Data modeled
from back- to front-end

Multipurpose, context-dependent and typesafe data model
In Scala & Scala.js

October 201/ - Olivier Guerriat

OPTIMIZING YOUR DECISIONS v

- We build tools to solve complex industry challenges and inform
decision-making in three key areas:

- health
- energy
- process

- We're growing quickly

Efficiency

- share code, knowledge,
- team flexibility Processes...

. economies of scale i + Scala everywhere

- good framework

permissions handling fully reactive Ul

charts
high-level Ul flows feature-full data model
Jobs management complete control data validation
o baced universal positions
web-base
G full of hooks
tallored to our needs
built with on top of

Scala & JavaScript

Scala & Scala.js o
existing libraries

One Single Data Model

front-end
back-end

storage (DB) algorithms

Simple Data Structure

Data set

Table
id attribute 1 attribute 2 attribute 3 - data set = typed xlIs file

- multiple kinds of data sets

o id foo bar baz

- references between both
tables & data sets

Simple App

Stock Stats

Total

ProductKind

” code id product kind count

Box

id product kind description quantity

2t Computer

That was nice!

- one single data mode|
- multiple usages
- multiple DSLs

- lots of automatically generated stuff
(diagram, Ul, import/export...)

Other Niceties

- automatic JSON/BSON representation

- typed querying
- data migration

- dedicated DSL

- checks (are all the changes taken into account?)

Contexts

What's that? How do they work?

Multiple Usages, Multiple DSLs

- mutable <> immutable

- Synchronous <> asynchronous <> reactive

- consistent <> potentially inconsistent

Context

- determines what actions are possible & guarantees about the data
- when possible, only code the happy path

- one context by kind of usages

- contexts can inherit from each other

- "'explore the schema” is also an usage

Enablers

1. reuse the schema
2. projected types

3. Implicit monkey patching

The Schema is the DSL

- each Instance Is associated with some data

- avold macros but still get the nice names
(with easy IDE support)

Projected Types

class Prou ctKind[C <: Context](
val 1d: CHID,
val code: CHAttr[String]

) extends D- aModelObject[C]

= type level dot notation

abstract class Context {

type Attr[X] <: AbstractAttr[X]
;

class Browsing extends Context {

type Attr[X] = ImmutableAttr[X]
}

class Editing extends Context {

type Attr[X] = MutableAttr[X]
}

Implicit Monkey Patching

class Monkey[C <: Context]

object Monkey {
implicit class EditingMonkeyExt(val m: Monkey[Editing]) extends AnyVal {
def setAge(nb: Int): Unit = 2?7

}
}

val bm: Monkey|[Browsing] = ???
bm.setAge(7) // doesn't compile

val em: Monkey[Editing] = ?7??
em.setAge(42) // does compile

Going further

- make the context covariant
- Immutable view of the schema

- some typed-checked permissions (e.g. for jobs)

THANK YOU

QUESTIONS?

Olivier Guerriat
olivier(aguerriat.be

(aolivierg
Were hirnG: ~\ N-SIDE

Sample project
https://n-side.com

https://bitbucket.org/nside_projects/contextful-data-model

