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Abstract

Schema matching is a basic operation of data integrationsameral tools for automating it have
been proposed and evaluated in the database communityarBlesa this area reveals that there is
no single schema matcher that is guaranteed to succeed ingfiadgood mapping for all possible
domains, and thus an ensemble of schema matchers shoulchbielered. In this paper we introduce
schema meta-matching general framework for composing an arbitrary ensemblcb&éma matchers,
and generating a list of best-ranked schema mappings.nhafty, schema meta-matching stands for
computing a “consensus” ranking of alternative mappinda/éen two schemata, given the “individual”
graded rankings provided by several schema matchers. Véglirde several algorithms for this problem,
varying from adaptations of some standard techniques foegé quantitative rank aggregation to novel
techniques specific to the problem of schema matching, ar@btabinations of both. We provide a
formal analysis of the applicability and relative perfomma of these algorithms, and evaluate them

empirically on a set of real-world schemata.

Index Terms
H.2.1.c: database integration; schema matching; rankeggtjon

I. INTRODUCTION

Schema matching is the task of matching concepts describengneaning of data in various
data sourcese(g., database schemata, XML DTDs, HTML form tagg¢). As such, schema
matching is recognized to be one of the basic operationsireztjiby the process of data
integration [3]. The area of data integration has a rich bofliiterature on schema matching,
summarized in a few surveys [7], [41] and special issues [B9]. Examples of algorithmic tools
providing means for schema matching are COMA [8], Cupid [ZlftoBuilder [23], Autoplex
[1], Similarity Flooding [34], Clio [36], Glue [10], to nama few. Foundational principles of
schema matching are also discussed in [3], [22], [30], [32].

A typical classification of schema matching tasks relateshto amount of automatic pro-
cessing required for achieving a task. Due to its cognitemplexity, schema matching has
been traditionally performed by human experts [5], [28]r Bbvious reasons, manual concept
reconciliation in large scale and/or dynamic environméwith or without computer-aided tools)
is inefficient and at times close to impossible. Introduttmf the Semantic Web vision [2]
and shifts toward machine-understandable Web resourc@s\at services have made even

clearer the vital need for automating schema matching. Téneerfrom manual to semi-automatic
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schema matching has been justified in the literature usimgnaents of scalability (especially for
matching between large schemata [26]) and by the need talspethe matching process. The
motivation for moving tofully-automatic(that is, unsupervised) schema matching stems from
the possible absence of a human expert in the decision grobegarticular, such situations
characterize numerous emerging applications triggerethéyision of the Semantic Web and
machine-understandable Web resources [2], [43]. To thstthis further, consider the recent
Web service challenge competition held in 200Bhe teams at this competition were required
to discover and compose Web services in a completely ungspdrmanner. While the first
competitions are still based on exact string matching o&ipaters, the next competitions have
been declared to involve issues of heterogeneous and amestrschema matching.

Attempting to address the schema matching problem, nuradreuristics (schema matchers
or simply matchers hereafter) have been proposed and ésdlurethe database communis.g,
see [1], [4], [9], [18], [19], [23], [25], [34], [42]). Howeer, choosing among this variety of tools
is far from being trivial. First, the number of schema matshie continuously growing, and this
diversity by itself complicates the choice of the most appiade tool for a given application
domain. Second, as one would expect, recent empirical sisahows that there is no (and may
never be) a single dominant schema matcher that perfornis fegardless of the data model
and application domain [22]. In fact, due to effectively iomted heterogeneity and ambiguity
of data description, it seems unavoidable that optimal nmgspfor many pairs of schemata will
be considered as “best mappings” by none of the existingnsaheatchers.

Striving to increase robustness in the face of the biases shodtcomings of individual
matchers, several tools have enabled combining principfeshich different schema matchers
judge the similarity between concepts. The idea is appgalimce an ensemble of complementary
matchers can potentially compensate for the weaknesseacbf @her. Indeed, several studies
report on encouraging results when using schema matcheméhess €.g, see [8], [13], [23],
[31], [38]). Given that, the first goal of our work is to fornhalanalyze the applicability and
limitations of prior works on ensembling schema matchend, @ovide a more general ensemble
framework that overcomes these limitations.

But even having a good ensemble of complementary schemaeratcannot guarantee that

lhttp://insel.flp.cs.tu-berlin.de/ wsc06/
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an optimal mapping between the schemaay,(a mapping that would have been generated
by a human expert) will always be identified as the top choit¢he ensemble. To address
such situations to the largest degree possible, one cant #dempproach in whichk (and
not just one) top-ranked schema mappings are generatedxamined either iteratively or
simultaneously [22], [21], [27], [29]. Our second goal imishto connect between the ensemble
approach and the tof- approach, increasing the robustness of the schema maigtongss by
enjoying the best of these two worlds.

To achieve our goals, here we introduce a generic compuatdtivamework,schema meta-
matching for computing the topk” prefix of a “consensus” ranking of alternative mappings
between two schemata, given the graded valid mappings efhsglattributes provided “individ-
ually” by the members of an ensemble. A valid mapping in tlaisecis a mapping that satisfied
matching constraintse(g, cardinality constraints) specific to the applicatién.

Our starting point is based on rank aggregation technigeeslidped in the areas of Web search
and database middleware [12], [17]. First, we show thatTheeshold algorithm, originally
proposed in the context of database middleware [17], canpipdiea to our problem almost
as is. Unfortunately, as we show, computing t@pmappings for schema meta-matching using
the Threshold algorithm may require time exponential in the size of the dhatl schemata.
Since in the original context of domain-independent rangiragation therhreshold algorithm
has been shown to be optimal in a strong sense, we proceeddextioping techniques that
exploit the specifics of the schema matching problem. Forrtaicewide class of problems, we
present a simple algorithm, thdatrix-Direct algorithm whose time complexity is polynomial
in the size of the matched schemata and the requife®ubsequently, we present tMatrix-
Direct-with-Bounding algorithm, which draws upon both thdatrix-Direct and Threshold

algorithms, addressing matching scenarios wherdigix-Direct algorithm is inapplicable. We

2Automatic examination of alternative schema mappings y®be the scope of this paper; it is typically tool dependent
may involve analysis of query variations [35], Web servepemessagestc.

3Alternatively, the ensemble members can first provide raggkiof only theattribute-levelmappings, while ignoring the
application constraints posed on the schema matching ggoteis apparent that such an approach would significaetiyce
the complexity of individual rankings. But these rankinpen need to be combined into a “consensus” ranking of \sditema
mappings. To the best of our knowledge, there is no evidendhe literature that such an approach can provide, at a low
complexity cost, a semantically justified “consensus” raglover the schema mappings while respecting schemaitesthing

constraints.
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show that theThreshold and Matrix-Direct-with-Bounding algorithms are (complexity-wise)
mutually undominated — that is, there exist problem inséania which one algorithm performs
dramatically better than the other. To enjoy the best of adhds and even to improve upon
them, we introduce th€rossThreshold algorithm, a hybrid version of these two algorithms,
based on their in-paralletutually-enhancingxecution. Our analysis shows the complexity and
effectiveness of adopting this hybrid algorithm.

We support our formal analysis with experiments on a realdvdata feed. In these ex-
periments, we test the relative performance of Tieeshold, Matrix-Direct-with-Bounding,
and CrossThreshold algorithms on numerous sets of various schema matcherse@pirical
findings support the formal results, in particular showihgttthe CrossThreshold algorithm
dominates botThreshold and Matrix-Direct-with-Bounding algorithms.

It is important to note that the schema meta-matching fraonkewloesnot define the “con-
sensus” ranking, but only aims at its efficient generatiome Tconsensus” ranking is defined
by the actual choice of ensemble, and this choice is orthalgianour work. In particular, the
relative effectiveness of the “consensus” rankingndependenbf the choice of the schema
meta-matching algorithm. Therefore, our formal and eroplranalysis are devoted solely to the
correctness of the algorithms and their comparative padoce.

To summarize, the main contributions of this paper are:

« Introduction of schema meta-matching, a generic comprtatiframework for combining

an ensemble of arbitrary schema matchers for identifyipgifoschema mappings.

« Provision and formal analysis of four algorithms for schemeta-matching. In particular,
we analyze an existing algorithntjreshold) for general rank aggregation adapted to our
domain, and compare its applicability and performance \aitheneralized version of the
COMA [8] approach atrix-Direct). We next develop and study two novgenerically ap-
plicablealgorithms Matrix-Direct-with-Bounding andCrossThreshold). In particular, we
show that theCrossThreshold algorithm combines the benefits of all the other algorithms,
providing the generically most efficient solution to the excta meta-matching problem.

« Comparative quantitative evaluation of the algorithmg #rapirically supports the practical
relevance of our formal results.

The rest of the paper is organized as follows. In Section Il pwevide some basic for-

malism and notation, and introduce the schema meta-matdramework. In Section Il we
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discuss two basic algorithms that can be used to impleméeinsa meta-matching, namely the
Threshold and Matrix-Direct algorithms. In Section IV we introduce thdatrix-Direct-with-
Bounding algorithm, and compare it with thEhreshold algorithm. In Section V we introduce
the CrossThreshold algorithm, a hybrid version of th&hreshold and Matrix-Direct-with-
Bounding algorithms, and discuss its properties. The corresponeixpgriments and empirical

analysis are presented in Section VI. We conclude in Sedtibn

II. FORMALISM, NOTATION, AND PROBLEM STATEMENT

We begin by introducing some formalism and notation esakfar defining the schema meta-
matching problem.

Let schemaS be a finite set of somattributes We put no particular limitations on the notion
of schema attributes; attributes can be both simple and cangy compound attributes need
not necessarily be disjoingtc For any schemata pal and S’, let S = S x S’ be the set of
all possibleattribute mappingsetweenS and S’, and let the power-sef = 2° be the set of
all possibleschema mappinglsetween this pair of schemata. Let > — {0,1} be a boolean
function that captures the application-specific constsaim schema mappings,g, cardinality
and inter-attribute mapping constraidt§&iven such a constraint specificatidn the set of all
valid schema mappings iR is given by>r = {c € ¥ | I'(¢) = 1}. A schema matched takes
as its input a schemata patt S/, as well as a constraint specificatibn and provides us with
an ordering= 4, over Xr. For schema mappings ¢’ € Xr, 0 =4 ¢’ means that is estimated
by A to be as good as’. It is worth noting that such an ordering may be given eithgplicitly
or explicitly.

While various schema matching models have been proposet; afgahem follow a similar
two-step pattern [8] that we adopt here. In the first steph edtribute mapping irS is auto-
matically assigned with a real-valued degree of similafityS and S’ are of arityn andn’,
respectively, then this step results in anx »n’ similarity matrix A/(4), whereMi(j.‘) represents
the degree of similarity between theh attribute ofS and thej-th attribute ofS’, as assigned

by A. Various schema matchers differ mainly in the measures roflaity they employ, and

“We refrain from an in-depth analysis of cardinality and otheter-attribute mapping constraints. The interestedieeas
referred to [6], [10], [20], [44].
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thus yield different similarity matrices. These similgrineasures can be arbitrarily complex,
and may use various techniques for name matching, domaichingt structure matching (such
as XML hierarchical representation), and semantic magchin

In the second step, the similarity informationinY) is used to quantify the quality of different
schema mappings in X using some real-valueldcal aggregation functiorfor /-aggregator
for short)

A A _ f(A (4) (4)
f( ) (U’ M( )) o f( ) <M1,0(1)’ s "Mn,a(n)> )

that is, a function that aggregates the degrees of sinyilas$ociated with the individual attribute

mappings forming the schema mappimngThe ordering=,4 on Xr is then
oma0 & fD (0, MY) > fD (o MW)

for eacho,0’ € Y. A popular choice ofl-aggregator is the sum (or average) of attribute
mapping degrees of similarite(g, see [8], [23], [33]), but othel-aggregators have been found
appealing as wellg.g.,the Dice [-aggregator suggested in [8], threshold-based aggregiaa},
etc). Without loss of generality, in what follows we assume tlfias computable in time linear
in n andn’. However, at least technically, nothing prevents us froimgisnore sophisticated
(and possibly more computation-intengegggregators.

Having defined the ordering 4 over X, the schema matchet can now provide answers to

various queries. The most common query these days standstfi@mving a topt mapping
o' = argmax {f(o, M) | 0 € X},

(possibly) along with its quality estimatioffi?) (o', M4). In the top# approach, this query is

generalized to retrieving a tapth mapping
o' = arg max {f(A)(a, M(A)) |oceXr\{o - ,ai_l}} , Q)

annotated withf (Y (o?, M4). In what follows, we refer to this query astop(i). In addition,
the schema matcher can be queried for the estinfiatgs, A/() for an arbitrary mapping
o € ¥r, and here we denote such a querygastim(o). Clearly, the time and space complexity
of answering these queries depend on both the structuie arid thel-aggregatorf). On
the positive side, however, in many natural setting answetiiese queries can be efficient. For

instance, wherfY is equivalent to sum, anHl is devoted to enforce-1 cardinality constraint,
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then the time complexity of retrieving’ is® O(in*) wheren = max {n, n'} [21], [24], [40], and
providing the estimatg (o, M4) can be done irO(n).

Now, let us consider an ensemble of schema matchersl, ..., A,,, utilizing (possibly
different) local aggregatorgV), ..., f(™), respectively. Given two schemasaand S’ as before,
these matchers produce anx n xn’ similarity cube ofn xn’ similarity matricesM @, ... M ™),
Such an ensemble of schema matchéys. .., A,,, is used to generate a “consensus” ordering
= over Xr from the individual orderings-4, ..., >=,,. This ordering aggregation is performed
via aggregating the weights each provides to the schema mappings>h. In turn, weight
aggregation can always be modeled using a real-valjledal aggregation functior(or g-
aggregator for short)F (@ (o, MD), .-, f0™) (g, M™)) [8], [23]. In what follows, by(f, F)
we denote the set dfaggregators ang-aggregator in use, respectively. Likewise, we use the
notation

<ﬁ F)(o)=F (f(l)(a, MOy Mg, M(m)))

for the aggregated weight provided By, . .., A,, with (f, F') to the mappingr. The aggregated
ordering= on Xr is then

— —

ozo & (f,F)(0)=({f F))

for eacho, o’ € ¥r. For instance, many-aggregators proposed in the literature can be gener-

alized as m
F(fO(0, MD), - | ™ (0, M) = 257k f0(, MO, @)
m
=1

where EqQ. 2 can be interpreted as a (weighted) sum (Withm) or a (weighted) average (with
A = 1) of the local rankings, wherg, are some arbitrary weighting parameters. It is important
to note that the choice af-aggregator is unavoidably ensemble-dependent, and tbnes e
consider it as ajiven property of the ensemble.

Having formalized individual schema matchers and theiesrdes as above, we define the
schema meta-matchingoblem to be that of generating tdp-valid mappings betweef and
S’ with respect to an ensemble of schema matchgrs. ., A,,, their respectivé-aggregators

fW ... f™ and the ensemble’g-aggregatorF’. Formally, givens,s’, I', and K > 1, our

Giveno?,...,o"" !, time complexity of retrieving:’ is O(n%) [21], [24], [40].
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task is to generatéo!,...,oc%} C Yr, where thei-th best mappings® is inductively defined

as:
o' = argmax {(f,F)(0) | o €%\ {o', 0" 1}}, ®)

similar to Eq. 1 for the basic case of = 1.

[1l. RANK AGGREGATION FORSCHEMA MATCHING

Having formalized the problem of schema meta-matching, o proceed with exploring it
from the computational standpoint. To stress some of thepabational issues involved, consider
a straightforward procedure for rank aggregation, wheoh gadge (a schema matcher, in our
case) explicitly ranks the entire universe of alternativ@ssociating each alternative with a
certain level of “goodness.” These individual grades aenthombined (this or another way)
into a grading underlying the “consensus” ranking, and we @ovided with topkK elements
of this aggregated ranked list. Unfortunately, in the cassahema matching, the size of the
universe of alternatives makes this straightforward apgnounrealistic: Given two schemata of
n attributes each, there are alreadyalternativel : 1 mappings between them, and this number
is even larger for less constrained settings. Thereforg,raalistic method for schema meta-
matching has to either consider individual rankings regmésd implicitly in some compact form,
or carefully query the judges about the mappings while Imgithe number and complexity of
these queries to the extent possible.

In the remainder of this paper we focus on the algorithmiceatgof solving this problem.

Before we begin discussing various algorithms, it is wolbserving that a naive approach of (i)
generatingn top-K lists of mappings with respect td,, ..., A,, using theq-top queries, and
(i) subsequent aggregation of these lists usingis not sound. To illustrate this, consider the
top-1 mappingo!. First, strange as it may seeml, may appear in none of the individual top-
K lists, and thus will definitely not appear in an aggregatetdf any length. Such a case may
occur whenever! is not one of the topgs’ mappings of any ofd;, ..., A,,, yet these experts are
so in odds with each other that the common consensus becoocoesenient mediocre mapping.
Second, even ifrt appears in some, or even most, individual fplists, it can be improperly

ranked in step (ii), and possibly even discarded from theeggged topK list. This can occur

®Note that in contrast to the case of Web meta-search [12]judigesare ready to answer any query about mapping rankings.
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Algorithm TA
1) Starting withi = 1, do incremental (on growing) parallel querying ofAi, ..., A, with g-top(z). This querying is
unbounded, corresponding to a sorted access in paralleldo & them rankings of alternative valid mappingsr.

a) As a mapping is introduced by one of the matchers, obtain the remairfifig(o, M), ... | f(™) (o, M(™)) by
querying the other matchers withestim(o), and compute the aggregated Weigﬁt F)(o). If this weight is one of
the K highest we have seen so far, then rememher

b) Forl <! < m, let o, be the mapping returned by ttest q-top query to A% . Define the threshold value,, =
F (f(l)(al,M(l)), . (am,M(m))). If at least K mappings have been seen whose weight is at least
then halt.

2) Let Y be a set containingk mappings with the highest grades seen so far. The outputes the graded set

{[a, (f. F)(a)} o€ Y}.

Fig. 1. The Threshold AlgorithmTg), adopted for schema meta-matching.

if the relative aggregated ranking of is significantly affected by the scores it gets from the

experts that individually ranked it lower than t@p-
A. Adopting the Threshold Algorithm

The problem of optimal aggregation of several quantitéticedered lists has been recently
studied in the context of middleware for multimedia data&bsygstems [14], [15], [17], [16]. The
most efficient general algorithm for this problem, called Fhreshold algorithmTA, for short),
has been introduced in [17], and we begin by presenting thiéhm in terms of our problem
in Figure 1.

The intuition behind thé&A algorithm is elegantly simple. For each schema matchethe
algorithm utilizesq-top queries to generate as many mappings in a ranked order asdeed
Assume thatk’ = 1, i.e, we are interested only in the best mapping. Assume furthesr we
are at a stage in the algorithm where we have not seen any nggppvhose aggregated weight
(f,F)(0) > 7,,, wherer, , is determined in step 1b. If S0, at this point we cannot be thae
the best mapping has already been seen, because the nexhgnapgenerated by-top could
have aggregated weighf, F)(d') > 7,.,. If this is the case, then clearly no mappingeen so
far could be the best mapping, sin¢g F)(¢') > (f, F)(c). Thus, it is safe to halt only when
we see a mapping whose aggregated weight is at tegstSimilarly, for KX > 1, the stopping
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11

rule verifies a sufficient condition to ensure that the fopnappings have been seen.

The only property required to ensure the completeness offAhalgorithm is monotonicity
of the g-aggregatorF' in the following sense [17]: A functiorF’ is monotonicif, for every
two mappingss, o’ such thatf (o, M®) > fO (s’ M©®) holds for all1 < I < m, we have
(f, F)(o) > (f, F)(c"). Since this requirement does not seem to induce any prhlitigtation,
henceforth we adopt this assumption of monotonicity Jemggregators. Likewise, for ease of
presentation and without loss of generality, we assume Ahat computable in time linear in
m.

Considering the time complexity of th@A algorithm while ignoring the specifics of the
schema meta-matching problem, it can be easily shown theagathorithm may have to access
in a sorted manner as many as half of each sorted digf, (see Example 6.3 in [17]). And
while we found no setting of schema-matching problem on twhie TA algorithm performs
that bad, the next theorem shows that in the context of schmeta-matching it may still have

exponentially long runs.

Theorem 1 The time complexity of schema meta-matching uSiags Q((3)!).

Proof: The proof of this lower bound is by construction of a certagt ef similarity
matrices for which th&A algorithm finds the best mapping only afte((3)!).

Consider two algorithms4; and A,, and a pair of schematé and S’, each consisting of.
attributes, wherex = 2k, k € N (and thus;; = n). Likewise, let thel-aggregators/®™) = ()
both be the regulaproduct(denoted byf), X1 be the set of alll-1 mappings from:, and the
g-aggregatorF be the utilitarian aggregatanin. Given S and .S’, the similarity matrices\/ (!

and M, induced byA, and A,, respectively are as follows:

5 G<n/DAG<n/DAGAS) T A>n2NG>n/2N0# ]
M) =2a—¢ i=j M7 =qa—¢ i=j
0, otherwise 0, otherwise

for arbitrary positive values of ande¢, wheree < x, andx — ¢ > 0. Below we illustrate

these matrices fon = 4:

T —e€ x 0 0 T —e€ 0 0 0
MM = voe 0 0 M@ rT—e
0 T —€ 0 -
0 0 T —c€ T
0 0 0 T —€
0 0 x T —€

August 13, 2006 DRAFT



12

First, consider)/™"). Each valid mapping between the first2 attributes ofS and the first
n/2 attributes ofS’ (see the top left quadrant @f (V) results in a non-zero value gfrestricted
to these attributes. There af&)! such mappings. Any other mapping of any of these attributes
will nullify the value of f. On the other hand, the lasy2 attributes ofS have to be mapped
to the n/2 last attributes ofS’, and there is only one such mapping leading to a non-zero
value of f, namely the main diagonal of the bottom right quadrantAof). Therefore, we
have constructively shown that!) induces exactly%)! mappingss such thatf (o, M) > 0.
Denote this set of mappings By C Xr. By a similar construction, the same holds faf?),

i.e.,

Y5 | = (%)!. Now consider the sets] and X3, and lets; denote the indentity mapping,
i.e., the mapping captured by the main diagonals)\éf' and M(?). Evidently, forl € {1,2},
we haveo; € ¥f, and, for eactr; # o € 3, we havef(o, MY) > f(o;, M"). Therefores;
will be discovered by th@A algorithm after exactly%)! g-top queries to each afi!) and A,

On the other hand, we have N X3 = {0}, and thus, for each mappinge ¥, we have:

o n ) n @ B n(x—e€), o=o;
{f, F) (o) = min {H Mo 11 sza(z‘)} = ,
i=1 i=1 0, otherwise
This means that, under the considered aggregdt@asd F', the topd mapping betweery and

S’ has to ber;. However, it will take theTA algorithm (3)! iterations to discover;. u
B. The Matrix-Direct Algorithm

Theorem 1 provides a strong motivation to seek more effi@iatnatives to th@A algorithm.
In [17], however, this algorithm is shown to be optimal in BbBY sense of “instance optimality.”
For the formal definition of instance optimality we refer tleader to [17]; roughly, for any set
of data and any other rank aggregation algorithwith the time complexityComp(A), instance
optimality of theTA algorithm implies that its time complexity is of the ordertbht of A4, i.e,,
Comp(TA) = O(Comp(A)). Hence, at least at first view, it seems that using TAealgorithm
for schema meta-matching is the best we can do. Howeverwbek show that, for a certain
class of aggregator{sf, F), an extremely simple technique exploiting specifics of tbleesna
matching problem provides a significantly better perforogarNote that this does not contradict
the instance optimality of th&A algorithm as the latter is a generic algorithm, indepenaént
the actual grading mechanisms. In particular, TRealgorithm in our domain considers only

the outputs ofg-top queries, and does not intervene in their processing. Hahee possible
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that one can devise algorithms outperformify by exploiting some properties of the specific
problem domain at hand.

To begin with an example, let us considerand g-aggregators

Vie{l,...,m}: fO(c, MV ZM
(4)
(f. F)(c Zk:lf(l (o, M),

=1
Observe that the summations in Eq. 4 can be distributedltirgguin

Z Zkle(la(z
i=1 [=1

where the vector notatiogf is replaced withf to explicitly highlight the uniqueness of the
l[-aggregator in this case. That is, if th@ggregatorf and g-aggregatorF’ happen to be as in
Eq. 4, then usingr for local weight aggregation and for global weight aggregation will be
equivalentto using f and F' in their original roles. In other words, in case of Eq. 4 we dav
(f,F) (o) =(F, f) (o) for any mappingr between any pair of schemataand S’. The special

case of Eq. 4 can be generalized as follows.

Definition 1 Given a set of similarity matrices/("), ..., M ™ over a pair of schemas, S’, and
a pair of [-aggregatorf and g-aggregatorF’, we say thatf and # commute oM/ ... A/(™)
if and only if, for every mapping betweenS and S’, we have:

(f, F) (o) = (F, f) (o) (5)

Likewise, if f and FF commute on all possible sets of similarity matrices, thersayethatf and

F' are strongly commutative

For instance, the aggregatofsand F' as in Eq. 4 are strongly commutative. To illustrate
commutativity in the absence of strong commutativity, ¢des a pair of aggregators corre-
sponding tomin and product respectively. While these two aggregators are clearlystrongly
commutative, they do commute, for instance, on any set ofelamosimilarity matrices.

The commutativity between thle and g-aggregators leads to an extremely efficient algorithm
for schema meta-matching. Specifically, in Figure 2 we pretee Matrix-Direct algorithm (or
MD, for short), generalizing the applicability of the compgesmethod of COMA [8] to any
schema meta-matching problem in which (i) all the judgesthsesame-aggregator, and (ii)
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Algorithm MD

1) Given A4, ..., A, (schematically) construct a new schema matchérwith (a) similarity matrix A/* such that, for
1<i<n1<j<n’, M;=FMY, - M), and (b)l-aggregatorf (o, M*).

4,37

2) Using queriegy-top(1),...,q-top(K) to A*, generate togs valid mappings with respect td*.

Fig. 2. The Matrix-Direct D) Algorithm.

the [- and g-aggregators commute on the given set of similarity madridéne correctness and

time complexity of theMD algorithm are stated by Theorem 2 below.

Theorem 2 Given a set of schema matchets, ..., A,,, and a pair of local and global aggre-
gators(f, I'), let M* be a matrix defined as/;; = F(MZ.(;.), e ,MZS’;.L)), forall 1 <i<n,1<
j <n'.If f and F commute on the similarity matriceg "), ..., M, then theMD algorithm
correctly finds topK valid mappings with respect to the aggregated ranking iretintn*m -+ ®),
where® is the combined time complexity of iteratively executedigag-top(1), ..., g-top(K)

over M*.

Proof: The correctness is immediate from the construction of M2 algorithm and
Definition 1. AsF' is assumed to be computable in time linear in the numbér'sfparameters,
generating\/* takes timeO(n*m). Thus, the overall complexity of tHdD algorithm isO (n*m -+
®). For instance, for aggregators as in Eq. 4 &nehforcingl-1 cardinality constraint, the time
complexity of theMD algorithm isO(n*K + n?m). n

IV. MATRIX-DIRECT ALGORITHM WITH BOUNDING

Reading so far, it seems natural to conclude that the schesteamatching problems satisfying
the conditions of Theorem 2 should be processed usibgwhile all other problems should be
processed usingA (i.e., we are back to an instance optimal algorithm for generahtjadive
rank aggregation). However, below we show that, while then& conclusion is sound, the

latter is not necessarily so.

Definition 2 Consider a set of similarity matrices/™), ... A over a pair of schemas,

S’, and two sets of- and g-aggregators(f, ) and (f’, F’). We say that{f’, ') dominates
(f,FYyon MW, .. M (denoted agf’, F') = (f, F) ) if, for every mappingr from S to S,
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we have:
(f\F') (o) = (f.F)(0) (6)

Likewise, if Eq. 6 holds for all possible sets of similaritatnces, then we say tha(tﬂ,F’)

strongly dominate$f, F).

Consider a schema meta-matching problem defined by a sehitdsty matricesM (D, ..., M)
and a set of- and g-aggregators f, F) thatdo notcommute onM/ (), ..., M(™). Suppose that
there exists a pair of function®, H) that (i) do commute oM/, ... M(™ and (ii) dominate
(f, F') on these matrices. The next Corollary 3, which follows imratzly from the definition
of the MD algorithm, gives us a simple property of this algorithm thedvides some intuition

for the subsequent steps of construction.

Corollary 3 Given a set of schema matchers, ..., A,,, and a pair of local and global
aggregators(h, H) commuting onM™® ... M the top# result of theMD algorithm with
respect to(h, H) is a correct top#~ aggregation with respect to any setlefand g-aggregators
(f.F), such that both(h, H) = (f, F) and (f, F) = (h, H) hold on M®) . M.

In general, nothing prevents Corollary 3 to be realized Illstrate that, consider the following
set of four real-valued functiongi(x) = 22, F(z) = x/2, h(z) = 2?/2, H(x) = x. While f and
F do not commute on reals’(f(z)) = 2?/2 and f(F(x)) = 2%/4), the functionsh and H
are strongly commutative { (h(x)) = h(H(z)) = x*/2), and we haveH (h(z)) = F(f(x)).
However, the practical realizability of Corollary 3 withspgect to schema meta-matching is less
clear, as it is not clear whether there exists a set of fouctfans that will be interesting in
practice for schema meta-matching.

Corollary 3, however, does provide us with some useful trdni Consider a schema meta-
matching problem defined by a set of similarity matriaé¢s”, ..., A/™ andi- andg-aggregators
(f, F) thatdo notcommute onM® ... M. Suppose that there exists a pair of functions
(h, H) thatdo commute onM @ ... M and dominate f, F') on these matrices, yet is not
dominated by(f, F). For instance, lef’ be a weighted sum as in Eq. 4, ajfidoe defined as:

i T'L— M'U'a T'L— M'o'>ti
(0, M) = 251 Moty 2521 Miots) | -

0, otherwise
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Algorithm MDB
1) Given A4, ..., A, (schematically) construct a new schema matchérwith (a) similarity matrix A/* such that, for
1<i<n1<j<n’, M;=HMD, - M), and (b)l-aggregator(o, M*).
2) Starting withi = 1, do incremental (on growing) querying of A* with g-top(3).

a) As a mappings is introduced, obtain the actual weights" (o, M), -- -, f0™ (o, M(™)) by queryingAs, ..., Am
with g-estim(o), and compute the aggregated weigﬁt F)(o). If this weight is one of thek highest we have seen
so far, then remember.

b) Define the threshold value,, ,,, to be h(o, M*).2 If K mappings have been seen whose weight is at legst,,
then halt.

3) Let Y be a set containingk mappings with the highest grades seen so far. The outputes the graded set

{[a, (. F)(a)} o€ Y}.

3|t is worth noting that, due to commutativity ¢f and H (either strong or just with respect tof ™, ..., M ™), we have
Tups = (H,h)(o) = (h, H)(0).

Fig. 3. The Matrix-Direct with BoundingMDB) algorithm.

wheret; > 0 is some predefined constant threshold. The intuition bekiqd7 is that judges
that can no longer provide mappings with sufficient simifameasure (set as the thresho/y
“quit” by nullifying all further mappings. Another exampleeflecting one of the currently used

settings in schema matching.g, [4], [37]), is:

n

FO o, M) =" (Mo - 6 (Mjo) > 1)) (8)

j=1

whered is the Kronecker discrete delta function. According to Egnéividual pair-wise attribute
mappings that do not pass a predefined, matcher-specifghtbiceare nullified. In both cases, it
is not hard to verify thaf and F' do not commute (in all but trivial cases of effectively redant
thresholds.) On the other hand, functidnand H standing for simple sum and weighted sum
(as in Eq. 4) are (strongly) commutative, and we héﬁ,eF) < (h, H) for both Egs. 7 and 8.
For such cases we now present the Matrix-Direct-with-Baumalgorithm (orMDB, for short).
This algorithm draws upon both thBA and MD algorithms, addressing problems with non-
commutative pairs of local and global aggregation functjamhile being more efficient than the

TA algorithm in at least some such problem instances.
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The MDB algorithm is shown in Figure 3. Consider a schema meta-rmgjgbroblem with
schema matcherd,, ..., A,,, and aggregatorsf, F') that do not commute on/®), .. M (™.
As we already mentioned, the basic idea behindMi¥B algorithm is to use a pair of functions
(h, H) (that both dominatéf, F') and commute o/, ..., M (™) as an upper bound for the
“inconvenient” <ﬁ F') of our actual interest. Informally, thIDB algorithm behaves similarly
to the MD algorithm if the latter is given with the aggregatofs, ). However, instead of
reporting immediately on the generated mappiagshe MDB algorithm uses the decreasing
aggregated weight§:, H) (o) to update the value of a threshatg,, .. In turn, much as the way
the thresholdr,., is used in theTA algorithm, the threshold,,,, is used to judge our progress
with respect to the Weight$ﬁ F) that really matter. Theorem 4 shows that MBB algorithm

is correct for any such upper bourd, H).

Theorem 4 Consider a set of schema matchets, ..., A,,, with <f, F') being theirl/- and g-
aggregators. Given a function pajh, H) that both commute and dominatg, F) on MV .. M),
the MDB algorithm correctly finds tops valid mappings with respect t(f, F).

Proof: LetY be as in step 3 of th®1DB algorithm. We need only show that every mapping
o € Y has at least as high weight according(]ﬁ F') as every mapping’ ¢ Y. By definition
of Y, this is the case for each mappiag ¢ Y that has been seen BDB. Thus, assume
that o’ was not seen. By the definition of,,, as in step 2b of thé1DB algorithm and the

incrementality of queryingd* with g-top, for each such unseeri and for eachv € Y we have:

(f F) (o) 27 = (h H)(0') = ([, F)(0)

wherer is the value ofr,,

not been seen and therefofk, H)(¢’) cannot receive a value higher than Thus, we have

at termination ofMDB. The second inequality holds sineé has

proven thatY” contains topK” mappings with respect t()f, F). [ ]
Returning to the question of performance, recall that otention in developing thé1DB
algorithm was to provide an alternative to tfA algorithm for ensemble-aggregation settings
where the standariID is not applicable. Have we achieved our goal, or will Tfealgorithm
always be more efficient anyway? We now show that, for scherata-matchingMDB can

significantly outperfornirA.

August 13, 2006 DRAFT



18

Theorem 5 Given a schema meta-matching problem instance, the timeleaity of the TA

algorithm on this instance can be exponentially worse thaat bf theMDB algorithm.

Proof: The proof is by example of the corresponding problem ingaspecifically, we
consider the class of schema meta-matching problems ugskd proof of Theorem 1, and show
that, for a certain subclass of these problems MiB algorithm can identify the best mapping
after only two iterations.

Consider the schema meta-matching problem exactly as irptbef of Theorem 1, and
assume further that € (0, 1]. We already showed that on this problem instanceTthalgorithm
performsQ((5)!) iterations fork” = 1. Recall that the aggregatofsand ' in this example stand
for productand min, respectively. Hencef and F do not commute on this problem similarity
matrices, and thus theID algorithm cannot be used for this problem instance. Nowsictam
a pair of functions(h, H), where both, and H stand for a simpleverage Observe that, since
the entries of both matrices/™" and M® lie in the interval(0, 1], we have(f, F) < (h, H).
Likewise, sinceh and H are (trivially) strongly commutative, we can solve this lpleom instance
using theMDB algorithm with (h, ). The matrix\/*, constructed by th&DB algorithm from
the matricesM ™ and M using H, is defined as below on the left, where on the right it is

illustrated forn = 4;

22, (i<n/2)AG<n/2) A #7) z—e z/2 0 0
"z, = w2 G>n2AG>0ANGED L | w2 e 0 0

r—¢€ i=j 0 0 x—e x/2

0, otherwise 0 0 x/2 x—¢€

Sincex — e > z/2 for any e < x/2, the mapping processed in tfiest iteration of theMDB
algorithm will be the mapping;, corresponding to the main diagonal &f*, with (f, F')(o;) =
(z—e¢)". Also, at thesecondteration theMDB algorithm we have-,,, = (z—¢)" - (z/2). The
MDB algorithm would halt at the second iteratiorrjf , < (f, F')(o), which holds for example
for x = 0.98 ande = 0.01. Likewise, in the proof of Theorem 1 we have already shown dha
is the best mapping with respect {@, ). Hence, the time complexity of thBA algorithm on
this problem instance witli = 1 is exponentially worse than this of thDB algorithm (with

properly chosen upper bound, H)). [ |
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Theorem 5 shows that thBA algorithm does not dominate tidDB algorithm, but it says
nothing about the opposite direction: Does M®B algorithm dominate thdA algorithm, or
maybe the relative attractiveness of these two algoritlomsiplexity-wise) depends on the actual
meta-matching instance at hand? The problem with answémiagjuestion in a general manner
is that the running time of th&DB algorithm depends on the choice of bounding functions.
Therefore, dominance of thdDB algorithm over theTA algorithm would mean that, fagach
meta-matching problem instance aeach K, the optimal choice of bounding function&:, H)
will make theMDB algorithm at least as efficient 8. At this stage, we have no evidence that
this is actually the case. In fact, so far it is not even cléat the above notion of optimality
has a clear mathematical semantics. It is worth noting Hese the actual tightness a@h, H)
with respect to(f, F') is only one factor in determining the efficiency of tMDB algorithm,
and the optimality as above should also relate to this orhamonotion of order preserving:
Intuitively, the MDB algorithm is most efficient if the order induced by, H) over alternative
schema matchings coincides with the order inducedﬁw>, and (h, H) is sufficiently tight
to allow the discovered mappings to cross,, quickly enough. On the other extreme, the
MDB algorithm is least efficient if the order induced W, H) is the inversion of the order
induced by(f, F). Later we provide an algorithm that makes use of the “goodppiregs that
were discovered by th#DB algorithm even wherih, H) fails to provide a sufficiently tight
threshold. As for order preserving, the superiority of tkgoathm should hold for all problem
instances and all choices &f, and it is not clear how (if at all) this notion can be definedin
problem-instance independent manner.

In the absence of a general relation as above, the questisivahether we can say something
about the attractiveness of thé@ algorithm with respect to th®IDB algorithm that is equipped
with a “reasonable” pair of bounding aggregators. Theoretmel®w provides an affirmative

answer to this question, and shows thiat can significantly outperfornMDB.

Theorem 6 Given a schema meta-matching problem instance, the timelegity of theMDB

algorithm on this instance can be exponentially worse thas of theTA algorithm.

Proof: This proof is by example of a corresponding class of schemta-matching
problems: On any instance of this problem class, TAealgorithm identifies the best mapping

on the first iteration, yet it will be théast mapping discovered by thDB algorithm.
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Consider two algorithmsd; and A,, and a pair of schematé and .S’, each consisting of
attributes. Likewise, let thé-aggregator/ be theproductoperator,g-aggregatorF’ be themin
operator, andr be the set of all-1 mappings from>. Given S and.S’, the similarity matrices

M® and M), induced byA; and A,, respectively are as follows:

VIO SR YICIE Rt
¥ ¥
0, otherwise 1, otherwise
for an arbitraryl /3 > ¢ > 0. Below we illustrate such matrices far= 4:
€000 1-3¢ 1 1 1
ym_| 000 @ 1 1-3 1 1
0 0 0 M=
€ 1 1 1— 3¢ 1
00 0 ¢ 1 1 1 1-3

Considering the execution of ti& algorithm onM () and M as defined above, first notice
that the only mapping,, for which we havef (o, M (V) > 0, is the mappings; (i.e.,the identity
permutation). Therefores; will be discovered by th&A algorithm on thefirst iteration, with
mra = {f, F)(o7). Second, notice that all the entries &f"Y) and M/? lie in the interval|0, 1].
Thus, for allo; # o € Yr, we have(f, F)(c) = 0. Finally, sincef(c;, M®) > 0, we have
(f, F)(c) > 0, and thuso; is the best mapping with respect (@, F').

It is not hard to see that the aggregatgrand F do not commute on out/™ and M@,
Consider a pair of functiongh, H), where bothh and H stand for a simpleaverage Since
the entries of both matrices/™" and M lie in the interval(0, 1], we have(f, F) < (h, H).
Likewise, sinceh and H are (trivially) strongly commutative, we can solve this lpleam instance
using theMDB algorithm with (h, H). The matrix}/*, constructed byMDB from the matrices
M® and M® using H, is defined as below on the left, where on the right it is illattd for
n = 4.

1 1 1 1
2 — € 2 2 2
1 . 1 1 1 1
i€ i=7 11 . 1 1
« )27 65 . _ 2 2 2 2
My =42 | e
2 otherwise 2 2 2 2
1 1 1
2 2 2 2 — €

For each mapping € Xr, let k, be the number of attributesc S, such thatr (i) =i (i.e, the
number of the attribute mappings inthat lie on the main diagonal a¥/*). For eacho € >,
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we havek, € {1,2,...,n—3,n—2,n}, and:

h(o, M*) = — ko 0<k, <n-2,

—¢ k,=n

Therefore, for eaclhr; # o € X, we have(h, H)(o) > (h, H)(o;), and thus (the best mapping!)
o will be the last mapping discovered by thdDB algorithm. [ |

V. THE CROSSTHRESHOLD ALGORITHM

The main conclusion to be drawn from Theorem 6 is that Mi2B algorithm should not
replace but rather complement tha algorithm. Thus, it would be natural to adopt a parallel
execution ofTA and MDB, i.e., performingm + 1 parallelg-top querying of schema matchers.
This way, we involve both algorithms in computing the tApmappings, halting as soon as one
of these algorithms reaches the desired goal.

The question that suggests itself immediately is whethecareimprove the performance of
this parallel execution of th&@A and MDB algorithms by either monitoring their intermediate
behavior, or lettingTA and MDB share some information gathered from their own individual
computations. Our discussion of this possibility leads gec#ication and analysis of a mixed
version of theTA and MDB algorithms, in whichTA and MDB are executed in parallel, yet

these parallel executions are not independent, but conuatimg and mutually enhancing.

A. Is an early winner a true winner?

A naive approach to accelerate parallel execution offth@ndMDB algorithms corresponds
to the hypothesis that by observing the performance of BatandMDB in identifying the top:
mappings (where < K), a decision can be taken to continue with only one of thegerdghms
in identifying the remaining< — i mappings. Observe that such an “early winner detection” wil
be especially helpful in problems whede factoMDB outperformsTA, sinceTA’s execution of
m parallel g-top querying is more costly than executilngDB.

Unfortunately, such a selection strategy provides us watgumarantee that the performance will
not worsen after abandoning the “so-far looser” algoritiviore interestingly, our experiments

show that this absence of guarantee is not of theoreticatdst only. For instance, Figure 4
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compares the performance of ti& and MDB algorithms on two schemata from the hotel
reservation domain. The x- and y-axes in Figure 4 corresporttie requested number of the
top mappingskK, and the (plotted on a logarithmic scale) number of iteregtiperformed by
the algorithms, respectively. On this problem instance,MDB algorithm manages to get the
top-4 mappings faster than thEA algorithm. However, fromik = 6 on, TA outperformsMDB.
This example demonstrates that in practice as well, théivelperformance of thdA andMDB
algorithms for anyi < K cannot serve as a perfect indicator for their future behrayite

discuss our experiments in more details in Section VI.)

Iterations
100

—o—TA
—s—MDB

10 *>

<

1 2 3 4 5 6 7 8 910 111213 14 1516 17 18 19 20
K

Fig. 4. Crossing performance of tH& and MDB algorithms on a certain problem instance from our expertsien

B. Can theTA and MDB algorithms help each other?

While we have shown that neither tA& algorithm nor theMDB algorithm can be safely
abandoned, a natural next step would be to allow these twaritdgns to share a pool of top-
K candidates. This way, both algorithms will contribute tate@ther new candidates as they
come along, possibly replacing other, less attractive iciates (discovered by either of the two
algorithms.) Moreover, such a pool sharing suggests agtjregthe thresholds used in tA&
and MDB algorithms, achieving a new threshold that is more effectivan the original two.
This way, the schema mappings selected byThAealgorithm as candidates for the tdp-set
can be “approved” by means of the information obtained byMIDB algorithm, and vice versa.

Figure 5 formalizes the resulting algorithm which we ref@ras CrossThreshold. The joint
thresholdr used in this algorithm is set i@in {7, ,, 7,,,,, }» and Theorem 7 shows the correctness
of the CrossThreshold algorithm with such a threshold. Note that this choicerofor the

CrossThreshold algorithm is optimal, because any othér> r cannot be more effective than
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Algorithm CrossThreshold
1) Given A4, ..., A, (schematically) construct a new schema matchérwith (a) similarity matrix A/* such that, for
1<i<n1<j<n’, M;=HMD, - M), and (b)l-aggregator(o, M*).
2) Starting withi = 1, do incremental (on growing) parallel querying ofA, ..., A, A* with g-top(i).

a) Asa mapping is introduced by one of these+1 matchers, obtain the remainigg" (o, M), ... | f(™) (g, M(™)
by querying the other matchers (excludirg) with g-estim(o), and compute the aggregated weigbﬁ; Fy(o). If
this weight is one of thé{ highest we have seen so far, then rememher

b) Letoi,...,om,o« be the mappings returned by thast g-top queries byA;, ..., A, A*, respectively. Define the
threshold valuer = min {7, ,,7,, 5}, Wherer,, = F(f(l)(al,M(l)),m ,f<m)(am,M(m))) and7,,,, =
h(o«, M*). If K mappings have been seen whose weight is at leagten halt.

3) Let Y be a set containingk mappings with the highest grades seen so far. The outputes the graded set

{[(7, (. F)(a)} o€ Y}.

Fig. 5. TheCrossThreshold algorithm.

7, while settingr to any value lower thamin {7,.,,7,,,,} cannot guarantee the soundness of

the procedure.

Theorem 7 Let A,..., A,, be a set of schema matchers Wi([ﬁ F) being theirl- and g-
aggregators. Given a function pafh, H) that both commute and dominatg, ) on M@ ..., M,
the CrossThreshold algorithm correctly finds togs” valid mappings with respect th, F).

Proof: LetY be the set of mappings as in step 3 of @r@ssThreshold algorithm. We need
only show that every mapping € Y has a weight at least as high, accordingfoF>, as every
mappinge’ ¢ Y. By definition of Y, this is the case for each mappiag¢ Y that has been seen

by theCrossThreshold algorithm. Assume that’ was not seen, and let, 7/, , andr = be the

andr

MDB?

respectively, at the termination 6rossThreshold. If 7/ > 7/ | by

MDB TA'

value ofr, T,

TA
monotonicity of ', we haver’ =7, > (f. F)(c") for everys’ ¢ Y. Otherwise, ifr, . <7
from the incrementality of queryingl; with g-top, we haver’ > (h, H)(¢") > (f, F)(c") for
everyo’ ¢ Y. But by definition ofY’, for everyo € Y we have(f, F)(o) > 7'. Therefore, for
everyo’ ¢ Y, we have(f, F)(c) > 7' > (f, F)(¢'), as desired. m
While Theorem 7 shows the correctness of @mssThreshold algorithm, the reader may

rightfully wonder whether it can provide any computatiosgleedup compared to the basic
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independent parallel execution of thA andMDB algorithms. Below we provide an affirmative
answer to this question.

Considering the generation of tdg-mappings for a general schema meta-matching problem,
let I be the minimal number of iterations required for this pugty the CrossThreshold

algorithm, and!

TA? ]VIDB

be the corresponding minimal number of iterations requbgdnde-
pendently running th&A andMDB algorithms, respectively. If usinGrossThreshold provides

any computational speedup on this problem instance, thesheald have

I< mln{ TA) MDB} (9)

To obtain some intuition on when (if at all) Eq. 9 may hold, 1#¢t|, 7, ,[z|, andr,,,,[z] be

the values obtained after iterations byr, 7.,.,, and 7

MDB?

respectively. By definition of the

CrossThreshold algorithm and its reported tof- list Y, we have
VYoeY: (f,F)(o)>7[]=min{r, [I],7,,s]} (10)

and, without loss of generality, assume that[/]| # 7,,,,[{]
First, suppose that the value ofI] is contributed by theTA algorithm,i.e., 7[I] = 7,.,[1],

and thus Eqg. 10 can be reformulated as
Vo eY: (f,F)(0)>7,,[I] (11)

On the other hand, Eq. 9 in particular implies that theretexas least one mapping € Y that
has not been seen @A. Thus, afterl iterations, such a mappingis exclusivelyprovided to the
shared pool of candidates by tMDB algorithm, yet theTA algorithm can successfully verify

membership of in the top4 list. The situation withr[/] = I] is symmetric; in this case,

T 1]
there exists at least one mapping: Y that is exclusively discovered by tA& algorithm, and
yet its membership in the tof- list can be successfully verified by tiDB algorithm.

We now formalize this intuition to characterize schema mme#dching problem instances
on which theCrossThreshold algorithm can provide a computational speedup over itschasi
“asynchronous” counterpart. Starting with Egs. 9-10, wevyate two lemmas that significantly
reduce the spectrum of scenarios in which such a speedupasetically possible. Specifically,
Lemmas 8 and 9 below restrict the global aggregator value agpimgs that are identified by
one algorithm and verified with the appropriate thresholdhef other algorithm to bequalto

the joint thresholdr.
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Extending the notation introduced in Section V-B, Et= Y, , UY,, ., be a (possibly

not disjoint) cover ofY’, whereY,, andY, contain the topK” mappings provided to the

MDB

CrossThreshold algorithm by theg-top queries toA, ..., A,, and A*, respectively.

Lemma 8 If I < I, andr[I] = 7,,[I], thenY \ 'Y, , # 0, and for eachy € Y\ Y,.,, we have:

(f.F)(0) = Ty, 1] (12)

Proof: The assumption of the lemma that< I, implies that there exists at least one
mappingo € Y that would have been discovered by (independently runniidgdnly at some
iterationI’ > I, and thus we hav& \ Y,., # (. Now, considering mappings € Y\ 'Y,.,, recall
thatr,,[I] = F(fY (o, MM), ..., f0)(a,,, M™)), whereo, ..., o, are mappings provided
by Ay, ..., A,, at the iteration/, respectively. From the lemma assumptiefi{ = 7, ,[]) and

Eq. 10, we have

< (f, F)(0) )
= F(fD (o, M), f™) (o, M)

for all o € Y. On the other hand, by the definition of thecop queries we havg® (o;, M) >
f@(a, M) for each mappingr; as in Eq. 13. Thus, by the monotonicity 6f we have

F(fO (o1, MO),...., {7 (g0, M) = F(fO (0, MD),..., {0 (0, MOW)),  (14)

and together, Eq. 13 and Eq. 14 imply Eq. 12. [ |
Lemma9If I <1I,,, and7[I] =1,,,[], thenY \Y,,, . # 0, and for eachoc € Y\ Y,, .,
we have:

<f: F> (U) = TJVIDB[]] (15)

Proof: Similar to the proof of Lemma 8, the assumption tthat / implies that there

MDB

exists at least one mappige Y that would have been discovered by (independently running)

MDB only at some iteratiod’ > I, and thus we hav& \ Y,

s 7 0. Considering such mappings

ceY\Y,,,, fromthe assumption that /] = r,,,,[], we have

Tuosll] = (b H)(0") < (f, F)(0), (16)
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whereo’ is the mapping discovered by tiDB algorithm at the iteration. Likewise, since
ceY\Y,,,, we have:
(h, H)(0) < (h, H)(0") (17)

Finally, since(h, H) dominates(f, '), we have:

(f. F)(0) < (h. H)(0). (18)

Together, Egs. 16-18 provide us with the lemma claim tHat)(c) = 7

vz - m
At first view it seems that the restrictions posed by Lemmas@ @ are too strict for the

CrossThreshold algorithm to provide a significant computational speeddigaily). However,

below we show that even in such boundary situations, thedsgeis not only possible, but also

potentially significant.

Theorem 10 There exist schema meta-matching problem instances fahvwhe time complexity
of both theTA and MDB algorithms is exponentially worse than that of t6eossThreshold

algorithm.

Proof: The proof is by example of the corresponding problem insgar@onsider two
algorithms,A; and A,, and a pair of schemataandS’, each consisting of attributes. Likewise,
let thel-aggregatorf be the regulaproduct and theg-aggregator” be the utilitarian aggregator
min. Given S and S’, the similarity matrices\/() and M, induced byA, and A,, respectively

are as follows:

2,

0, otherwise

M — x+2, (i=j)V(@i+j<n+1l) M — z, (i=7)V(E+j>n+1)
i, J
0, otherwise

such thatz > 0, e > 0, andz + 2¢ < 1. Below we illustrate the matrices for = 5:

r+2 x+2 xT+2 T+ 2 0 z 0 0 0 O

r+2 x+2 x+2€ 0 0 0 =z 0 0 =z

MDY = 242 z+2 z+2 0 0 MP =10 0 2 2 =«
T+ 2¢ 0 0 T + 2€ 0 0 0 =z = =

0 0 0 0 x + 2¢ 0 2z =z = =

Likewise, consider a pair of bounding functiofis H ), where both, and H stand foraverage

Since the entries of both matricag® and M lie in the interval|0, 1], we have(f, F) <
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(h, H). The matrix M*, constructed by thé/DB algorithm from the matriced/") and M%)

using H, is defined as below on the left, where on the right it is iHatgd forn = 5:

t+e i=j Xxt+e gt+e FH+e g+e 0
o |z4e GEDAGHI<n+Y phe xte sre 05
M, = Wl g gae xee 33
0, itj=n+l 5 +e 0 5 x+e Z
Z, otherwise 0 3 3 3 xte

First, consider the execution of tH& algorithm on this problem instance. Lef stand for
the mappings captured by the primary diagonal. That islfar: < n, o,(i) = . It is not hard
to see that

(f,F)(o,) = min{(z + 2¢)", 2"} = 2",

while, for each mapping # o,, we have eithetf (o, M) = 0 or f (¢, M®) = 0, and thus
(f, F)(o) = 0. Hence, the togd-mapping for this problem instance cannot be anything{but.
On the other hand)/™ induces® ((Z —1)!) mappingss having

f (O‘, M(l)) =(r+2)" =f (O‘[,M(l)) ,
and M induces® ((% — 1)!) mappingss having
f (UaM(Z)) =z" = f (O-IyM(Z)) )

Therefore, the best mappings might be discovered by thEA algorithm only afteil© ((g — 1)!)
iterations.

In turn, consider the performance of thDB algorithm on this problem instance, and further
assume that” < (xz-+e¢)/n. From the description af/*, it is not hard to see that the best mapping
o, will be discovered by theMDB algorithm on the first iteration. However, observe that the
lowest value obtained by,,,,, on AM* will be higher than(z +¢)/n. Since(f, F')(o,) = 2", we
conclude that thé/1DB algorithm couldverify that the candidate, is indeed the best mappings
only after© (n!) iterations.

Now, consider the “cooperative” execution ™k andMDB in the scope of th€rossThresh-
old algorithm. Following our discussion above, assume Tatvould fail to discoverr, for the
first © ((2 — 1)!) iterations. However, immediately after the first iteratioe haver,, = z".

Recall thatr, is discovered by tht1DB algorithm at the first iteration. It is easy to see that after
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the first iteration of theCrossThreshold algorithm we haver = 7,.,, and thus we immediately

Al

conclude that:
([ F)(o)=a"=T

Hence, the best mapping is discovered by th€rossThreshold algorithm immediately after

the first iteration, while both,., and !

MDB

for this topd problem are exponential in. [ |

VI. EMPIRICAL EVALUATION

We have implemented the generic versions of the four alyosTA, MD, MDB, andCrossThresh-
old.” In this implementation, each algorithm can be plugged-ithvai concrete schema model
(e.g, relational), a set of (standard or user-defined) schemahmett, and a pair oF and g-
aggregators.

As a testbed, we have gathered 24 Web forms from 6 differemtaglezs, namely dating and
matchmaking, job hunting, Web mail, hotel reservation, ieand cosmetics. We first extracted
the schemata of these Web forms using the OntoBuilder ogyadatractor. Then, we generated
the similarity matrices for all pairs of domain-compatibleb forms using four different schema
matchers calledier m Val ue, Conposi ti on, and Precedence [23]. The valid schema
mappings have been defined to be all the mappings obdyingardinality constraint.

In our experiments, we have evaluated Td¢ MDB, andCrossThreshold algorithms on five
pairs of these matchers, naméliier m Val ue}, {Ter m Precedence}, {Ter m Conposi ti on},
{Val ue, Precedence}, and{Val ue, Conposi ti on}. Likewise, all these 15 schema meta-
matching settings have been evaluated on nine pairs ahd g-aggregators f, ), namely
(avg, min) and (avg(t), avg), whereavg(t) stands for the average version of Eq. 7, and
{0.025,0.05,0.1,0.15,0.2,0.25,0.5,0.75}. To eliminate possible influence of having differént
aggregators for different schema matchers on the conelness of the evaluation, in all these 135
experiment configurations the matchers have been set thhassatnd-aggregator. Likewise, in
all these configurations we have usegyg, avg) as the dominating pair of bounding aggregators

(h, H), and generated up t& = 20 top mappings.

'Requires Java 2 JDK 1.4 (or higher), and is available as pdrt te OntoBuilder distribution from

http://ie.technion.ac.il/OntoBuilder.
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(a) (b)

Fig. 6. TheTA andMDB algorithms with schema matchef$er m Pr ecedence} and(f, F') = (avg(0.25), avg), evaluated
on two different pairs of schemata.

To summarize, we have experimented with 12 pairs of scherfajeoups of schema matcher
pairs, and 9 pairs of- and g-aggregators, to a total of 540 comparative experiment&det
the TA, MDB, andCrossThreshold algorithms. Below we discuss the results of our empirical
evaluation ofTA, MDB, and CrossThreshold. Note that empirical evaluation of thdD al-
gorithm is redundant, as the running time D on a given problem instance can be derived

analytically from Theorem 2.

A. Evaluating theTA and MDB algorithms

Recall that Theorems 5 and 6 show that e and MDB algorithms do not dominate each
other. These formal results, however, say little about tfaetral relationship between the two
algorithms. Interestingly, our experiments on real-watthemata support the formal conclusion
of Theorems 5 and 6 that there is no clear winner betweeAhand MDB algorithms.

To start with a concrete example, in Figure 6 we present theoqmmeance of theTA and
MDB algorithms on two different pairs of schemata, while empigythe samepair of matchers
{Ter m Precedence}, and thesamepair of /- and g-aggregators f, F') = (avg(0.25), avg)
(bounded by(h, H) = (avg, avg).) The x- and y-axes in these graphs correspond respectively
to the requested number of the top mappihgsand the number of iterations performed by the
algorithms (plotted on a logarithmic scale). It is easy te $&t theMDB algorithm significantly
outperforms theTA algorithm on the problem instance depicted in Figure 6(d)ilevthe TA
algorithm significantly outperforms thBIDB algorithm on the problem instance depicted in
Figure 6(b). Thus, Figure 6 clearly shows that performancemparability between theA and

MDB algorithms is not restricted to some extreme pathologicablem instances. Moreover,
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this example illustrates that these two algorithms arermuarable even if there is no difference
between their settings neither in the choice of schema raedcmor in the choice of- and

g-aggregators.

TA > MDB | MDB > TA | TA=MDB | no winner

(avg(0.025), avg) 8% 57% 27% 8%
(avg(0.05), avg) 17% 53% 22% 8%
(avg(0.10), avg) 28% 40% 18% 13%
(avg(0.15), avg) 42% 33% 15% 10%
(avg(0.20), avg) 47% 23% 12% 18%
(avg(0.25), avg) 65% 20% 3% 12%
(avg(0.50), avg) 78% 15% 0% ™%
(avg(0.75), avg) 97% 2% 0% 2%
{avg, min) 95% 2% 0% 3%

TABLE |

RELATIVE PERFORMANCE OF THEMDB AND TA ALGORITHMS.

Table | summarizes the relative performance of MiBB and TA algorithms on various pairs
of schemata and various choices of schema matcher groupsi.oWs in Table | correspond to
the different choices of thé and g-aggregators, while its four columns capture the percentag
of experiments in which (i)TA performed at least as well 84DB for all 1 < K < 20 and
outperformedMDB for at least one sucli’, (i) MDB performed at least as well aA for
all 1 < K < 20 and outperformedA for at least one sucli, (iii) TA and MDB performed
exactly the same, and (iv) none of these two algorithms dataththe other foall 1 < K < 20.
This table further illustrates that the performance of WhBB and TA algorithms is generally
incomparable. Likewise, as it was expected, Table | shows the performance of th1IDB
algorithm correlates with the relative informativenessoof bounding aggregatoravg, avg)
with respect to the actudt and g-aggregators in use. Specifically, the lower the threshsld i

the better theMDB algorithm performs.

B. Evaluating theCrossThreshold algorithm

Next we compare the empirical performance of @essThreshold algorithm with the inde-

pendent in-parallel execution of tA& andMDB algorithms. Recalling that thérossThreshold
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algorithm is always at least as effective as its basic copate and that Theorem 10 implies
the theoretical feasibility of Eq. 9, our intention hereascheck whether the computational gain
from using theCrossThreshold algorithm can also be observed in practice.

Let Iin = min{/_,,1,,,,} denote the number of iterations required to solve a giverraeh
meta-matching problem using the basic in-parallel exeautf the TA and MDB algorithms.
Figure 7 illustrates the relative performance of bessThreshold algorithm with respect to
in-parallel execution by plotting the ratig,;, /I averaged over all twelve tested pairs of schemata
and five tested pairs of schema matchers. Since we always/havé,;,, the (averaged) ratio
Iwin/1 is always bounded from below by. Each vertex on this surface corresponds to an
average ratio for a certain number of required mappiRgéx-axis), and a certain choice &f
and g-aggregator functions (y-axis).

Figure 7 clearly shows that using tl&ossThreshold algorithm is beneficial not only in
theory, but also in practice. Averaging over all 540 expenal sessions, th€rossThreshold
algorithm was~ 16% faster than its basic counterpart. For the aggregatos paig(t), avg),
the relative benefit of using th€rossThreshold communication between th€A and MDB
algorithms was roughly proportional to the cutoff valuerhe intuition behind this relationship
is that, ast gets closer td), the values that the bounding functiofis/g, avg) provide to the
mappings are closer to those provided by the actual aggnegatg(¢), avg), and thus théiDB
algorithm is getting closer to the “perfect” algorithiD.

Now, consider the pair of local and global aggregat@rss;, min). Recall that in our experi-
ments with this pair of aggregators tfié algorithm outperformed th#1DB algorithm in95%
of the experiments for any < K < 20 (see the last row in Table I). If so, then one would
expect the performance of therossThreshold algorithm on these problems to be similar to
that of theTA algorithm, as it seems that tiDB algorithm will have nothing to contribute to
the process. However, Figure 7 shows exactly the oppositepmly does theCrossThreshold
algorithm outperformed th&A algorithm on this problem set, but the marginal contributod
using it was the largest among all the pairsi-oand g-aggregators considered.

This phenomenon corresponds to a certain interesting fdrfmatual assistance” between
the TA andMDB algorithms inCrossThreshold, possibility of which we have exploited in our
proof of Theorem 10. Recall our discussion that the effigremicthe MDB algorithm is affected

by two separate factors. First, top mappings with respe<¢1ftd?> might be pushed down when
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Fig. 7. TheCrossThreshold algorithm versus independent in-parallel execution of ThAeand MDB algorithms.

using (h, H). However, even if this is not the case and BB algorithm immediately finds
the true top mappings, the algorithm may not be able to véhniém due to the threshold, , .,
which is too high. Now, consideMDB embedded in the&CrossThreshold algorithm and a
schema matching problem instance corresponding to ther Iaituation. Despite the fact that
the MDB algorithm fails to report the topc mappings, it can still successfully provide the right
candidates In turn, these candidates can be approved by the (loweesliotdr,.,, while the

TA algorithm may fail to generate good candidates by itselfslich situations the marginal
contribution of using th&€rossThreshold algorithm is expected to be the highest, and this was
exactly the typical situation in our experiments on probl@stances withf, F) = (avg, min).

To summarize, our experiments demonstrate the practivalaages of using thérossThresh-
old algorithm over the basic in-parallel execution of th& and MDB algorithms. Hence, the
CrossThreshold algorithm provides a more appealing solution for situagion which one
is uncertain about the relative attractiveness of TAeand MDB algorithms in a domain of

discourse.
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VII. CONCLUSIONS ANDFUTURE WORK

We introduced schema meta-matching, a novel computatfcarakework for robust automatic
schema matching that generalizes and extends previousgaispfor exploiting an ensemble
of schema matchers. We presented several algorithms fenscimeta-matching, varying from
adaptation of a standard technique for quantitative rardreggation in the area of database
middleware, to novel techniques developed especially er problem of schema matching.
We provided a formal computational analysis of all algaorith and characterized their relative
applicability. In particular, our formal analysis allowert to devise a pair of strictly superior
algorithmsMD and CrossThreshold, where the choice between the two depends on whether
the - and g- aggregators commute on the schema matching problem at hanehsy-to-check
property. Likewise, we evaluated all the algorithms engpily on a set of real-life schemata
gathered from Web forms, and a set of state-of-the-art saheratchers. Our experiments
demonstrate the benefit of using tk@ossThreshold algorithm over using th&A or MDB
algorithms independently or in parallel.

Our work opens several venues for future research, two ofhwhare discussed below. First,
observe that in th&A algorithm (and thus, in th€rossThreshold algorithm), the parallel
guerying of different matchers with thetop queries is kept uniform, that is, each iteration of
the TA algorithm progresses aall the matchers. In general-purpose aggregation of quanditat
rankings [17] this strategy is indeed expected to be as gsodng other strategy. However,
having additional knowledge about the data can provide ub (@t least heuristically) better
strategies, and currently we are exploring this directmfutther improve the performance of the
CrossThreshold algorithm. Second, as discussed in Section IV, it is cleat tte complexity of
our MDB algorithm depends crucially on the quality of the chosen gladlominating aggregators.
Therefore, we are looking into refining our notion of domioarby incorporating topological

measures of ordering and tightness.
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