are documented below:

Redshifts

The redshift corresponding to the time at which a node was last isolated can be output by setting
[outputNodeRedshifts] to true. This quantity will be output as basicRedshiftLastIsolated.

Mass Accretion Histories

A mass accretion history (i.e. mass as a function of time) for the main branch in each merger tree can be
output by setting massAccretionHistoryOutput=true. If requested, a new group massAccretionHistories
will be made in the Galacticus output file. It will contain groups called mergerTreeN where N is the
merger tree index. Each such group will contain the following three datasets, defined for the main branch
of the tree1:

nodeIndex The index of the node in the tree;

nodeTime The time at this point in the tree (in Gyr);

nodeMass The mass of the node at this point in the tree (in M�). The nodeMass property is defined to
be the total mass of each node in a merger tree. Therefore, it includes both dark and baryonic mass.
Additionally, the mass of a node includes the mass of any satellite nodes that it may contain. The
mean density of the node depends on the method selected by the virialDensityContrastMethod
parameter.

1“Main branch” is defined by starting from the root node of a tree and repeatedly stepping back to the most massive
progenitor of the branch. This does not necessarily pick out the most massive progenitor at a given time.

7

2 Extracting and Analyzing Results

Merger Tree Dump

A full dump of merger tree structure by setting mergerTreeStructureDump=true. In this case, files will
be dumped to the directory specified by [mergerTreeStructureDumpDirectory] for each merger tree
with final mass between [mergerTreeStructureDumpMassMinimum] and [mergerTreeStructureDumpMassMaximum].
Each tree is dumped to a file named “mergerTreeDump:<treeIndex>:1.gv” in the specified directory in
GraphViz format.

Conditional Mass Functions

Setting [mergerTreeComputeConditionalMassFunction]=true will cause conditional mass functions to
be computed and output to the Galacticus output file in a group named “conditionalMassFunction”.
The mass functions are binned in parent halo mass, and the mass ratio of the progenitor to parent halo.
Bins are logarithmically spaced in mass (and mass ratio), with the range and number of bins controlled
by the parameters:

• [mergerTreeComputeConditionalMassFunctionParentMassCount];

• [mergerTreeComputeConditionalMassFunctionParentMassMinimum];

• [mergerTreeComputeConditionalMassFunctionParentMassMaximum];

• [mergerTreeComputeConditionalMassFunctionMassRatioCount];

• [mergerTreeComputeConditionalMassFunctionMassRatioMinimum];

• [mergerTreeComputeConditionalMassFunctionMassRatioMaximum].

The resulting parent masses and mass ratios are written to datasets massParent and massRatio respec-
tively. Parent and progenitor halos are defined at a set of redshifts defined by the arrays [mergerTreeComputeConditionalMassFunctionParentRedshifts],
and [mergerTreeComputeConditionalMassFunctionProgenitorRedshifts], which are written to datasets
redshiftParent and redshiftProgenitor. The resulting conditional masses functions are written to
datasets conditionalMassFunction and conditionalMassFunctionError.
In addition to standard progenitor mass functions, the progenitor mass function conditioned on pro-

genitor rank (i.e. 1st most massive, 2nd, . . . , nth most massive progenitor) is computed and output to the
datasets primaryProgenitorMassFunction and primaryProgenitorMassFunctionError. The depth
(i.e. n) is specifed by [mergerTreeComputeConditionalMassFunctionPrimaryProgenitorDepth].
Finally, the progenitor mass functoin conditioned on recent formation is computed and output to

the datasets formationRateFunction and formationRateFunctionError. To be considered “recently
formed” a progenitor must have formed between t and t(1 − ∆) where t is the progenitor time and
∆ =[mergerTreeConditionalMassFunctionFormationRateTimeFraction].

Pre-Evolution Merger Trees

Galacticus can output the full structure of merger trees prior to any evolution. Merger tree struc-
ture can be requested by setting mergerTreeStructureOutput=true. Structures are written to a new
group, mergerTreeStructures, in the Galacticus output file. This group will contain groups called
mergerTreeN where N is the merger tree index. Each such group will contain the following datasets:

nodeIndex The index of the node in the tree;

childIndex The index of this node’s first child node;

parentIndex The index of this node’s parent node;

8

2.2 Perl Module for Data Extraction

siblingIndex The index of this node’s sibling node;

nodeTime The time at this point in the tree (in Gyr);

nodeMass The mass of the node at this point in the tree (in M�). The nodeMass property is defined to
be the total mass of each node in a merger tree. Therefore, it includes both dark and baryonic mass.
Additionally, the mass of a node includes the mass of any satellite nodes that it may contain. The
mean density of the node depends on the method selected by the virialDensityContrastMethod
parameter.

Additional, optional, datasets can be added by setting appropriate input parameters. Currently these
include:

Virial quantities If mergerTreeStructureOutputVirialQuantities=true then two additional datasets are included:

nodeVirialRadius The virial radius of the node (in Mpc);

nodeVirialVelocity The virial velocity of the node (in km/s);

Dark matter scale radii If mergerTreeStructureOutputDarkMatterScaleRadius=true then an additional dataset is in-
cluded:

darkMatterScaleRadius The scale radius of this node’s dark matter halo profile (in Mpc);

Merger tree final descendent If outputFinalDescendentIndices=true then an additional dataset is included:

finalDescendentIndex The index of the final descendent that this node will reach in its merger
trees;

2.2 Perl Module for Data Extraction
A Perl module is provided that allows for easy extraction of datasets from the Galacticus output file
together with a straightforward way to implement derived properties. To use this Perl module, add

use lib "./perl";
use PDL;
use Galacticus::HDF5;

at the start of your Perl script. The Galacticus::HDF5 module will import data from a Galacticus
HDF5 file into PDL variables. All data are stored in a single structure, which also specifies the file,
output and range of trees to read. An example of reading a dataset from a file is:

my $model;
$model->{’file’ } = "galacticus.hdf5";
$model->{’output’ } = 1;
$model->{’tree’ } = "all";
$model->{’dataRange’} = [1,2];
$model->{’store’ } = 0;
&HDF5::Get_Dataset($model,[’nodeMass’]);
$dataSets = $model->{’dataSets’};
print $dataSets->{’nodeMass’}."\n";

The $model object is initialized with information to specify which file, output and trees should be used.
Its settable components are:

file The name of the Galacticus output file to be read.

9

2 Extracting and Analyzing Results

output Specify the output number in the file which should be read.

tree Specify the tree which should be read, or use “all” to specify that all trees be read.

dataRange Gives the first and last entry in the dataset to read—this facilitates reading of partial datasets
(and therefore reading datasets in a piecemeal fashion). If this component is missing, the entire
dataset is read.

store If set to 1, any derived properties will be stored back in the Galacticus output file for later
retrieval. If set to 0 (or if this option is not present), derived properties will not be stored. Currently,
storing of derived properties in the Galacticus file is only possible if the tree option is set to
“all” and no dataRange is specified.

The &HDF5::Get_Dataset($model,[’nodeMass’]); call requests that the nodeMass dataset be read. It
is return as a PDL variable in the nodeMass element of the dataSets element which is itself a member
of $model. The final lines in the example simply write out the resulting array of nodeMass values.

2.2.1 Derived Properties
Derived properties can be created by giving defining functions along with a regular expression string
that allows them to be matched. For example, the Galacticus::Baryons module implements a hot gas
fraction property called hotHaloFraction or hotHaloFrac. It has the following form:

package Baryons;
use PDL;
use Galacticus::HDF5;
use Data::Dumper;

%HDF5::galacticusFunctions = (%HDF5::galacticusFunctions,
"hotHalo(Fraction|Frac)" => \&Baryons::Get_hotHaloFraction
);

my $status = 1;
$status;

sub Get_hotHaloFraction {
$model = shift;
$dataSetName = $_[0];
&HDF5::Get_Dataset($model,[’hotHaloMass’,’nodeMass’]);
$dataSets = $model->{’dataSets’};
$dataSets->{$dataSetName} = $dataSets->{’hotHaloMass’}/$dataSets->{’nodeMass’};

}

The module begins by adding an entry to the %HDF5::galacticusFunctions hash. The key gives a
regular expression which matches to the name of the property to be defined. The value of the key gives
a reference to a subroutine to be called to evaluate this expression. The subroutine is defined below.
When called, it receives the $model structure along with the name of the requested property. The
subroutine should then simply evaluate the requested property and store it in the appropriate location
within $model. Note that the subroutine can request additional datasets be loaded (as happens above
where hotHaloMass and nodeMass are requested) if they are needed for its calculations.

10

2.2 Perl Module for Data Extraction

Available Derived Properties

mergerTreeIndex The index of the merger tree in which the galaxy is found. Provided by: Galacticus::HDF5.

redshift The redshift at which the galaxy exists. Provided by: Galacticus::Time.

time The cosmic time (in Gyr) at which the galaxy exists. Provided by: Galacticus::Time.

expansionFactor The expansion factor at which the galaxy exists. Provided by: Galacticus::Time.

stellarMass The sum of disk and spheroid stellar masses. Provided by: Galacticus::StellarMass.

massColdGas The sum of disk and spheroid cold gas masses. Provided by: Galacticus::GasMass.

starFormationRate The sum of disk and spheroid star formation rates. Provided by: Galacticus::StellarMass.

hostNodeMass For isolated nodes, the node mass. For non-isolated nodes, the mass of the isolated node
in which the node resides. Provided by: Galacticus::HostNode.

stellarMass The sum of disk and speheroid stellar masses (or, whichever of these exist in the model).
Provided by: Galacticus::StellarMass.

hotHalo(Fraction|Frac) The fraction the node’s mass in the hot gas halo. Provided by: Galacticus::Baryons.

inclination A randomly selected inclination for the disk (in degrees). Provided by: Galacticus::Inclination.

^(disk|bulge)StellarLuminosity:.*:dustAtlas(\[faceOn\])$ Dust-extingiushed luminosities for disk
and bulge found by interpolating in the dust tables of Ferrara et al. [1999]. If the [faceOn]
qualifier is present, extinctions are computed assuming that the disk is observed face-on, other-
wise a random inclination is used. Optionally, the dust atlas file to used can be specified via
$dataSet->{’dustAtlasFile’}. The available dust atlases span a limited range of spheroid sizes
and central optical depths in their tabulations. Standard behavior is to extrapolate beyond the
ends of these ranges. This can be controlled via $dataSet->{’dustAtlasExtrapolateInSize’}
and $dataSet->{’dustAtlasExtrapolateInTau’} respectively, which can be set to yes/no (or,
equivalently, 1/0). Note: Dust attenuated luminosities for all galaxies, all filters, and all output
redshifts can be computed and stored back to the hierarchical data format (HDF5) file using a
simple script as described in §4.4. Provided by: Galacticus::DustAttenuation.

^(disk|bulge)LuminositiesStellar:.*:dustCharlotFall2000$ Dust-extingiushed luminosities for disk
and bulge found using the model of Charlot and Fall [2000]. Provided by: Galacticus::DustCharlotFall2000.

^totalStellarLuminosity:.*:dustAtlas(\[faceOn\])$ (Optionally dust-extingiushed) luminosities
for disk plus bulge found by adding together the corresponding disk and bulge luminosities. Pro-
vided by: Galacticus::Luminosities.

^bulgeToTotalLuminosity:.*:dustAtlas(\[faceOn\])$ Ratio of bulge to total (optionally dust-extingiushed)
luminosities. Provided by: Galacticus::Luminosities.

^magnitude([^:]+):([^:]+):([^:]+):z([\d\.]+)(:dust[^:]+)?(:vega|:AB)? Absolute magnitude
corresponding to a stellar luminosity, in either Vega or AB systems. Provided by: Galacticus::Magnitudes.

^magnitude:(.*)(:vega|:AB)? Absolute magnitude corresponding to the generic luminosity property
^luminosity:$1, in either Vega or AB systems. Provided by: Galacticus::Magnitudes.

^apparentMagnitude:(.*) Apparent magnitude corresponding to the absolute magnitude ^magnitude:$1.
Provided by: Galacticus::Magnitudes.

11

2 Extracting and Analyzing Results

comovingDistance The comoving distance (in Mpc) to the galaxy—provided by Galacticus::Survey
(see §2.3.1 for a full description).

luminosityDistance The luminosity distance (in Mpc) to the galaxy—provided by Galacticus::Survey
(see §2.3.1 for a full description).

distanceModulus The distance modulus (including the +2.5 log10(1 + z) term to account for squeez-
ing of photon frequencies) to the galaxy—provided by Galacticus::Survey (see §2.3.1 for a full
description).

redshift The redshift at which the galaxy is observed—provided by Galacticus::Survey (see §2.3.1
for a full description).

angularWeight The weight (in units of) which should be assigned to this galaxy in order to build a
redshift survey—provided by Galacticus::Survey (see §2.3.1 for a full description).

angularDiameterDistance The angular diameterer distance (in Mpc) to the galaxy—provided by Galacticus::Survey
(see §2.3.1 for a full description).

^angularPosition[12] The angular position (in radians measured along two orthogonal axes from the
center of the field) of the galaxy—provided by Galacticus::Survey (see §2.3.1 for a full descrip-
tion).

^grasilFlux[\d\.]+microns The flux at the given wavelength (specific in microns) of the galaxy as
computed by the Grasil code (see §2.5 for a full description).

^grasilInfraredLuminosity The total infrared (8–1000µm) luminosity of the galaxy as computed by
the Grasil code (see §2.5 for a full description).

^grasilFlux:([^:]+) The flux (in Janskys) of the galaxy as computed by the Grasil code integrated
under the specified filter (see §2.5 for a full description).

^luminosity:grasil:([^:]+):([^:]+) The luminosity (in units of the zero point of the AB magnitude
system) of the galaxy as computed by the Grasil code integrated under the specified filter and in
the specified frame (see §2.5 for a full description).

flux850micronHayward The flux of the galaxy at 850µm computed using the fitting formula of Hayward
et al. [2010], specifically:

S850µm

Jy
= A

(
Ṁ?

100M�Gyr−1

)α(
RdustMmetals,gas

108M�

)β
, (2.1)

where Rdust is the dust-to-metals ratio, Ṁ? is the total star formation rate in the galaxy and
Mmetals,gas is the total mass of metals in the gas phase of the galaxy. Note that the fit given
by Hayward et al. [2010] was computed for galaxcy at z ≈ 2. The parameters of the fit can be
specified by setting elements of $model->{’haywardSubMmFit’}: {’dustToMetalsRatio’}≡ Rdust,
{’fitNormalization’}≡ A, {’starFormationRateExponent’}≡ α, and {’dustMassExponent’}≡
β. If these elements are not present the default values of A = 0.65×10−3, Rdust = 0.61, α = 0.42 and
β = 0.58 Hayward et al. [2010] will be used instead. Provided by: Galacticus::SubMmFluxesHayward.

^(disk|spheroid|total)LymanContinuumLuminosity:z[\d\.]+$ The luminosity (in units of 1050photons/s)
of the Lyman continuum radiation of the disk or spheroid component, or total of the two at the spec-
ified redshift. The rest-frame Lyc filter must have been computed in Galacticus to allow this lumi-
nosity to be computed. If the Lyc filter was computed with a non-default postprocessing chain then

12

2.2 Perl Module for Data Extraction

the name of the chain should be specified in $dataBlock->{’lymanContinuum’}->{’postProcessingChain’}
Provided by: Galacticus::Lyc.

^agnLuminosity:[^:]+:[^:]+:z[\d\.]+(:alpha[0-9\-\+\.]+)??$ The luminosity of the AGN in the
specified filter, frame and redshift (specified as the first, second and third elements of the “:”
separated label) in units of the zero-point luminosity of the AB-magnitude system. (Note that,
consistent with Galacticus’s definitions for continuum luminosities, observed frame luminosities
do not include the 1+z factor arising from the compression of photon frequencies due to redshifting.
As such, when observed frame line luminosities are converted to observed fluxes an additional mul-
tiplicative factor of 1 +z must be included.) The bolometric luminosity is computed from the black
hole rest mass accretion rate and radiative efficiency. An SED for an AGN of this bolometric lumi-
nosity is then computed using the model of Hopkins et al. [2007]. If the final alpha[0-9\-\+\.]+
option is provided, then the luminosity computed will be a broad band luminosity (in units of Watts)
converted from the photon count rate in the filter assuming a spectrum of the form fν ∝ να, as
is typically assumed in converting observed AGN X-ray count rates to luminosities. Provided by:
Galacticus::AGNLuminosities.

^columnDensity(disk|Spheroid)??$ The column density of hydrogen (in units of cm−2) along the line
of sight to the center of the galaxy. If a component is specified the calculation is performed for that
component, otherwise the sum of disk and spheroid column densities is computed. Provided by:
Galacticus::ColumnDensity. For the exponential disk, the column density is given by:

NH =
XH

mH

MISM

4πhr3
d

∫ ∞
0

exp(−r/rd)sech2(z/hrd)dl, (2.2)

where rd is the disk scale length, h is the ratio of vertical scale height to radial scale length, XH

is the mass fraction in hydrogen, mH is the mass of the hydrogen atom and l is distance along the
line of sight. Writing z = r/ tan i for a disk at inclination i, and l =

√
r2 + z2 = r

√
1 + 1/ tan2 i

this becomes:

NH =
XH

mH

MISM

4πhr2
d

√
1 + 1/ tan2 i

∫ ∞
0

exp(−x)sech2(x/h tan i)dx. (2.3)

The integral can be evaluated to give:

NH =
XH

mH

MISM

8πhr2
d

√
1 + 1/ tan2 iH

{
H

[
ψ

(
−H

4

)
− ψ

(
1

2
− H

4

)]
− 2

}
, (2.4)

where H = h tan i and ψ(x) is the digamma function.

^peakSFR$ The peak star formation rate for each galaxy, measured from the starFormationHistories
output group (see §17.4.3). The peak star formation rate reported is therefore that when aver-
aged over the bins used by the star formation history output method (see §17.4.3). Provided by:
Galacticus::SFH.

^lensingAmplification$ The gravitational lensing amplification due to large scale structure for each
galaxy. The amplification is drawn at random from the redshift-dependent distribution of Takahashi
et al. [2011]. Provided by: Galacticus::LensingAmplification.

^(disk|spheroid|total)LineLuminosity:[^:]+(:[^:]+){0,2}:z[\d\.]+$ Returns the luminosity of
the named emission line, for the named component, at the given redshift in units of Solar luminosi-
ties. Optinally, a filter may be provided in which case the emission line luminosity under that filter is
returned in units of AB maggies. For example, totalLineLuminosity:balmerAlpha6563:rest:z0.0000
returns the luminosity of the Hα line at z = 0. See §4.6.3 for more details. Provided by:
Galacticus::EmissionLines.

13

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.1569
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.1569

2 Extracting and Analyzing Results

2.2.2 Galaxy Clustering via the Halo Model
Galaxy clustering calculations (currently real and redshift space power spectra and two-point correla-
tion functions) can be computed using the Galacticus::HaloModel Perl module. To use this module,
Galacticus must be run with [outputHaloModelData]=true (see §14.8) to output data on halo pro-
files and power spectra. To perform halo model calculations, simply use this module in a Perl script,
initialize the data hash, %dataHash, used for the Galacticus::HDF5 module, and construct a PDL,
$selectedGalaxies, which contains the indices (not the node indices, but the positions within the PDL
arrays read in from the Galacticus output file) of galaxies for which the clustering is to be computed.
A power spectrum can then be computed using:

($waveNumber,$linearPowerSpectrum,$galaxyPowerSpectrum)
= &HaloModel::Compute_Power_Spectrum($model,$selectedGalaxies,space => "redshift");

The PDLs returned contain a list of comoving wavenumbers, the linear power spectrum of matter at the
selected time and the (non-linear) power spectrum of the selected galaxies. If the space option is set to
redshift then a redshift space power spectrum is computed, otherwise a real space power spectrum is
computed.
A two-point correlation function can be computed from the returned power spectrum using:

($separations,$galaxyCorrelationFunction)
= &HaloModel::Compute_Correlation_Function($waveNumber,$galaxyPowerSpectrum

,$separationMinimum,$separationMaximum,$separationPointsPerDecade);

The first two PDLs are those returned by the power spectrum calculation. The final three give the
minimum and maximum separations at which to compute the correlation function and the number of
points per decade of separation at which to tabulate the correlation function. The returned PDLs give
the comoving separtion (in Mpc) and correlation function corresponding to the input power spectrum.

2.3 Topics in Analysis of Galacticus Outputs

2.3.1 Building Volume Limited Samples
The mergerTreeWeight property (see §2.1.7) property specifies the weight to be assigned to each merger
tree in a model to construct a representative (i.e. volume limited) sample of galaxies. Galacticus does
not typically generate every merger tree in a fixed volume of the Universe (as an N-body simulation might
for example) as it’s generally a waste of time to simulate millions of low mass halos and only a small
number of high mass halos. The mergerTreeWeight factors correct for this sampling. If merger trees
are being built, then the mergerTreeWeight, wi, for each tree of mass Mi (where the trees are ranked in
order of increasing mass) is given by

wi =

∫ Mmax

Mmin

n(M)dM, (2.5)

where n(M) is the dark matter halo mass function and

Mmin =
√
Mi−1Mi, (2.6)

Mmin =
√
MiMi+1. (2.7)

Suppose, for example, that we wish to construct a luminosity function of galaxies. In particular, we
consider a luminosity bin k which extends from Lk −∆k/2 to Lk + ∆k/2. If tree i contains Ni galaxies

14

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.14.8

2.4 Postprocessing Scripts

with luminosities li,j , where j runs from 1 to Ni, then the luminosity function in this bin is given by:

φk =
∑
i

Ni∑
j=1

{
wi if Lk −∆k/2 < li,j ≤ Lk + ∆k/2
0 otherwise. (2.8)

Building Redshift Catalogs

The Galacticus::Survey module provides several derived properties which are useful for constructing
redshift surveys, i.e. samples of galaxies distributed in redshift in a way consistent with the chosen
cosmology. This module requires a Galacticus model with at least two outputs. The module will first
check if Galacticus was run with lightcone output (see §14.9). If it was, the coordinates and redshifts
of each galaxy in the lightcone will be used to determine comoving distance, redshift and angular weight.
If Galacticus was run without lightcone output then, for each output, it will use the galaxies at that

output to populate the range of redshifts lying between the arithmetic mean of the redshift of the output
and the redshifts of the preceeding and succeeding outputs (for the latest output the range is extended
to z = 0, while for the earliest output the range is truncated at the redshift of the output itself).
Within this redshift range, galaxies are assigned a comoving distance (property comovingDistance)

by selecting at random from the available comoving volume. From this comoving distance a redshift
and luminosity distance (properties redshift and luminosityDistance respectively) are determined.
Note that galaxies within an individual host halo are not kept spatially co-located—they can each be
assigned different comoving distances within the available range. In addition to these properties, the
Galacticus::Survey module provides a angularWeight property. This gives the mean number of each
galaxy that would be found in a solid angle of one steradian.

2.4 Postprocessing Scripts

2.5 Reprocessing Through Dust Using Grasil

Galacticus computes the star formation histories and, optionally, the luminosities of stellar populations
in galaxies. The effects of dust on galaxy spectra is handled by post-processing of Galacticus output.
A simple treatment of dust-extinction of starlight is described in §2.2.1. For a more detailed treatment
of dust extinction, and the re-emission of starlight by dust, Galacticus is able to interface with the
Grasil radiative transfer code described by Silva et al. [1998].
To process a Galacticus galaxy through Grasil use the following method:

1. Run Galacticus to generate galaxies. Grasil requires a detailed star formation history for each
galaxy it processes. Therefore, you should set [starFormationHistoriesMethod]=metallicity
split in your input parameter file. Other parameters controlling the details of the star formation
history recording are discussed in §17.4.3. Note that you should ensure that the history is recorded
with sufficient precision to permit an accurate calculation by Grasil. Additionally, you may want
to consider using the same stellar population data in Galacticus as is used by Grasil—suitable
files in Galacticus format can be downloaded from the Galacticus web site.

2. Select a galaxy from the output to process through Grasil. You will need to know the output
number, tree index and node index of the galaxy;

3. Run the Extract_Star_Formation_History_for_Grasil.pl script to extract the star formation
history for this galaxy in a format suitable for input into Grasil:

15

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.14.9
http://adlibitum.oat.ts.astro.it/silva/grasil/grasil.html
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.1569
https://sites.google.com/site/galacticusmodel/home/auxiliary-data

2 Extracting and Analyzing Results

scripts/aux/Extract_Star_Formation_History_for_Grasil.pl <inputFile> <outputIndex> \
<treeIndex> <nodeIndex> <grasilFile> [<plotFile>]

where inputFile is the name of the Galacticus model file, outputIndex, treeIndex and nodeIndex
are the quantities described above that identify the galaxy of interest and grasilFile is the name
of the file to which the star formation history should be written. Grasil convention dictates that
this file should have the suffix .dat. The optional plotFile is the name of a file to which a plot of
the star formation history will be written.

4. Create a suitable input parameter file for Grasil, with the same name as your star formation file cre-
ated above, but with the suffix .par. An example of such a file is given in aux/Grasil/grasilExample.par
—refer to the Grasil documentation for details of the parameters and how to control Grasil.

5. Download the Grasil executable from here and supporting data files from here and unpack them2.

6. Run Grasil:

aux/Grasil/grasil <fileNameRoot>

where fileNameRoot is the name of the parameter file you created without the .par suffix. Grasil
will now process (this will probably take a few minutes) the galaxy and output a set of files describing
the spectral energy distribution of the galaxy (possibly as viewed from multiple angles depending
on your input parameter file). See the Grasil documentation for full details on the output data.

2.5.1 Using the Galacticus::Grasil Module
A more automated way to compute fluxes using Grasil is to use the Galacticus::Grasil Perl mod-
ule that is provided with Galacticus. This model provides additional derived properties in the usual way
(see §2.2.1 for details). Currently, observed fluxes are provided, via a derived property grasilFlux<XXX>microns,
which will give the observed flux of the galaxy at wavelength λ =<XXX>µm.
Additionally, the flux integrated under a filter can be found using the derived property grasilFlux:<filter>,

where <filter> is the filter name. Luminosities under a filter can be found using luminosity:grasil:<filter>:<frame>,
where frame is either rest or observed. Finally, grasilInfraredLuminosity will give the total infrared
(8–1000µm) luminosity of galaxies. Note that these properties require that the Galacticus::Survey
module be used to provide redshifts for galaxies (see §2.3.1).
The module will automatically run Grasil using the parameters given in data/grasilBaseParameters.txt,

subject the modifications specified in the grasilOptions element of $model. Allowed options are:

$dataSet->{’grasilOptions’}->{’dustToMetalsRatio} Sets the dust to metals ratio used in Grasil;

$dataSet->{’grasilOptions’}->{’includePAHs’} Set to 0/1 to switch off/on calculations of PAH
features in Grasil;

$dataSet->{’grasilOptions’}->{’fluctuatingTemperatures’} Set to 0/1 to switch off/on calcula-
tions of fluctuating dust grain temperatures in Grasil;

$dataSet->{’grasilOptions’}->{’wavelengthCount’} Specifies the number of wavelengths to use in
calculating radiative transfer (i.e. the “nlf” parameter in Grasil);

$dataSet->{’grasilOptions’}->{’radialGridCount’} Specifies the number of radial grid cells to use
in calculating radiative transfer (i.e. the “ndr” parameter in Grasil).

2You can put these files where ever you want. Usually, we place them into aux/Grasil/.

16

http://adlibitum.oat.ts.astro.it/silva/grasil/grasil.doc
http://users.obs.carnegiescience.edu/abenson/galacticus/tools/grasil
http://adlibitum.oat.ts.astro.it/silva/grasil/download.htm
http://adlibitum.oat.ts.astro.it/silva/grasil/grasil.doc

2.6 Meta-Data in Plots

$dataSet->{’grasilOptions’}->{’recomputeSEDs} If set to 1, SEDs will be computed for all galaxies
even if they have been previously computed. (This can be useful to recompute SEDs with different
options passed to Grasil for example.) Set to 0 to re-use previously computed SEDs.

$dataSet->{’grasilOptions’}->{’maxThreads} Specifies the number of parallel threads to launch,
each of which will run an instance of Grasil. If not specified this number will default to the
number of available cores.

$dataSet->{’grasilOptions’}->{’cpuLimit} Specifies the maximum time (in seconds) for which a
Grasil calculation should be allowed to run before being terminated. Defaults to 3600s.

If necessary, the Grasil code and data files will be downloaded automatically. Where possible, multiple
instances of Grasil are run in parallel to speed up the calculation.
The computed spectral energy distribution (SED) is stored in the HDF5 output file in dataset grasilSEDs/Output<outputIndex>/mergerTree<treeIndex>/node<nodeIndex>/SED,

where outputIndeex, treeIndex and nodeIndex are respectively the indices of the output, merger tree
and node to which the galaxy belongs. The wavelengths and inclinations at which the SED is tabulated
are similarly stored in the same group in datasets wavelength and inclination. If the SED has been
previously computed for a given galaxy, it will be read from file instead of recomputing using Grasil.
The flux is found by interpolating to the relevant rest-frame wavelength and osberved inclination.
The Galacticus::Grasil module supports the selection element of $model. If this element is set to

contain a PDL giving the selection of galaxies to process then only those galaxies will have their Grasil
fluxes computed, rather than all galaxies in the output. Note that if the resulting dataset is stored back
to the HDF5 file then any non-selected galaxies will be assigned zero flux, and these zero fluxes will be
reported on future attempts to access the flux3.

2.6 Meta-Data in Plots
Galacticus writes extensive metadata to the XMP section of plots resulting from analysis of Galacti-
cus outputs. Metadata written includes all Galacticus parameter values, Galacticus version and
build information, the source code changeset and the model UUID. The intention is to include sufficient
metadata that the original model and analysis can be repeated in complete detail. The scripts/aux/extractMetaData.pl
script can be used to extract this metadata from a plot file. For example:

scripts/aux/extractMetaData.pl myPlot.pdf myMetaData

will extract the metadata from file myPlot.pdf, writing a report to screen on Galacticus version and
build information. It will also output the following files:

myMetaDataParameters.xml A Galacticus input parameter file containing all parameters used to run
the Galacticus model from which myPlot.pdf was made;

myMetaDataScript.pl The script used to create myPlot.pdf;

myMetaData.bundle A bundled changeset for Mercurial containing the committed source changeset used
to build GalacticusṪhis can be applied to a Galacticus checkout using the hg unbundle com-
mand;

myMetaData.patch A bundled diff of the Galacticus source against the committed source. This can
be applied to a Galacticus checkout (after applying myMetaData.bundle) using the hg patch
command.

3The selection element of $model will be more generally supported in future versions of Galacticus and will more
elegantly handle storing of partial datasets to file to avoid this problem

17

http://en.wikipedia.org/wiki/Extensible_Metadata_Platform

2 Extracting and Analyzing Results

2.7 Perl Statistics Modules
Galacticus provides some Perl modules which compute useful statistics. These are described below.

2.7.1 Statistics::Histograms

The Statistics::Histograms module computes histograms from a weighted set of points. The module
provides a single function, which is used as follows:

(my $histogram, my $error) =
&Histogram
(
$binCenters,
$values,
$weights,
normalized => 1,
differential => 1,
gaussianSmooth => $sigma
);

Given a PDL, $binCenters, containing the positions of the bin centers, this function will construct a
histogram of the points in the $values PDL, using weights as given by the $weights PDL. The histogram
is returned as $histogram with Poisson errors in $errors. The function currently assumes that the bins
are uniformly spaced.
The following options are available:

normalized [Default: 0] If set to 1, then the histogram will be normalized to sum to unity;

differential [Default: 0] If set to 1, then the histogram will be divided through by the bin width, to
make it differential;

gaussianSmooth [Default: no smoothing] If present, this option must specify a PDL which gives, for
each point, the value of σ in a Gaussian smoothing to be applied to that point before it is added
to the histogram. As such, each point will contribute a fraction of its weight to each bin in the
histogram.

2.8 On-The-Fly Analysis
Galacticus can perform various analyses on-the-fly (i.e. as it is running), outputting the expecta-
tion for a particular observed dataset. Analyses are selected by adding the appropriate label to the
[mergerTreeAnalyses] parameter (multiple, space-separated labels can be added to this parameter).
Available on-the-fly analyses are described below.
On-the-fly analyses exist for several different stellar and gas mass functions. These analyses share

several common features which are described below. In general, the model masses are used to construct
a mass function by binning into a histogram using the same bins as the observational dataset as the
centers of the bins (with bin boundaries placed at the geometric means of consecutive bin centers), and
with each galaxy contributing a weight equal to the volume weight of its merger tree. Typically the bins
will be uniformly spaced in the logarithm of mass. Before accumulation to the histogram, galaxy masses
are adjusted to account for two effects:

18

2.8 On-The-Fly Analysis

1. Cosmological parameters: Typically the observational data will have been analyzed assuming some
specific set of cosmological parameters which will differ from that in the current model. Therefore,
the mass of the galaxy and the weight assigned to it are both adjusted to match what would
be inferred if they were assessed using the same cosmological parameters as were used for the
observational data. Typically, this will mean that masses are scaled in proportion to D2

L(z̄), where
DL(z) is the luminosity distance to redshift z and z̄ is the median redshift of observational sample,
while weights are scaled in proportional to D2

cH
−1(z), where Dc(z) is the comoving distance to

redshift z and H(z) is the Hubble parameter at redshift z. These scalings are typical for galaxies
where masses are determined from luminosities, but may vary in other cases.

2. Systematic errors: Each mass function allows for a systematic shift in model masses (to account
for systematic uncertainties in the observational analysis) using a simple model. Specifically, model
masses are mapped by this model as follows

log10M → log10M +
N∑
i=0

αi logi10(M/M0), (2.9)

where M0 is a mass scale defined for each analysis, N is fixed integer for each analysis, and the
coefficients αi are input parameters [<label>MassSystematic<i>], where <label> is the label of
the analysis and <i> is an integer in the range 0. . .N .

Individual analyses may defined additional transformations of the galaxy mass. These are detailed below.
When the weight of each galaxy is accumulated to the mass function histogram, the logarithm of the

galaxy mass is modeled as a Gaussian kernel with width specified by each analysis to account for random
errors in the observations and/or scatter in model masses. That is, the weight of each galaxy is spread over
every bin of the histogram using this Gaussian kernel. Additionally, if [analysisMassFunctionsApplyGravitationalLensing]=true
then the mass of each galaxy is convolved with the magnification distribution expected due to gravita-
tional lensing from large-scale structure (see §13.19).
The contribution to the mass function from each model output redshift is computed from the volume

associated with that output redshift, given the angular geometry and depth of the survey as determined
from the appropriate survey geometry (see §13.59) and assuming that each output redshift represents
a range of redshifts running between the geometric means of the times corresponding to each output
redshift.
In addition to the mass function, the covariance matrix, Cmodel, of the mass function is also com-

puted. The assumptions used when constructing the covariance matrix are controlled by the parameter
[analysisMassFunctionCovarianceModel]. If set to binomial, them to construct Cmodel we make use
of the fact that Galacticus works by sampling a set of tree “root masses” from the z = 0 dark matter
halo mass function. From each root, a tree is grown, within which the physics of galaxy formation is then
solved. Root masses are sampled uniformly from the halo mass function. That is, the cumulative halo
mass function, N(M), is constructed between the maximum and minimum halo masses to be simulated.
The number of root masses, Nr, to be used in a model evaluation is then determined. Root masses are
then chosen such that

N(Mi) = N(Mmin)
i− 1

Nr − 1
(2.10)

for i = 1 . . . Nr (noting that N(Mmax) = 0 by construction).
Consider first those galaxies which form in the main branch of each tree (i.e. those galaxies which are

destined to become the central galaxy of the z = 0 halo). Suppose that we simulate Nk halos of root
mass Mk at z = 0. In such halos the main branch galaxies will, at any time, have stellar masses drawn
from some distribution pk(M?|t). The number of such galaxies contributing to bin i of the mass function

19

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.13.19
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.13.59

2 Extracting and Analyzing Results

is therefore binomially distributed with success probability pik =
∫Mi,max

Mi,min
pk(M?|t)dM? and a sample size

of Nk. The contribution to the covariance matrix from these main branch galaxies is therefore:

Cij =

{
pik(1− pik)Nkw

2
k if i = j

−pikpjkNkw2
k otherwise, (2.11)

where wk is the weight to be assigned to each tree. To compute this covariance requires knowledge of the
probabilities, pik. We estimate these directly from the model. To do this, we bin trees into narrow bins
of root mass and assume that pik does not vary significantly across the mass range of each bin. Using all
realizations of trees that fall within a given bin, k, we can directly estimate pik. In computing pik, the
range of halo masses considered and the fineness of binning in halo mass are determined by the param-
eters [analysisMassFunctionsHaloMassMinimum], [analysisMassFunctionsHaloMassMaximum], and
[analysisMassFunctionsHaloMassBinsPerDecade].
If instead, [analysisMassFunctionCovarianceModel]=Poisson, the main branch galaxies are mod-

eled as being sampled from a Poisson distribution (and so off-diagonal terms in the covariance matrix
will be zero).
In addition to the main branch galaxies, each tree will contain a number of other galaxies (these will

be “satellite” galaxies at z = 0, but at higher redshifts may still be central galaxies in their own halos).
Tests have established that the number of satellites in halos is well described by a Poisson process. Note
that, as described above, each galaxy contributes a Gaussian distribution to the mass function due to
modelling of random errors in stellar mass determinations. For main branch galaxies this is simply
accounted for when accumulating the probabilities, pik. For satellite galaxies, off-diagonal contributions
to the covariance matrix arise as a result, Cij = wkfifj , where fi is the fraction of the galaxy contributing
to bin i of the mass function.
The parameter [analysisMassFunctionsCorrelationTruncateLevel] allows off-diagonal elements

in the model covariance matrix whose correlation is less than the specified value to be truncated to zero.
This helps avoid remove numerical noise from the covariance matrix.

2.8.1 ALFALFA HI Mass Function
This analysis, selected using label alfalfaHiMassFunctionZ0.00, computes the model expectation for
the HI gas mass function of Martin et al. [2010]. Calculation of the mass function follows the basic
methdology outlined above. Model galaxy masses and weights are mapped for differences in cosmological
parameters as described above, and the simple systematic mass error model is employed with parameter
N = 1 and M0 = 109M�.
The analysis assumes that only the total interstellar medium (ISM) mass of each galaxy is available,

along with the disk radius (assuming an exponential disk). To infer the HI mass the model of Obreschkow
et al. [2009] is used. Specifically, the molecular ratio, Rmol ≡MH2

/MHI, is given by:

Rmol = (A1R
cα1

mol +A2R
cα2

mol)
−1
, (2.12)

where the ratio at the disk center is given by

Rc
mol = [Kr−4

diskMgas(Mgas + 〈fσ〉M?)]
β . (2.13)

Here, Rmol is the mass ratio of H2 to HI,M? is the stellar mass of the disk, rdisk is the disk exponential scale
length, 〈fσ〉 is the average ratio of the vertical velocity dispersions of gas to stars, and K = G/(8πP?).
The HI mass is then determined from:

MHI = XHMgas/(1 +Rmol), (2.14)

whereXH = 0.778 is the primordial hydrogen fraction by mass. In the aboveK =[alfalfaHiMassFunctionZ0.00MolecularFractionK],
〈fσ〉 =[alfalfaHiMassFunctionZ0.00MolecularFractionfSigma], A1 =[alfalfaHiMassFunctionZ0.00MolecularFractionA1],

20

2.8 On-The-Fly Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

106 107 108 109 1010 1011

E
rr

or
in

lo
g 1

0
of

H
Ig

as
m

as
s;
σ

[]

HI gas mass; MHI[M�]

HI mass error model for ALFALFA 40% (α.40) sampleHI mass error model for ALFALFA 40% (α.40) sample

Haynes et al. (2011)
Fit

Figure 2.2: The observational random error in galaxy HI mass as a function of HI mass for the ALFALFA
survey. Points show the errors reported by Haynes et al. [2011], while the line shows a simple
functional form fit to these errors.

A2 =[alfalfaHiMassFunctionZ0.00MolecularFractionA2], α1 =[alfalfaHiMassFunctionZ0.00MolecularFractionAlpha1],
α2 =[alfalfaHiMassFunctionZ0.00MolecularFractionAlpha2], and β =[alfalfaHiMassFunctionZ0.00MolecularFractionBeta].
Default values for these parameters are taken from Obreschkow et al. [2009]. According to Obreschkow
(private communication), there remains significant scatter of σRmol

= 0.4 dex between the predicted Rmol

from this model and that observed. This is accounted for in when constructing the mass function (see
below).
To account for both observational errors and scatter in Rmol not captured by the above model, the

HI mass of each galaxy is modeled as a Gaussian in log10MHI when constructing the mass function.
Observational random errors on HI mass, including those arising from flux density uncertainties and
errors in the assumed distance to each source, are taken from Fig. 19 of Haynes et al. [2011]. The
magnitude of the error as a function of HI mass is fit using a functional form:

σobs = a+ exp

(
− log10(MHI/M�)− b

c

)
, (2.15)

where σobs is the error on log10(MHI/M�). We find a reasonable fit using values4 of a = 0.100 ± 0.010,
b = 5.885± 0.100, and c = 0.505± 0.020 as shown in Fig. 2.8.1. The total random error on the logarithm
of each galaxy mass is given by σ2 = σ2

Rmol
+ σ2

obs, and is used as the width of the Gaussian kernal when
applying each galaxy to the mass function histogram (as described above).
Additionally, HI mass estimates can be affected by HI self-absorption for highly inclined galaxies.

[Zwaan et al., 1997, see also Zwaan et al. 2005] estimate that this effect would lead to a mean underesti-
mation of HI masses by a factor 1.1 for a randomly oriented galaxy sample. Therefore, a value of −0.0414
for the systematic parameter [alfalfaHiMassFunctionZ0.00MassSystematic0] is recommended.

4This should not be regarded as a formal good fit. Error estimates are approximate—we have simply found a functional
form that roughly describes them, along with conservative errors on the parameters of this function which are included
in the priors.

21

3 Plotting Support

3.1 Plotting with Gnuplot

While Galacticus data can, of course, be plotted using whatever method you choose, two Perl modules
are provided that we find useful for plotting Galacticus data. These are intended for use with GnuPlot
and with datasets stored as PDL variables. The first module, GnuPlot::PrettyPlots plots lines and points
with two color style (typically a lighter interior color and a darker border) with support for errorbars and
limits (show as arrows) on points. The second, GnuPlot::LaTeX provides a convenient way to process
output from GnuPlot’s epslatex terminal into PDF files (suitable for inclusion in documents), PNG
images with transparent backgrounds or OpenOffice ODG files (suitable for inclusion into presentations1).
A typical use of these packages would look as follows:

use lib "./perl";
use PDL;
use GnuPlot::LaTeX;
use GnuPlot::PrettyPlots;

$outputFile = "myImage";
open($gnuPlot,"|gnuplot");
print $gnuPlot "set terminal epslatex color colortext lw 2 solid 7\n";
print $gnuPlot "set output ’".$outputFile.".eps’\n";
print $gnuPlot "set xlabel ’\$x-axis label\$’\n";
print $gnuPlot "set ylabel ’\$y-axis label\$’\n";
print $gnuPlot "set lmargin screen 0.15\n";
print $gnuPlot "set rmargin screen 0.95\n";
print $gnuPlot "set bmargin screen 0.15\n";
print $gnuPlot "set tmargin screen 0.95\n";
print $gnuPlot "set key spacing 1.2\n";
print $gnuPlot "set key at screen 0.4,0.8\n";
print $gnuPlot "set key left bottom\n";
print $gnuPlot "set xrange [0.0:6.0]\n";
print $gnuPlot "set yrange [0.0:1.0]\n";
print $gnuPlot "set pointsize 2.0\n";
&PrettyPlots::Prepare_Dataset(\$plot,

$x1Data, $y1Data,
title => "First dataset",
style => line,
linePattern => 0,
weight => [7,3],

color => $PrettyPlots::colorPairs{’lightGoldenrod’}
);

1If you create an OpenOffice ODG file it’s recommended that you covert it to a Metafile within OpenOffice before putting
it into a presentation—this seems to prevent a bug which occasionally causes an element of the plot to be lost during
saving. . .

23

http://www.gnuplot.info/
http://pdl.perl.org/
http://www.openoffice.org/
http://www.wikimedia.org/wikipedia/en/wiki/OpenDocument

3 Plotting Support

&PrettyPlots::Prepare_Dataset(\$plot,
$x2Data, $y2Data,
errorDown => $errorDown,
errorUp => $errorUp,

title => "Galacticus",
style => point,

symbol => [6,7],
weight => [5,3],

color => $PrettyPlots::colorPairs{’redYellow’}
);

&PrettyPlots::Plot_Datasets($gnuPlot,\$plot);
close($gnuPlot);
&LaTeX::GnuPlot2PNG($outputFile.".eps", backgroundColor => "#000080", margin => 1);

The process begins by opening a pipe to GnuPlot and specifying the epslatex terminal along with
color and colortext options, any line weight preferences and the output EPS file. This is followed by
commands to set up the plot, including labels, ranges etc. Note that you must specify margins manually2.
Following this are calls to &PrettyPlots::Prepare_Dataset which prepares instructions for plotting of
a single dataset. The first argument is a reference to a structure which will store the instructions, while
the second and third arguments are PDLs containing the x and y data to be plotted. Following this are
multiple options as follows:

title Gives the title of the dataset for inclusion in the plot key;

style Specifies how the dataset should be drawn: either line, point, boxes, or filledCurve;

linePattern Specifies the line pattern (as defined for GnuPlot’s lt option) to use;

symbol A two element list giving the symbol indices that should be used to plot the border and inner
parts of each point respectively;

weight A two element list giving the line weights to be used for border and inner parts of each point/line
respectively;

color A two element list giving the color of border and inner parts of each point/line respectively. Colors
should be specified as #RRGGBB in hexadecimal. Several suitable color pairs and sequences of pairs
are defined in the GnuPlot::PrettyPlots module;

pointSize Specifies the size of the points to be used;

errorNNN Gives a PDL containing sizes of errors to be plotted on points in the up, down, left and right
directions. A zero value will cause the error bar to be omitted, while a negative value will cause an
arrow to be drawn with a length equal to the absolute value of the specified value;

filledCurve If the filledCurve style is used, this option specifies the type of filled curve (closed, x1,
x2, etc.—see the GnuPlot help filledcurve text for complete options). The default is closed;

y2 If the filledCurve style is used along with the filledCurve=closed option, this option is used to
specify a second PDL of y-axis values. The region between this curve and the usual y-axis curve
will be filled.

2The GnuPlot::PrettyPlots module works by generating multiple layers of plotting which are overlaid. Axes are only
drawn for the first layer. If you do not specify margins manually, they will be computed automatically for each layer
and so will not match up between all layers. This will result in data being plotted incorrectly.

24

3.2 Merger Tree Diagrams with dot

Once all datasets have been prepared, the call to &PrettyPlots::Plot_Datasets will generate the EPS
and LATEX files necessary to make the plot. This resulting plot can be converted to PDF, PNG or
ODG form by calling &LaTeX::GnuPlot2PDF, &LaTeX::GnuPlot2PNG or &LaTeX::GnuPlot2ODG respec-
tively. The EPS file will be replaced with the appropriate file. The &LaTeX::GnuPlot2PNG routine
accepts an optional backgroundColor argument in #RRGGBB format. If present, this color will be used
to set the background color of the plot (otherwise white is assumed). Although the background is made
transparent in the PNG, setting the background color is important as antialiasing will make use of this
background. Note that both PNG and ODG options will switch black axes and labels to white3. Finally,
the &LaTeX::GnuPlot2PNG routine accepts an optional margin argument which specifies the size of the
margin (in pixels) to be left around the plot when cropping.
The ODG option requires that both pdf2svg and svg2office be installed on your system (svg2office

should be located in /usr/local/bin).

3.2 Merger Tree Diagrams with dot

The dot command, which is a part of GraphViz is useful for creating diagrams of merger trees.
Galacticus provides a function to output the structure of any merger tree in GraphViz format. This
function, Merger_Tree_Dump, is provided by the Merger_Trees_Dump module. Usage is as follows:

ca l l Merger_Tree_Dump(&
& index , &
& baseNode , &
& high l ightNodes =highl ightNodes , &
& backgroundColor =’ white ’ , &
& nodeColor =’ black ’ , &
& h i gh l i gh tCo l o r =’ black ’ , &
& edgeColor =’#DDDDDD’ , &
& nodeStyle =’ s o l i d ’ , &
& h i gh l i g h t S t y l e =’ f i l l e d ’ , &
& edgeSty l e =’ s o l i d ’ , &
& labe lNodes =. fa l se . , &
& scaleNodesByLogMass=.true . , &
& edgeLengthsToTimes =.true . , &
& path =’ /my/path ’ &
&)

Here index is the tree index (successive calls to Merger_Tree_Dump with the same index will result in
a sequence of output files—see below), and baseNode is a pointer to the base node of the tree to be
dumped. All other arguments are optional:

highlightNodes A list of node IDs. All nodes listed will be highlighted in the diagram;

backgroundColor The color for the background of the diagram;

nodeColor The color used to draw nodes;

highlightColor The color used for highlighted nodes;

edgeColor The color of edges (lines joining nodes);

nodeStyle The style to use when drawing nodes;
3This is just a presonal preference for plots displayed in presentations—other options could be added

25

http://www.cityinthesky.co.uk/opensource/pdf2svg
http://www.haumacher.de/svg-import/
http://www.graphviz.org/

3 Plotting Support

highlightStyle The style to use when drawing highlighted nodes;

edgeStyle The style to use when drawing edges;

labelNodes Specifies whether or not nodes should be labelled (labels consist of the node ID followed by
the redshift);

scaleNodesByLogMass If true, the size of nodes will be set to be proportional to the logarithm of the
node mass;

edgeLengthsToTimes If true, the spacing between parent and child nodes will be proportional to the
logarithmic time interval between them.

path If present, write tree dumps into this directory. Otherwise, the current directory will be used.

All colors and styles are character strings and can be in any format understood by dot. The tree structure
will be dumped to file named mergerTreeDump:〈ID〉:〈N〉.gv where 〈ID〉 is the index of the tree and 〈N〉
increasing incrementally from 1 each time the same tree is consecutively dumped. These files can be
processed using dot. For example

dot -Tps mergerTreeDump:1:1.gv > tree.ps

will create a tree diagram as the PostScript file tree.ps.

26

4 Tutorials

This chapter contains step-by-step guides to performing common tasks with Galacticus.

4.1 Running Galacticus on N-body Merger Trees
See §A.11 for details of how to build merger tree files suitable for input into Galacticus. There are
many options which control precisely how merger trees read from file should be handled. The following
section provides guidance on the best choice of parameters.

4.1.1 Setting Input Parameters
To utilize merger trees from the file1 that you created in a Galacticus run it’s necessary to set two
parameters in the input parameter file that you will use for the run:

<!-- Specify that merger trees are to be read from file, and give the name of the file to read -->
<mergerTreeConstructMethod value="read" />
<mergerTreeReadFileName value="myNBodyTrees.hdf5"/>

The first of these [mergerTreeConstructMethod]=read tells Galacticus that merger trees will be
constructed by reading them from a file. The second, [mergerTreeReadFileName], gives the name of
the file from which to read the trees.
In order to choose sensible settings for the various parameters that control merger trees read from file,

it is recommended that you read through each of the items below and follow the guidance given.
Cosmology: In addition to specifying that trees should be read from a file, it’s also important to ensure

that the values of cosmological parameters in Galacticus match those in the merger tree file. (If they
don’t match, Galacticus will stop with an error message unless you set [mergerTreeReadMismatchIsFatal]=false
in which case you’ll just be warned about any mismatch.) In our case of using merger trees from the
Millennium Simulation, the correct cosmological parameter values can be set as follows:

<!-- Use Millennium Simulation cosmology. -->
<cosmologyParametersMethod value="simple"/>
<HubbleConstant value="73.0" />
<OmegaMatter value="0.25" />
<OmegaDarkEnergy value="0.75" />
<OmegaBaryon value="0.0455"/>
</cosmologyParametersMethod>
<cosmologicalMassVarianceMethod value="filteredPower">
<sigma_8 value="0.900"/>

</cosmologicalMassVarianceMethod>
<powerSpectrumPrimordialMethod value="powerLaw">
<index value="1.000"/>
<wavenumberReference value="1.000"/>

1The following assumes that merger trees will be read from a file following Galacticus’s standard HDF5 format which is
described in Appendix A.

27

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.A.11
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#appendix.A

4 Tutorials

<running value="0.000"/>
</powerSpectrumPrimordialMethod>

Existance at Final Time: Normally, Galacticus assumes that all merger trees will exist (i.e. have
at least one node present) at the final output time. This may not be true of trees extracted from an
N-body simulation—in this case Galacticus can be informed of this fact by setting:

<allTreesExistAtFinalTime value="false"/>

Snapping Nodes to Snapshots: N-body merger trees are often built from “snapshots” of the simu-
lation, i.e. all of the nodes exist at a set of discrete times. Often we want to output nodes at precisely
these output times. In such cases it is useful to set:

<mergerTreeReadOutputTimeSnapTolerance value="1.0d-3"/>

which ensures that the times of nodes are adjusted to lie at precisely the output time if that time is
within the specified relative tolerance (this avoids any small differences between node times and output
times that can arises due to rounding errors when converting from redshifts to times and vice-versa).

Missing Hosts: Galacticus expects to find each node’s host node present in a merger tree forest.
If a node’s host is not found this is cause for a fatal error to be issued, since it is impossible to correctly
construct and evolve the corresponding forest. If you absolutely want to run a forest for which one or more
host nodes are missing, you can allow this by setting [mergerTreeReadMissingHostsAreFatal]=false—
in this case missing host nodes trigger a warning only and nodes without a host are forced to become
isolated nodes. This will lead to incorrect tree evolution however, so the recommended setting is:

<mergerTreeReadMissingHostsAreFatal value="true"/>

Branch Jumps and Subhalo Promotions: If your merger trees contain subhalos they will most
likely exhibit two specific behaviors2: i) nodes which are subhalos in one timestep may become non-
subhalos (isolated halos) in a subsequent timestep (“subhalo promotion”), and ii) nodes which are subhalos
in one branch of the tree may “jump” to another branch3 of the tree becoming a subhalo there (“branch
jumping”). These behaviors are fully supported by Galacticus and so we recommend the following
settings:

<mergerTreeReadAllowSubhaloPromotions value="true"/>
<mergerTreeReadAllowBranchJumps value="true"/>

You may choose to disallow these behaviors by setting either of the above parameters to false—for
example if you wish to explore how your results would differ if subhalos were forced to remain subhalos
forever in their original branch. Note that allowing subhalo promotion while not allowing branch jumping
can lead to deadlocks in merger tree evolution, so change these settings with caution.
Note that for trees which do not contain subhalos these two parameters are irrelevant.
Subhalo Masses: If your trees contain subhalos, the mass evolution of those subhalos can be preset

in the satellite component of each node. In this way, the subhalo mass in Galacticus will track that
specified by the merger tree file. This requires the use of a satellite component which allows presetting
of subhalo masses. Recommended settings are therefore:

<treeNodeMethodSatellite value="preset"/>
<mergerTreeReadPresetSubhaloMasses value="true" />

If your trees do not contain subhalos, recommended settings are instead:
2These two behaviors are called out as they specifically do not occur in merger trees created using Press-Schechter-based
algorithms for example.

3That is, the subhalo’s descendented is hosted by a node other than the descendent of the subhalo’s host.

28

4.1 Running Galacticus on N-body Merger Trees

<treeNodeMethodSatellite value="standard"/>
<mergerTreeReadPresetSubhaloMasses value="false" />

Halo Positions/Velocities: If your trees contain position and velocity information for halos, those
positions and velocities can be preset in the position component of each node. This requires the use
of a position component which allows presetting of positions and velocities. Recommended settings are
therefore:

<treeNodeMethodPosition value="preset"/>
<mergerTreeReadPresetPositions value="true" />

If your trees do not contain position information recommended settings are:

<treeNodeMethodPosition value="null" />
<mergerTreeReadPresetPositions value="false"/>

Subhalo Orbits: If your trees contain position and velocity information they can be used to preset
initial orbit information for subhalos. Note that it is not required that your trees contain subhalos for
this orbit presetting to be performed—Galacticus can follow subhalo orbits even if subhalos are not
included in the trees themselves. The following settings are recommended:

<mergerTreeReadPresetOrbits value="true"/>
<mergerTreeReadPresetOrbitsSetAll value="true"/>
<mergerTreeReadPresetOrbitsAssertAllSet value="true"/>
<mergerTreeReadPresetOrbitsBoundOnly value="true"/>

These options will cause an orbit to be preset for each subhalo based on the relative position and velocity
of merging halos and assuming that the orbital energy and angular momentum are conserved between the
time immediately prior to the merger and the time of virial radius crossing. If the computed orbit does
not cross the virial radius of the larger halo or if the computed orbit is unbound, the above options cause
an orbit to be preset by drawing orbital parameters at random from the chosen cosmological distribution
(see §13.51.2).

Subhalo Merging: If your merger trees contain subhalo information, that information can be used
to specify when, and with which other node, each subhalo merges. Specifically, a subhalo is assumed to
merge at the time at which it is not the primary progenitor of its descendent halo—possibly with some
other delay to be described below. Recommended settings are:

<mergerTreeReadPresetMergerTimes value="true" />
<mergerTreeReadPresetMergerNodes value="true" />
<mergerTreeReadSubresolutionMergingMethod value="boylanKolchin2008"/>

The first two options cause subhalos to merge at the time described above, and with their descendent node.
The final option accounts for the possibility that the subhalo should not actually merge immediately at
this time. For example, in N-body simulations, the subhalo may have simply been lost due to limitations
of resolution or halo finder algorithms. The final option specifies that some additional time until merging
be added based on the subhalo merging timescale algorithm of Boylan-Kolchin et al. [2008; see §13.51.1],
and computed using the last known orbital properties of the subhalo.

Halo Scale Radii: If your merger trees contain information on halo scale radii or half-mass radii,
these can be used to preset the scale radius of each node. This requires the use of a dark matter profile
component which allows presetting of scale length. Recommended settings are therefore:

<mergerTreeReadPresetScaleRadii value="true" />
<mergerTreeReadPresetScaleRadiiFailureIsFatal value="true" />

29

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.51.2
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.353

4 Tutorials

<mergerTreeReadPresetScaleRadiiConcentrationMinimum value="3" />
<mergerTreeReadPresetScaleRadiiConcentrationMaximum value="60" />
<mergerTreeReadPresetScaleRadiiMinimumMass value="see below"/>

Minimum and maximum concentrations are specified—these are used to restrict the range of scale radii
that are allowed for a given halo. If scale radii are to be determined based on half-mass radii given in
the merger tree file, and if the computed scale radius does not result in a concentration between these
limits, then a fatal error is issued.
Finally, you can set a minimum halo mass via the [mergerTreeReadPresetScaleRadiiMinimumMass]

parameter below which the scale radii or half-mass radii in your file should be considered not reliable. For
halos below this mass, scale radii will instead be assigned via the selected dark matter halo concentration
method (see §13.11.3).

Halo Angular Momenta: If your merger trees contain spin or angular momentum information these
can be preset for each node. Recommended settings are:

<treeNodeMethodSpin value="preset"/>
<mergerTreeReadPresetSpins value="true" />
<mergerTreeReadPresetUnphysicalSpins value="true" />

The last of these options causes any halos for which the spin given in the merger tree file is non-positive to
be assigned a spin at random instead, drawn from the specified cosmological distribution (see §13.11.7).
If subhalo masses are not included in their host halo masses in your merger tree file, you should specify

how the angular momenta of subhalos should be accounted for when adding their mass to their host halo.
If positions and 3D angular momenta are available in your merger tree file, the recommended setting is:

<mergerTreeReadSubhaloAngularMomentaMethod value="summation"/>

If this information is not present

<mergerTreeReadSubhaloAngularMomentaMethod value="scale" />

should be used instead.
If your merger tree file contains 3D spin or angular momentum information, you can choose to make

that information available within Galacticus be using the settings:

<treeNodeMethodSpin value="preset3D"/>
<mergerTreeReadPresetSpins3D value="true" />

Subhalo Indices: If your merger trees contain subhalos, you can tell Galacticus to keep track of
the indices of subhalos by setting:

<treeNodeMethodSatellite value="preset"/>
<mergerTreeReadPresetSubhaloIndices value="true" />

The Galacticus output file will then contain satelliteNodeIndex datasets which list the index (as
given in the merger tree file) for all subhalos and halos. Without specifying this presetting, the index of
subhalos is frozen at the index of the halo immediately prior to it becomming a subhalo.
The remainder of this section gives more detail about many of the parameters described above and

how they affect handling of merger trees read from file. Further parameters can be set to control what
information from the stored trees will be used in Galacticus. Examples are given below.

4.1.2 Further Details
Further details of the effects of the many parameters controlling merger trees read from file are given
below.

30

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.11.3
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.11.7

4.1 Running Galacticus on N-body Merger Trees

Node Positions

If position and velocity information for tree nodes is available within the merger tree file then Galacticus
can be instructed to use this information by using the “preset” method for tree node positions and telling
the merger tree construction method to preset node positions as follows:

<!-- Use merger tree node positions -->
<treeNodeMethodPosition value="preset"/>
<mergerTreeReadPresetPositions value="true" />

If position information is unavailable, the “null” position method can be selected and the merger tree
construction method instructed not to preset positions as follows:

<!-- Do not use merger tree node positions -->
<treeNodeMethodPosition value="null" />
<mergerTreeReadPresetPositions value="false"/>

Virial Orbits

If position and velocity information for tree nodes is available within the merger tree file then Galacticus
can be instructed to use this information to estimate the orbit of each subhalo at the point at which it
crosses the virial radius of its host halo. This “virial orbit” may then be used by, for example, calculations
of merging timescales.

<!-- Use merger tree node positions to compute orbits at the virial radius -->
<mergerTreeReadPresetOrbits value="true"/>
<mergerTreeReadPresetOrbitsBoundOnly value="true"/>
<mergerTreeReadPresetOrbitsSetAll value="true"/>
<mergerTreeReadPresetOrbitsAssertAllSet value="true"/>

Typically, a merging halo is not seen at precisely the time at which it crosses the virial radius of its host
(due to the fact that N-body simulations are output at discretely spaced timesteps). Therefore, Galacti-
cus computes the orbit at the time just prior to merging and assumes that the orbital parameters (energy
and angular momentum) remain fixed to propagate the orbit to the virial radius of the host. The second
parameter in the above example, [mergerTreeReadPresetOrbitsBoundOnly], specifies whether or not
only bound orbits should be set. Some calculations (e.g. of subhalo merging times) assume bound orbits
and may fail if given an unbound orbit. Setting this option to true causes only bound orbits to be preset—
unbound orbits are ignored. Note that some orbits cannot be propagated to the virial radius (i.e. their
pericenter is larger than the virial radius). The [mergerTreeReadPresetOrbitsSetAll] option, if true,
will cause such orbits to be assigned randomly using the selected [virialOrbitsMethod], such that all
orbits are assigned. The [mergerTreeReadPresetOrbitsAssertAllSet] option requires that all orbits be
set—if [mergerTreeReadPresetOrbitsSetAll]=false and [mergerTreeReadPresetOrbitsAssertAllSet]=true
then Galacticus will exit with an error message if any orbit cannot be set.
If the satellite component additionally permits setting of the satellite position and velocity, these

properties will also be assigned based on the relative position and velocity of the satellite and host halos.

Merging Times and Targets

The times at which subhalos merge with their host halo can be determined directly from the merger
tree file if subhalo information is included in that file. Merging is assumed to occur when the subhalo
no longer has a distinct descendent (i.e. it descends into a non-subhalo). If merging times are to be
computed in this way set

31

4 Tutorials

<treeNodeMethodSatellite value="preset"/>
<mergerTreeReadPresetMergerTimes value="true" />

which select a satellite orbit method that allows merger times to be present and tell the merger tree
construction method to preset those merger times respectively. If merger times are not to be computed
in this way then instead set, for example,

<treeNodeMethodSatellite value="standard" />
<mergerTreeReadPresetMergerNodes value="false" />
<satelliteMergingMethod value="Jiang2008"/>

which selects a standard satellite orbit method, prevents attempts to preset the merger times and selects
the Jiang2008 method for computing merger times instead.
In addition to setting the times of merger events, it is possible to set the target node with which

a merging node should merge. By default, Galacticus will assume that all merging occurs with the
non-subhalo host node in which a subhalo is located. This may not be the desired behavior when using
N-body merger trees. For example, such trees may indicate that a subhalo merges with another subhalo.
Setting

<mergerTreeReadPresetMergerNodes value="true"/>

will cause the target node with which each merger should occur to be determined from the merger tree
structure and preset for use in Galacticus.
It is possible to add a delay between the last time at which a subhalo was seen in a simulation and

the time at which it is considered to merge. This functionality is motivated by the consideration that a
subhalo vanishing from a simulation may be simply due to it dropping below resolution rather than it
actually having undergone a merger. The parameter [mergerTreeReadSubresolutionMergingMethod]
can be used to select a satellite merging timescale method (see §13.51.1) to use in this case. (It is set by
default to “null” such that no delay before merging occurs.) The orbit of the subhalo around its parent
at the last time it is present in the merger tree is passed to this method and used to estimate a time
until merging. This delay is added to the time at which the subhalo merges and, if merge target nodes
are being set, the target node is updated accordingly.

Subhalo Indices

The indices of subhalos are usually frozen at the index of the halo just prior to becoming a subhalo. The
index of the corresponding halo in the original tree (as read from file) can be tracked as follows:

<treeNodeMethodSatellite value="preset"/>
<mergerTreeReadPresetSubhaloIndices value="true" />

to first select the “preset” satellite orbit method (which allows subhalo indices to be preset) and, second,
to instruct the merger tree construction algorithm to preset those indices. The index will then be available
in output as satelliteNodeIndex.

Subhalo Masses

The masses of subhalos (specifically their time evolution after they become subhalos) can be set using
the values stored in the merger tree file (if available). To set subhalo masses in this way use

<treeNodeMethodSatellite value="preset"/>
<mergerTreeReadPresetSubhaloMasses value="true" />

to first select the “preset” satellite orbit method (which allows subhalo masses to be preset) and, second,
to instruct the merger tree construction algorithm to preset those masses.

32

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.51.1

4.1 Running Galacticus on N-body Merger Trees

Node Spins

If information on the angular momenta of nodes is available in the merger tree file, this can be used to
preset the value of the spin parameter in each node4 by setting:

<mergerTreeReadPresetSpins value="true"/>

The spin parameter is set using the spin of each node if available, or otherwise using the angular
momentum of each node stored in the merger tree file using:

λ =
|J||E|1/2

GM5/2
(4.1)

where |J| is the magnitude of the node’s angular momentum, M is the node’s mass and E is its energy.
Additionally, by setting:

<mergerTreeReadPresetSpins3D value="true"/>

the spin vector of each node will be set (assuming that the vector spin or angular momenta of nodes are
available in the merger tree file) using:

λ =
J|E|1/2

GM5/2
. (4.2)

If spins could not be determined for some halos the spin (or angular momentum) should be set to
zero in the merger tree file, and the parameter [mergerTreeReadPresetUnphysicalSpins] set to true.
Galacticus will then assign a spin to such halos by sampling from the selected spin distribution (see
§13.11.7).

Node Scale Radii

If information on the half-mass or scale radii of nodes is available in the merger tree file, it can be used
to preset the value of the dark matter halo scale radius in each node by setting:

<mergerTreeReadPresetScaleRadii value="true"/>

Before doing this, it is important to be sure that the half-mass or scale radii of the nodes are reliable. For
example, in low mass nodes extracted from an N-body simulation resolution effect may limit the accuracy
of the measured half-mass or scale radius. In such cases, use the [mergerTreeReadPresetScaleRadiiMinimumMass]
parameter to specify the lowest mass halos for which the scale radii should be preset—lower mass halos will
be assigned a scale radius using the method specified by the [mergerTreeReadConcentrationFallbackMethod]
parameter (which will default to the value of [darkMatterConcentrationMethod]; see §13.11.3). It is
also possible to specify minimum and maximum allowed concentrations when computing the scale radius
from the half mass radius using the [mergerTreeReadPresetScaleRadiiConcentrationMinimum] and
[mergerTreeReadPresetScaleRadiiConcentrationMaximum] parameters. If matching the half mass ra-
dius would require a concentration outside of this range, Galacticus will abort unless [mergerTreeReadPresetScaleRadiiFailureIsFatal]=false,
in which case it will instead silently use the fallback concentration method described above.
If only half-mass radii are available, the scale radius is set by using a root finding algorithm to ensure

that half of the total halo mass is enclosed within the specified half-mass radius.

4Before doing this, it is important to be sure that the angular momenta of the nodes are reliable. For example, in low mass
nodes extracted from an N-body simulation resolution effect may limit the accuracy of the measured angular momentum.

33

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.11.7
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.11.3

4 Tutorials

Miscellaneous N-body Properties

Several miscellaneous properties often available from N-body merger trees can also be preset by setting
the following parameters to true:

mergerTreeReadPresetParticleCounts Sets the number of particles in each halo (requires the particleCount
dataset to be present in the merger tree file);

mergerTreeReadPresetVelocityMaxima Sets the maxima of halo rotation curves (requires the velocityMaximum
dataset to be present in the merger tree file);

mergerTreeReadPresetVelocityDispersions Sets the velocity dispersion of halos (requires the velocityDispersion
dataset to be present in the merger tree file).

Subhalo Promotion

A subhalo may, at a later time, become an isolated halo once again. Galacticus allows you to control
whether such behavior is allowed, or should be prohibited. To allow such “subhalo promotion”, set:

<mergerTreeReadAllowSubhaloPromotions value="true"/>

If you choose to inhibit this behavior by setting the above parameter to false, a halo that becomes a
subhalo will remain a subhalo forever thereafter. Note that the isolated halo to which it would have been
promoted will still exist, and may therefore form its own galaxy. This can result in double counting of
mass, and so inhibiting subhalo promotion is not recommended.

“Fly-by” Halos

In some cases, a halo that is part of one tree can later become part of another tree. This can happen in
so-called “fly-by” encounters where a halo may briefly become a subhalo in a halo in tree A then leave
that halo and become a subhalo in tree B.
The correct way to handle this issue is to combine trees A and B into a single tree (which will now have

multiple base nodes). Galacticus will then process these two trees simultaneously, correctly handling
the fly-by, and outputting the trees as two separate trees.
If for some reason this is not possible or desired, the fly-by problem will normally cause Galacticus

to complain that the host halo of a node cannot be found (since it exists in a different tree). This problem
can be avoided by setting:

<mergerTreeReadMissingHostsAreFatal value="false"/>

In this case, nodes with missing hosts are simply treated as being isolated halos. This will avoid an error
condition, but is not a physically correct way to handle such cases, so use with caution.

4.1.3 Using Particles to Track Unresolved Subhalos
In N-body simulations it is possible that a subhalo can become “lost” from the simulation (i.e. can no
longer be identified by a halo finder due to resolution issues) before it has actually merged with the central
galaxy or been completely tidally destroyed. In such cases it is useful to be able to assign a position to
the subhalo at later times. A common approach to assigning a position (and velocity) is to use that of
the most bound particle in the subhalo at the last time it was identified. Galacticus allows for particle
tracking in this way through the addition of particle information to the merger tree file.
To add particle tracking data to a merger tree file, follow these steps:

1. Identify all subhalos which are lost from the simulation prior to the final timestep;

34

4.1 Running Galacticus on N-body Merger Trees

2. Determine the index of the most bound particle in each such subhalo in the last timestep in which
it was identified;

3. For each subhalo, extract the redshift, position, and velocity of that particle (which is usally trivial
to do once its index is known) at each subsequent timestep in the simulation;

4. Write these data (along with the particle index) to the particles group in the merger tree file as
described in §A.10;

5. Add two datasets to the forestHalos group:

a) particleIndexStart which should indicate the index in the datasets in the particles group
at which the data for each halo begins (or −1 if no particle data is included for the halo);

b) particleIndexCount which should indicate the number of entries in the datasets in the
particles group for each halo (or −0 if no particle data is included for the halo).

4.1.4 Handling of Extremely Large Merger Tree Forests
Halos can move between merger trees (see §4.1.2 and §4.1.2), leading to the necessity of merger tree
forests—interconnected groups of merger trees that Galacticus typically processes as a whole. These
forests can become very large—in some cases so large that they do not fit within the available memory.
Galacticus can handle such forests by splitting them into individual trees. Each tree is processed
separately, and nodes are moved between trees as needed. If a tree needs a node from another tree before
its evolution can continue, its state can be suspended to disk, and later re-read once the node it requires
becomes available. In this way, very large forests can be processed without running out of memory (as
trees are stored to disk while they are not being processed).
To cause forests to be split in this way, the following parameters should be set:

<treeEvolveSuspendToRAM value="false" />
<treeEvolveSuspendPath value="/my/scratch/path/"/>
<mergerTreeReadForestSizeMaximum value="10000000" />
<mergerTreeReadSubresolutionMergingMethod value="infinite" />

Here, treeEvolveSuspendToRAM specifies that merger trees should be suspended to disk (i.e. not to
RAM which is the default), and treeEvolveSuspendPath gives a path where the suspended trees can
be written—typically scratch space local to the compute node where Galacticus is being run is a good
option.
mergerTreeReadForestSizeMaximum specifies the maximum number of nodes allowed in a forest before

it will be split. A suitable number for this depends on the details of the available RAM, the number
of threads sharing that RAM, and the characteristics of the Galacticus model being used (which will
affect the memory required per node).
Finally, mergerTreeReadSubresolutionMergingMethod is set to infinite to prevent any merging

(which is not supported for split forests at present, although it should be soon).

4.1.5 Analyzing the Output
Positions and Velocities

Components of the position of each node are output as positionX, positionY and positionZ and can
be accessed in the same way as other output properties from Galacticus (see §2.1.7 and §2.2).

35

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.A.10

4 Tutorials

Subhalo Masses

The current mass of subhalos is available via the nodeBoundMass output dataset and can be accessed in
the same way as other output properties from Galacticus (see §2.1.7 and §2.2). For non-subhalos this
property is equal to the usual nodeMass property.

4.2 Generating Mock Catalogs with Lightcones from the
Millennium Simulation

Suppose that you want to create a catalog of galaxies as would be found in a survey of an area of the
sky out to some redshift. Such a “mock catalog” can be built by populating with galaxies all of the
dark matter halos which happen to lie within the cone which that area makes as it is projected from the
observer through the Universe.
Generating such a mock catalog using Galacticus involves first extracting the halos (and their merger

trees) within this “lightcone” from a suitable N-body simulation, and then processing them through
Galacticus. In this tutorial, we will specifically make use of the Millennium Simulation database to
provide the merger trees, but the same principles apply to any N-body simulation.
The script, scripts/aux/Millennium_Lightcone_Grab.pl can be used to retrieve merger trees that

intersect a given lightcone from the Millennium Database and to store them in Galacticus’s format
(see §A). The script is used as follows:

scripts/aux/Millennium_Lightcone_Grab.pl <lightconeDirectory> <fieldSize> <maximumRedshift>
--user <myUserName> --password <myPassword> --treesPerFile <treesPerFile>

Here, <lightconeDirectory> is the name of a (pre-existing) directory into which merger tree data will
be stored, <fieldSize> is the length (in degrees) of one side of the square field of view of the lightcone,
<maximumRedshift> is the highist redshift for which halos should be included in the catalog. The –user
and –password options allow you to specify your username and password for accessing the Millennium
Simulation database. Finally, the –treesPerFile specifies how many merger trees should be stored in
each file (the script will split the lightcone between many files—this is primarily so that each request sent
to the Millennium Database server is not too large). If no value is specified a default of 200 trees per file
will be used.
The script generates multiple SQL queries to the Millennium database in order to first find all ha-

los which intersect the lightcone and second to retrieve the complete merger tree associated with each
such halo. These merger trees are then stored in Galacticus’s merger tree file format in files named
Lightcone_Trees_AAA:BBB.hdf5 in the given <lightconeDirectory>, where AAA and BBB are numbers
giving the first and last trees in the file5
Each of the merger tree files created can then be run through Galacticus in the usual way (see §4.1).

Outputs should be requested at every Millennium snapshot (up to the largest redshift to be considered),
and the lightcone filter should be used to cause only those galaxies which intersect the lightcone to be
output—for example:

<!-- Set output redshifts to the snapshots in the milliMillennium. -->
<outputRedshifts value=

"0.0000 0.0199 0.0414 0.0645 0.0893 0.1159 0.1444 0.1749 0.2075 0.2425
0.2798 0.3197 0.3623 0.4079 0.4566 0.5086 0.5642 0.6236 0.6871 0.7550
0.8277 0.9055 0.9887 1.0779 1.1734 1.2758 1.3857 1.5036 1.6303 1.7663
1.9126 2.0700 2.2395 2.4220 2.6189 2.8312 3.0604 3.3081 3.5759 3.8657
4.1795 4.5196 4.8884 5.2888 5.7239 6.1968"

5Note that these are not the ID numbers of the trees, just a sequential count of all trees retrieved.

36

http://gavo.mpa-garching.mpg.de/MyMillennium3/MyDB
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#appendix.A

4.3 Using the Instantaneous Recycling Approximation

/>

<!-- Add a lightcone filter with the required geometry -->
<mergerTreeOutput>
<galacticFilterMethod value="lightcone"/>

</mergerTreeOutput>

<!-- Switch on output of lightcone data -->
<outputLightconeData value="true"/>

<!-- Prune away trees not appearing in the lightcone -->
<mergerTreeOperatorMethod value="pruneLightcone"/>

<!-- Specify lightcone geometry -->
<geometryLightconeMethod value="square">
<origin value="0 0 0"/>
<unitVector1 value=" 1 1 1"/>
<unitVector2 value=" 0 1 -1"/>
<unitVector3 value="-2 1 1"/>
<lengthReplication value="500"/>
<lengthHubbleExponent value="-1"/>
<lengthUnitsInSI value="3.08567758135e22"/>
<angularSize value="0.5"/>
<timeEvolvesAlongLightcone value="true"/>
<redshift value=
"0.0000 0.0199 0.0414 0.0645 0.0893 0.1159 0.1444 0.1749 0.2075 0.2425
0.2798 0.3197 0.3623 0.4079 0.4566 0.5086 0.5642 0.6236 0.6871 0.7550
0.8277 0.9055 0.9887 1.0779 1.1734 1.2758 1.3857 1.5036 1.6303 1.7663
1.9126 2.0700 2.2395 2.4220 2.6189 2.8312 3.0604 3.3081 3.5759 3.8657
4.1795 4.5196 4.8884 5.2888 5.7239 6.1968"

/>
</geometryLightconeMethod>

In the above [outputLightconeData] causes lightcone coordinate information (i.e. the position and
velocity of each galaxy in a coordinate system with axes aligned along the line of sight of the lightcone
and parallel to the two edges of the square field of view, along with the redshift) to be output (see §14.9),
and [mergerTreeOperatorMethod] is set to pruneLightcone to cause any merger trees which have no
nodes within the lightcone volume to be pruned away (as there is no need to process them). Finally, the
geometryLightconeMethod parameter describes the geometry of the lightcone to be used—see §17.4.1
for details.

4.3 Using the Instantaneous Recycling Approximation
Choosing [stellarPopulationPropertiesMethod]=instantaneous will cause Galacticus to use the
instantaneous recycling approximation for all calculations of stellar populations. The recyling rate and
yield to use are set by the [imfNAMERecycledInstantaneous] and [imfNAMEYieldInstantaneous] pa-
rameters respectively, where NAME is the name of the appropriate initial mass function (IMF).
Setting [stellarPopulationPropertiesMethod]=noninstantaneous causes Galacticus to use a

fully non-instantaneous, metal-depdendent calculation of recycling, metal production and supernovae

37

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.14.9
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section*.1435

4 Tutorials

(SNe) rates. However, it is possible to force this method to operate in the instantaneous recycling
approximation limit (which can be useful for testing and comparison) by setting:

<!-- Force the calculation of recycling, yields etc. to -->
<!-- be done assuming instantaneous recycling -->
<starFormationImfInstantaneousApproximation value="true"/>
<!-- Set the mass of stars which should be used as the -->
<!-- dividing line between long-lived and instantaneously -->
<!-- evolving in this approximation. -->
<starFormationImfInstantaneousApproximationMassLongLived value="1.0"/>
<!-- Set the effective age of populations to use in this -->
<!-- approximation when computing SNe numbers. -->
<starFormationImfInstantaneousApproximationEffectiveAge value="13.8"/>

4.4 Computing Dust Attenuated Luminosities for All Galaxies
As described in §2.2.1, dust-attenuated luminosities can be computed for galaxies using the calculations
of Ferrara et al. [1999] (among other methods). A script is provided which will automatically perform
this calculation for all filters, in all galaxies, at all output redshifts in a Galacticus output file and
store the results (along with the assumed galaxy inclinations) back to the HDF5 file. The script is used
as follows:

./scripts/analysis/dustExtinguish.pl <galacticusFileName>

4.5 Computing Dust Attenuation and Emission Using
Galacticus+Grasil

Galacticus can interface with the Grasil code to compute the attenutation of starlight by dust, along
with the re-emission of absorbed energy by that dust. To do this, it is necessary to store the entire star
formation history of galaxies in a Galacticus model, as Grasil uses this information to determine the
attenuation of stellar populations as a function of their age.
Recording star formation histories is as simple as setting the [starFormationHistoriesMethod] pa-

rameter to metallicitySplit. This particular star formation history method stores the star formation
in each galaxy as a function of time and metallicity, as required by Grasil. The level of detail with
which the star formation history is stored is controlled by several parameters:

starFormationHistoryTimeStep The timestep used in discretizing star formation histories.

starFormationHistoryFineTimeStep The timestep to use in discretizing star formation histories just
prior to output times. This should typically be smaller than [starFormationHistoryTimeStep]
to give improved resolution in the star formation history for recently formed stars.

starFormationHistoryFineTime The period before each output for which the [starFormationHistoryFineTimeStep]
should be used.

starFormationHistoryMetallicityCount The number of bins in metallicity to use when discretizing
the star formation history.

starFormationHistoryMetallicityMinimum The upper limit to the metallicity in the lowest metallicity
bin (i.e. the lowest metallicity bin will extend from zero to this value).

38

http://adlibitum.oat.ts.astro.it/silva/grasil/grasil.html

4.5 Computing Dust Attenuation and Emission Using Galacticus+Grasil

starFormationHistoryMetallicityMaximum The upper limit to the metallicity in the highest metallic-
ity bin.

Default values set a timestep of 0.1 Gyr, with 0.01 Gyr timesteps for 0.1 Gyr before each output, along
with 10 metallicity bins ranging from 10−4Z� to 10Z�. It is always recommended to check that these
values result in a sufficiently well-resolved star formation history for your purposes.
When run with these parameter settings Galacticus will output an additional group to the output

file called starFormationHistories. This contains a hierarchically arranged set of datasets describing
the star formation histories. The hierarchy extends through output number, and merger tree index. For
example starFormationHistories/Output5/mergerTree3/ will contain the star formation history for
merger tree 3 at output 5. This group will, in general, contain many datasets, e.g.

diskSFH7819 Dataset {11, 34}
diskTime7819 Dataset {34}
spheroidSFH7819 Dataset {11, 34}
spheroidTime7819 Dataset {34}

In this case, datasets are present for both a disk and bulge component of node 7819. (If a node
does not contain one of these components, the corresponding dataset will be missing.) The “Time”
datasets give the times at which the star formation history is stored, while the “SFH” datasets give the
mass of stars formed in each time/metallicity bin. (The metallicities themselves are available in the
starFormationHistories/metallicities dataset.)
Properties of the Grasil SED can now be accessed using the Galacticus::Grasil module (see §2.5).

When such properties are requested, Grasil will be automatically run on each selected galaxy, the SED
computed and stored to the Galacticus file6, and the relevant fluxes computed. If necessary, Grasil
and its data files will be downloaded automatically. Multiple Grasil models will be run simultaneously
if multiple cores are available.
For example:

Specify model.
my $galacticus;
$galacticus->{’file’ } = "/galacticus.hdf5";
$galacticus->{’store’} = 0;
$galacticus->{’tree’ } = "all";

Specify Grasil options.
$galacticus->{’grasilOptions’}->{’includePAHs’ } = 1;
$galacticus->{’grasilOptions’}->{’fluctuatingTemperatures’} = 1;
$galacticus->{’grasilOptions’}->{’wavelengthCount’ } = 1000;
$galacticus->{’grasilOptions’}->{’radialGridCount’ } = 30;
$galacticus->{’grasilOptions’}->{’recomputeSEDs’ } = 0;
$galacticus->{’grasilOptions’}->{’launchMethod’ } = "pbs";

Read results from model.
&HDF5::Select_Output($galacticus,2.0);
&HDF5::Get_Dataset ($galacticus,

[
’grasilFlux850microns’,

6Grasil SEDs are stored in the grasilSEDs group in a hierarchy of output, merger tree, and node groups, as for the star
formation histories. Within each node group three datasets are stored, giving the wavelength, inclination, and SED of
the galaxy.

39

4 Tutorials

’grasilFlux250microns’,
’grasilFlux350microns’,
’grasilFlux500microns’,
’grasilInfraredLuminosity’
]

The grasilOptions block in the above controls the behavior of Grasil. Here we’ve chosen to include
calculations of polycyclic aromatic hydrocarbon (PAH) features, have accounted for fluctuating temper-
tures in small grains (both of which slow down the calculation but make it more accurate), have specified
the number of wavelengths and the size of the radial grid used to model each galaxy. We have also
specified that the SED should not be recomputed—if Grasil fluxes are requested in future for galaxies
in this model, they will be computed from the stored Grasil SED. If you want to change the parameters
of the Grasil calculation then set the recomputeSED option to 1 instead7.
Finally, the launchMethod option specifies how Grasil is to be run. Currently supported options are

local and pbs. Selecting local causes Grasil to be run on the local machine. Multiple threads are
launched automatically, up to one per available CPU core unless otherwise specified. Selecting pbs causes
Grasil jobs to be submitted to a PBS queue.
Fluxes are returned in units of Janskys, while the total infrared luminosity (grasilInfraredLuminosity)

is returned in units of Solar luminosities.
A simple plotting script is provided which illustrates how to access and use the Grasil SEDs stored

in Galacticus files. For example:

scripts/plotting/plotGrasilSpectrum.pl galacticus.hdf5 5 9 217 43.2 SED.pdf

will plot the SED of node 217, in merger tree 9, at output 5 from the galacticus.hdf5 file. The SED
will be shown for an inclination of 43.2◦ and the plot will be written to SED.pdf.

4.6 Outputting Stellar Luminosities
Galacticus can compute the stellar luminosity of galaxies in any required combination of filter, redshift,
and frame. To cause luminosities to be computed add something such as the following to your input
parameter file:

<luminosityFilter value="SDSS_r" />
<luminosityRedshift value="0.1" />
<luminosityType value="observed"/>

This would result in a dataset called diskLuminositiesStellar:SDSS_r:observed:z0.1000 being out-
put (along with a similar dataset for the spheroid component), corresponding to the luminosity in the
SDSS r-band filter, as observed at z = 0.1. To get the same filter but in the rest-frame of the galaxy,
change the luminosityType to “rest”. If instead of specifying a unique redshift you instead specify “all”
for a filter in the luminosityRedshift element, then the filter will be replicated to all output redshifts.
Available filters can be found in the data/filters folder. Additionally, it is possible to specify top-hat

filters (which have unit transmission over a range of wavelengths) without the need to create a filter
file for them. A filter named topHat_L_R will be interpretted as a top-hat filter where L= λ is the
central wavelength (in Ångstroms) and R= R is the resolution. A top-hat filter is constructed such that
the transmission is unity between λ1 and λ2, and zero outside that range, and such that λ1λ2 = λ2,
λ2 − λ1 = λ/R. Furthermore, a filter specified as topHat_Llow_Lhigh_R will be expanded into a set of
7Exercise caution when using this option. Recomputing SEDs requires deleting the old SED group. The HDF5 library
currently does not clean up the space occupied by the datasets in this deleted group, so the file size can grow rapidly if
you repeatedly recompute Grasil SEDs.

40

4.6 Outputting Stellar Luminosities

contiguous top-hat filters with resolution R spanning the wavelength range Llow to Lhigh with the first
filter’s lower wavelenght limit aligned with Llow and continuing until the central wavelength of the filter
is no longer below Lhigh.
Luminosities are always output in units of the zero-point of the AB magnitude system, such that
−2.5 log10 L (where L is the output luminosity) gives the AB absolute magnitude of the galaxy.
You can add additional luminosities by simply adding more entries in these parameter values. For

example:

<luminosityFilter value="SDSS_r SDSS_g"/>
<luminosityRedshift value="0.1 0.3" />
<luminosityType value="observed rest" />

would result in datasets diskLuminositiesStellar:SDSS_r:observed:z0.1000 and diskLuminositiesStellar:SDSS_-
g:rest:z0.3000.

4.6.1 Postprocessing of Stellar Spectra
Stellar luminosities are computed by convolving a library of simple stellar populations with the star
formation history of each galaxy. Galacticus allows the spectra of those simple stellar populations
to be postprocessed (after being read from file or internally generated for example) before they are
utilized in the convolution integral. This postprocessing can modify the spectra in arbitrary ways that
depend on wavelength, redshift, and age of stellar population. Furthermore, Galacticus allows you to
chain together stellar spectra postprocessors into a set to allow multiple postprocessings to be applied.
Furthermore again, you can define an arbitrary number of sets and apply different sets to different
luminosities.
Typical uses of stellar spectra postprocessors include accounting for absorption of galaxy light by the

intervening intergalactic medium (IGM), or capturing only the light from recent star formation8. A full
list of the available postprocessors can be found in §13.49.
If you don’t specify a postprocessing set, the “default” set (consisting of the inoue2014 postprocessor;

see §13.49.1) is applied to each luminosity calculation. To specify other postprocessing sets add the
following to your parameter file:

<luminosityPostprocessSet value="default recent unabsorbed recentUnabsorbed"/>

where one set must be specified for each luminosity specified in the luminosityFilter parameter. Note
that set names can be reused in order to apply the same postprocessor set to multiple luminosities.
The chain of postprocessors to apply for each set is then specified as follows:

<stellarPopulationSpectraPostprocessRecentMethods value="inoue2014 recent"/>
<stellarPopulationSpectraPostprocessUnabsorbedMethods value="identity" />
<stellarPopulationSpectraPostprocessRecentUnabsorbedMethods value="recent" />

In this case we’ve constructed three new sets, in addition to the default set (which applies just the
inoue2014 postprocessor). The recent set applies both the inoue2014 IGM absorption postprocessor,
followed by the recent postprocessor to retain only recently emitted light. The unabsorbed set ignores
IGM absorption entirely—it does this by using the identity postprocessor which leaves the spectrum
unaffected. Finally, the recentUnabsorbed set applies only the recent filter while ignoring IGM absorp-
tion.
In this way it is relatively easy to extract multiple different measures of luminosity from a Galacticus

model. For example, you could construct four postprocessor sets, each corresponding to one of the four
different IGM absorption models (lycSuppress, madau1995, meiksin2006, and inoue2014) and apply
these to the same luminosity filter to assess how luminosity depends on the IGM model used.
8Perhaps so that additional dust extinction can be applied to the light of recently formed stars.

41

https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#section.13.49
https://users.obs.carnegiescience.edu/abenson/galacticus/Galacticus_v0.9.4.pdf#subsection.13.49.1

4 Tutorials

4.6.2 Migrating Parameter Files to a New Version
The names and allowed values of parameters often change between versions of Galacticus. To permit
easy and error-free migration between versions a script is provided to translate parameter files from earlier
to later versions. To migrate a parameter file simply use:

scripts/aux/parametersMigrate.pl parameters.xml newParameters.xml

By default, this script will translate from the previous to the current version of Galacticus. If your pa-
rameter file contains a version element then this will be used to determine which version of Galacticus
the parameter file was constructed for. The migration script will then migrate the parameter file through
all intermediate versions to bring it into compliance with the current version. You can also specify input
and output versions directly:

scripts/aux/parametersMigrate.pl parameters.xml newParameters.xml --inputVersion 0.9.0 --outputVersion 0.9.3

will convert parameters.xml from version 0.9.0 syntax to version 0.9.3 syntax.

4.6.3 Computing Emission Lines
Galacticus can compute emission line luminosities for galaxies. This calculation is based on the method-
ology of Panuzzo et al. [2003]. Briefly, HII region models are constructed using Cloudy for a variety of
gas densities and metallicities, and HI, HeI, and OII ionizing luminosities. Emission line luminosities are
then computed by interpolating in these tables based on the instantaneous properties of model galaxies.
To compute emission line luminosities it is therefore necessary to run Galacticus including the follow-

ing rest-frame luminosity filters at each redshift of interest: Lyc, HeliumContinuum, OxygenContinuum.
This causes the ionizing luminosity for each three species to be computed and output. Emission line lumi-
nosities can then be found using Galacticus’s data extraction modules (see §2.2), by simply importing
the Galacticus::EmissionLines module. Emission line luminosites (in units of Solar luminosities) can
then be accessed as named properties using names such as totalLineLuminosity:balmerAlpha6563:rest:z0.0000,
which will return the Hα luminosity at z = 0. Equivalent properties for disk and spheroid are provided
(simply replace “total” with “disk” or “spheroid”). Currently available lines are:

• balmerAlpha6563

• balmerBeta4861

• oxygenII3726

• oxygenII3729

• oxygenIII4959

• oxygenIII5007

• nitrogenII6584

• sulfurII6731

• sulfurII6716

Additionally, if a line is requested as totalLineLuminosity:balmerAlpha6563:<filterName>:rest:z0.0000
then the line luminosity is computed under the provided filter, and the luminosity is returned in units of
maggies for easy conversion to magnitudes.

42

4.6 Outputting Stellar Luminosities

4.6.4 Reionization Calculations
Galacticus can self-consistently solve for the evolution of the IGM as it becomes photoionized by light
emitted by stars and AGN. To activate this calculation, include the following in your parameters file:

<!-- IGM evolver -->
<intergalacticMediumStateMethod value="internal"/>
<igmPropertiesCompute value="true" />
<igmPropertiesTimeCountPerDecade value="10" />

<!-- Background radiation -->
<backgroundRadiationCompute value="true" />
<radiationIntergalacticBackgroundMethod value="internal"/>
<backgroundRadiationWavelengthCountPerDecade value="50" />
<backgroundRadiationTimeCountPerDecade value="10" />

<!-- Halo accretion options -->
<accretionHaloMethod value="naozBarkana2007"/>

The first block of parameters switches Galacticus to using an internal calculation for the state of the
IGM, instructs it to solve for IGM properties as a function of time, and specifies that IGM properties
should be updated 10 times per decade of cosmic time. Specifically, at each of these time intervals,
solving of galaxy evolution is halted and the IGM evolved up to this time using the currently computed
photoionizing background spectrum.
The second block of parameters activates an internal calculation of cosmic background radiation, in

which the background is computed from the emissivities of model galaxies and AGN. The number of
points at which to tabulate the background per decade of wavelength and cosmic time are specified.
Finally, the third block of parameters tells Galacticus to use the Naoz and Barkana [2007] prescription

for computing gas accretion into halos from the IGM. This prescription uses the filtering mass to determine
accretion rates, and will take the filtering mass from the internal IGM evolution calculation.
With these three sets of configurations, Galacticus will perform a self-consistent evolution of the

IGM—in the sense that the IGM is ionized by photons emitted by model galaxies and AGN, while
galaxy evolution is affected by the computed state of the model IGM. Note that, when run in this way,
Galacticus needs to keep all merger trees in memory simultaneously (as they are run synchronously to
allow the IGM properties to evolved alongside galaxy properties).
Once completed, data on the IGM and background radiation are written to the output file in the

igmProperties and backgroundRadiation groups respectively.

43

Bibliography

Michael Boylan-Kolchin, Chung-Pei Ma, and Eliot Quataert. Dynamical friction and galaxy merging time-
scales. MNRAS, 383:93–101, 2008. URL http://adsabs.harvard.edu/abs/2008MNRAS.383...93B.
4.1.1

Stéphane Charlot and S. Michael Fall. A simple model for the absorption of starlight by dust in galax-
ies. The Astrophysical Journal, 539:718–731, August 2000. URL http://adsabs.harvard.edu/abs/
2000ApJ...539..718C. 2.2.1

Andrea Ferrara, Simone Bianchi, Andrea Cimatti, and Carlo Giovanardi. An atlas of monte carlo models
of dust extinction in galaxies for cosmological applications. Astrophysical Journal Supplement Series,
123:437–445, August 1999. URL http://adsabs.harvard.edu/abs/1999ApJS..123..437F. 2.2.1, 4.4

Stuart P. D. Gill, Alexander Knebe, and Brad K. Gibson. The evolution of substructure - i. a new
identification method. Monthly Notices of the Royal Astronomical Society, 351:399–409, June 2004.
ISSN 0035-8711. doi: 10.1111/j.1365-2966.2004.07786.x. URL http://adsabs.harvard.edu/abs/
2004MNRAS.351..399G. 4.6.4

Martha P. Haynes, Riccardo Giovanelli, Ann M. Martin, Kelley M. Hess, Amélie Saintonge, Eliza-
beth A. K. Adams, Gregory Hallenbeck, G. Lyle Hoffman, Shan Huang, Brian R. Kent, Rebecca A.
Koopmann, Emmanouil Papastergis, Sabrina Stierwalt, Thomas J. Balonek, David W. Craig, Sarah
J. U. Higdon, David A. Kornreich, Jeffrey R. Miller, Aileen A. O’Donoghue, Ronald P. Olowin, Jes-
sica L. Rosenberg, Kristine Spekkens, Parker Troischt, and Eric M. Wilcots. The arecibo legacy fast
ALFA survey: The Îś.40 h i source catalog, its characteristics and their impact on the derivation of
the h i mass function. The Astronomical Journal, 142:170, November 2011. ISSN 0004-6256. doi:
10.1088/0004-6256/142/5/170;. URL http://adsabs.harvard.edu/abs/2011AJ....142..170H. 2.2,
2.8.1

Christopher C. Hayward, DuÅąan KereÅą, Patrik Jonsson, Desika Narayanan, T. J. Cox, and Lars
Hernquist. What does a submillimeter galaxy selection actually select? the dependence of submillimeter
flux density on star formation rate and dust mass, December 2010. URL http://adsabs.harvard.
edu/abs/2011arXiv1101.0002H. 2.2.1, 2.2.1

Philip F. Hopkins, Gordon T. Richards, and Lars Hernquist. An observational determination of the
bolometric quasar luminosity function. The Astrophysical Journal, 654:731–753, January 2007. URL
http://adsabs.harvard.edu/abs/2007ApJ...654..731H. 2.2.1

Steffen R. Knollmann and Alexander Knebe. AHF: amiga’s halo finder. The Astrophysical Journal
Supplement Series, 182:608–624, June 2009. ISSN 0067-0049. doi: 10.1088/0067-0049/182/2/608.
URL http://adsabs.harvard.edu/abs/2009ApJS..182..608K. 4.6.4

Ann M. Martin, Emmanouil Papastergis, Riccardo Giovanelli, Martha P. Haynes, Christopher M.
Springob, and Sabrina Stierwalt. The arecibo legacy fast ALFA survey. x. the h i mass function
and Îľ_H i from the 40% ALFALFA survey. The Astrophysical Journal, 723:1359–1374, November
2010. ISSN 0004-637X. doi: 10.1088/0004-637X/723/2/1359;. URL http://adsabs.harvard.edu/
abs/2010ApJ...723.1359M. 2.8.1

45

http://adsabs.harvard.edu/abs/2008MNRAS.383...93B
http://adsabs.harvard.edu/abs/2000ApJ...539..718C
http://adsabs.harvard.edu/abs/2000ApJ...539..718C
http://adsabs.harvard.edu/abs/1999ApJS..123..437F
http://adsabs.harvard.edu/abs/2004MNRAS.351..399G
http://adsabs.harvard.edu/abs/2004MNRAS.351..399G
http://adsabs.harvard.edu/abs/2011AJ....142..170H
http://adsabs.harvard.edu/abs/2011arXiv1101.0002H
http://adsabs.harvard.edu/abs/2011arXiv1101.0002H
http://adsabs.harvard.edu/abs/2007ApJ...654..731H
http://adsabs.harvard.edu/abs/2009ApJS..182..608K
http://adsabs.harvard.edu/abs/2010ApJ...723.1359M
http://adsabs.harvard.edu/abs/2010ApJ...723.1359M

Bibliography

S. Naoz and R. Barkana. The formation and gas content of high-redshift galaxies and minihaloes. Monthly
Notices of the Royal Astronomical Society, 377:667–676, May 2007. ISSN 0035-8711. doi: 10.1111/j.
1365-2966.2007.11636.x. URL http://adsabs.harvard.edu/abs/2007MNRAS.377..667N. 4.6.4

R. Narayan, R. Mahadevan, and E. Quataert. Advection-dominated accretion around black holess. page
148, 1998. URL http://adsabs.harvard.edu/abs/1998tbha.conf..148N. 4.6.4

D. Obreschkow, D. Croton, G. De Lucia, S. Khochfar, and S. Rawlings. Simulation of the cosmic
evolution of atomic and molecular hydrogen in galaxies. The Astrophysical Journal, 698:1467–1484,
June 2009. ISSN 0004-637X. doi: 10.1088/0004-637X/698/2/1467. URL http://adsabs.harvard.
edu/abs/2009ApJ...698.1467O. 2.8.1, 2.8.1

P. Panuzzo, A. Bressan, G. L. Granato, L. Silva, and L. Danese. Dust and nebular emission. i. models
for normal galaxies. Astronomy and Astrophysics, 409:99–114, October 2003. URL http://adsabs.
harvard.edu/abs/2003%26A...409...99P. 4.6.3

Laura Silva, Gian Luigi Granato, Alessandro Bressan, and Luigi Danese. Modeling the effects of dust
on galactic spectral energy distributions from the ultraviolet to the millimeter band. The Astrophysi-
cal Journal, 509:103–117, December 1998. URL http://adsabs.harvard.edu/abs/1998ApJ...509.
.103S. 2.5

Ryuichi Takahashi, Masamune Oguri, Masanori Sato, and Takashi Hamana. Probability distribution
functions of cosmological lensing: Convergence, shear, and magnification. The Astrophysical Journal,
742:15, November 2011. doi: 10.1088/0004-637X/742/1/15;. URL http://adsabs.harvard.edu/abs/
2011ApJ...742...15T. 2.2.1

M. A. Zwaan, M. J. Meyer, L. Staveley-Smith, and R. L. Webster. The HIPASS catalogue: ωHI and
environmental effects on the HI mass function of galaxies. Monthly Notices of the Royal Astronomi-
cal Society, 359:L30–L34, May 2005. URL http://adsabs.harvard.edu/abs/2005MNRAS.359L..30Z.
2.8.1

Martin A. Zwaan, Frank H. Briggs, David Sprayberry, and Ertu Sorar. The h i mass function of galaxies
from a deep survey in the 21 centimeter line. The Astrophysical Journal, 490:173, November 1997. ISSN
0004-637X. doi: 10.1086/304872. URL http://adsabs.harvard.edu/abs/1997ApJ...490..173Z.
2.8.1

46

http://adsabs.harvard.edu/abs/2007MNRAS.377..667N
http://adsabs.harvard.edu/abs/1998tbha.conf..148N
http://adsabs.harvard.edu/abs/2009ApJ...698.1467O
http://adsabs.harvard.edu/abs/2009ApJ...698.1467O
http://adsabs.harvard.edu/abs/2003%26A...409...99P
http://adsabs.harvard.edu/abs/2003%26A...409...99P
http://adsabs.harvard.edu/abs/1998ApJ...509..103S
http://adsabs.harvard.edu/abs/1998ApJ...509..103S
http://adsabs.harvard.edu/abs/2011ApJ...742...15T
http://adsabs.harvard.edu/abs/2011ApJ...742...15T
http://adsabs.harvard.edu/abs/2005MNRAS.359L..30Z
http://adsabs.harvard.edu/abs/1997ApJ...490..173Z

Glossary

AB magnitude An astronomical magnitude system in which the apparent magnitude is defined as m =
−2.5 log10 f − 48.60 for a flux density, f , measured in ergs per second per square centimeter per
hertz. 48

ADAF An advection-dominated accretion flow (ADAF) is a particular solution for an accretion flow
around a black hole, star or compact object in which energy liberated by viscous forces is stored
within the accretion flow and advected inward to the central object (see Narayan et al. 1998). 49

AHF Amiga’s Halo Finder (AHF) is a software package which identifies dark matter halos in N-body
simulations. Full details are given by Gill et al. [2004] and Knollmann and Knebe [2009]. 49

BIE The Bayesian Inference Engine (BIE) is a software package designed to facilitate exploration of
complexes parameter spaces using Bayesian techniques.. 49

CDF Cumulative Distribution Function (CDF) is a function which describes the cumulative probability
for a random variable to be equal to or less than a given value.. 49

CDM Cold dark matter (CDM) is a hypothesized type of dark matter in which the particles move slowly
compared to the speed of light. 49

component An individual physical system within a node, such as a dark matter halo, a galactic disk or
a supermassive black hole. 47

deadlock A deadlock describes a situation in which no node in a merger tree (or forest) can be evolved
further forward in time due to the existence of circular dependencies between nodes. Deadlocks can
occur due to incompatible parameter choices, or may indicate a bug in Galacticus.. 28

DSL Domain-specific languages (DSL) are a type of programming language dedicated to a particular
problem. In Galacticus a DSL is used to specify the structure of components. 49

forest A collection of merger trees that are linked together by virtue of nodes which jump between trees.
28

GAMA The Galaxy and Mass Assembly (GAMA) survey is a spectroscopic survey of ≈ 300, 000 galaxies
down to r < 19.8 mag over ≈ 286 deg2.. 49

GSL GNU Scientific Library (GSL) is a library providing a variety of numerical algorithms.. 49

HDF5 The hierarhical data format (version 5; HDF5) is a file format designed for storing scientific data..
49

HOD A halo occupation distribution (HOD) is a mathematical model describing the distribution of the
number of galaxies (of some given physical properties) found in a dark matter halo of given mass..
49

47

http://popia.ft.uam.es/AHF/files/AHF.pdf
http://www.astro.umass.edu/BIE/
https://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cold_dark_matter
http://en.wikipedia.org/wiki/Domain-specific_language
http://www.gama-survey.org/
http://www.gnu.org/software/gsl/
https://www.hdfgroup.org/HDF5/

Glossary

Lyman continuum The part of the electromagnetic spectrum which is capable of ionizing hydrogen, i.e.
photons with wavelengths shorter than 91.1267 nanometres and with energy above 13.6 eV. 12

maggie A unit of luminosity defined to be equal to the luminosity of a zeroth magnitude object in the
AB magnitude system. 13, 42

MPI Message Passing Interface (MPI) is a standard for passing messages between processes on parallel
computers.. 49

node A single point in a merger tree, consisting of a dark matter halo and associated baryons. 28, 29,
47

PAH Polycyclic aromatic hydrocarbons (PAH) are large organic molecules consisting of fused aromatic
rings. 49

PBS Portable Batch System (PBS) is a job scheduler used on many compute cluster environments.. 49

PDF Probability Density Function (PDF) is a function which describes the probability for a random
variable to take on a given value.. 49

SAM Semi-analytic models (SAMs) are a type of galaxy formation model utilizing simple parameter-
izations of physical processes to follow the evolution of galaxies through a merging hierarchy of
galaxies.. 49

UUID A universally unique identifier—this is a label which uniquely identifies some object (in this case,
a Galacticus model). 17

WDM Warm dark matter (WDM) is a hypothesized type of dark matter in which the particle has
non-negligible thermal velocity at decoupling. 49

48

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon
http://en.wikipedia.org/wiki/Portable_Batch_System
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Warm_dark_matter

Acronyms

ADAF advection-dominated accretion flow. Glossary: ADAF

AHF Amiga’s Halo Finder. Glossary: AHF

BIE semi-analytic model. Glossary: BIE

CDF cumulative distribution function. Glossary: CDF

CDM cold dark matter. Glossary: CDM

DSL domain-specific language. Glossary: DSL

GAMA Galaxy and Mass Assembly. Glossary: GAMA

GSL GNU Scientific Library. Glossary: GSL

HDF5 hierarchical data format. 11, 38, Glossary: HDF5

HOD halo occupation distribution. Glossary: HOD

IGM intergalactic medium. 41, 43

IMF initial mass function. 37

ISM interstellar medium. 20

MPI message passing interface. Glossary: MPI

PAH polycyclic aromatic hydrocarbon. 40, Glossary: PAH

PBS portable batch system. Glossary: PBS

PDF probability density function. Glossary: PDF

SAM semi-analytic model. Glossary: SAM

SED spectral energy distribution. 17, 39, 40

SNe supernovae. 37

WDM warm dark matter. Glossary: WDM

49

Index

mergerTreeWeight, 14

AGN, 13
analysis

on-the-fly, 18

clustering
halo model, 14

continuum radiation
Lyman continuum, 13

dust
attenuation, 38
attenutation, 38
emission, 38
extinction, 11
reprocessing, 15

emission lines, 13, 42

flux
sub-mm, 12

forests
large, 35

galaxies
weighting, 14

galaxy
luminosities, 40

GraphViz, 25
Grasil, 15, 38
gravitational lensing, 13

halo model, 14
halos

host mass, 11
histograms, 18
history

global, 6

instantaneous recycling approximation, 37

lensing
gravitational, 13

lightcone, 36
lines

emission, 13, 42
luminosities

galactic, 40
stellar, 40

Lyman continuum, 13

merger trees
graphing, 25
large, 35
N-body, 27

metadata, 17
migration, 42
Millennium Simulation, 36
mock catalog, 36

N-body
merger trees, 27

nodes
host mass, 11

orbits
N-body, 31
setting, 31
virial, 31

output
redshift, 7

outputs
global history, 6

parameters, 42
plotting, 23

recycling
instantaneous, 37

redshift
output, 7

reionization, 43

samples
volume limited, 14

satellites
host mass, 11

50

INDEX

star formation rate
peak, 13

statistics
histograms, 18
Perl modules, 18

stellar
luminosities, 40

units, 6

51

	About Galacticus
	License

	Extracting and Analyzing Results
	General Structure of Output File
	UUID
	Build Information
	Filters
	Parameters
	Version
	globalHistory
	Outputs
	nodeData group
	mergerTree datasets
	mergerTree subgroups

	Optional Outputs
	Redshifts
	Mass Accretion Histories
	Merger Tree Dump
	Conditional Mass Functions
	Pre-Evolution Merger Trees

	Perl Module for Data Extraction
	Derived Properties
	Available Derived Properties

	Galaxy Clustering via the Halo Model

	Topics in Analysis of Galacticus Outputs
	Building Volume Limited Samples
	Building Redshift Catalogs

	Postprocessing Scripts
	Reprocessing Through Dust Using Grasil
	Using the Galacticus::Grasil Module

	Meta-Data in Plots
	Perl Statistics Modules
	Statistics::Histograms

	On-The-Fly Analysis
	ALFALFA HI Mass Function

	Plotting Support
	Plotting with Gnuplot
	Merger Tree Diagrams with dot

	Tutorials
	Running Galacticus on N-body Merger Trees
	Setting Input Parameters
	Further Details
	Node Positions
	Virial Orbits
	Merging Times and Targets
	Subhalo Indices
	Subhalo Masses
	Node Spins
	Node Scale Radii
	Miscellaneous N-body Properties
	Subhalo Promotion
	``Fly-by'' Halos

	Using Particles to Track Unresolved Subhalos
	Handling of Extremely Large Merger Tree Forests
	Analyzing the Output
	Positions and Velocities
	Subhalo Masses

	Generating Mock Catalogs with Lightcones from the Millennium Simulation
	Using the Instantaneous Recycling Approximation
	Computing Dust Attenuated Luminosities for All Galaxies
	Computing Dust Attenuation and Emission Using Galacticus+Grasil
	Outputting Stellar Luminosities
	Postprocessing of Stellar Spectra
	Migrating Parameter Files to a New Version
	Computing Emission Lines
	Reionization Calculations

	Glossary
	Acronyms

