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ABSTRACT

We describe a photon-conserving numerical method that solves the radiative

transfer equation, using a spatially-adaptive ray tracing scheme, and its parallel

implementation into the adaptive mesh refinement (AMR) code, Enzo. Coupling

the solver with the energy equation and non-equilibrium chemistry network, our

radiation hydrodynamics framework can be utilized to study a broad range of

astrophysical problems, such as stellar and black hole (BH) feedback. Inaccu-

racies can arise from large timesteps and poor sampling, therefore we devised

an adaptive time-stepping scheme and a fast approximation of the optically-thin

radiation field with multiple sources. We test the method with several radiative

transfer and radiation hydrodynamics tests that are given in Iliev et al. (2006a,

2009). We further test our method with more dynamical situations, for exam-

ple, the propagation of an ionization front through a Rayleigh-Taylor instability,

time-varying luminosities, and collimated radiation. This method linearly scales

with the number of point sources and number of grid cells. To combat this, we

use a novel method of merging rays at large radius, using a tree method, which

we briefly describe. Our implementation is scalable to O(103) processors on dis-

tributed and shared memory machines and can include radiation pressure and

secondary ionizations from X-ray radiation. It is included in the newest public

release of Enzo.
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1. Introduction

Radiative transfer is ubiquitous in many astrophysical problems, encompassing topics

such as stellar atmospheres, the interstellar medium (ISM), star formation, galaxy formation,

supernovae (SNe) and cosmology. Thus it is a well-studied problem (e.g. Mathews 1965;

Rybicki & Lightman 1979; Mihalas & Mihalas 1984; Yorke 1986); however, its treatment in

multi-dimensional calculations is difficult because of the dependence on seven variables —

three spatial, two angular, frequency, and time. The non-local nature of the thermal and

hydrodynamical response to radiation sources further adds to the difficulty. In the general

case, one must consider all radiation sources at every point in calculation.

Fortunately problems can be simplified by exploiting symmetries and special cases. The

first case was considered by Strömgren (1939) for a radiation source ionizing a static uniform

neutral medium, where recombinations balance photo-ionizations. He derived a radius of an

H II region,

Rs =

(

3Ṅγ

4παBn2
H

)1/3

, (1)

where Ṅγ is the ionizing photon luminosity, αB is the recombination rate, and nH is the

ambient hydrogen number density. Furthermore he found that the delineation between

the neutral and ionized medium to be approximately the mean free path of the ionizing

radiation. His seminal work was expanded upon by Spitzer (1948, 1949, 1954) and Spitzer

& Savedoff (1950), who showed that the ionizing radiation heated the medium to T ∼ 104

K. If the density is equal on both sides of the ionization front, then this over-pressurized

region would expand and drive a shock outwards (e.g. Oort 1954; Schatzman & Kahn 1955).

These early works provided the basis for the modern topic of radiation hydrodynamics. A

decade later, the first radiation hydrodynamical numerical models of H II regions in spherical

symmetry and plane-parallel ionization fronts were developed (e.g. Mathews 1965; Lasker

1966; Hjellming 1966). They described the expansion of the ionization front and the evolution

of its associated shock wave that carries most of the gas away from the source. At the same

time, theoretical models of ionization fronts matured and were classified by Kahn (1954)

and Axford (1961) as either R-type (rare) or D-type (dense). In R-type fronts, the ionized

gas density is higher than the neutral gas density, and in D-type fronts, the opposite is

true. R-type fronts travel supersonically with respect to the neutral gas, whereas D-type

front are subsonic. Furthermore “weak” and “strong” R-type fronts move supersonically and

subsonically with respect to the ionized gas, respectively. The same terminology conversely

applies to D-type fronts. “Critical” fronts are defined as moving exactly at the sound speed.

These works established the evolutionary track of an expanding H II illuminated by a massive

star in a uniform medium:
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1. Weak R-type—When the star (gradually) starts to shine, the ionization front will

move supersonically through the ambient medium. The gas is heated and ionized, but

otherwise left undisturbed. This stage continues until r ∼ 0.02Rs.

2. Critical R-type—As the ionization front moves outwards, it begins to slow because of

the geometric dilution of the radiation. It becomes a critical R-type front, which is

equivalent to an isothermal shock in the neutral gas.

3. Strong and weak D-type—The front continues to slow, becoming a strong D-type front,

and then a critical D-type front. From this point forward, it is moving subsonically

with respect to the ionized gas, i.e. a weak D-type front. Thus sound waves can travel

across the ionization front and form a shock. The ionization front detaches from the

shock, putting the shock ahead of the ionization front.

4. Expansion phase—After the shock forms, the H II region starts to expand, lowering

the interior density and thus the recombination rates. This increases the number of

photons available for ionizing the gas. The sphere expands until it reaches pressure

equilibrium with the ambient medium at r ∼ 5Rs.

In the 1970’s and 1980’s, algorithmic and computational advances allowed numerical

models to be expanded to two dimensions, mainly using axi-symmetric to simplify the prob-

lem (e.g. Bodenheimer et al. 1979; Sandford et al. 1982; Yorke et al. 1983). One topic that

was studied extensively were champagne flows. Here the source is embedded in an overdense

region, and the H II region escapes from this region in one direction. The interface between

the ambient and dense medium was usually set up to be a constant pressure boundary. When

the ionization front passes this boundary, the dense, ionized gas is orders of magnitude out

of pressure equilibrium as the temperatures on both sides of initial boundary are within a

factor of a few. In response, the gas is accelerated outwards in this direction, creating a

fan-shaped outflow.

Only in the past 15 years, computational resources have become large enough, along

with further algorithmic advances, to cope with the requirements of three-dimensional cal-

culations. There are two popular methods to solve the radiative transfer equation in three-

dimensions:

• Moment methods—The angular moments of the radiation field can describe its angular

structure, which are related to the energy energy, flux, and radiation pressure (Auer &

Mihalas 1970; Norman et al. 1998). These have been implemented in conjunction with

short characteristics (Stone et al. 1992, 2D), with long characteristics (Finlator et al.

2009), with a variable Eddington tensor in the optically thin limit (OTVET; Gnedin
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& Abel 2001; Petkova & Springel 2009), and with an M1 closer relation (González

et al. 2007; Aubert & Teyssier 2008). Moment methods have the advantage of being

fast, being independent of the number of radiation point sources. However, they are

diffusive and result in incorrect shadows in some situations.

• Ray tracing—Radiation can be propagated along rays that extend through the com-

putational grid (e.g. Razoumov & Scott 1999; Abel et al. 1999; Ciardi et al. 2001;

Sokasian et al. 2001; Whalen & Norman 2006; Rijkhorst et al. 2006; Mellema et al.

2006; Alvarez et al. 2006a; Trac & Cen 2007; Krumholz et al. 2007; Paardekooper et al.

2010) or particle set (e.g. Susa 2006; Johnson et al. 2007; Pawlik & Schaye 2008, 2010;

Altay et al. 2008; Hasegawa et al. 2009). In general, these methods are very accurate

but computationally expensive because the radiation field must be well sampled by the

rays with respect to the spatial resolution of the grid or particles.

Until the mid-2000’s the vast majority of the three-dimensional calculations were performed

with static density distributions. One example is calculating cosmological reionization by

post-processing of density fields from N-body simulations (Ciardi et al. 2001; Sokasian et al.

2001; McQuinn et al. 2007; Iliev et al. 2006b, 2007). Any hydrodynamical response to the

radiation field was thus ignored. Several radiative transfer codes were compared in four

purely radiative transfer tests in Iliev et al. (2006a, hereafter RT06). Only recently has the

radiative transfer equation been coupled to the hydrodynamics in three-dimensions. In the

second comparison paper (Iliev et al. 2009, hereafter RT09), results from these radiation

hydrodynamics codes were compared. Even more rare are ones that couple it with magneto-

hydrodynamics (e.g. Krumholz et al. 2007). The tests in RT06 and RT09 were kept relatively

simple to ease the comparison.

In this paper, we present our implementation, Enzo+Moray, of adaptive ray tracing

(Abel & Wandelt 2002) in the cosmological hydrodynamics adaptive mesh refinement (AMR)

code, Enzo (Bryan & Norman 1997; O’Shea et al. 2004). The radiation field is coupled to

the hydrodynamics solver at small timescales, enabling it to study radiation hydrodynamical

problems. We have used this code to investigate the growth of an H II region from a

100M⊙ Population III (Pop III) star (Abel et al. 2007), radiative feedback on the formation

of high redshift dwarf galaxies (Wise & Abel 2008b), the early stages of reionization from

Pop III stars (Wise & Abel 2008a), ultraviolet radiation escape fractions from dwarf galaxies

before reionization (Wise & Cen 2009), radiative negative feedback from accreting Pop III

seed black holes (Alvarez et al. 2009), and radiative feedback in accreting supermassive black

holes (Kim et al. 2011, in prep.). We have included Enzo+Moray in the latest public release
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of Enzo
1, and it is also coupled with the newly added MHD solver in Enzo (Wang & Abel

2009).

We have structured this paper as follows. In Section 2, we describe the connections

between adaptive ray tracing and the radiative transfer equation. Furthermore, we detail

how physics other than photo-ionization and photo-heated are included. We then derive

a geometric correction factor to any ray tracing method to improve accuracy. We end

the section by describing a new computational technique to approximate an optically-thin

radiation field with ray tracing and multiple sources. In Section 3, we cover the details of our

radiation hydrodynamics implementation in Enzo, specifically (1) the ray tracing algorithms,

(2) coupling with the hydrodynamics solver, (3) several methods to calculate the radiative

transfer timestep, and (4) our parallelization strategy. We present our results from the RT06

radiative transfer tests in Section 4. Afterwards in Section 5, we show the results from the

RT09 radiation hydrodynamics tests. We expand on these tests to include more dynamical

and complex setups to demonstrate the flexibility and high fidelity of Enzo+Moray. Section 6

reports the results from spatial, angular, frequency, and temporal resolution tests. In Section

7, we illustrate the improvements from the geometric correction factor and our optically-thin

approximation. We also show the effects of X-ray radiation and radiation pressure in this

section. Finally in Section 8, we demonstrate the parallel scalability of Enzo+Moray. Last

Section 9 summarizes our method and results.

2. Treatment of Radiative Transfer

Radiation transport is a well-studied topic, and we begin by describing our approach in

solving the radiative transfer equation, which in comoving coordinates (Gnedin & Ostriker

1997) is
1

c

∂Iν

∂t
+

n̂ · ∇Iν

ā
− H

c

(

ν
∂Iν

∂ν
− 3Iν

)

= −κνIν + jν . (2)

Here Iν ≡ I(ν,x, Ω, t) is the radiation specific intensity in units of energy per time t per solid

angle per unit area per frequency ν. H = ȧ/a is the Hubble constant, where a is the scale

factor. ā = a/aem is the ratio of scale factors at the current time and time of emission. The

second term represents the propagation of radiation, where the factor 1/a accounts for cosmic

expansion. The third term describes both the cosmological redshift and dilution of radiation.

On the right hand side, the first term considers the absorption coefficient κν ≡ κν(x, ν, t),

and the second term jν ≡ jν(x, ν, t) is the emission coefficient that includes any point sources

1http://lca.ucsd.edu/enzo
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of radiation or diffuse radiation.

Solving this equation is difficult because of its high dimensionality; however, we can

make some appropriate approximations to reduce its complexity in order to include radiation

transport in numerical calculations. Typically timesteps in dynamic calculations are small

enough so that ∆a/a ≪ 1, therefore ā = 1 in any given timestep, reducing the second

term to n̂∂Iν/∂x. To determine the importance of the third term, we evaluate the ratio of

the third term to the second term. This is HL/c, where L is the simulation box length.

If this ratio is ≪ 1, we can ignore the third term. For example at z = 5, this ratio is

0.1 when L = c/H(z = 5) = 53 proper Mpc. In large boxes where the light crossing

time is comparable to the Hubble time, then it could be important to consider cosmological

redshifting and dilution of the radiation, which we will describe later in §2.1. Thus equation

(2) reduces to the non-cosmological form in this local approximation,

1

c

∂Iν

∂t
+ n̂

∂Iν

∂x
= −κνIν + jν . (3)

We choose to represent the source term jν as point sources of radiation (e.g. stars, quasars)

that emit radial rays that are propagated along the direction n̂. Next we describe this

discretization and its contribution to the radiation field.

2.1. Adaptive Ray Tracing

Ray tracing is an accurate method to propagate radiation from point sources on a

computational grid, given that there are rays passing through each cell. Along a ray, the

radiative transfer equation reads

1

c

∂P

∂t
+

∂P

∂r
= −κP, (4)

where P is the photon number flux along the ray. To sample the radiation field at large

radii, ray tracing requires at least Nray = 4πR2/(∆x)2 rays to sample each cell with one ray,

where R is the radius from the source to the cell and ∆x is the cell width. If one were to

trace Nray rays out to R, the cells at a smaller radius r would be sampled by, on average,

(r/R)2 rays, which is computationally wasteful because only a few rays per cell, as we will

show later, provides an accurate calculation of the radiation field.

We avoid this inefficiency by utilizing adaptive ray tracing (Abel & Wandelt 2002), which

progressively splits rays when the sampling becomes too coarse and is based on Hierarchical

Equal Area isoLatitude Pixelation (HEALPix; Górski et al. 2005). In this scheme, the rays

are traced along normal directions of the centers of HEALPix pixels, which evenly divides
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Table 1. Variable definitions

Variable Description

Iν Specific intensity

n̂ Normal direction of radiation

H Hubble constant

a Scale factor

κν Absorption coefficient

jν Emission coefficient

r Radius

l HEALPix level

Nray Rays per cell

Npix(l) HEALPix pixels on level l

Φc Minimum rays per cell

∆x Cell width

Acell Cell face area

Vcell Cell volume

θray Angle associated with a ray

Ωray Solid angle associated with a ray

dtP Photon timestep

τ Optical depth

σabs Cross-section of absorber

nabs Number density of absorber

kph Photo-ionization rate

kdiss Photo-dissociation rate of H2

Γph Photo-heating rate

Yx Secondary ionization factors

Eph Photon energy

Ei Ionization energy of absorber

fshield(NH2) Shielding function for H2

NH2 Column density of H2

P Photon flux

dP Photon loss from absorption

dPC Photon loss from Compton Scattering

σabs Absorber cross-section

dpγ Momentum change from radiation pressure

x0,i Cell center coordinates

Dci,i Distance from ray segment center to cell center

Dedge Distance from ray segment center to cell edge

Lpix Linear width of a HEALPix pixel

fc Geometric correction factor
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a sphere into equal areas. The rays are initialized at each point source with the photon

luminosity (ph s−1) equally spread across Npix = 12×4l rays, where l is the initial HEALPix

level. We usually find l = 0 or 1 is sufficient because these coarse rays will be usually be

split before traversing the first cell.

The rays are traced through the grid in a typical fashion (e.g. Abel et al. 1999), in which

we calculate the next cell boundary crossing. The ray segment length crossing the cell is

dr = R0 − min
i=1→3

[(xcell,i − xsrc,i)/n̂ray,i] , (5)

where R0, n̂ray, xcell,i, and xsrc,i are the initial distance travelled by the ray, normal direction

of the ray, the next cell boundary crossing on the i-th dimension, and the position of the

point source that emitted the ray, respectively. However before the ray travels across the

cell, we evaluate the ratio of the face area Acell of the current cell and the solid angle Ωray of

the ray,

Φc =
Acell

Ωray

=
Npix(∆x)2

4πR2
0

. (6)

If Φc is less than a pre-determined value (usually > 2), the ray is split into 4 child rays. We

investigate the variations in solutions with Φc in §6.2. The pixel numbers of the child rays p′

are given by the “nested” scheme of HEALPix at the next level, i.e. p′ = 4 × p + [0, 1, 2, 3],

where p is the original pixel number. The child rays (1) acquire the new normal vectors of

the pixels, (2) retain the same radius of the parent ray, and (3) gets a quarter of the photon

flux of the parent ray. Afterwards the parent ray is discontinued.

A ray propagates and splits until

1. the photon has travelled c × dtP , where dtP is the radiative transfer timestep,

2. its photon flux is almost fully absorbed (> 99.9%) in a single cell, which significantly

reduces the computational time if the radiation volume filling fraction is small,

3. the photon leaves the computational domain with isolated boundary conditions, or

4. the photon travels
√

3 of the simulation box length with periodic boundary conditions.

In the second case, the photon is halted at that position and saved, where it will be considered

in the solution of Iν at the next timestep. In the next timestep, the photon will encounter

a different hydrodynamical and ionization state, hence κ, in its path. Furthermore any time

variations of the luminosities will be retained in the radiation field. In this sense, our method

retains the time derivative of the radiative transfer equation.
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2.2. Ray Merging

Unfortunately the computational work of ray tracing scales with the number of sources.

To resolve this barrier, rays can be merged in cases with either nearly parallel rays from

clustered sources of radiation, whether it be diffuse radiation or point sources, or where

rays exit a region with high resolution into a coarsely resolved region. In each case, the

factor Φc can be much higher than the desired value, and it would be efficient to merge

these rays. We have devised a new scheme that merges rays from clustered sources based

on a hierarchical binary tree, which is analogous to the gravity tree solvers. We show the

performance improvements in the strong scaling tests (§8.2). However we leave its full details

for a later paper.

2.3. Radiation Field

The radiation field is calculated by integrating equation 4 along each ray, which is done

by considering the discretization of the ray into segments. In the following section, we assume

the rays are monochromatic. For convenience, we express the integration in terms of optical

depth τ =
∫

κ(r, t) dr, and for a ray segment,

dτ = σabs(ν)nabsdr. (7)

Here σabs and nabs are the cross section and number density of the absorbing medium,

respectively. We use the cell-centered density in our calculations but have experimented with

trilinearly interpolated densities (see Mellema et al. 2006) without producing considerable

artifacts. Equation (4) has a simple exponential analytic solution, and the photon flux of a

ray is reduced by

dP = P × (1 − e−τ ) (8)

as it crosses a cell. We equate the photo-ionization rate to the absorption rate, resulting in

photon conservation (Abel et al. 1999; Mellema et al. 2006). Thus the photo-ionization kph

and photo-heating Γph rates associated with a single ray are

kph =
P (1 − e−τ )

nabs Vcell dtP
, (9)

Γph = kph (Eph − Ei), (10)

where Vcell is the cell volume, Eph is the photon energy, and Ei is the ionization energy

of the absorbing material. In each cell, the photo-ionization and photo-heating rates from

each ray in the calculation are summed, and after the ray tracing is complete, these rates



– 10 –

can be used to update the ionization state and energy of the cells. Considering a system

with only hydrogen photo-ionizations and radiative recombinations, these changes are very

straightforward and is useful for illustrative purposes. The change in neutral hydrogen is

dnH

dt
= αBnenp − CHnenH − kph, (11)

where αB = 2.59 × 10−13cm3s−1 is the recombination coefficient at 104 K in the Case B on-

the-spot approximation, in which all recombinations are locally reabsorbed, (Spitzer 1978),

and CH is the collisional ionization rate. However for more accurate solutions in calculations

that consider several chemical species, the photo-ionization rates are better utilized in solvers

that consider chemical networks (e.g. Abel et al. 1997).

2.4. Additional Physics

Other radiative processes can also be important in some situations, such as attenua-

tion of radiation in the Lyman-Werner bands, secondary ionizations from X-ray radiation,

Compton heating of from scattered photons, and radiation pressure.

2.4.1. Absorption of Lyman-Werner Radiation

Molecular hydrogen can absorb photons in the Lyman-Werner bands that are composed

of 76 absorption lines ranging from 10.2 to 13.6 eV. Each of these spectral lines can be

modelled with a typical exponential attenuation equation (Ricotti et al. 2001), but Draine

& Bertoldi (1996) showed that this self-shielding is well modeled with the following relation

to total H2 column density

fshield(NH2) =

{

1 (NH2 ≤ 1014 cm−2)

(NH2/1014 cm−2)−0.75 (NH2 > 1014 cm−2)
. (12)

To incorporate this shielding function into the ray tracer, we store the total H2 column

density and calculate the H2 dissociation rate by summing the contribution of all rays,

kdiss =
∑

rays

P σLW Ωray r2 dr

Acell dV dtP
, (13)

where σLW = 3.71×1018cm2 is the effective cross-section of H2 (Abel et al. 1997). To account

for any absorption in each photon package, we attenuate the photon number flux by

dP = P [fshield(NH2 + dNH2) − fshield(NH2)], (14)

where dNH2 is the H2 column density in the current cell.
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2.4.2. Secondary Ionizations from X-rays

A high-energy (Eph
>∼ 100 eV) photon can ionize multiple neutral hydrogen and helium

atoms, and this should be considered in such radiation fields. Shull & van Steenberg (1985)

studied this effect with Monte Carlo calculations over varying electron fractions and photon

energies up to 3 keV. They find that the excitation of hydrogen and helium and the ionization

of He II is negligible. The number of secondary ionizations of H and He is reduced from the

ratio of the photon and ionization energies (Eph/Ei) by a factor of

Yk,H = 0.3908(1 − x0.4092)1.7592, (15)

Yk,He = 0.0554(1 − x0.4614)1.6660, (16)

where x is the electron fraction. The remainder of the photon energy is deposited into

thermal energy that is approximated by

YΓ = 0.9971[1 − (1 − x0.2663)1.3163] (17)

and approaches one as x → 1. Thus in gas with low electron fractions, most of the energy

results in ionizations of hydrogen and helium, and in nearly ionized gas, the energy goes into

photo-heating.

2.4.3. Compton Heating from Photon Scattering

High energy photons can also cause Compton heating by scattering off free electrons.

During a scattering, a photon loses ∆E(Te) = 4kTe × (Eph/mec
2) of energy, where Te is the

electron temperature. For the case of monochromatic energy groups, we model this process

by considering that the photons are absorbed by a factor of

dPC

P
= (1 − e−τe)

∆(Te)

Eph

, (18)

which is the equivalent of the photon energy decreasing. Here τe = neσKNdl is the optical

depth to Compton scattering, and σKN is the non-relativistic Klein-Nishina cross section

(Rybicki & Lightman 1979). The Compton heating rate is thus

Γph,C =
dPC

ne Vcell dt
. (19)
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2.4.4. Radiation Pressure

The absorption of radiation transfers momentum from photons to the absorbing medium,

i.e. radiation pressure. This is easily computed by considering the momentum

dpγ =
dP Eph

c
r̂ (20)

of the absorbed radiation from the incoming ray, where r̂ is the normal direction of the ray.

We do not include radiation pressure on dust, and thus our treatment underestimates its

effects in applicable environments. The resulting acceleration of the gas due to radiation

pressure is

da =
dpγ

dt ρ Vcell

, (21)

where ρ is the gas density inside the cell and dt is the radiative transfer timestep. This

acceleration is then added to the other forces, e.g. gravity and gas pressure, in the calculation.

2.5. Geometric Corrections

Consider the solid angle Ωray and photon flux P associated with a single ray, and assume

the flux is constant across Ωray. There exists a discrepancy between the geometry cell face

and HEALPix pixel when the pixel does not cover the entire cell face, which is illustrated in

Figure 1. This mismatch causes non-spherical artifacts and is most apparent in the optically

thin case, where the area of the pixel is dominant over (1 − eτ ) when calculating kph. One

can avoid these artifacts by increasing the sampling Φc to high values, e.g. > 10, but

we have formulated a simple geometric correction to the calculation of the radiation field.

This correction is not unique to the HEALPix formalism but can be applied to any type of

pixelization.

The contribution to kph and Γph must be corrected by a covering factor fc. When the

pixel is fully contained within the cell face, fc ≡ 1. Because the geometry of the pixel can be

complex, i.e. curved edges, we approximate fc by assuming the pixel is square. The covering

factor is thus related to the width of a pixel, Lpix = R0 θpix, and the distance from the ray

segment midpoint to the closest cell boundary, which is depicted in Figure 1. To estimate

fc, we first find the distance dcenter,i from the midpoint of the ray segment to the cell center

x0,i in orthogonal directions,

Dc,i =

∣

∣

∣

∣

R0,i + n̂i
dr

2
− x0,i

∣

∣

∣

∣

. (22)
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γ

dr

(a)

γ Dc,0

Dc,1

Lpix

(b)

Fig. 1.— (a) A two-dimensional illustration of the overlap between the beam associated with

a ray γ and a computational cell. The ray has a segment length of dr passing through the

cell. The covering area is denoted by dark grey, where the full area (dr ×Lpix) is colored by

the dark and light grey. The photo-ionization and photo-heating rates should be corrected

by this overlap fraction fc. (b) Annotation of quantities used in this geometric correction.

The distance to the closest cell boundary is Dedge = dx/2−mini=1→3(Dc,i). Thus the covering

factor is related to the square of the ratio between the Lpix and dmid by

fc =

(

1

2
+

Dedge

Lpix

)2

(23)

One half of the pixel is always contained within the cell, which results in the factor of 1/2.

Finally we multiply kph and Γph by fc but leave the absorbed radiation dP untouched because

this would underestimate the attenuation of the incoming radiation. Using fc calculated like

above, the method is no longer photon conserving. In our implementation, we felt that

the spherical symmetry obtained outweighed the loss of photon conservation. We show the

deviations from fully conservative in §7.1.

We briefly next describe how to retain photon conservation with a geometric correction.

Notice that we compute fc by only considering the distances in orthogonal directions. A

better estimate would consider the distance between the cell boundary and ray segment

midpoint in the direction of xmid − xcenter. However we find that the method outlined here

provides a sufficient correction factor to avoid any non-spherical artifacts. Furthermore in
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principle, the ray should also contribute to any neighboring cells that overlap with Ωray,

which is the key to be photon conservative with such a geometric correction.

2.6. Optically Thin Approximation

When the medium is optically thin to the radiation, radiation is only attenuated by

geometric dilution in the local approximation to Eq. (2), i.e. the inverse square law. We

can minimize the computational work of ray tracing in the optically thin regime by utilizing

this fact. Here we track the total column density Nabs and the equivalent total optical depth

τ traversed by the photon. If τ < τthin ∼ 0.1 after the ray exits the cell, we calculate

the photo-ionization and photo-heating rates directly from the incoming ray instead of the

luminosity of the source. This should only be evaluated once per cell per radiation source.

kph =
σabs P

dtP θpix

rcell

rray

. (24)

Note that the photon number P in the ray has already been geometrically diluted by ray

splitting. Here rcell and rray are the radii from the radiation source to the cell center and

where the ray exits the cell. Thus the last factor corrects the flux to a value appropriate

for the cell center. The photo-heating ray is calculated in the same manner as the general

case, Γph = kph(Eph − Ei). No photons are removed from the ray. With this method, we

only require one ray travel through each cell where the gas is optically thin, thus reducing

the computational expense.

We must be careful not the overestimate the radiation when multiple rays enter a single

cell. In the case of a single radiation source, the solution is simple — only assign the cell the

photo-ionization and photo-heating rates when kph = 0. However in the case with multiple

sources, this is no longer valid, and we must sum the flux from all optically thin sources.

Only one ray per source must contribute to a single cell in this framework. We create

a flagging field that marks whether a cell has already been touched by an optically thin

photon from a particular radiation source. Naively, we would be restricted to tracing rays

from a single source at a time if we use a boolean flagging field. However we can trace rays

for 32 sources at a time by using bitwise operations on a 32-bit integer field. For example

in C, we would check if an optically thin ray from the n-th source has propagated through

cell i by evaluating (MarkerField[i] ≫ n & 1). If false, then we can add the optically

thin approximation (Eq. 24) to the cell and set MarkerField[i] |= (1 ≫ n); to mark

the cell.
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3. Numerical Implementation in Enzo

Enzo is a parallel block-structured AMR (Berger & Colella 1989) code that is publicly

available (Bryan & Norman 1997; O’Shea et al. 2004). In this section, we describe our

parallel implementation of the adaptive ray tracing method into Enzo. First we explain the

programming design of handling the “photon packages” that are traced along the adaptive

rays. We use the terms photon packages and rays interchangeably. Next we focus on the

details of the radiation hydrodynamics and then the importance of correct time-stepping.

Last we give our parallelization strategy of tracing rays through an AMR hierarchy. This

implementation is included in the v2.0 public version of Enzo.

3.1. Programming Design

Each photon package is stored in the AMR grid with the finest resolution that contains

its current position. The photon packages keep track of their (1) photon flux, (2) photon

type, (3) photon energy, (4) the length of its emission, (5) emission time, (6) current time,

(7) radius, (8) total column density, (9) HEALPix pixel number, (10) HEALPix level, and

(11) position of the originating source, totaling 60 (88) bytes for single (double) precision.

When Enzo uses double precision for grid and particle positions and time, items 4-7 and 11

are double precision.

We only treat point sources of radiation in our implementation; therefore all base level

photon packages originate from them. As they travel away from the source, they generally

pass through many AMR grids, especially if the simulation has a high dynamic range. This

is a challenging programming task as rays are constantly entering and exiting grids. Before

any computation, the number of rays in a particular grid is highly unpredictable because

the intervening medium is unknown. Furthermore, the splitting of parent rays into child

rays and a dynamic AMR hierarchy add to the complexity. Because of this, we store the

photon packages as a doubly linked list (Abel & Wandelt 2002). Thus we can freely add

and remove them from grids without the concern of allocating enough memory before the

tracing commences.

We illustrate the underlying algorithm of the ray tracing module in Enzo in Figure 2 and

the ray tracing algorithm is shown in Figure 3. The module is only called when advancing

the finest AMR level. We describe its steps below.

Step 1.— Create Npix new photon packages on the initial HEALPix level from point

sources. Place the new rays in the highest resolution AMR grid that contains the source.
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For each grid

Create base photons
from pt. sources

Initialize radiation fields

Trace Rays

Collect rays to transfer
to other grids

Move (communicate)
rays to new grids

All rays absorbed
or halted?

NO

Update chemistry and energies
in cells with radiation

YES

if (PhotonTime
 > HydroTime)

NO

EXIT to
main grid loop

YES

Fig. 2.— Flow chart for the overall algorithm of the radiative transfer module in Enzo that

illustrates (1) the creation of photon packages, (2) ray tracing, (3) the transport of photon

packages between AMR grids, and (4) coupling with the hydrodynamics. The ray tracing

algorithm, which is contained in the “Trace Rays” is detailed in Figure 3.

Step 2.— Initialize all radiation fields to zero.

Step 3.— Loop through all AMR grids, tracing any rays that exist in it. For each ray,

the following substeps are taken.

Step 3a.— Compute the ray normal based on the HEALPix level and pixel number of

the photon package with the HEALpix routine pix2vec nest. One strategy to accelerate

the computation is to store ray segment paths in memory (Abel & Wandelt 2002; Krumholz

et al. 2007); however this must be recomputed if the grid structure or point source position

changes. We do not restrict these two aspects and cannot employ this acceleration method.

Step 3b.— Compute the position of the ray (rsrc + rn̂), the current cell coordinates in

floating point and its corresponding integer indices. Here rsrc is the position of the point

source, r is the distance travelled by the ray, and n̂ is the ray normal.

Step 3c.— Check if a subgrid exists under the current cell. If so, move the ray to a

linked list that contains all rays that should be moved to other grids. We call this variable

PhotonMoveList. Store the destination grid number and level. Continue to the next ray in
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Pre-compute ray normal, ray position,
current cell, and cross-section

Does a child grid
exist under this cell?

Compute next cell crossing

Does the ray need
splitting at r+dr?

Put photon in move list
EXIT

NO

YES

Split ray. Delete parent ray
EXIT

YES

Calculate
1. Geometric correction

2. Optical depth
3. Photo-ionization and photo-heating rates

4. Add to column density

NO

Optional: add radiation pressure

Update photon time, flux, and radius Zero flux or
large optical depth?

Delete photon
EXIT

YES

Is r > cdt or
r > box length?

NO

If constant timestep, halt photon.
If infinite c, delete.

EXIT

YES

Update cell position

NO

Has ray exited grid?

YESNO

Fig. 3.— Flow chart for the ray tracing algorithm for one photon passing through a grid.

Note that only one step is needed in the routine to adaptively split rays. The remainder is

a typical ray tracing method.

the grid (step 3a). We determine whether a subgrid exists by creating a temporary 3D field

of pointers that either equals the pointer of the current grid if no subgrid exists under the

current cell or the child pointer that exists under the current cell. This provides a significant

speedup when compared to a simple comparison of a photon package position and all of

the child grid boundaries. Note that this is the same algorithm used in Enzo when moving

collisionless particles to child grids.

Step 3d.— Compute the next cell crossing of the ray and the ray segment length across

the cell (Equation 5).

Step 3e.— Compare the solid angle associated with the ray at radius r + dr with a
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user-defined splitting criterion (Equation 6). If the solid angle is larger than the desired

minimum sampling, split the ray into 4 child rays (§2.1). These rays are inserted into the

linked list after the parent ray, which is subsequently deleted. Continue to the next ray (step

3a), which will be the first child ray.

Step 3f.— Calculate the geometric correction (Equation 23), the optical depth of the

current cell (Equation 7), photo-ionization and photo-heating rates (Equations 9 and 10),

and add the column density of the cell to the total column density of the ray.

Step 3g.— Add the effects of any optional physics modules (§2.4)—secondary ionizations

from X-rays, Compton heating from scattering, and radiation pressure.

Step 3h.— Update the current time (t = t + cdr), photon flux (P = P − dP , Equation

8), and radius of the ray (r = r + dr).

Step 3i.— If the photon flux is zero or the total optical depth is large (> 20), delete the

ray.

Step 3j.— Check if the ray has travelled a total distance of cdtP in the last timestep. If

we are keeping the time-derivative of the radiative transfer equation, halt the photon. If not

(i.e. infinite speed of light), delete the photon.

Step 3k.— Check if the ray has exited the current grid. If false, continue to the next ray

(step 3a). If true, move the ray to the linked list PhotonMoveList, similar to step 3c. If the

ray exits the simulation domain, delete it if the boundary conditions are isolated; otherwise,

we change the source position of the ray by a distance -sign(n[i]) * DomainWidth[i],

where n is the ray normal, and i is the dimension of the outer boundary it has crossed. The

radius is kept unchanged. In essence, this creates a “virtual source” outside the box because

the ray will be moved to the opposite side of the domain, appearing that it originated from

this virtual source.

Step 4.— If any rays exist in the linked list PhotonMoveList, move them to their desti-

nation grids and return to step 3. This requires MPI communication if the destination grid

exists on another processor.

Step 5.— If all rays have not been halted (keeping the time-derivative of the radiative

transfer equation), absorbed, or exited the domain, return to step 3.

Step 6.— With the radiation fields updated, call the chemistry and energy solver and

update only the cells with radiation, which is discussed further in §3.3.

Step 7.— Advance the time associated with the photons tP by the global timestep dtP
(for its calculation, see §3.4). If tP does not exceed the time on the finest AMR level, return
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to step 1.

3.2. Energy groups

In our implementation, photon packages are mono-chromatic, i.e. energy groups (Mi-

halas & Mihalas 1984, Ch. 6), and are assigned a photon type that corresponds whether it

is a photon that (1) ionizes hydrogen, (2) singly ionizes helium, (3) doubly ionizes helium,

(4) has an X-ray energy, or (5) dissociates molecular hydrogen (Lyman-Werner radiation).

One disadvantage of mono-chromatic rays is the number of rays increase with the number

of frequency bins. However this allows for early termination of rays that are fully absorbed,

which are likely to have high absorption cross-sections (e.g. H I ionizations near 13.6 eV) or

a low initial intensity (e.g. He II ionizing photons in typical stellar populations). The other

approach used by some groups (e.g. Trac & Cen 2007) is to store all energy groups in a single

ray. This reduces the number of the rays generated and the computation associated with the

ray tracing. Unless the ray dynamically adjusts its memory allocation for the energy groups

as they become depleted, this method is also memory intensive in the situation where most

of the energy groups are completely absorbed but a few groups still have significant flux.

In practice, we have found that one energy group per photon type is sufficient to match

expected analytical tests. For example when modeling Population III stellar radiation (e.g.

Abel et al. 2007; Wise & Abel 2008b, for hydrogen ionizing radiation only), we have 3 energy

groups—H I, He I, He II—each with an energy that equals the average photon energy above

the ionization threshold.

3.3. Coupling with Hydrodynamics

Solving the radiative transfer equation is already an intensive task, but coupling the

effects of radiation to the gas dynamics is even more difficult because the radiation fields

must be updated on a timescale such that it can react to the radiative heating, i.e. sound-

crossing time. The frequency of its evaluation will be discussed in the next section.

Enzo solves the physical equations in an operator-split fashion over a loop of AMR grids.

On the finest AMR level, we call our radiation transport solver before this main grid loop

in the following sequence:

• All grids:

1. Solve for the radiation field with the adaptive ray tracer
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2. Update species fractions and energies for cells with radiation with a non-equilibrium

chemistry solver on subcycles (Equation 25).

• For each grid:

1. Solve for the gravitational potential with the particle mesh method

2. Solve hydrodynamics

3. Update species fractions and energies for cells without radiation with a non-

equilibrium chemistry solver on subcycles (Equation 25).

4. Update particle positions

5. Star particle formation

• All grids: Update solution from children grids

Since the solver must be called many times, the efficiency of the radiation solver is

paramount. After every radiation timestep, we call the non-equilibrium chemistry and energy

solver in Enzo. This solves both the energy equation and the network of stiff chemical

equations on small timesteps, i.e. subcycles (Anninos et al. 1997). The timestep is

dt = min

(

0.1ne

|dne/dt| ,
0.1nHI

|dnHI/dt| ,
0.1e

|de/dt| ,
dthydro

2

)

, (25)

where ne is the electron number density, e is the specific energy, and dthydro is the hydrody-

namic timestep. This limits the subcycle timestep to a 10% change in either electron density,

neutral hydrogen density, or specific energy. In simulations without radiation, Enzo calls

this solver in a operation-split manner after the hydrodynamics module for grids only on the

AMR level that is being solved. In simulations with radiative transfer, the radiation field

can change on much faster timescales than the normal hydrodynamical timesteps.

For example, a grid on level L might have no radiation in its initial evaluation, but

the ionization front exists just outside its boundary. Then radiation permeates the grid

in the time between tL=1 → tL=1 + dtL=1, and the energy and chemical state of the cells

must be updated again to advance the ionization front accurately. If one does not update

these cells, it will appear that the ionization front does not enter the grid until the next

hydrodynamical timestep! Visually this appears as discontinuities in the temperature and

electron fraction on grid boundaries. One may avert this problem by solving the chemistry

and energy equations for every cell on every radiative transfer timestep, but this is very time

consuming and unnecessary, especially if the radiation filling factor is small.

We choose to dynamically split the problem by cells with and without radiation. In every

radiation timestep, the chemo-thermal state of only the cells with radiation are updated.



– 21 –

For the solver subcycling, we replace dthydro with dtP in Equation 25 in this case. Once the

radiative transfer solver is finished with its timesteps, the hydrodynamic module is called,

and then the chemo-thermal state of the cells without radiation are updated on a subcycle

timestep stated in Equation 25.

For cells that transition from zero to non-zero photo-ionization rates, the initial state

that enters into the chemistry and energy solver does not correspond to the current time of

the radiation transport solver tRT, but either time tL if the grid level is the finest level because

its chemo-thermal state has not been updated or time tL+dtL on all other levels. In principle,

one could first revert the cell back to time tL and then update to tRT with the chemistry

and energy solver if the cell is on the finest level. However in practice, the timescales in

gas without radiation are small compared to the ionization and heating timescales when

radiation is introduced. Therefore, we do not perform this correction and find that this does

not introduce any inaccuracies in both test problems (see §4) and real world applications.

3.4. Temporal evolution

There have been several methods of choosing a timestep to solve radiation transfer

equation because an accurate yet large timestep is not trivial to compute. We describe several

methods to calculate the radiative transfer timestep in this section. With a small enough

timestep, the solution is guaranteed to avoid any inaccuracies (ignoring any systematic ones)

due to time-stepping, but the solver must be called many times. These frequent calls may

be unnecessary because the same solution may be accomplished with a longer timestep.

Furthermore with ray tracing, the photon packages only advance a short distance, and they

will exist in every dx/dtP cells with radiation and are stored between timesteps, excessively

consuming memory. On the shortest timescale, one can safely set the timestep to the light-

crossing time of a cell (Abel et al. 1999; Trac & Cen 2007) but encounters the problems

stated above.

If the timestep is too large, the solution will become inaccurate; specifically, ionization

fronts will advance too slowly, as radiation intensity exponentially drops with a scale length

of the mean free path

λmfp =
1

nabs σabs

(26)

past the ionization front. For example in our implementation, the chemo-thermal state of

the system remains constant as the rays are traced through the cells. Thus in the case of a

single H II region, the speed of the ionization front is limited to approximately the λmfp/dtP .
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Fig. 4.— Radiative transfer adaptive timestep in shadowing test (Test 3; §4.3) while re-

stricting the neutral fraction change to 5% in the ionization front. The unmodified timestep

(left) is slightly more noisy and the minima are more prominent than the timestep com-

puted with a running average of the last two timesteps (right). The points show every tenth

timestep taken into account for the running average. The sawtooth behavior is created by

the ionization front advancing into the next neutral cell in the overdensity.

3.4.1. Minimizing neutral fraction change

Another strategy is only allowing the neutral fraction of the ionized gas to change a

small amount, i.e. for a single cell,

dtP,cell = ǫion
nHI

|dnHI/dt| =
ǫion

|kph + ne(CH + αB)| , (27)

where ǫion is the maximum fraction change in neutral fraction. Shapiro et al. (2004) found

that this limited the speed of the ionization front. We can investigate this further by eval-

uating the ionization front velocity in a growing Strömgren sphere without recombinations,

where Ṅγ = 4πR2nHvIF. Using kph ∝ ṅH/nH and kph = Ṅγσ/4πR2Acell, we can make substi-

tutions on both sides of the equation to arrive at the ionization front velocity vIF ∝ nH/ṅH.

We have implemented this method but we only consider cells within the ionization front

(by experiment we choose τ > 0.5) because we are interested in evolving ionization fronts at

the correct speed. In the ionized region, the absolute changes in neutral fraction are small

and will not significantly affect the ionization front evolution. In other words, nHI/(dnHI/dt)

may be large but (dnHI/dt) ∼ 0, thus we can safely ignore these cells when determining the

timestep without sacrificing accuracy.

We search for the cell with the smallest dtP based on Equation 27. In principle, one

could use this value without modifications as the timestep, but there is considerable noise
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both spatially and temporally. In order to make this technique stable, we first spatially

smooth the values of dtP,cell with a Gaussian filter over a 33 cube. Because we only consider

the cells within the ionization front, we set dtP,cell to the hydrodynamical timestep outside

the front during the smoothing. After we have smoothed dtP,cell, we select the minimum

value as dtP . Significant noise in dtP can exist between time discretizations. Because the

solution can become inaccurate if the timestep is allowed to be too large, we restrict the

next timestep to be less than twice the previous timestep,

dtP,1 = min(2dtP,0, dtP,1). (28)

Otherwise, we still restrict the change in timestep by setting the next timestep to be the

average of the previous timestep dtP,0 and min(dtP,cell). Figure 4 shows the smooth evolution

of dtP in a growing Strömgren sphere when compared to the values of min(dtP,cell).

3.4.2. Time averaged quantities within a timestep

Mellema et al. (2006) devised an iterative scheme that allows for large timesteps while

retaining accuracy by considering the time-averaged values (τ , kph, ne, nHI) during the

timestep. Starting with the cells closest to the source, they first calculate the column den-

sity to the cell. Then they compute the time-averaged neutral density for the cell and its

associated optical depth, which is added to the total time-averaged optical depth. With these

quantities, one can compute a photo-ionization rate and update the electron density. This

process is repeated until convergence is found in the neutral number density. In a test with a

Strömgren sphere, they found analytical agreement with 10−3 less timesteps than a method

without time-averaging. Another advantage of this method is the use of pre-calculated ta-

bles for the photo-ionization rates as a function of optical depth, based on a given spectrum.

This minimizes the energy groups needed to accurately sample a spectrum. We are currently

implementing this method into Enzo+Moray.

3.4.3. Physically motivated

In our implementation, a constant timestep is necessary when solving the time-dependent

radiative transfer equation. It should be small enough to evolve ionization fronts accurately,

as discussed earlier. The timestep can be based on physical arguments, for example, the

sound-crossing time of an ionized region at T > 104 K. To be conservative, one may choose

the sound-crossing time of a cell (e.g. Abel et al. 2007; Wise & Abel 2008b). Alternatively,

the diameter of the smallest relevant system (e.g., an accretion radius, transition radius to a
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D-type ionization front, etc.) in the simulation may be chosen to calculate the sound-crossing

time.

If the timestep is too large, the ionization front will propagate too slowly, but it even-

tually approaches the correct radius at late times (see §6.4). This does not prevent one from

using a large timestep, particularly if the system is not critically affected by a slower I-front

velocity. One example is an expanding H II region in a power-law density gradient. After

a brief, initial R-type phase, the I-front becomes D-type phase, where the ionization and

shock front progress jointly at the sound speed of the ionized region. A moderately large

(0.1 Myr) timestep can accurately follow its evolution. However after the I-front passes a

critical radius (Franco et al. 1990), the I-front detaches from the shock front, accelerates,

and transitions back to an R-type front. This can also occur in champagne flows when the

ionization front passes a density discontinuity. The I-front velocities in these two stages

differ up to a factor of ∼ 10. Although the solution is accurate with a large timestep in

the D-type phase, the I-front may lag behind because of the constant timestep. After a few

recombination times, the numerical solution eventually approaches the analytical solution. If

such a simulation focuses on the density core expansion and any small scale structures, such

as cometary structures and photo-dissociation regions, one can cautiously sacrifice temporal

accuracy at large scales for computational savings.

3.4.4. Change of incident radiation

Ionization front velocities can approach significant fractions of the speed of light in

steep density gradients and in the early expansion of the H II region. If the ionization front

position is critical to the calculation, the radiation transport timestep can be derived from

an estimate of the ionization front velocity

vIF(r) ≈ F (r)

nabs(r)
, (29)

based on the incident radiation field at a particular position. The timestep is then chosen so

that the ionization front only crosses one cell per timestep dtP,cell = dx/vIF, and the global

timestep is dtP = min(dtP,cell).

To make this approach computationally straightforward, we consider a spherically sym-

metric case without recombinations. Thus all photons emitted from the source result in

an ionization (also see §3.4.1). Ultimately in any approach, we are focused on accurately

following the time evolution of the radiation field. In this method, we base the timestep

directly on the change in radiation field, the specific intensity, I/İ. We consider the field
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after propagating through the cell, so I = I0 exp(−τ), where τ = nHσdl is the optical depth

through the cell. The change in specific intensity is

dI

dt
= I0 exp(−τ)(−ṅHσdl), (30)

which can be expressed in terms of local optical depth and neutral fraction,

dI

dt
= −I

τ ṅH

nH

. (31)

This results in a local timestep

dtP =
I

|dI/dt| = CRT,cfl
nH

τ ṅH

, (32)

where CRT,cfl is a safety factor that restricts the change in intensity to its inverse. In practice,

we have found that a ceiling of 3 can be placed on the optical depth, so optically thick cells do

not create a very small timestep. We still find excellent agreement with analytical solutions

with this approximation. We show the accuracy using this timestep method in §6.4.

3.5. Parallelization Strategy

Parallelization of the ray tracing code is essential when exploring problems that re-

quire high resolution and thus large memory requirements. Furthermore, Enzo is already

parallelized and scalable to O(102) processors in AMR simulations, and O(103) in unigrid

calculations. Enzo stores the AMR grid structure on every processor, but only one processor

contains the actual grid and particle data and photon packages. All other processors contain

an empty grid container. As discussed in Step 4 in §3.1, we store the photon packages that

need to be transferred to other grids in the linked list PhotonMoveList. In a single proces-

sor (serial) run, moving the rays is trivial by inserting these photons into the linked list of

the destination grid. For multi-processor runs, we must send these photons through MPI

communication to the processors that host the data of the destination grids. We describe

our strategy below.

The easiest case is when the destination grid exists on the same processor as the source

grid, where we move the ray as in the serial case. For all other rays, we organize the rays

by destination processors and send them in groups. We also send the destination grid level

and ID number along with the ray information, which is listed at the beginning of §3.1.

For maximum overlap of communication and computation, which enables scaling to large

numbers of processors, we must employ “non-blocking” MPI communication, where each
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processor does not wait for synchronization with other processors. We use this technique for

the sending and receiving of rays. Here we desire to minimize the idle time of each processor

when it is waiting to receive data. In the loop shown in Figure 2 with the conditional

that checks whether we have traced all of the rays, we aggressively transport rays that are

local on the processor, and process any MPI receive calls as they arrive, not waiting for their

completion in order to continue to the next iteration. We describe the steps in this algorithm

next.

Step 1.— Before any communication occurs, we count the number of rays that will be

sent to each processor. The MPI receive calls (MPI Irecv) must have a data buffer that is

greater than or equal to the size of the message. We choose to send a maximum of Nmax

(= 105 in Enzo v2.0) rays per MPI message. Therefore, we allocate a buffer of this size for

each MPI Irecv call. We then determine the number of MPI messages Nmesg and send this

number in a non-blocking fashion, i.e. MPI Isend.

Step 2.— Pack the photon packages into a contiguous array for MPI communication

while the messages from Step 1 completes.

Step 3.— Process the number of photon messages that we are expecting from each

processor, sent in Step 1. Then post this number of MPI Irecv calls for the photon data.

Because we strive to make the ray tracing routine to be totally non-blocking, the proces-

sors will most likely not be synchronized on the same loop (Steps 3–5 in §3.1). Therefore,

there might be additional Nmesg MPI messages waiting to be processed. We check for these

messages and aggressively drain the message stack to determine the total number of photon

messages that we are expecting and post their associated MPI Irecv calls for the photon

data.

Step 4.— Send the grouped photon data with MPI Isend with a maximum size of Nmax

photons.

Step 5.— Place any received photon data into the destination grids. We monitor whether

the processor has any rays that were moved to grids on the same processor. If so, this

processor has rays to transport, and we do not necessarily have to wait for any MPI receive

messages and thus use MPI Testsome to receive any messages that have already arrived. If

not, we call MPI Waitsome to wait for any MPI receive messages.

Step 6.— If all processors have exhausted their workload, then all rays have been either

absorbed, exited the domain, or halted after travelling a distance cdtP . We check this in a

similar non-blocking manner as the Nmesg calls in Step 1.

Lastly we have experimented with a hybrid OpenMP/MPI version of Enzo, where work-
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load is partitioned over grids on each MPI process. We found that parallelization over grids

for the photon transport does not scale well, and threading over the rays in each grid is a

better approach. Because the rays are stored in a linked list in each grid, we must manually

split the list into separate lists and let each thread work on each list.

4. Radiative Transfer Tests

Tests plays an important role in creating and maintaining computational tools. In this

section, we present tests drawn from the Cosmological Radiative Transfer Codes Comparison

Project (Iliev et al. 2006a), where results from 11 different radiative transfer codes compared

results in four test problems. The codes use various methods for radiation transport: ray

tracing with short, long, and hybrid characteristics, Monte Carlo casting; ionization front

tracking (Alvarez et al. 2006b); variable Eddington Tensor formalism (Gnedin & Abel 2001).

They conducted tests that investigated (1) the growth of a single Strömgren sphere enforcing

isothermal conditions, (2) the same test with an evolving temperature field, (3) shadowing

created by a dense, optically thick clump, and (4) multiple H II regions in a cosmological

density field. In all of the tests presented here, we use the method of restricted neutral frac-

tion changes (§3.4.1) for choosing a radiative transfer timestep. We cast 48 rays (HEALPix

level 1) from the point source and require a sampling of at least Φc = 5.1 rays per cell.

4.1. Test 1. Pure hydrogen isothermal H II region expansion

The expansion of an ionizing region with a central source in a uniform medium is a clas-

sic problem first studied by Strömgren (1939). This simple but useful test can uncover any

asymmetries or artifacts that may arise from deficiencies in the method or newly introduced

bugs in the development process. In this problem, the ionized region grows until recombi-

nations balance photo-ionizations (Eq. 1). The evolution of the radius rs and velocity vs of

the ionization front has an exact solution of

rs(t) = Rs[1 − exp(−t/trec)]
1/3 (33)

vs(t) =
Rs

3trec

exp(−t/trec)

[1 − exp(−t/trec)]2/3
, (34)

where trec = (αBnH)−1 is the recombination time.

We adopt the problem parameters used in RT06. The ionizing source emits 5× 1048 ph

s−1 of monochromatic radiation at 13.6 eV and is located at the origin in a simulation box of
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Fig. 5.— Test 1 (H II region expansion with a monochromatic spectrum of 13.6 eV). Left:

Radially averaged profile of neutral (solid) and ionized (dashed) fraction at 10, 30, 100,

and 500 Myr. Right: Evolution of the calculated (top, dashed) and analytical (top, solid)

Strömgren radius. The ratio of these radii are plotted in the bottom panel.

6.6 kpc. The ambient medium is initially set at T = 104 K, nH = 10−3cm−3, x = 1.2× 10−3,

resulting in Rs = 5.4 kpc and trec = 122.4 Myr. The problem is run for 500 Myr. In the

original tests, the temperature is fixed at 104 K; however, our solver is inherently tied to the

chemistry and energy solver. To mimic an isothermal behavior, we set the adiabatic index

γ = 1.0001, which ensures an isothermal state but not a fixed ionization fraction outside of

the Strömgren sphere.

In Figure 5, we show (a) the evolution of the neutral and ionization fraction as a function

of radius at t = 10, 30, 100, and 500 Myr, and (b) the growth of the ionization front radius

as a function of time and its ratio with the analytical Strömgren radius (Eq. 33). The

ionization front has a width of ∼ 0.7 kpc, which is in agreement with the inherent thickness

of ∼ 18λmfp = 0.74 kpc, given a 13.6 eV mono-chromatic spectrum. There are small kinks

in the neutral fraction at 1.5 and 3 kpc that corresponds to artifacts created by the photon

package splitting at these radii. However these do not affect the overall solution. One

difference between our results and the codes presented in RT06 is the increasing neutral

fraction outside of the H II. This occurs because the initial ionized fraction and temperature

is set to 1.3×10−3 and 8000 K, which are not the equilibrium values. Over the 500 Myr in the

calculation, the neutral fraction increases to 0.2, which is close to its equilibrium value. In

the right panel of Figure 5, the ionization front radius exceeds Rs by a few percent for most

of the calculation. This difference happens because the analytical solution (Eq. 33) assumes

the H II region has a constant ionized fraction. The evolution of the ionized fraction as a

function of radius can be analytically calculated (e.g. Osterbrock 1989; Petkova & Springel
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Fig. 6.— Test 1 (H II region expansion with a monochromatic spectrum of 13.6 eV). Slice

of neutral fraction at the origin at 500 Myr.

2009), causing the ionization front radius to be slightly larger, increasing from 0 to 3% in

the interval 80–350 Myr. Our results are in excellent agreement with this more accurate

analytical solution. In Figure 6, we show a slice of the neutral fraction through the origin.

Other than the ray splitting artifacts that generate the plateaus at 1.5 and 3 kpc, one sees

spherical symmetry in our solution.

4.2. Test 2. H II region expansion: temperature evolution

This test is similar Test 1, but the temperature is allowed to evolve The radiation source

now has a blackbody spectrum with a T = 105 K. The initial temperature is set at 100 K.

The higher energy photons have a longer mean free path than the photons at the ionization

threshold in Test 1. Thus the ionization front is thicker as the photons can penetrate deeper

into the neutral medium. Here we use 4 energy groups with the following mean energies and

relative luminosities: Ei = (16.74, 24.65, 34.49, 52.06), Li/L = (0.277, 0.335, 0.2, 0.188).
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Fig. 7.— Test 2. (H II region expansion with a T = 105 K blackbody spectrum). Left:

Radially averaged profile of neutral (solid) and ionized (dashed) fraction at 10, 30, 100, and

500 Myr. Right: Evolution of the average neutral fraction.

In Figure 7, we show the neutral and ionized fraction as a function of radius at t = 10,

30, 100, and 500 Myr, and the total neutral fraction of the domain. Compared with Test

1, the ionization front is thicker, as expected with the harder spectrum. The total neutral

fraction decreases to 0.67 over 4trec = 500 Myr, which is in agreement with the analytical

expectation and other codes in RT06. In Figure 8, we show the ratio of the ionization front

radius rIF in our simulation and Rs. Before 1.5trec, rIF lags behind Rs, initially by 10% and

then increases to Rs; however afterwards, this ratio asymptotes to a solution that is 4%

greater than Rs. This behavior puts our code is approximately the median result in RT06,

where this ratio varies between 1 and 1.1, and the early evolution of rIF is under-predicted

by almost all of the codes. If we use one energy group with the mean energy (29.6 eV) of

a T = 105 K blackbody, we find that rIF/Rs = 1.08, which is representative of the codes in

the upper range of RT06. In Figure 9, we show slices of neutral fraction and temperature

through the origin at t = 10 and 100 Myr. Here one sees the spherically symmetric H II

regions and a smooth temperature transition to the neutral ambient medium.

4.3. Test 3. I-front trapping in a dense clump and the formation of a shadow

The diffusivity and angular resolution of a radiative transport method can be tested with

the trapping of an ionization front by a dense, neutral clump. In this situation, the ionization

front will uniformly propagate until it reaches the clump surface. Then the radiation in the

line of sight of the clump will be absorbed more than the ambient medium. If the clump is

optically thick, a shadow will form behind the clump. The sharpness of the ionization front
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Fig. 8.— Test 2. (H II region expansion with a T = 105 K blackbody spectrum). Top:

Evolution of the radius of the simulated ionization front (dashed) and analytical (solid)

Strömgren radius. Bottom: The ratio of the calculated and analytical Strömgren radius.

at the shadow surface can be used to determine the diffusivity of the method. Furthermore

the shadow surface should be aligned with the outermost neutral regions of the clump, which

can visually assess the angular resolution of the method.

The problem for this test is contained in a 6.6 kpc box with an ambient medium of nH =

2 × 10−4cm−3 and T = 8000 K. The clump is in pressure equilibrium with nH = 0.04cm−3

and T = 40 K. It has a radius of rc = 0.8 kpc and is centered at (x, y, z) = (5, 3.3, 3.3)

kpc. In RT06, the test considered a plane parallel radiation field with a flux F0 = 106 ph

s−1 cm−2 originating from the y = 0 plane. Our code can only consider point sources, so we

use a single radiation source located in the center of the y = 0 boundary. The luminosity of

Ṅγ = 3×1051 ph s−1 corresponds to the same flux F0. The location where the ionization front
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average neutral fraction (left) and temperature (right) of the clump.

trapping can be calculated analytically (Shapiro et al. 2004), and with these parameters, it

should halt at approximately the center of the clump. We use the same four energy groups

as in Test 2.

In Figure 10, we show neutral fraction and temperature of a one-dimensional cut through

the center of the dense clump at z = 0.5 at t = 1, 3, 5, 15 Myr. The ionization front is halted

at a little more than halfway through the clump, which is consistent with the analytical

expectation. The hardness of the T = 105 K blackbody spectrum allows the gas outside

of the ionization front. Where the gas is ionized, the temperature is between 10,000 and

20,000 K, but decreases sharply with the ionized fraction. Figure 11 depicts the average

ionized fraction and temperature inside the dense clump, which both gradually increase as

the ionization front propagates through the overdensity. Our results are consistent with

RT06. Finally we show slices of neutral fraction and temperature in the z = 0.5 plane in

Figure 12. The neutral fraction slices prominently show the sharp shadows created by the

clump and demonstrates the non-diffusivity behavior of ray tracing. The discretization of

the sphere creates one neutral cell on the left side of the sphere. This inherent artifact to

the initial setup carries through the calculation. We did not smooth the clump surface like

in some of the RT06 codes, in order to remove this artifact. It is seen in the neutral fraction

and temperature states at all times and is not a caused by our ray tracing algorithm.



– 34 –

0 2 4 6 8 10 12 14 16
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

x̄
e
 (

cl
u
m

p
)

0 2 4 6 8 10 12 14 16
Time (Myr)

0
2000
4000
6000
8000

10000
12000
14000

T̄
 (

cl
u
m

p
)

Fig. 11.— Test 3. (I-front trapping in a dense clump and shadowing). Evolution of the

average ionized fraction (top) and temperature (bottom) of the overdense clump.

4.4. Test 4. Multiple sources in a cosmological density field

The last test in RT06 involves a static cosmological density field at z = 9. The simulation

comoving box size is 0.5 h−1 Mpc and has a resolution of 1283. There are 16 point sources

that are centered in the 16 most massive halos. They emit fγ = 250 ionizing photons per

baryon in a blackbody spectrum with an effective temperature T = 105 K, and they live for

ts = 3 Myr. Thus the luminosity of each source is

Ṅγ = fγ
MΩb

ΩmmHts
, (35)

where M is the halo mass, Ωm = 0.27, and Ωb = 0.043. The radiation boundaries are isolated

so that the radiation leaves the box instead being shifted periodically. The simulation is

evolved for 0.4 Myr.
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Fig. 12.— Test 3. (I-front trapping in a dense clump and shadowing). Clockwise from upper

left: Slices through the origin of neutral fraction (1 Myr), temperature (1 Myr), temperature

(15 Myr), and neutral fraction (15 Myr).

We show the growth of the H II regions by computing the mass-averaged xm and volume-

averaged xv ionized fraction in Figure 13. Initially xm is larger than xv, and at t ∼ 170

kyr, the xv becomes larger. This is indicative of inside-out reionization (e.g. Gnedin 2000;

Miralda-Escudé et al. 2000; Sokasian et al. 2003), where the dense regions around halos are

ionized first, then the voids are ionized last. At the end of the simulation, xv = 0.65, which

is lower than all of the codes in RT06. However by visual inspection in the slices of electron

fraction (Fig. 14), there appears to be very good agreement with C2-ray and FTTE. By first

glance, our result appears to be different than the RT06 because of the color-mapping. Our

results are also in good agreement with the multi-frequency version of TRAPHIC (Pawlik &

Schaye 2010, see also for better representations of the electron fraction slices). In the slices

of electron fraction and temperature, Figure 14, the photo-heated regions are larger than
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volume-averaged (solid) ionized fraction.

the ionized regions by a factor of 2–3 because of the hardness of the T = 105 K blackbody

spectrum.
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Fig. 14.— Test 4. (Multiple cosmological sources). Top: Slices through the origin of neutral

fraction at 50 and 200 kyr at the coordinate z = zbox/2. Bottom: Slices of temperature at

50 and 200 kyr. No smoothing has been applied to the images.

5. Radiation Hydrodynamics Tests

In this section, we show results from radiation hydrodynamics test problems presented

in Iliev et al. (2009, hereafter RT09). They involve (1) the expansion of an H II region in

a uniform medium, similar to Test 2, (2) an H II region in an isothermal sphere, and (3)

the photo-evaporation of a dense, cold clump, similar to Test 3. We expand on this test

suite to include more complex situations, such as a Rayleigh-Taylor problem illuminated by

a radiation source, champagne flows, collimated radiation, an irradiated blast wave, and an

H II region in a rotating sphere. For the Iliev et al. tests, we turn off self-gravity and AMR in

accordance with them. In the latter tests, we will indicate whether we use those capabilities

of Enzo. Lastly, we use the new MHD implementation in Enzo v2.0 in the problem of a
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computed ionization front radii to the analytical estimate.

growing H II region in a magnetic field.

5.1. Test 5. Classical H II region expansion

Here we consider the expansion of an H II region into a uniform neutral medium in-

cluding the hydrodynamical response to the heated gas. The ionized region has a greater

pressure than the ambient medium, causing it to expand. This is a well-studied problem

(Spitzer 1978) with an analytical solution, where the ionization front moves as

rs(t) = rs,0

(

1 +
7cs

4Rs

)4/7

, (36)

where cs is the sound speed of the ionized gas and rs,0 is the rs in Equation 33. The bubble

eventually reaches pressure equilibrium with the ambient medium at a radius

rf = Rs

(

2T

T0

)2/3

, (37)
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Fig. 16.— Test 5. (H II region in a uniform medium). Clockwise from the upper left: Radial

profiles of density, temperature, ionized fraction, and pressure at times t = 10, 200, and 500

Myr.

where T and T0 are the ionized and ambient temperatures, respectively. These solutions

only describe the evolution at late times, and not the fast transition from R-type to D-type

at early times.

The simulation setup is similar to Test 2 with the exception of the domain size L = 15

kpc. Here pressure equilibrium occurs at rf = 185 kpc, which is not captured by this test.

However more interestingly, the transition from R-type to D-type is captured and occurs

around Rs = 5.4 kpc. The test is run for 500 Myr.

The growth of the H II region is shown in Figure 15, using both T = 104 K and xe = 0.5

as ionization front definitions, compared to the analytical solution (Eq. 37). We define this

alternative measure because the ionization front becomes broad as the D-type front creates a
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Fig. 17.— Test 5. (H II region in a uniform medium). Clockwise from the upper left: Slices

through the origin of ionized fraction, neutral fraction, temperature, and density at time t =

500 Myr.

shock. Densities in this shock, as seen in Figure 16, are high enough for the gas to recombine

but not radiatively cool. Before 2trec ≈ 250 Myr, the temperature cutoff overestimates rs by

over 10%; however at later times, it provides a good match to the t4/7 growth at late times.

With the xe = 0.5 criterion for the ionization front, the radius is always underestimated by

∼ 20%. This behavior was also seen in RT09.

Figure 16 shows the progression of the ionization front at times t = 10, 200, and 500

Myr in radial profiles of density, temperature, pressure, and ionized fraction. The initial H II

region is over-pressurized and creates an outward shock wave. The high-energy photons can

penetrate through the shock and partially ionizes and heats the exterior gas, clearly seen in

the profiles. As noted in RT09, this heated exterior gas creates an photo-evaporative flow that

flows inward. This interacts with the primary shock and creates the double-peaked features

in the density profiles at 200 and 500 Myr. Figure 17 shows slices through the origin of the
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ionization front radius as T = 104 K and xe = 0.5 as definitions for the front. Bottom:

Velocity of the ionization front, computed from outputs at 0.5 Myr intervals. The velocity is

calculated from rIF, whose coarse time resolution causes the noise seen in vIF. It is smooth

within the calculation itself.

same quantities, including neutral fraction. These depict the very good spherical symmetry

of our method. The only apparent artifact is a very slight diagonal line, which is caused by

the HEALPix pixelization differences between the polar and equatorial regions. This artifact

diminishes as the ray-to-cell sampling is increased.

5.2. Test 6. H II region expansion in an isothermal sphere

A more physically motivated scenario is an isothermal sphere with a constant density nc

core, which is applicable to collapsing molecular clouds and cosmological halos. The radial

density profile is described by

n(r) =

{

nc (r ≤ r0)

nc(r/r0)
−2 (r > r0)

, (38)
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Fig. 19.— Test 6. (H II region in a 1/r2 density profile). Clockwise from the upper left:

Radial profiles of density, temperature, ionized fraction, and pressure at times t = 3, 10, and

25 Myr.

where r0 is the radius of the core. If the Strömgren radius is smaller than the core radius,

then the resulting H II region never escapes into the steep density slope. When the ionization

front propagates out of the core, it accelerates as it travels down the density gradient. There

exists no analytical solution for this problem with full gas dynamics but was extensively

studied by Franco et al. (1990). After the gas is ionized and photo-heated, the density

gradient provides the pressure imbalance to drive the gas outwards.

This test is constructed to study the transition from R-type to D-type in the core and

back to R-type in the density gradient. Thus the simulation focuses on small-scale, not long

term, behavior of the ionization front. The simulation box has a side length L = 0.8 kpc with

core density n0 = 3.2 cm−3, core radius r0 = 91.5 pc (15 cells), and temperature T = 100 K
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Fig. 20.— Test 6. (H II region in a 1/r2 density profile). Clockwise from the upper left:

Slices through the origin of ionized fraction, neutral fraction, temperature, and density at

time t = 25 Myr.

throughout the box. The ionization fraction is initially zero, and the point source is located

at the origin with a luminosity of 1050 ph s−1 cm−3. The simulation is run for 75 Myr.

Because this problem does not have an analytical solution, we compare our calculated

ionization front radius and velocity, shown in Figure 18, to the RT09 results. Their evolution

are in agreement within 5% of RT09. As in Test 5, we use an extra definition of T = 104

K for the ionization front. We compute the ionization front velocity from the radii at 50

outputs, which causes the noise seen Figure 18.

For the first Myr, the radiation source creates a weak R-type front where the medium

is heated and ionized but does not expand because vIF > cs. When vIF becomes subsonic,

the medium can react to the passing ionization front and creates a shock, leaving behind a

heated an rarefied medium. This behavior is clearly seen in the radial profiles of density,

temperature, ionized fraction, and pressure in Figure 19. The inner density decreases over
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two order of magnitude after 25 Myr. To illustrate any deviations in spherical symmetry,

we show in Figure 20 slices of density, temperature, neutral fraction, and ionized fraction at

the final time. The only artifact apparent to us is the slight broadening of the shock near

the x = 0 and y = 0 planes. This causes the ionization front radius to be slightly smaller in

those directions. In the diagonal direction, the neutral column density through the shock is

slightly smaller, allowing the high-energy photons to photoionize and photoheat the gas to

xe = 5 × 10−3 and T = 2000 K out to ∼ 50 pc from the shock. The reflecting boundaries

in Enzo might be responsible for this artifact because this is not seen when the problem is

centered in the domain, removing any boundary effects.

5.3. Test 7. Photo-evaporation of a dense clump

The photo-evaporation of a dense clump in a uniform medium proceeds very differently

when radiation hydrodynamics is considered instead of a static density field. The ionization

front first proceeds as a very fast R-type front, then it slows to a D-type front when it

encounters the dense clump. As the clump is gradually photoionized and heated, it expands

into the ambient medium. The test presented here is exactly like Test 3 but with gas

dynamics. In this setup, the ionization front overtakes the entire clump, which is then

completely photo-evaporated.

Figure 21 shows cuts of density, temperature, neutral fraction, and pressure in a line

connecting the source and the clump center at t = 1, 10, and 50 Myr. At 1 Myr, the

ionization front has propagated through the left-most 500 pc of the clump. This heated

gas is now over-pressurized, as seen in the pressure plot in Figure 21, and then expands

into the ambient medium. This expansion creates a photo-evaporative flow, seen in many

star forming regions (e.g. M16 Hester et al. 1996) as stars irradiate nearby cold, dense

overdensities. These flows become evident in the density at 10 Myr, seen both in the line

cuts and slices (Figure 22). These outflows have temperatures up to 50,000 K. At this

time, the front has progressed about halfway through the clump, if one inspects the neutral

fraction. However the high energy photons have heated all but the rear surface of the clump.

At the end of the test (t = 50 Myr), only the core and its associated shadow is neutral, as

seen in Figure 23. The core has been compressed by the surrounding warm medium, thus

causing the higher densities seen at t = 50 Myr. The non-spherical artifacts on the inner

boundary of the warm outermost shell are caused by the initial discretization of the sphere,

as discussed in §4.3.
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Fig. 21.— Test 7. (Photo-evaporation of a dense clump). Line cuts from the point source

through the middle of the dense clump at t = 1, 10, 50 Myr of (clockwise from the upper

left) density, temperature, pressure, and neutral fraction.

5.4. Test 8. Champagne flow from a dense clump

Radiation-driven outflows from overdensities, known as champagne flows, is a long stud-

ied problem (e.g. Yorke 1986, §3.3). We set up a spherical tophat with an overdensity of 10

and radius of 1 pc in a simulation box of 8 pc. The ambient medium is 290 cm−3 and 100

K. The radiation source is offset from the overdensity center by 0.4 pc. It has a luminosity

of 1049 ph s−1 and a T = 105 K blackbody spectrum. The resulting Strömgren radius is

0.33 pc, just inside of the overdense clump. These parameters are the same used in Bisbas

et al. (2009). The entire domain initially has an ionized fraction of 10−6. We do not consider

self-gravity. The simulation has a resolution of 1283 on base grid, and we refine the grid up

to 4 times if a cell has an overdensity of 1.5 × 2l, where l is the AMR level. The simulation
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Fig. 22.— Test 7. (Photo-evaporation of a dense clump). Clockwise from the upper left:

Slices through the clump center of neutral fraction, pressure, temperature, and density at

time t = 10 Myr.

is run for 150 kyr.

We show slices in the x-y and x-z planes of density in Figure 24 at t = 10, 40, 100, 150

kyr. In the direction of the clump center, the ionization front transitions from spherical

to parabolic after it escapes from the clump in the opposite direction. At t = 10 kyr, the

surface of the H II region is just contained within the overdensity. In the x-z plane, there are

density perturbations only above a latitude of 45 degrees. We believe that these are caused

by the mismatch between HEALPix pixels and the Cartesian grid, even with our geometric

correction. After the ionization front escapes from the clump in the negative x-direction,

these perturbations grow from Rayleigh-Taylor instabilities as the gas is accelerated when

it exits the clump. As the shock propagates through the ambient medium, it is no longer

accelerated and has a nearly constant velocity, as seen in Test 6. Thus these perturbations

are not as vulnerable to Rayleigh-Taylor instabilities at this point. The ambient medium
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Fig. 23.— Test 7. (Photo-evaporation of a dense clump). Same as Figure 21 but at t = 50

Myr.

and shock are always optically thick, even in the directions of the bubbles. Bisbas et al.

found that the shock fragmented and formed globules; however we find the density shell is

stable against such fragmentation. To investigate this scenario further, our next tests involve

radiation driven Rayleigh-Taylor instabilities.

5.5. Test 9. Irradiated Rayleigh-Taylor instability

Here we combine the classic case of a Rayleigh-Taylor instability and an expanding H II

region. The Rayleigh-Taylor instability occurs when a dense fluid is being supported by a

lighter fluid, initially in hydrostatic equilibrium, in the presence of a constant acceleration

field. This classic test alone evaluates how subsonic perturbations evolve. We consider the

case of a single-mode perturbation. We let the system evolve without any radiation until
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Fig. 24.— Test 8. (Champagne flow from a dense clump). Slices of density through the

initial clump center in the x-y plane (top) and x-z plane (bottom) at t = 10, 40, 100, 150

kyr. Notice the instabilities that grow from perturbations created while the H II region is

contained in the dense clump.

the perturbation grows considerably and then turn on the radiation source. These tests

demonstrate that Enzo+Moray can follow a highly dynamic system and resolve fine density

structures.

We run two cases — an optically-thick and optically-thin case. In the former, we take

the parameter choices from past literature (e.g. Liska & Wendroff 2003; Stone et al. 2008) by

setting the top and bottom halves of the domain to a density ρ1 = 2 and ρ0 = 1, respectively.

The velocity perturbation is set in the z-direction by

vz(x, y, z) = 0.01[1 + cos(2πx/Lx)] × [1 + cos(2πy/Ly)] × [1 + cos(2πz/Lz)]/8. (39)

We set the acceleration field gz = 0.1 and the adiabatic index γ = 1.4. We use a

domain size of (Lx, Ly, Lz) = (0.5, 0.5, 1.5) with a resolution of (64, 64, 192). For hydrostatic

equilibrium, we set P = P0 − gρ(z)z with P0 = 2.5. In order to consider a radiation source

with a ionizing photon luminosity of 1042 ph s−1, we scale the domain to a physical size of

(0.5, 0.5, 1.5) pc; time is in units of Myr; density is in units of mh, resulting in an initial

temperature of (T0, T1) = (363, 726) K. The radiation source starts to shine at t = 10 Myr.

The optically-thin case is set up similarly but with three changes—(1) a density contrast

of 10, (2) a luminosity of 1043 ph s−1, and (3) the source is born at 6.5 Myr. The time units
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Fig. 25.— Test 9. (Irradiated Rayleigh-Taylor instability; optically thick case). Slices at

y = 0 of density (top), temperature (middle), and electron fraction (bottom). The source

turns on at t = 0.

are decreased to 200 kyr so that (T0, T1) = (1.8× 103, 1.8× 104) K. Note that in code units,

pressure is unchanged. We adjust the physical unit scaling, so the light fluid has T > 104

K, xe ∼ 1, and thus optically-thin. Furthermore, the ionization front remains R-type before

interacting with the instability. A possible physical analogue could be a radiation source

heating and rarefying the medium below.

The x and y-boundaries are periodic, and the z-boundaries are reflecting. The radiation

source is placed at the center of lower z-boundary face. The periodic boundaries will cause

features that are non-physical, considering a more realistic plane-parallel case. Nevertheless,

these tests provide a good check on a radiation hydrodynamics solver. We show the evolution

of the density, temperature, and ionized fraction of the optically thick and optically thin cases

in Figures 25 and 26. The initial state of the Rayleigh-Taylor instability is shown in the left

panels.
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Fig. 26.— Same as Figure 25 but for the optically thin case.

In the optically thick case, a D-type front is created, which is clearly illustrated by the

spherical density enhancement at 0.02 Myr. The shock then passes through the instability

at ∼0.25 Myr and reflects off the upper z-boundary. This and complex shock reflections

create a Richtmeyer-Meshkov instability, driving a chaotic jet-like structure downwards. The

radiation source photo-evaporates the outer parts of this structure. The interaction between

the dense cool “jet” and the hot medium further drives instabilities along the surface, which

can be seen when comparing t = 0.59 Myr and t = 0.91 Myr slices. At the latter time, the

jet cannot reach the bottom of the domain before being photo-evaporated. Eventually this

structure is completely destroyed, leaving behind a turbulent medium between the hot and

cold regions.

The optically thin problem is less violent than the optically thick case because the R-

type front does not interact with the initial instability as strongly. The radiation source

provides further buoyancy in the already T = 104 K gas. The gas first to be ionized and

photo-evaporates is the outer regions of the instability. The enhanced heating also drives
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Fig. 27.— Test 10 (Photo-evaporation of a blastwave). Slices of density (top) and temper-

ature (bottom) at t = 2.5, 3, 5, 7.5 Myr in the x − z plane. As the R-type ionization front

propagates through the blastwave center, instabilities grow from the slightly inhomogeneous

hot and rarefied medium. Note that the dense shell of the blastwave also creates dense

inward fingers in the ionization front shock.

the upper regions of the instability, making the top interface turbulent. It then reflects off

the upper z-boundary and creates a warm T = 5 × 103 K, partially ionized (xe ∼ 10−2),

turbulent medium, seen in the slices t ≥ 0.67 Myr. The slices of electron fraction also show

that the dense gas is optically thick.

5.6. Test 10. Photo-evaporation of a blastwave

A supernova blastwave being irradiated by a nearby star is a likely occurrence in massive-

star forming regions. In this test, we set up an idealized test that mimics this scenario. The

ambient medium has a density ρ0 = 0.1 cm−3 and temperature T0 = 10 K. The domain size

is 1 kpc. We use 2 levels of AMR with a base grid of 643 that is refined if the density or

total energy slope is greater than 0.4. The blastwave is initialized at the beginning of the

Sedov-Taylor phase when the mass of the swept-up material equals the ejected material. It

has a radius of 21.5 pc, a total energy of 1050 erg, and total mass of 100M⊙, corresponding

to E = 315 eV per particle or E/kb = 3.66 × 106 K. The radiation source is located at the

center of the left x-boundary and has a luminosity of 1050 erg s−1. We use a T = 105 K
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blackbody spectrum with 2 energy groups (16.0 and 22.8 eV). The source turns on at 2.5

Myr at which point the blastwave has a radius of 200 pc. The simulation is run for 7.5 Myr.

Figure 27 shows the ionization front overtaking and disrupting the blastwave. We show

the blastwave before the source is born at 2.5 Myr. The interior is rarefied (ρ ∼ 10−3 cm−3).

It is heated to T ∼ 5× 105 K by the reverse shock. At t = 3 Myr, the ionization front is still

R-type, and it ionizes the blastwave’s dense shell. Because the interior is ionized and diffuse,

the ionization front rapidly propagates through it until it reaches the opposite shell surface.

Shortly afterward, the ionization front transitions from R-type to D-type at a radius of 0.5

kpc, seen in the formation of a shock in the 5 Myr density panel. This transition occurs by

the construction of the problem not by the interaction with the blastwave. The surfaces of

the blastwave that are perpendicular to the ionization front have the highest column density

and thus are last to be fully ionized. The pressure forces from warm ambient medium and

blastwave interior compress these surfaces, photo-evaporating them in the process, similar to

Test 7. They survive until the final time t = 7.5 Myr. As the R-type ionization front interacts

with the blastwave interior, the density perturbations create ionization front instabilities (?)

that are seen on the H II region surface at the coordinate z = 0.5. Behind the ionization

front, the dense shell of the blastwave is photo-evaporated, and a smooth overdensity is left

in the initial blastwave center.

5.7. Test 11. Collimated radiation from a dense clump

Some astrophysical systems produce collimated radiation either intrinsically by relativis-

tic beaming or by an optically-thick torus absorbing radiation in the equatorial plane. The

latter case would be applicable in a subgrid model of active galactic nuclei (AGN) or proto-

stars, for example. Simulating collimated radiation with ray tracing is trivially accomplished

by only initializing rays that are within some opening angle θc.

We use a domain that is 2 kpc wide and has an ambient medium with ρ0 = 10−3 cm−3,

T = 104 K, xe = 0.99. We place a dense clump with ρ/ρ0 = 100, T = 100 K, xe = 10−3,

and r = 250 pc, at the center of the box. Radiation is emitted in two polar cones with

θc = π/6 with a total luminosity of 1049 erg s−1 and a 17.6 eV mono-chromatic spectrum.

This results in trec = 1.22 Myr and Rs = 315 pc, just outside of the sphere. The base grid

has a resolution of 643, and it is refined with the same overdensity criterion as Test 8. We

run this test for 25 Myr.

We illustrate the expansion of the H II region created by the beamed radiation in

Figure 28. Before t = 3 Myr, the H II region is conical and contained within the dense
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Fig. 28.— Test 11 (Collimated radiation from a dense clump). Slices of density (top) and

temperature (bottom) at t = 0.1, 3.25, 10.75, 23.25 Myr. The conical H II region drives shocks

transversely into the overdense sphere and creates polar champagne flows. The ambient

medium is heated to T ∼ 3 × 104 K as the ionization front passes the constant-pressure

cloud surface. The ionization front changes from D-type to R-type after it enters the ambient

medium.

clump, depicted in the t = 0.1 Myr snapshot of the system. At this time, the ionization

front is transitioning from R-type to D-type in the transverse direction of the cone. This

can be seen in the minute overdensities on the H II transverse surface. When it breaks out

of the overdensity, it creates a champagne flow, where the ionization front transitions back

to a weak R-type front. The cloud surface is a constant-pressure contact discontinuity (CD)

with a density jump of 100. After the front heats the gas at the CD, there exists a pressure

difference of ∼ 100. In response, the high density gas accelerates into the ambient medium

and heats it to 3× 104 K. Additionally a rarefaction wave travels towards the clump center.

At later times, the transverse D-type front continues through the clump, eventually creating

a disk-like structure at the final time. The polar champagne flows proceed to flow outwards,

creating a density shell with a diffuse (10−28 cm−3) and warm (5000 K) medium in its wake.

5.8. Test 12. Time variations of the source luminosity

Our implementation retains the time derivative of the radiative transfer equation (Eq.

2) if we choose a constant ray tracing timestep, which saves the photon packages between
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Fig. 29.— Test 12 (Time variations of the source luminosity). Left: Slice of the photo-

ionization rate kph through the origin. The source has a duty cycle of 0.5 Myr, and the box

has a light crossing time of 3.3 Myr. The shells of high kph originate from radiation that

was emitted when the source was at its peak luminosity, illustrating the time-dependence

of the radiative transfer equation. Right: Radial profile kph with the inverse square law

overplotted.

timesteps if the c dtP < Lbox. This effect only becomes apparent when the variation timescale

of the point source is smaller than the light crossing time of the simulation. Furthermore,

the timestep should resolve the variation timescale by a few times. This property might be

important in large box simulations with variable sources, e.g. AGN radiative feedback. To

test this, we can use an exponentially varying source with some duty cycle. In a functional

form, this can be described as

L(t) = Lmax × exp[A(tf/t0 − 1)] (40)

where tf = 2×|t− t0× round(t/t0)|, t0 is the duty cycle, and A = 4 controls the width of the

radiation pulse. To illustrate the effects of source variability, we remove any dependence on

the medium by considering an optically-thin uniform density ρ10−4 cm−3. We take Lbox = 1

Mpc, which has a light crossing time of 3.3 Myr. A source is placed at the origin with

Lmax = 1055 ph s−1 and t0 = 0.5 Myr. We use a radiative transfer timestep of 50 kyr to

resolve the duty cycle by 10 timesteps. The simulation is run for 6 Myr, so the radiation

propagates throughout the box.

The variability of the source is clearly illustrated in the photo-ionization rates, shown

in Figure 29. The shells of relative maximum kph corresponds to radiation that was emitted
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Fig. 30.— Test 12 (Time variations of the source luminosity). Radial profiles of

(clockwise from upper left) density, temperature, pressure, and ionized fraction at t =

50, 100, 150, 200, 250 Myr. In this problem, the time variations in the source have little

effect on the overall H II region expansion. Inside the ionization front at t = 50 Myr,

there are small density perturbations that are created by the variable source that are later

smoothed out over a sound crossing time.

when the source was at its peak luminosity. They are separated by ct0 Mpc and are geometri-

cally diluted with increasing radius. Averaged over shells of the same width, photo-ionization

rates decrease as 1/r2.

Next we test the hydrodynamical response to a varying source by repeating Test 5. We

set the peak luminosity Lmax = 2×1049 erg s−1 that is a factor of 4 more luminous than Test

5, so the average luminosity is ∼ 5× 1048 erg s−1. The spectrum is mono-chromatic with an

energy of 29.6 eV. We set the variation timescale tf = cLbox/3 = 16.3 kyr and use a constant

radiative transfer timestep tP = tf/4 = 4.07 kyr. The simulation is run for 200 Myr. We

show the radial profiles of density, temperature, ionized fraction, and pressure in Figure 30.

The variable source has little effect on the overall growth of the H II region. It has the

approximately the same radius as Test 5 at t = 200 Myr when run with a mono-chromatic

spectrum (see §6.3). At early times, the variable source creates density perturbations with
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Fig. 31.— Test 14. (H II region with MHD). Left to right: slices of density at t =

0.18, 0.53, 1.58 Myr in the x-y plane. The streamlines show the magnetic field.

an average size of 500 pc inside the ionized region, seen in the t = 50 Myr profiles. They do

not create any instabilities and are smoothed out over its sound crossing time of ∼ 50 Myr.

5.9. Test 14. H II region with MHD

Another prevalent physical component in astrophysics is a magnetic field. We utilize the

new magnetohydrodynamics (MHD) framework (Wang & Abel 2009) in Enzo v2.0 that uses

an unsplit conservative hydrodynamics solver and a hyperbolic ∇ · B = 0 cleaning method

of Dedner et al. (2002). This marriage of radiation transport and MHD has already been

demonstrated in Wang et al. (2010), but for illustrative purposes, we show a test problem

with an expanding H II region in an initially uniform density field and constant magnetic

field. We use the same problem setup as Krumholz et al. (2007) — ρ = 100 cm−3, T = 11

K, Lbox = 20 pc with a resolution of 2563. This ambient medium is threaded by a magnetic

field B = 14.2x̂ µG. The Alfvén speed is 2.6 km s−1. The radiation source is located in the

center of the box with a luminosity L = 4 × 1046 ph s−1 with a 17.6 eV mono-chromatic

spectrum, resulting in a Strömgren radius Rs = 0.5 pc. The simulation is run for 1.58 Myr.

The hydrodynamics solver uses an HLL Riemann solver (Harten et al. 1983) and piecewise

linear method (PLM) reconstruction (van Leer 1977) for the left and right states in this

problem.

As the H II region grows the magnetized medium, shown in Figures 31 and 32, it

transforms from spherical to oblate as it is magnetically confined in directions perpendicular

to the magnetic field. This occurs at t > 0.5 Myr because the magnetic pressure exceeds

the thermal pressure, and the gas can only flow along field lines. Krumholz et al. observed
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Fig. 32.— Test 14. (H II region with MHD). Slices of density (top) and the x-component of

the magnetic field (bottom) in the y-z plane at t = 0.18, 0.53, 1.58 Myr (left to right).

some carbuncle artifacts along the ionization front; whereas we see smooth density gradients,

which is most likely caused by our more diffusive choice of the HLL Riemann solver when

compared to Roe’s Riemann solver used in Krumholz et al. (2007), who also use PLM as a

reconstruction method. The evolution of the magnetic field lines evolve in a similar manner

as their results.

6. Resolution Tests

Resolution tests are important in validating the accuracy of the code in most circum-

stances, especially in production simulations where the initial environments surrounding

radiation sources are unpredictable. In this section, we show how our adaptive ray-tracing

implementation behaves when varying spatial, angular, frequency, and temporal resolutions.
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Fig. 33.— Growth of the ionization front radius, compared to the analytical radius, in Test

1 with varying spatial resolutions. At resolutions of 163 and 323, the ionization front is

underestimated for the first ∼ 25 Myr but converges within 0.5% of the higher resolution

runs.

6.1. Spatial resolution

Here we use Test 1 (§4.1) as a testbed to investigate how the evolution of the Strömgren

radius changes with resolution. We keep all aspects of the test the same, but use resolutions

of 163, 323, 643, and 1283. In Figure 33, we show the ratio rIF/ranyl, similar to Figure 5,

using these different resolutions. The radii in the 643 and 1283 runs evolve almost identically.

Compared to these resolutions, the lower 163 and 323 resolution runs only lag behind by 1%

until 300 Myr, and afterwards it is larger by 0.5% than the higher resolution cases. This

shows that our method gives accurate results, even in marginally resolved cases.

6.2. Angular resolution

The Cartesian grid must been sampled with sufficient rays in order to calculate a smooth

radiation field. To determine the dependence on angular resolution, we consider the propa-

gation of radiation through an optically thin, uniform medium. The radiation field should
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Fig. 34.— Variations in the photo-ionization rates for different ray-to-cell samplings Φc.

The colormap only spans a factor of 3 to enhance the contrast. In comparison, the photo-

ionization rate actually spans 4 orders of magnitude in this test.

follow a 1/r2 profile. As the grid is less sampled by rays, the deviation from 1/r2 should

increase. This test is similar to Test 1, but the medium has ρ = 10−3 cm−3, T = 104 K,

and 1 − xe = 10−4. The radiation source is located in the center of a 6.6 kpc domain. The

simulation is only run for one timestep because the radiation field should be static in this

optically-thin test.

We consider minimum ray-to-cell ratios Φc = (1.1, 2.1, 3.1, 5.1, 10.1, 25.1). Slices of the

photo-ionization rates through the origin are shown in Figure 34 for these values of Φc. In

this figure, we limit the colormap range to a factor of 3 to show the nature of the artifacts

in more contrast. Unscaled, the rates in the figures would span 4 orders of magnitude.

When Φc ≤ 3.1, the cell-to-cell variations are apparent because there are not enough rays

to sufficiently sample the radiation field, even with the geometric correction factor fc, whose

improvements are shown later in §7.1. At Φc = 5.1, these artifacts disappear, leaving behind
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Fig. 35.— Standard deviations of the difference between the computed photo-ionization

rates and an inverse square law as a function of ray-to-cell samplings Φc for different spatial

resolutions. There is no dependence on the spatial resolution, and the accuracy increases as

σ ∝ Φ−0.6
c .

a shell artifact where the radiation fields do not smoothly decrease as 1/r2. At higher values

of Φc, this shell artifact vanishes as well.

One measure of accuracy is the deviation from an 1/r2 field because this problem is

optically-thin. To depict the increase in accuracy with ray sampling, we take the difference

between the calculated photo-ionization rate and a 1/r2 field, and then plot the standard

deviation of this difference field versus angular resolution in Figure 35. We plot this relation

for resolutions of 323, 643, and 1283 and find no dependence on spatial resolution, which is

expected because we control the angular resolution in terms of cell widths, not in absolute

solid angles. We find that the deviation from an inverse square law decreases as σ ∝ Φ−0.6
c .

6.3. Frequency resolution

The ionization front radius is within 5–10% of analytical solutions in Tests 1, 2, and

5 with only one energy group; however a multi-frequency spectrum can create differences
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Fig. 36.— Radial profiles of (clockwise from the upper left) density, temperature, radial

velocity, and ionized fraction for Test 5 with nν = 1, 2, 4, 8, and 16 frequency bins sampling

the T = 105 K blackbody spectrum. The data are shown at t = 200 Myr (left) and t = 500

Myr (right). The double-peaked structure in the shock only appears with a multi-frequency

spectrum. The solution converges at nν ≥ 4.

in the reactive flows. We use Test 5 (§5.1; an expanding H II region with hydrodynamics)

to probe any differences in the solution when varying the resolution of the spectrum. In

RT09, ZEUS-MP was used to demonstrate the effect of a multi-frequency spectrum on the

dynamics of the ionization front in this test. Instead of a single shock seen in the mono-

chromatic spectrum, a the shock obtained a double-peaked structure in density and radial

velocity. We rerun Test 5 with a T = 105 K blackbody spectrum sampled by nν = 1, 2, 4,

8, and 16 frequency bins. We use the following energies:

• nν = 1: Mean energy of 29.6 eV

• nν = 2: Mean energies in bins 13.6–30 and >30 eV—21.1, 43.0 eV

• nν = 4: Mean energies in bins 13.6–20, 20–30, 30–40, and >40 eV—16.7, 24.6, 34.5,

52.1 eV

• nν = 8, 16: Logarithmically spaced between 13.6 and 50 eV for the first nν − 1 bins,

and the last bin is the mean energy above 50 eV.

Figure 36 shows the radial profiles of density, temperature, ionized fraction, and radial

velocity at t = 200 Myr and t = 500 Myr. All of the runs with nν > 1 show the double peaked

features in density and radial velocities. The mono-chromatic spectrum misses this feature

completely because all of the radiation is absorbed at a characteristic column density. In the
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Fig. 37.— Growth of the ionization front radius, compared to the analytical radius, in Test

1 with varying radiative transfer timesteps. The dnH/dt and dI/dt based timesteps provide

the best accuracy, combined with computational efficiency because they take short timesteps

when the H II is expanding rapidly but take long timesteps when the photon gradients are

small when rIF is large. At the final time, all but the t = 5 Myr constant timestep produce

identical ionization front radii.

multi-frequency spectra, the higher energy photons are absorbed at larger column densities

and photo-heated this gas. This heated gas creates a photo-evaporative flow that collides

with the innermost shock, forming the double peaked density profile. The nν ≥ 4 runs are

indistinguishable, and the nν = 2 spectrum only leads to a marginally higher density in the

outer shock and lower ionized fractions and temperatures in the ambient medium. In effect, a

mono-chromatic spectrum can be sufficient if the problem focuses on large-scale quantities,

e.g. ionized filling fractions in reionization calculations. Conversely these effects may be

important when studying the details of small-scale processes, e.g. photo-evaporation.
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Fig. 38.— Variable time-stepping for the methods that limit change in neutral fraction

(solid) and specific intensity (dotted). The horizontal lines show the constant timesteps that

were used in the tests. The crossing time of a mean free path by the ionization front is

plotted for reference.

6.4. Temporal resolution

The previous three dependencies did not affect the propagation of the ionization front

greatly. However in our and others’ past experience (Shapiro et al. 2004; Mellema et al. 2006;

Petkova & Springel 2009, e.g.), the timestep, especially too small of one, can drastically

underestimate the ionization front velocity. Here we use Test 1 but with 643 resolution

to compare different time-stepping methods — restricted changes in H II (dnH/dt based;

§3.4.1), constant timesteps (§3.4.3), and based on incident radiation (dI/dt based; §3.4.4).

The growth of the ionization front radius is shown in Figure 37. Both the H II restricted and

incident radiation variable time-stepping methods agree within a few percent throughout the

entire simulation, as does the run with constant dt = 0.1 Myr timesteps. With the larger

constant timesteps, the numerical solution lags behind the analytical one, but they converge

to an accurate H II radii at late times. Even dt = 5 Myr timestep, which underestimated it

by 35% at 50 Myr, is within a percent of the analytical solution.

The larger constant timesteps deviate from these more accurate solutions at early times
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because the photon energy gradient is large, and thus so is the ionization front velocity. To

understand this, the ionization front can be considered static in a given timestep. Here the

ionizing radiation can only penetrate into the neutral gas by roughly a photon mean path

λmfp. Only in the next timestep, the ionization front can advance. If the timestep is larger

than λmfp/vIF,anyl, then the numerical solution may fall behind.

The variable time-stepping of the dnH/dt and dI/dt methods adjust accordingly to the

physical situation, as seen in the plot of timestep versus time (Figure 38). They provide high

accuracy when the source first starts to shine. At later times, the ionization front slows as

it approaches the Strömgren radius, and large timesteps are no longer necessary. The dI/dt

method has a similar timestep as the dnH/dt method. It is larger by a factor of ∼ 2 because

of our choice of the safety factor CRT,cfl = 0.5. This causes its calculated radius to be smaller

by 1% at t < trec, which is still in good agreement with the analytical value.

7. Methodology Tests

Here we show tests that evaluate new features in Enzo+Moray, such as the improvements

from the geometric correction factor, optically-thin approximations, treatment of X-ray ra-

diation, and radiation pressure. Lastly we test for any non-spherical artifacts in the case of

two sources.

7.1. Improvements from the covering factor correction

As discussed in §2.5, non-spherical artifacts are created by a mismatch between the

HEALPix pixelization and the Cartesian grid. This is especially apparent in optically-thin

regions, where the area of the pixel is greater than the (1 − e−τ ) absorption factor. In

this section, we repeat the angular resolution tests in §6.2. Slices of the photo-ionization

rates through the origin are shown in Figure 39, depicting the improvements in spherical

symmetry and a closer agreement to a smooth 1/r2 profile. Previous attempts to reduce

these artifacts either introduced a random rotation of the HEALPix pixelization (e.g. Abel

& Wandelt 2002; Trac & Cen 2007; Krumholz et al. 2007) or by increasing the ray-to-cell

sampling.

In the x-y plane without the correction, there exists shell artifacts where the photo-

ionization rates abruptly drops when the rays are split. This occurs because the photon

flux in the rays are constant, so kph is purely dependent on the ray segment length through

each cell. Geometric dilution mainly occurs when the number of rays passing through a cell
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Fig. 39.— Slices of the photo-ionization rate in the x-y plane (top row) and x-z plane

(bottom row) with (left column) and without (right column) the geometric correction. The

slices are through the origin. In the x-y plane, it reduces the shell artifacts. In the x-z plane,

it reduces the severity of a non-spherical artifact delineated at a 45 degree angle, where the

HEALPix scheme switches from polar to equatorial type pixels.

decreases. With the correction, geometric dilution also occurs when the ray’s solid angle

only partially covers the cell. This by itself alleviates these shell artifacts. In the x-z plane

without the correction, there is a non-spherical artifact delineated at a 45 degree angle. In

the lower region, the rays are associated with equatorial HEALPix pixels, and in the upper

region, they are polar HEALPix pixels. This artifact is not seen in the x-y plane because all

rays are of a equatorial type. The geometric correction smooths this artifact but does not

completely remove it.
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Fig. 40.— Optically-thin approximation to the radiation field with one ray per cell in

optically thin regions. The angular artifacts result from the transition to optically thick

(white line) at an optical depth τ = 0.1.

7.2. Optically-thin approximation

In practice, we have found it difficult to transition from this optically-thin approximation

to the optically-thick regime without producing artifacts in the photo-ionization rate kph.

We use the optically thin problem used in the angular resolution test (§6.2) with Φc = 5.1

to show these artifacts in kph in Figure 40. The radiation field strictly follows a 1/r2 profile

until it reaches τthin ≡ 0.1, which is denoted by the white quarter circle in the figure. At

this radius, the rays are then split until a sampling of Φc is satisfied. Angular spike artifacts

beyond this radius arise because of the interface between the optically-thin approximation

and full ray tracing treatment. They originate in cells that intersect the τthin surface, which

are split into the optically thin and thick definitions. Unfortunately we have not determined

a good technique to avoid such artifacts. They occur because of the following reason. When

the first ray with τ < 0.1 exits such a cell, it applies the optically-thin approximation and

marks the cell so no other ray from the same source contributes to its kph and Γ field.

However other rays may exit the cell with τ > 0.1 because the maximum distance between
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Fig. 41.— Radial profiles of temperature and ionized fraction showing the effects of secondary

ionizations from a mono-chromatic 1 keV spectrum. The discontinuity at r ∼ 0.4 is caused

by artifacts in the ray tracing, which is described in Test 1. The high energy photons can

ionize multiple hydrogen atoms, increasing the ionized fraction. In part, less radiation goes

into thermal energy, lowering the temperature.

the far cell faces and the source is not always τ < 0.1. Then these rays will split in this cell

and add to kph and become attenuated, reducing its photon fluxes. When the rays continue

to the next cell after this transition, the photon fluxes are not necessarily equal to each

other, creating the angular artifacts seen in Figure 40. We are continuing to formulate a

scheme that avoids these artifacts because this approximation will be very advantageous in

simulations with large ionized filling factors.

7.3. X-Ray secondary ionizations and reduced photo-heating

Here we test our implementation of secondary ionizations from high-energy photons

above 100 eV, described in §2.4.2 and used in Alvarez et al. (2009) in the context of accreting

black holes. We use the same setup as Test 5 but with an increased luminosity L = 1050 erg

s−1 and a mono-chromatic spectrum of 1 keV. Figure 41 compares the density, temperature,

ionized fraction, and neutral fraction of the expanding H II region considering secondary

ionizations and reduced photo-heating and considering only one ionization per photon and

the remaining energy being thermalized.
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Fig. 42.— (a) No radiation pressure. Radial profiles of (clockwise from top left) density,

temperature, radial velocity, and neutral fraction. Time units in the legend are in kyr. (b)

Radial profiles with radiation pressure. The momentum transferred to the gas drives out

the gas at higher velocities than without radiation pressure. Afterwards the central region

is under-pressurized, and the gas infalls toward the center, as seen at t = 60 kyr. Then

the radiation pressure continues to force the gas outwards, increasing gas velocities up to 50

km/s.

Figure 41 shows the main effects of secondary ionizations from the 1 keV spectrum on the

ionization and thermal state of the system. Without secondary ionizations, each absorption

results in one ionization with the remaining energy transferred into thermal energy. But

with secondary ionizations, recall that most of the radiation energy goes into hydrogen and

helium ionizations in neutral gas; whereas in ionized gas, most of the energy is thermalized.

In this test, only the inner 300 pc is completely ionized because of the small cross-section

of hydrogen at Eph = 1 keV. Beyond this core, the medium is only partially ionized. This

process expands the hot T = 105 K core by a factor of 2. In the outer neutral regions, the

ionization fraction is larger by a factor of ∼ 10, which in turn results in less photo-heating,

lowering the temperature by a factor 2–3.

7.4. Radiation pressure

Radiation pressure affects gas dynamics in an H II region when its force is comparable

to the acceleration created by gas pressure of the heated region. The imparted acceleration

on a hydrogen atom arp = Eph/c. This is especially important when the ionization front is

in its initial R-type phase, where the gas has not reacted to the thermal pressure yet. Thus



– 69 –

10−4

10−3

10−2

10−1

100

N
e
u
tra

l
F
ra

c
tio

n

4 kpc

Fig. 43.— Slice of neutral fraction at t = 500 Myr through the sources in the consolidated

H II test. There are no artifacts associated with rays being emitted from two sources. Both

of the ionized regions are spherically symmetric before they overlap.

we construct a test that focuses on a small scales, compared to the Strömgren radius. The

domain has a size of 8 pc with a uniform density ρ = 2900cm−3 and initial temperature

T = 103 K. The source is located at the origin with a luminosity L = 1050 ph s−1 and

a T = 105 K blackbody spectrum. We use one energy group Eph = 29.6 eV. The grid is

adaptively refined on overdensity with the same criterion as Test 8. The simulation is run

for 140 kyr.

We compare nearly identical simulations but one with radiation pressure and one with-

out radiation pressure to quantify its effects. Radial profiles of density, temperature, neutral

fraction, and radial velocity are shown in Figure 42 for both simulations at several times.

Without radiation pressure, the evolution of the H II is matches the analytical expectations

described in §5.1. At t = 140 kyr, the ionization front radius is increased by ∼ 5% = 0.16

pc. However radiation pressure impacts the system the greatest inside the ionization front.

At t = 40 kyr, the central density is smaller by a factor of 20 with radiation pressure, but

the temperatures are almost equal. A rarefaction wave thus propagates toward the center,

depicted by the negative radial velocities at t = 60 kyr. This raises the central density to

10−21 g cm−3 at t = 80 kyr. Afterwards, the radiation continues to force gas outwards. From

t = 100 kyr to t = 140 kyr, the maximum radial velocity of the ionized gas increases from

10 km s−1 to 50 km s−1. This leaves behind an even more diffuse medium, lowering the gas

density by a factor of 10 at t = 140 kyr. Thus the recombination rates are lower, resulting

in increased ionization fractions and temperatures in the H II region.
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7.5. Consolidated H II region with two sources

Here we test for any inaccuracies in the case of multiple sources. We use the same test

problem as Petkova & Springel (2009, §5.1.2), which has two sources with luminosities of

5 × 1048 ph s−1 and are separated by 8 kpc. The ambient medium is static with a uniform

density of 10−3 cm−3and T = 104 K. This setup is similar to Test 1. The domain has a

resolution of 128 × 64 × 64 It is 20 kpc in width and is 10 kpc in height and depth. The

problem is run for 500 Myr.

The H II regions grow to r = 4 kpc where they overlap. Then the two sources are

enveloped in a common, elongated H II region. To illustrate this, we show the neutral

fraction in Figure 43. Our method keeps spherical symmetry close to the individual sources,

and there are no perceptible artifacts from having multiple sources.

8. Parallel Performance

Last we demonstrate the parallel performance of Enzo+Moray in weak and strong scaling

tests. For large simulations to consider radiative transfer, it is imperative that the code scales

to large number of processors.

8.1. Weak Scaling

Weak scaling tests demonstrates how the code scales with the number of processors with

a constant amount of work per processor. Here we construct a test problem with a 643 block

per core. The grid is not adaptively refined. The physical setup of the problem is the same as

Test 5 with a uniform density ρ = 10−3cm−3 and initial temperature T = 100 K. Each block

has the same size of 15 kpc as Test 5. At the center of each grid, there exists a radiation

source with a luminosity L = 5 × 1048 ph s−1 and a 17 eV mono-chromatic spectrum. The

problem is run for 250 Myr. We run this test with Np = 2n cores with n = [0, 1 . . . 10, 11]. The

domain has (Nx, Ny, Nz) blocks that is determined with the MPI routine MPI Dims create.

For example with n = 7, the problem is decomposed into (Nx, Ny, Nz) = (4, 4, 8) blocks,

producing a 256 × 256 × 512 grid. We have run these on the original (Harpertown CPUs)

nodes of the NASA NAS machine, Pleiades, with 8 cores per node. Figure 44 shows the

performance timings of various parts of the code. From one to two cores, the total time

only increases by ∼1% due to the overhead associated with the inter-processor message

passing. From two to eight cores, the performance decreases in the hydrodynamics solver,

chemistry and energy solver, and obtaining the hydrodynamic boundary conditions because
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Fig. 44.— Weak scaling test with one 643 block per process. Each block has one source

and is set up similar to the radiation hydrodynamics Test 5. Above 8 processes, all parts

of the code exhibit good weak scaling except for the inter-processor ray communication.

The radiation module timing include the ray tracing, communication, chemistry and energy

solver, and all other overheads associated with the radiation transport. Cache locality of the

data causes the decrease in performance from 1 to 8 processes.

of cache locality problems of the data being passed to the CPU. This occurs because of the

CPU architecture, specifically the L1 cache and core connectivity. We see less of a penalty

in newer processors, e.g. Intel Nehalam and Westmere CPUs. Unfortunately there exists a

N1.5
p dependence in the ray communication routines. It becomes the dominant process above

512 processes. We are actively pursing a solution to this scaling problem. The other parts

of the code exhibit excellent weak scaling. Overall it scales well to 512 processes, and we

plan to enhance the weak scalability of Enzo+Moray in the near future to larger processor

counts.
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8.2. Strong Scaling

Strong scaling tests shows how the problem scales with the number of processors for the

same problem. The overhead associated with the structured AMR framework in Enzo can

limit the strong scalability. One key property of strong scaling is that each processor must

have sufficient work to compute, compared to the communication involved. Here we use a

small-box reionization calculation with Lbox = 3 Mpc/h, a resolution of 2563, and 6 levels of

refinement. We measure the time spent on the hydrodynamics, non-equilibrium chemistry,

the rebuilding of the AMR hierarchy, and ray tracing in a single level-0 timestep, lasting 5

Myr, at z = 9.5. There are ??? point sources in this calculation at this redshift. The ionized

volume fraction is ???.

9. Summary

In this paper, we have presented our implementation of adaptive ray tracing (Abel &

Wandelt 2002) and its coupling to the hydrodynamics in the cosmology AMR code Enzo,

making it a fully functional radiation hydrodynamics code. As this method is photon con-

serving, accurate solutions are possible with coarse spatial resolution. A new geometric

correction factor to ray tracing on a Cartesian grid was described, and it is general to any

implementation. We have exhaustively tested the code to problems with known analytical

solutions and the problems presented in the RT06 and RT09 radiative transfer comparison

papers. Additionally we have tested our code with more dynamical problems—champagne

flows, Rayleigh-Taylor instabilities, photo-evaporation of a blastwave, beamed radiation, a

time-varying source, and an H II region with MHD—to demonstrate the flexibility and fi-

delity of Enzo+Moray. Because production simulations may not have the resolution afforded

in these test problems, we have tested the dependence on spatial, angular, frequency, and

temporal resolution. It provides accurate solutions even at low resolution, except for the

large constant timesteps. However, we have described two methods to determine the ra-

diative transfer timestep that are based on the variations in specific intensity or changes in

neutral fraction inside the ionization front. Both methods give very accurate results and

provide the largest timestep to obtain an accurate solution, ultimately leading to higher

computational efficiency. On the same topic, we have described a method to calculate the

radiation field in the optically-thin limit with ray tracing.

Being a ray tracing code, it scales with the number of radiation sources, albeit lessened

with ray merging; nevertheless, it scales well to O(103) processors for problems with ∼ 109

computational cells and ∼ 104 sources, such as reionization calculations. We have also shown

that the code shows good strong scaling in AMR calculations, given a large enough problem.
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The combination of the AMR and adaptive ray tracing allows for high-resolution and high-

dynamical range problems, e.g. molecular cloud resolving galaxy formation simulations and

H II regions of Population III stars. Furthermore, we have included Lyman-Werner absorp-

tion, secondary ionizations from X-ray radiation, Compton heating from photon scattering,

and radiation pressure, into the code, which extends the reach of Enzo+Moray to study

AGN feedback, stellar winds, and local star formation. Coupling the radiative transfer with

MHD further broadens the applicability of our code. The full implementation is included in

the latest public version of Enzo
2, providing the community with a full-featured radiation

hydrodynamics AMR code.

J.H.W. is supported by the Hubble Fellowship etc. The majority of the analysis and

plots were done with yt (Turk 2008).
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