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Abstract. In this work we describe an efficient implementation of a hierarchy of
algorithms for the decomposition of dense matrices over the field with two elements
(F2). Matrix decomposition is an essential building block for solving dense systems
of linear and non-linear equations and thus much research has been devoted to
improve the asymptotic complexity of such algorithms. In this work we discuss an
implementation of both well-known and improved algorithms in the M4RI library.
The focus of our discussion is on a new variant of the M4RI algorithm – denoted
MMPF in this work – which allows for considerable performance gains in practice
when compared to the previously fastest implementation. We provide performance
figures on x86 64 CPUs to demonstrate the viability of our approach.

1 Introduction

We describe an efficient implementation of a hierarchy of algorithms for PLS decompo-
sition of dense matrices over the field with two elements (F2). The PLS decomposition
is closely related to the well-known PLUQ and LQUP decompositions. However, it of-
fers some advantages in the particular case of F2. Matrix decomposition is an essential
building block for solving dense systems of linear and non-linear equations (cf. [11, 10])
and thus much research has been devoted to improve the asymptotic complexity of such
algorithms. In particular, it has been shown that various matrix decompositions such as
PLUQ, LQUP and LPS are essentially equivalent and can be reduced to matrix-matrix
multiplication (cf. [?]). Thus, we know that these decompositions can be achieved in
O(nω) where ω is the exponent of linear algebra3. In this work we focus on matrix de-
composition in the special case of F2 and discuss an implementation of both well-known
and improved algorithms in the M4RI library [3]. The M4RI library implements dense
linear algebra over F2 and is used by the Sage [15] mathematics software and the Poly-
BoRi [9] package for computing Gröbner bases. It is also the linear algebra library used
in [14, 13].

Our implementation focuses on 64-bit x86 architectures (x86 64), specifically the Intel
Core 2 and the AMD Opteron. Thus, we assume in this chapter that each native CPU
word has 64 bits. However it should be noted that our code also runs on 32-bit CPUs and
on non-x86 CPUs such as the PowerPC.

? This author was supported by the Royal Holloway Valerie Myerscough Scholarship.
3 For practical purposes we set ω = 2.807.



Element-wise operations over F2 are relatively cheap compared to loads from and
writes to memory. In fact, in this work we demonstrate that the two fastest implemen-
tations for dense matrix decomposition over F2 (the one presented in this work and the
one found in Magma [8] due to Allan Steel) perform worse for sparse matrices despite
the fact that fewer field operations are performed. This indicates that counting raw field
operations is not an adequate model for estimating the running time in the case of F2.

This work is organised as follows. We will start by giving the definitions of reduced row
echelon forms (RREF), PLUQ and PLS decomposition in Section 2 and establish their
relations. We will then discuss Gaussian elimination and the M4RI algorithm in Section 3
followed by a discussion of cubic PLS decomposition and the MMPF algorithm in 4. We
will then discuss asymptotically fast PLS decomposition in Section 5 and implementation
issues in Section 6. We conclude by giving empirical evidence of the viability of our
approach in Section 7.

2 RREF and PLS

Proposition 1 (PLUQ decomposition). Any m×n matrix A with rank r, can be writ-
ten A = PLUQ where P and Q are two permutation matrices, of dimension respectively
m×m and n× n, L is m× r unit lower triangular and U is r × n upper triangular.

Proof. See [?].

Proposition 2 (PLS decomposition). Any m×n matrix A with rank r, can be written
A = PLS where P is a permutation matrix of dimension m×m, L is m× r unit lower
triangular and S is an r× n matrix which is upper triangular except that its columns are
permuted, that is S = UQ for U r × n upper triangular and Q is a n × n permutation
matrix.

Proof. Write A = PLUQ and set S = UQ.

Another way of looking at PLS decomposition is to consider the A = LQUP de-
composition [12]. We have A = LQUP = LSP where S = QU . We can also write
A = LQUP = SUP where S = LQ. Applied to AT we then get A = PTUTST = P ′L′S′.
Finally, a proof for Proposition 2 can also be obtained by studying any one of the Algo-
rithms 9, 3 or 4.

Definition 1 (Row Echelon Form). An m × n matrix A is in echelon form if all
zero rows are grouped together at the last row positions of the matrix, and if the leading
coefficient of each non zero row is one and is located to the right of the leading coefficient
of the above row.

Proposition 3. Any m×n matrix can be transformed into echelon form by matrix mul-
tiplication.

Proof. See [?]

Note that while there are many PLUQ decompositions of any matrix A there is always
also a decomposition for which we have that S = UQT is a row echelon form of A. In



this work we compute A = PLS such that S is in row echelon form. Thus, a proof for
Proposition 3 can also be obtained by studying any one of the Algorithms 9, 3 or 4.

Definition 2 (Reduced Row Echelon Form). An m × n matrix A is in reduced
echelon form if it is in echelon form and each leading coefficient of a non zero row is the
only non zero element in its column.

3 Gaussian Elimination and M4RI

Gaussian elimination is the classical, cubic algorithm for transforming a matrix into (re-
duced) row echelon form using elementary row operations only. The “Method of the
Four Russians” Inversion (M4RI) [7] reduces the number of additions required by Gaus-
sian elimination by a factor of log n by using a caching technique inspired by Kronrod’s
method for matrix-matrix multiplication.

3.1 The “Method of the Four Russians” Inversion (M4RI)

The “Method of the Four Russians” inversion was introduced in [5] and later described
in [6] and [7]. It inherits its name and main idea from the misnamed “Method of the Four
Russians” multiplication [4, 1].

To give the main idea consider for example the matrix A of dimension m × n in
Figure 3.1. The k × n (k = 3) submatrix on the top has full rank and we performed
Gaussian elimination on it. Now, we need to clear the first k columns of A for the rows
below k (and above the submatrix in general if we want the reduced row echelon form).
There are 2k possible linear combinations of the first k rows, which we store in a table T .
We index T by the first k bits (e.g., 011→ 3). Now to clear k columns of row i we use the
first k bits of that row as an index in T and add the matching row of T to row i, causing
a cancellation of k entries. Instead of up to k additions this only costs one addition due to
the pre-computation. Using Gray codes (or similar techniques) this pre-computation can
be performed in 2k vector additions and the overall cost is 2k+m−k+k2 vector additions
in the worst case (where k2 accounts for the Gauss elimination of the k × n submatrix).
The naive approach would cost k ·m row additions in the worst case to clear k columns.
If we set k = logm then the complexity of clearing k columns is O

(
m + log2 m

)
vector

additions in contrast to O(m · logm) vector additions using the naive approach.
This idea leads to Algorithm 1. In this algorithm the subroutine GaussSubmatrix

(cf. Algorithm 8) performs Gauss elimination on a k × n submatrix of A starting at
position (r, c) and searches for pivot rows up to m. If it cannot find a submatrix of rank
k it will terminate and return the rank k found so far. Note the technicality that the
routine GaussSubmatrix and its interaction with Algorithm 1 make use of the fact that
all the entries in a column below a pivot are zero if they were considered already.

The subroutine MakeTable (cf. Algorithm 7) constructs the table T of all 2k linear
combinations of the k rows starting a row r and a column c, i.e. it enumerates all elements
of the vector space span(r, ..., r + k + 1) spanned by the rows r, . . . , r + k− 1. Finally, the
subroutine AddRowsFromTable (cf. Algorithm 6) adds the appropriate row from T –
indexed by k bits starting at column c – to each row of A with index i 6∈ {r, . . . , r+k−1}.
That is, it adds the appropriate linear combination of the rows {r, . . . , r + k − 1} onto a
row i in order to clear k columns.



A =



1 0 0 1 0 1 1 1 . . .
0 1 0 1 1 1 1 0 . . .
0 0 1 0 0 1 1 1 . . .

. . .
0 0 0 1 1 0 1 0 . . .
1 1 0 0 1 0 1 1 . . .
0 1 0 0 1 0 0 1 . . .

. . .
1 1 0 1 1 1 0 1 . . .


T =



0 0 0 0 0 0 0 0 . . .
0 0 1 0 0 1 1 1 . . .
0 1 0 1 1 1 1 0 . . .
0 1 1 1 1 0 0 1 . . .
1 0 0 1 0 1 1 1 . . .
1 0 1 1 0 0 0 0 . . .
1 1 0 0 1 0 0 1 . . .
1 1 1 0 1 1 1 0 . . .



Fig. 1. M4RI Idea

Note that the relation between the index id and the row j in T is static and known
a priori because GaussSubmatrix puts the submatrix in reduced row echelon form. In
particular this means that the k × k submatrix starting at (r, c) is the identity matrix.

Input: A – a m× n matrix
Input: k – an integer k > 0
Result: A is in reduced row echelon form.
begin

r, c←− 0, 0;
while c < n do

if c+ k > n then k ← n− c;
;

k ←− GaussSubmatrix(A, r, c, k,m);

if k > 0 then

T,L←− MakeTable(A, r, c, k);

AddRowsFromTable(A, 0, r, c, k, T, L);

AddRowsFromTable(A, r + k,m, c, k, T, L);

end

r, c←− r + k, c+ k;

if k 6= k then c← c+ 1;
;

end

end
Algorithm 1: M4RI

When studying the performance of Algorithm 1, we expect the function MakeTable

to contribute most. Instead of performing k/2·2k−1 additions MakeTable only performs

2k − 1 vector additions. However, in practice the fact that k columns are processed in
each loop iteration of AddRowsFromTable contributes signficiantly due to the better
cache locality. Assume the input matrix A does not fit into L2 cache. Gaussian elimination
would load a row from memory, clear one column and likely evict that row from cache in



order to make room for the next few rows before considering it again for the next column.
In the M4RI algorithm more columns are cleared per load.

We note that our presentation of M4RI differs somewhat from that in [6]. The key
difference is that our variant does not throw an error if it cannot find a pivot within
the first 3k rows in GaussSubmatrix. Instead, our variant searches all rows and conse-
quently the worst-case complexity is cubic. However, on average for random matrices we
expect to find a pivot within 3k rows and thus expect the average-case complexity to be
O
(
n3/ log n

)
.

4 M4RI and PLS Decomposition

In order to recover the PLS decomposition of some matrix A, we can adapt Gaussian
elimination to preserve the transformation matrix in the lower triangular part of the
input matrix A and to record all permutations performed. This leads to Algorithm 9 in
the Appendix which modifies A such that it contains L in below the main diagonal, S
above the main diagonal and returns P and Q such that PLS = A and SQT = U .

The main differences between Gaussian elimination and Algorithm 9 are:

– No elimination is performed above the currently considered row, i.e. the rows 0, . . . , r−
1 are left unchanged. Instead elimination starts below the pivot, from row r + 1.

– Column swaps are performed at the end of Algorithm 9 but not in Gaussian elimina-
tion. This step compresses L such that it is lower triangular.

– Row additions are performed starting at column r + 1 instead of r to preserve the
transformation matrix L. Over any other field we would have to rescale A[r, r] for the
transformation matrix L but over F2 this is not necessary.

4.1 The Method of Many People Factorisation (MMPF)

In order to use the M4RI improvement over Gaussian elimination for PLS decomposition,
we have to adapt the M4RI algorithm.

Column Swaps Since column swaps only happen at the very end of the algorithm we can
modify the M4RI algorithm in the obvious way to introduce them.

U vs. I Recall, that the function GaussSubmatrix generates small k×k identity matri-
ces. Thus, even if we remove the call to the function AddRowsFromTable(A, 0, r, c, k, T )
from Algorithm 1 we would still eliminate up to k− 1 rows above a given pivot and thus
would fail to produce U . The reason the original specification [5] of the M4RI requires
k×k identity matrices is to have a a priori knowledge of the relationship between id and
j in the function AddRowsFromTable. On the other hand the rows of any k×n upper
triangular matrix also form a basis for the k-dimensional vector space span(r, . . . , r+k−1).
Thus, we can adapt GaussSubmatrix to compute the upper triangular matrix instead
of the identity. Then, in MakeTable1 we can encode the actual relationship between a
row j of T and id in the lookup table L.



Preserving L In Algorithm 9 preserving the transformation matrix L is straight forward:
addition starts in column c + 1 instead of c. On the other hand, for M4RI we need to fix
the table T to update the transformation matrix correctly; For example, assume k = 3
and that the first row of the k × n submatrix generated by GaussSubmatrix has the
first k bits equal to [1 0 1]. Assume further that we want to clear k bits of a a row
which also starts with [1 0 1]. Then – in order to generate L – we need to encode that
this row is cleared by adding the first row only, i.e. we want the first k = 3 bits to be [1

0 0]. Recall that in the M4RI algorithm the id for the row j starting with [1 0 0] is [1
0 0] if expressed as a sequence of bits. Thus, to correct the table, we add the k bits of
the a priori id onto the first k entries in T (starting at c) as in MakeTable1.

Other Bookkeeping Recall that GaussSubmatrix’s interaction with Algorithm 1 uses the
fact that processed columns of a row are zeroed out to encode whether a row is “done” or
not. This is not true anymore if we compute the PLS decomposition instead of the upper
triangular matrix in GaussSubmatrix since we store L below the main diagonal. Thus,
we explicitly encode up to which row a given column is “done” in PlsSubmatrix (cf.
Algorithm 10). Finally, we have to take care not to include the transformation matrix L
when constructing T .

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T and the translation table L
begin

T ←− the 2k × n zero matrix;

for 1 ≤ i < 2k do
j ←− the row index of A to add according to the Gray code;
add row j of A to the row i of T starting at cstart;

end

L←− an integer array with 2k entries;

for 1 ≤ i < 2k do

id =
∑k

j=0 T [i, cstart + j] · 2k−j−1;

L[id]←− i;
end

for 1 ≤ i < 2k do
b0, . . . , bk−1 ←− bits of a priori id of the row i;

for 0 ≤ j < k do
T [i, cstart + j]←− T [i, cstart + j] + bj ;

end

end
return T,L;

end
Algorithm 2: MakeTable1

These modifications lead to Algorithm 3 which computes the PLS decomposition of
A in-place, that is L is stored below the main diagonal and S is stored above the main



diagonal of the input matrix. Since none of the changes to the M4RI algorithm affect
the asymptotical complexity, Algorithm 3 is cubic in the worst case and has complexity
O
(
n3/ log n

)
in the average case.

Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Input: k – an integer k > 0
Result: PLS decomposition of A
begin

r, c←− 0, 0;
for 0 ≤ i < n do Q[i]←− i;
;
for 0 ≤ i < m do P [i]←− i;
;
while r < m and c < n do

if c+ k > n then k ←− n− c;
;

k, dr ←− PlsSubmatrix(A, r, c, k, P,Q);

U ←− the k × n submatrix starting at (r, 0) where every entry prior to the upper
triangular matrix starting at (r, c) is zeroed out;

if k > 0 then

T,L←− MakeTable1(U, 0, c, k);

AddRowsFromTable(A, dr + 1,m, c, k, T, L);

r, c← r + k, c+ k;

else
// skip zero column

c← c+ 1;

end

end
// Now compress L

for 0 ≤ j < r do swap the columns j and Q[j] starting at row j;
;
return r;

end
Algorithm 3: MMPF

5 Asymptotically Fast PLS Decomposition

It is well-known that PLUQ decomposition can be accomplished in-place and in time
complexity O(nω) by reducing it to matrix-matrix multiplication (cf. [?]). We give a
slight variation of the recursive algorithm from [?] in Algorithm 4. We compute the PLS
instead of the PLUQ decomposition.

In Algorithm 4 the routine SubMatrix(rs, cs, re, ce) returns a “view” (cf. [2]) into
the matrix A starting at row and column rs and cs resp. and ending at row and column



Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A
begin

n0 ←− pick some integer 0 ≤ n0 < n; // n0 ≈ n/2
A0 ←− SubMatrix(A, 0, 0,m, n0);
A1 ←− SubMatrix(A, 0, n0,m, n);
Q0 ←− Q[0, . . . , n0];
r0 ←− PLS(A0, P,Q0); // first recursive call

for 0 ≤ i ≤ n0 do Q[i]← Q0[i];
;
ANW ←− SubMatrix(A, 0, 0, r0, r0);
ASW ←− SubMatrix(A, r0, 0,m, r0);
ANE ←− SubMatrix(A, 0, n0, r0, n);
ASE ←− SubMatrix(A, r0, n0,m, n);
if r1 then

// Compute of the Schur complement

A1 ←− P ×A1;
LNW ←− the lower left triangular matrix in ANW ;

ANE ←− L−1
NW ×ANE ;

ASE ←− ASE +ASW ×ANE ;

end
P1 ←− P [r0, . . . ,m];
Q1 ←− Q[n0, . . . , n];
r1 ←− PLS(ASE , P1, Q1); // second recursive call

ASW ←− P ×ASW ;
// Update P & Q

for 0 ≤ i < m− r0 do P [r0 + 1] = P1[i] + r0;
;
for 0 ≤ i < n− n0 do Q[n0 + i]← Q1[i] + n0;
;
j ← r0;
for n0 ≤ i < n0 + r1 do Q[j]← Q[i]; j ← j + 1;
;
// Now compress L

j ← n0;
for r0 ≤ i < r0 + r1 do swap the columns i and j starting at row i;
;
return r0 + r1;

end
Algorithm 4: PLS Decomposition



re and ce resp. We note that that the step ANE ←− L−1NW × ANE can be reduced
to matrix-matrix multiplication (cf. [?]). Thus Algorithm 4 can be reduced to matrix-
matrix multiplication and has complexity O(nω). Since no temporary matrices are needed
to perform the algorithm, except maybe in the matrix-matrix multiplication step, the
algorithm is in-place.

6 Implementation

Similarly to matrix multiplication (cf. [2]) it is beneficial to call Algorithm 4 until some
“cutoff” bound and to switch to a base-case implementation (in our case Algorithm 3)
once this bound is reached. We perform the switch over if the matrix fits into 4MB or
in L2 cache, whichever is smaller. These values seem to provide the best performance on
our target platforms.

The reason we are considering the PLS decomposition instead of either the LQUP or
the PLUQ decomposition is that the PLS decomposition has several advantages over F2,
in particular when the flat row-major representation is used to store entries.

– We may choose where to cut with respect to columns in Algorithm 4. In particular, we
may choose to cut along word boundaries. For LQUP decomposition, where roughly
all steps are transposed, column cuts are determined by the rank r0.

– In Algorithm 3 rows are added instead of columns. Row operations are much cheaper
than column operations in row-major representation.

– Column swaps do not occur in the main loop of either Algorithm 4 or 3, but only row
swaps are performed. Column swaps are only performed at the end. Column swaps
are much more expensive than row swaps (see below).

– Fewer column swaps are performed for PLS decomposition than for PLUQ decompo-
sition since U is not compressed.

One of the major bottleneck are column swaps. In Algorithm 5 a simple algorithm for
swapping two columns a and b is given with bit-level detail. In Algorithm 5 we assume
that the bit position of a is greater than the bit position of b for simplicity of presentation.
The advantage of the strategy in Algorithm 5 is that it uses no conditional jumps in the
inner loop, However, it still requires 9 instructions per row. On the other hand, we can
add two rows with 9 · 128 = 1152 entries in 9 instructions if the SSE2 instruction set
is available. Thus, for matrices of size 1152 × 1152 it takes roughly the same number of
instructions to add two matrices as it does to swap two columns. If we were to swap
every column with some other column once during some algorithm it thus would be as
expensive as a matrix multiplication for matrices of these dimensions.

Another bottleneck for relatively sparse matrices in dense row-major representation is
the search for pivots. Searching for a non-zero element in a row can be relatively expensive
due to the need to identify the bit position. However, the main performance penalty is
due to the fact that searching for a non-zero entry in one column is in a row-major
representation is very cache unfriendly.

Indeed, both our implementation and the implementation available in Magma suffer
from performance regression on relatively sparse matrices as shown in Figure 2. We stress
that this is despite the fact that the theoretical complexity of matrix decomposition is rank
sensitive, that is, strictly less field operations have to be performed for low rank matrices.



Input: A – a m× n matrix
Input: a – an integer 0 ≤ a < b < n
Input: b – an integer 0 ≤ a < b < n
Result: Swaps the columns a and b in A
begin

M ←− the memory where A is stored;
aw, bw ←− the word index of a and b in M ;
ab, bb ←− the bit index of a and b in aw and bw;
∆←− ab − bb;
am ←− the bit-mask where only the abth bit is set to 1;
bm ←− the bit-mask where only the bbth bit is set to 1;
for 0 ≤ i < m do

R←− the memory where the row i is stored;
R[aw]←− R[aw]⊕ ((R[bw]� bm) >> ∆);
R[bw]←− R[bw]⊕ ((R[aw]� am) << ∆);
R[aw]←− R[aw]⊕ ((R[bw]� bm) >> ∆);

end

end
Algorithm 5: Column Swap

While the penalty for relatively sparse matrices is much smaller for our implementation
than for Magma, it clearly does not achieve the theoretical possible performance. Thus,
we also consider a hybrid algorithm which starts with M4RI and switches to PLS-based
elimination as soon as the (approximated) density reaches 15%, denoted as ‘M+P 0.15’.

7 Results

In Table 1 we give average running time over ten trials for computing reduced row echelon
forms of dense random n × n matrices over F2. We compare the asymptotically fast im-
plementation due to Allan Steel in Magma, the cubic Gaussian elimination implemented
by Victor Shoup in NTL, and both our implementations. Both the implementation in
Magma and our PLS decomposition reduce matrix decomposition to matrix multiplica-
tion. A discussion and comparison of matrix multiplication in the M4RI library and in
Magma can be found in [2]. In Table 1 the column ‘PLS’ denotes the complete running
time for first computing the PLS decomposition and the computation of the reduced row
echelon form from PLS.

In Table 2 we give running times for matrices as they appear when solving non-linear
systems of equations. The matrices HFE 25, 30 and 35 were contributed by Michael
Brickenstein and appear during a Gröbner basis computation of HFE systems using
PolyBoRi. The Matrix MXL was contributed by Wael Said and appears during an
execution of the MXL2 algorithm [14] for a random quadratic system of equations. We
consider these matrices within the scope of this work since during matrix elimination the
density quickly increases and because even the input matrices are dense enough such that
we expect one non-zero element per 128-bit wide SSE2 XOR on average. The columns
‘M+P 0.xx’ denote the hybrid algorithms which start with M4RI and switch over to PLS
based echelon form computation once the density of the remaining part of the matrix
reaches 15% or 20% respectively. We note that the relative performance of the M4RI and
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Fig. 2. Sensitivity to density for n = 104 on 2.6Ghz Opteron

64-bit Linux, 2.6Ghz Opteron 64-bit Linux, 2.33Ghz Xeon (E5345)

n Magma NTL M4RI PLS Magma NTL M4RI PLS
2.15-10 5.4.2 20090105 20100324 2.16-7 5.4.2 20100324 20100324

10, 000 3.351s 18.45s 2.430s 1.452s 2.660s 12.05s 1.360s 0.864s
16, 384 11.289s 72.89s 10.822s 6.920s 8.617s 54.79s 5.734s 3.388s
20, 000 16.734s 130.46s 19.978s 10.809s 12.527s 100.01s 10.610s 5.661s
32, 000 57.567s 479.07s 83.575s 49.487s 41.770s 382.52s 43.042s 20.967s
64, 000 373.906s 2747.41s 537.900s 273.120s 250.193s – 382.263s 151.314s

Table 1. RREF for random matrices



the PLS algorithm for these instances depends on particular machine configuration. To
demonstrate this we give a set of timings for the Intel Xeon X7460 machine sage.math4

in Table 2. Here, PLS always is faster than M4RI, while on a Xeon E5345 M4RI wins for
all HFE examples. We note that Magma is not available on the machine sage.math. The
HFE examples show that the observed performance regression for sparse matrices does
have an impact in practice and that the hybrid approach does look promising for these
instances.

64-bit Fedora Linux, 2.33Ghz Xeon (E5345)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20
Dimension 2.16-7 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 3.68s 1.94s 2.09s 2.33s 2.24s
HFE 30 19, 907× 29, 323 0.067 23.39s 11.46s 13.34s 12.60s 13.00s
HFE 35 29, 969× 55, 800 0.059 – 49.19s 68.85s 66.66s 54.42s

MXL 26, 075× 26, 407 0.185 55.15 12.25s 9.22s 9.22s 10.22s

64-bit Ubuntu Linux, 2.66Ghz Xeon (X7460)

Problem Matrix Density M4RI PLS M+P 0.15 M+P 0.20
Dimension 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 2.24s 2.00s 2.39s 2.35s
HFE 30 19, 907× 29, 323 0.067 27.52s 13.29s 13.78s 22.9s
HFE 35 29, 969× 55, 800 0.059 115.35s 72.70s 84.04s 122.65s

MXL 26, 075× 26, 407 0.185 26.61s 8.73s 8.75s 13.23s

64-bit Debian/GNU Linux, 2.6Ghz Opteron)

Problem Matrix Density Magma M4RI PLS M+P 0.15 M+P 0.20
Dimension 2.15-10 20100324 20100324 20100429 20100429

HFE 25 12, 307× 13, 508 0.076 4.57s 3.28s 3.45s 3.03s 3.21s
HFE 30 19, 907× 29, 323 0.067 33.21s 23.72s 25.42s 23.84s 25.09s
HFE 35 29, 969× 55, 800 0.059 278.58s 126.08s 159.72s 154.62s 119.44s

MXL 26, 075× 26, 407 0.185 76.81s 23.03s 19.04s 17.91s 18.00s
Table 2. RREF for matrices from practice.
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A Support Algorithms

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: rend – an integer 0 ≤ rstart ≤ rend < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Input: T – a 2k × n matrix
Input: L – an integer array of length 2k

begin
for rstart ≤ i < rend do

id =
∑k

j=0A[i, cstart + j] · 2k−j−1;

j ←− L[id];
add row j from T to the row i of A starting at column cstart;

end

end
Algorithm 6: AddRowsFromTable

Input: A – a m× n matrix
Input: rstart – an integer 0 ≤ rstart < m
Input: cstart – an integer 0 ≤ cstart < n
Input: k – an integer k > 0
Result: Retuns an 2k × n matrix T
begin

T ←− the 2k × n zero matrix;

for 1 ≤ i < 2k do
j ←− the row index of A to add according to the Gray code;
add row j of A to the row i of T starting at column cstart;

end
L←− integer array allowing to index T by k bits starting at column cstart;
return T,L;

end
Algorithm 7: MakeTable



Input: A – a m× n matrix
Input: r – an integer 0 ≤ r < m
Input: c – an integer 0 ≤ c < n
Input: k – an integer k > 0
Input: rend – an integer 0 ≤ r ≤ rend < m
Result: Returns the rank k ≤ k and puts the k × (n− c) submatrix starting at A[r, c] in

reduced row echelon form.
begin

rs ←− r;
for c ≤ j < c+ k do

found←− False;
for rs ≤ i < rend do

for 0 ≤ l < j − c do // clear the first columns

if A[i, c+ l] 6= 0 then add row r+ l to row i of A starting at column c+ l;
;

end
if A[i, j] 6= 0 then // pivot?

Swap the rows i and rs in A;
for r ≤ l < rs do // clear above

if A[l, j] 6= 0 then add row rs to row l in A starting at column j;
;

end
rs ←− rs + 1;
found←− True;
break;

end

end
if found = False then

return j - c;
end

end
return j - c;

end
Algorithm 8: GaussSubmatrix



Input: A – a m× n matrix
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: PLS decomposition of A. Returns the rank of A.
begin

r, c← 0, 0;
while r < m and c < n do

found←− False;
for c ≤ j < n do // search for some pivot

for r ≤ i < m do
if A[i, j] then found← True and break; ;

end
if found then break;;

end
if found then

P [r], Q[r]←− i, j;
swap the rows r and i in A;
// clear below but preserve transformation matrix

if j + 1 < n then
for r + 1 ≤ l < m do

if A[l, j] then
add the row r to the row l starting at column j + 1;

end

end

end
r, c←− r + 1, j + 1;

else
break;

end

end
for r ≤ i < m do P [i]←− i ;
;
for r ≤ i < n do Q[i]←− i ;
;
// Now compress L

for 0 ≤ j < r do swap the columns j and Q[j] starting at row j;
;
return r;

end
Algorithm 9: Gaussian PLS Decomposition



Input: A – a m× n matrix
Input: sr – an integer 0 ≤ sr < m
Input: sc – an integer 0 ≤ sc < n
Input: k – an integer k > 0
Input: P – a permutation vector of length m
Input: Q – a permutation vector of length n
Result: Returns the rank k ≤ k and dr – the last row considered.
Also puts the k × (n− c) submatrix starting at (r, c) in PLS decomposition form.
begin

done←− all zero integer array of length k;
for 0 ≤ r < k do

found←− False;
for sr + r ≤ i < m do // search for some pivot

for 0 ≤ l < r do // clear before

if done[l] < i then
if A[i, sc + l] 6= 0 then

add row sr + l to row i in A starting at column sc + l + 1;
end
done[l]←− i;

end

end
if A[i, sc + r] 6= 0 then

found←− True;
break;

end

end
if found = False then break;
;
P [sr + r], Q[sr + r]←− i, sc + r;
swap the rows sr + r and i in A;
done[r]←− i;

end

dr ←− max({done[i] | i ∈ {0, . . . , k − 1}});
for 0 ≤ c2 < k and r + c2 < n− 1 do // finish submatrix

for done[c2] < r2 ≤ dr do
if A[r2, r + c2] 6= 0 then

add row r + c2 to row r2 in A starting at column r + c2 + 1;
end

end

end
return r, dr;

end
Algorithm 10: PlsSubmatrix


