
1

Rank Aggregation for Automatic Schema

Matching

Carmel Domshlak

Avigdor Gal Member, IEEE,

Haggai Roitman

Technion - Israel Institute of Technology.

August 13, 2006 DRAFT

2

Abstract

Schema matching is a basic operation of data integration andseveral tools for automating it have

been proposed and evaluated in the database community. Research in this area reveals that there is

no single schema matcher that is guaranteed to succeed in finding a good mapping for all possible

domains, and thus an ensemble of schema matchers should be considered. In this paper we introduce

schema meta-matching, a general framework for composing an arbitrary ensemble ofschema matchers,

and generating a list of best-ranked schema mappings. Informally, schema meta-matching stands for

computing a “consensus” ranking of alternative mappings between two schemata, given the “individual”

graded rankings provided by several schema matchers. We introduce several algorithms for this problem,

varying from adaptations of some standard techniques for general quantitative rank aggregation to novel

techniques specific to the problem of schema matching, and tocombinations of both. We provide a

formal analysis of the applicability and relative performance of these algorithms, and evaluate them

empirically on a set of real-world schemata.

Index Terms

H.2.1.c: database integration; schema matching; rank aggregation

I. INTRODUCTION

Schema matching is the task of matching concepts describingthe meaning of data in various

data sources (e.g., database schemata, XML DTDs, HTML form tags,etc.). As such, schema

matching is recognized to be one of the basic operations required by the process of data

integration [3]. The area of data integration has a rich bodyof literature on schema matching,

summarized in a few surveys [7], [41] and special issues [11], [39]. Examples of algorithmic tools

providing means for schema matching are COMA [8], Cupid [31], OntoBuilder [23], Autoplex

[1], Similarity Flooding [34], Clio [36], Glue [10], to namea few. Foundational principles of

schema matching are also discussed in [3], [22], [30], [32].

A typical classification of schema matching tasks relates tothe amount of automatic pro-

cessing required for achieving a task. Due to its cognitive complexity, schema matching has

been traditionally performed by human experts [5], [28]. For obvious reasons, manual concept

reconciliation in large scale and/or dynamic environments(with or without computer-aided tools)

is inefficient and at times close to impossible. Introduction of the Semantic Web vision [2]

and shifts toward machine-understandable Web resources and Web services have made even

clearer the vital need for automating schema matching. The move from manual to semi-automatic

August 13, 2006 DRAFT

3

schema matching has been justified in the literature using arguments of scalability (especially for

matching between large schemata [26]) and by the need to speed-up the matching process. The

motivation for moving tofully-automatic(that is, unsupervised) schema matching stems from

the possible absence of a human expert in the decision process. In particular, such situations

characterize numerous emerging applications triggered bythe vision of the Semantic Web and

machine-understandable Web resources [2], [43]. To illustrate this further, consider the recent

Web service challenge competition held in 2006.1 The teams at this competition were required

to discover and compose Web services in a completely unsupervised manner. While the first

competitions are still based on exact string matching of parameters, the next competitions have

been declared to involve issues of heterogeneous and constrained schema matching.

Attempting to address the schema matching problem, numerous heuristics (schema matchers

or simply matchers hereafter) have been proposed and evaluated in the database community (e.g.,

see [1], [4], [9], [18], [19], [23], [25], [34], [42]). However, choosing among this variety of tools

is far from being trivial. First, the number of schema matchers is continuously growing, and this

diversity by itself complicates the choice of the most appropriate tool for a given application

domain. Second, as one would expect, recent empirical analysis shows that there is no (and may

never be) a single dominant schema matcher that performs best, regardless of the data model

and application domain [22]. In fact, due to effectively unlimited heterogeneity and ambiguity

of data description, it seems unavoidable that optimal mappings for many pairs of schemata will

be considered as “best mappings” by none of the existing schema matchers.

Striving to increase robustness in the face of the biases andshortcomings of individual

matchers, several tools have enabled combining principlesby which different schema matchers

judge the similarity between concepts. The idea is appealing since an ensemble of complementary

matchers can potentially compensate for the weaknesses of each other. Indeed, several studies

report on encouraging results when using schema matcher ensembles (e.g., see [8], [13], [23],

[31], [38]). Given that, the first goal of our work is to formally analyze the applicability and

limitations of prior works on ensembling schema matchers, and provide a more general ensemble

framework that overcomes these limitations.

But even having a good ensemble of complementary schema matchers cannot guarantee that

1http://insel.flp.cs.tu-berlin.de/wsc06/

August 13, 2006 DRAFT

4

an optimal mapping between the schemata (e.g., a mapping that would have been generated

by a human expert) will always be identified as the top choice of the ensemble. To address

such situations to the largest degree possible, one can adopt the approach in whichK (and

not just one) top-ranked schema mappings are generated and examined2 either iteratively or

simultaneously [22], [21], [27], [29]. Our second goal is thus to connect between the ensemble

approach and the top-K approach, increasing the robustness of the schema matchingprocess by

enjoying the best of these two worlds.

To achieve our goals, here we introduce a generic computational framework,schema meta-

matching, for computing the top-K prefix of a “consensus” ranking of alternative mappings

between two schemata, given the graded valid mappings of schema attributes provided “individ-

ually” by the members of an ensemble. A valid mapping in this case is a mapping that satisfied

matching constraints (e.g., cardinality constraints) specific to the application.3

Our starting point is based on rank aggregation techniques developed in the areas of Web search

and database middleware [12], [17]. First, we show that theThreshold algorithm, originally

proposed in the context of database middleware [17], can be applied to our problem almost

as is. Unfortunately, as we show, computing top-K mappings for schema meta-matching using

the Threshold algorithm may require time exponential in the size of the matched schemata.

Since in the original context of domain-independent rank aggregation theThreshold algorithm

has been shown to be optimal in a strong sense, we proceed withdeveloping techniques that

exploit the specifics of the schema matching problem. For a certain wide class of problems, we

present a simple algorithm, theMatrix-Direct algorithm whose time complexity is polynomial

in the size of the matched schemata and the requiredK. Subsequently, we present theMatrix-

Direct-with-Bounding algorithm, which draws upon both theMatrix-Direct and Threshold

algorithms, addressing matching scenarios where theMatrix-Direct algorithm is inapplicable. We

2Automatic examination of alternative schema mappings is beyond the scope of this paper; it is typically tool dependent,and

may involve analysis of query variations [35], Web server error messages,etc.

3Alternatively, the ensemble members can first provide rankings of only theattribute-levelmappings, while ignoring the

application constraints posed on the schema matching process. It is apparent that such an approach would significantly reduce

the complexity of individual rankings. But these rankings then need to be combined into a “consensus” ranking of validschema

mappings. To the best of our knowledge, there is no evidence in the literature that such an approach can provide, at a low

complexity cost, a semantically justified “consensus” ranking over the schema mappings while respecting schema-levelmatching

constraints.

August 13, 2006 DRAFT

5

show that theThreshold and Matrix-Direct-with-Bounding algorithms are (complexity-wise)

mutually undominated — that is, there exist problem instances in which one algorithm performs

dramatically better than the other. To enjoy the best of bothworlds and even to improve upon

them, we introduce theCrossThreshold algorithm, a hybrid version of these two algorithms,

based on their in-parallel,mutually-enhancingexecution. Our analysis shows the complexity and

effectiveness of adopting this hybrid algorithm.

We support our formal analysis with experiments on a real-world data feed. In these ex-

periments, we test the relative performance of theThreshold, Matrix-Direct-with-Bounding,

andCrossThreshold algorithms on numerous sets of various schema matchers. Ourempirical

findings support the formal results, in particular showing that theCrossThreshold algorithm

dominates bothThreshold andMatrix-Direct-with-Bounding algorithms.

It is important to note that the schema meta-matching framework doesnot define the “con-

sensus” ranking, but only aims at its efficient generation. The “consensus” ranking is defined

by the actual choice of ensemble, and this choice is orthogonal to our work. In particular, the

relative effectiveness of the “consensus” ranking isindependentof the choice of the schema

meta-matching algorithm. Therefore, our formal and empirical analysis are devoted solely to the

correctness of the algorithms and their comparative performance.

To summarize, the main contributions of this paper are:

• Introduction of schema meta-matching, a generic computational framework for combining

an ensemble of arbitrary schema matchers for identifying top-K schema mappings.

• Provision and formal analysis of four algorithms for schemameta-matching. In particular,

we analyze an existing algorithm (Threshold) for general rank aggregation adapted to our

domain, and compare its applicability and performance witha generalized version of the

COMA [8] approach (Matrix-Direct). We next develop and study two novel,generically ap-

plicablealgorithms (Matrix-Direct-with-Bounding andCrossThreshold). In particular, we

show that theCrossThreshold algorithm combines the benefits of all the other algorithms,

providing the generically most efficient solution to the schema meta-matching problem.

• Comparative quantitative evaluation of the algorithms that empirically supports the practical

relevance of our formal results.

The rest of the paper is organized as follows. In Section II weprovide some basic for-

malism and notation, and introduce the schema meta-matching framework. In Section III we

August 13, 2006 DRAFT

6

discuss two basic algorithms that can be used to implement schema meta-matching, namely the

Threshold and Matrix-Direct algorithms. In Section IV we introduce theMatrix-Direct-with-

Bounding algorithm, and compare it with theThreshold algorithm. In Section V we introduce

the CrossThreshold algorithm, a hybrid version of theThreshold and Matrix-Direct-with-

Bounding algorithms, and discuss its properties. The correspondingexperiments and empirical

analysis are presented in Section VI. We conclude in SectionVII.

II. FORMALISM , NOTATION, AND PROBLEM STATEMENT

We begin by introducing some formalism and notation essential for defining the schema meta-

matching problem.

Let schemaS be a finite set of someattributes. We put no particular limitations on the notion

of schema attributes; attributes can be both simple and compound, compound attributes need

not necessarily be disjoint,etc. For any schemata pairS andS ′, let S = S × S ′ be the set of

all possibleattribute mappingsbetweenS and S ′, and let the power-setΣ = 2S be the set of

all possibleschema mappingsbetween this pair of schemata. LetΓ : Σ → {0, 1} be a boolean

function that captures the application-specific constraints on schema mappings,e.g., cardinality

and inter-attribute mapping constraints.4 Given such a constraint specificationΓ, the set of all

valid schema mappings inΣ is given byΣΓ = {σ ∈ Σ | Γ(σ) = 1}. A schema matcherA takes

as its input a schemata pairS, S ′, as well as a constraint specificationΓ, and provides us with

an ordering�A over ΣΓ. For schema mappingsσ, σ′ ∈ ΣΓ, σ �A σ′ means thatσ is estimated

by A to be as good asσ′. It is worth noting that such an ordering may be given either implicitly

or explicitly.

While various schema matching models have been proposed, many of them follow a similar

two-step pattern [8] that we adopt here. In the first step, each attribute mapping inS is auto-

matically assigned with a real-valued degree of similarity. If S and S ′ are of arityn and n′,

respectively, then this step results in ann × n′ similarity matrix M (A), whereM
(A)
i,j represents

the degree of similarity between thei-th attribute ofS and thej-th attribute ofS ′, as assigned

by A. Various schema matchers differ mainly in the measures of similarity they employ, and

4We refrain from an in-depth analysis of cardinality and other inter-attribute mapping constraints. The interested reader is

referred to [6], [10], [20], [44].

August 13, 2006 DRAFT

7

thus yield different similarity matrices. These similarity measures can be arbitrarily complex,

and may use various techniques for name matching, domain matching, structure matching (such

as XML hierarchical representation), and semantic matching.

In the second step, the similarity information inM (A) is used to quantify the quality of different

schema mappingsσ in ΣΓ using some real-valuedlocal aggregation function(or l-aggregator,

for short)

f (A)
(

σ, M (A)
)

= f (A)
(

M
(A)
1,σ(1), . . . , M

(A)
n,σ(n)

)

,

that is, a function that aggregates the degrees of similarity associated with the individual attribute

mappings forming the schema mappingσ. The ordering�A on ΣΓ is then

σ �A σ′ ⇔ f (A)
(

σ, M (A)
)

≥ f (A)
(

σ′, M (A)
)

for each σ, σ′ ∈ ΣΓ. A popular choice ofl-aggregator is the sum (or average) of attribute

mapping degrees of similarity (e.g., see [8], [23], [33]), but otherl-aggregators have been found

appealing as well (e.g.,the Dice l-aggregator suggested in [8], threshold-based aggregators [37],

etc.). Without loss of generality, in what follows we assume thatf is computable in time linear

in n and n′. However, at least technically, nothing prevents us from using more sophisticated

(and possibly more computation-intense)l-aggregators.

Having defined the ordering�A over ΣΓ, the schema matcherA can now provide answers to

various queries. The most common query these days stands forretrieving a top-1 mapping

σ1 = arg max
σ

{f(σ, M) | σ ∈ ΣΓ} ,

(possibly) along with its quality estimationf (A)(σ1, MA). In the top-K approach, this query is

generalized to retrieving a top-i-th mapping

σi = arg max
σ

{

f (A)(σ, M (A)) | σ ∈ ΣΓ \ {σ1, · · · , σi−1}
}

, (1)

annotated withf (A)(σi, MA). In what follows, we refer to this query asq-top(i). In addition,

the schema matcher can be queried for the estimatef (A)(σ, M (A)) for an arbitrary mapping

σ ∈ ΣΓ, and here we denote such a query byq-estim(σ). Clearly, the time and space complexity

of answering these queries depend on both the structure ofΓ and thel-aggregatorf (A). On

the positive side, however, in many natural setting answering these queries can be efficient. For

instance, whenf (A) is equivalent to sum, andΓ is devoted to enforce1-1 cardinality constraint,

August 13, 2006 DRAFT

8

then the time complexity of retrievingσi is5 O(iη4) whereη = max {n, n′} [21], [24], [40], and

providing the estimatef (A)(σ, M (A)) can be done inO(η).

Now, let us consider an ensemble ofm schema matchersA1, . . . , Am, utilizing (possibly

different) local aggregatorsf (1), . . . , f (m), respectively. Given two schemataS andS ′ as before,

these matchers produce anm×n×n′ similarity cube ofn×n′ similarity matricesM (1), . . . , M (m).

Such an ensemble of schema matchersA1, . . . , Am, is used to generate a “consensus” ordering

� over ΣΓ from the individual orderings�1, . . . ,�m. This ordering aggregation is performed

via aggregating the weights eachAi provides to the schema mappings inΣΓ. In turn, weight

aggregation can always be modeled using a real-valuedglobal aggregation function(or g-

aggregator, for short)F
(

f (1)(σ, M (1)), · · · , f (m)(σ, M (m))
)

[8], [23]. In what follows, by〈~f, F 〉

we denote the set ofl-aggregators andg-aggregator in use, respectively. Likewise, we use the

notation

〈~f, F 〉(σ) ≡ F
(

f (1)(σ, M (1)), · · · , f (m)(σ, M (m))
)

for the aggregated weight provided byA1, . . . , Am with 〈~f, F 〉 to the mappingσ. The aggregated

ordering� on ΣΓ is then

σ � σ′ ⇔ 〈~f, F 〉(σ) ≥ 〈~f, F 〉(σ′)

for eachσ, σ′ ∈ ΣΓ. For instance, manyg-aggregators proposed in the literature can be gener-

alized as

F
(

f (1)(σ, M (1)), · · · , f (m)(σ, M (m))
)

=
λ

m

m
∑

l=1

klf
(l)(σ, M (l)), (2)

where Eq. 2 can be interpreted as a (weighted) sum (withλ = m) or a (weighted) average (with

λ = 1) of the local rankings, wherekl are some arbitrary weighting parameters. It is important

to note that the choice ofg-aggregator is unavoidably ensemble-dependent, and thus here we

consider it as agivenproperty of the ensemble.

Having formalized individual schema matchers and their ensembles as above, we define the

schema meta-matchingproblem to be that of generating top-K valid mappings betweenS and

S ′ with respect to an ensemble of schema matchersA1, . . . , Am, their respectivel-aggregators

f (1), . . . , f (m), and the ensemble’sg-aggregatorF . Formally, givenS, S ′, Γ, and K ≥ 1, our

5Given σ1, . . . , σi−1, time complexity of retrievingσi is O(η3) [21], [24], [40].

August 13, 2006 DRAFT

9

task is to generate{σ1, . . . , σK} ⊆ ΣΓ, where thei-th best mappingσi is inductively defined

as:

σi = arg max
σ

{

〈~f, F 〉(σ) | σ ∈ ΣΓ \ {σ1, · · · , σi−1}
}

, (3)

similar to Eq. 1 for the basic case ofm = 1.

III. RANK AGGREGATION FORSCHEMA MATCHING

Having formalized the problem of schema meta-matching, we now proceed with exploring it

from the computational standpoint. To stress some of the computational issues involved, consider

a straightforward procedure for rank aggregation, where each judge (a schema matcher, in our

case) explicitly ranks the entire universe of alternatives, associating each alternative with a

certain level of “goodness.” These individual grades are then combined (this or another way)

into a grading underlying the “consensus” ranking, and we are provided with top-K elements

of this aggregated ranked list. Unfortunately, in the case of schema matching, the size of the

universe of alternatives makes this straightforward approach unrealistic: Given two schemata of

n attributes each, there are alreadyn! alternative1:1 mappings between them, and this number

is even larger for less constrained settings. Therefore, any realistic method for schema meta-

matching has to either consider individual rankings represented implicitly in some compact form,

or carefully query the judges about the mappings while limiting the number and complexity of

these queries to the extent possible.6

In the remainder of this paper we focus on the algorithmic aspects of solving this problem.

Before we begin discussing various algorithms, it is worth observing that a naı̈ve approach of (i)

generatingm top-K lists of mappings with respect toA1, . . . , Am using theq-top queries, and

(ii) subsequent aggregation of these lists usingF , is not sound. To illustrate this, consider the

top-1 mappingσ1. First, strange as it may seem,σ1 may appear in none of them individual top-

K lists, and thus will definitely not appear in an aggregated list of any length. Such a case may

occur wheneverσ1 is not one of the top-K mappings of any ofA1, . . . , Am, yet these experts are

so in odds with each other that the common consensus becomes aconvenient mediocre mapping.

Second, even ifσ1 appears in some, or even most, individual top-K lists, it can be improperly

ranked in step (ii), and possibly even discarded from the aggregated top-K list. This can occur

6Note that in contrast to the case of Web meta-search [12], ourjudgesare ready to answer any query about mapping rankings.

August 13, 2006 DRAFT

10

Algorithm TA
1) Starting withi = 1, do incremental (on growingi) parallel querying ofA1, . . . , Am with q-top(i). This querying is

unbounded, corresponding to a sorted access in parallel to each of them rankings of alternative valid mappingsΣΓ.

a) As a mappingσ is introduced by one of the matchers, obtain the remainingf (1)(σ, M (1)), · · · , f (m)(σ, M (m)) by

querying the other matchers withq-estim(σ), and compute the aggregated weight〈~f, F 〉(σ). If this weight is one of

the K highest we have seen so far, then rememberσ.

b) For 1 ≤ l ≤ m, let σl be the mapping returned by thelast q-top query toA(l). Define the threshold valueτ
T A

=

F
“

f (1)(σ1, M
(1)), · · · , f (m)(σm, M (m))

”

. If at leastK mappings have been seen whose weight is at leastτ
T A

,

then halt.

2) Let Y be a set containingK mappings with the highest grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

Fig. 1. The Threshold Algorithm (TA), adopted for schema meta-matching.

if the relative aggregated ranking ofσ1 is significantly affected by the scores it gets from the

experts that individually ranked it lower than top-K.

A. Adopting the Threshold Algorithm

The problem of optimal aggregation of several quantitatively ordered lists has been recently

studied in the context of middleware for multimedia database systems [14], [15], [17], [16]. The

most efficient general algorithm for this problem, called the Threshold algorithm (TA, for short),

has been introduced in [17], and we begin by presenting this algorithm in terms of our problem

in Figure 1.

The intuition behind theTA algorithm is elegantly simple. For each schema matcherAi, the

algorithm utilizesq-top queries to generate as many mappings in a ranked order as needed.

Assume thatK = 1, i.e., we are interested only in the best mapping. Assume further that we

are at a stage in the algorithm where we have not seen any mapping σ whose aggregated weight

〈~f, F 〉(σ) ≥ τ
TA

, whereτ
TA

is determined in step 1b. If so, at this point we cannot be surethat

the best mapping has already been seen, because the next mapping σ′ generated byq-top could

have aggregated weight〈~f, F 〉(σ′) ≥ τ
TA

. If this is the case, then clearly no mappingσ seen so

far could be the best mapping, since〈~f, F 〉(σ′) > 〈~f, F 〉(σ). Thus, it is safe to halt only when

we see a mapping whose aggregated weight is at leastτ
TA

. Similarly, for K > 1, the stopping

August 13, 2006 DRAFT

11

rule verifies a sufficient condition to ensure that the top-K mappings have been seen.

The only property required to ensure the completeness of theTA algorithm is monotonicity

of the g-aggregatorF in the following sense [17]: A functionF is monotonicif, for every

two mappingsσ, σ′ such thatf (l)(σ, M (l)) > f (l)(σ′, M (l)) holds for all 1 ≤ l ≤ m, we have

〈~f, F 〉(σ) > 〈~f, F 〉(σ′). Since this requirement does not seem to induce any practical limitation,

henceforth we adopt this assumption of monotonicity forg-aggregators. Likewise, for ease of

presentation and without loss of generality, we assume thatF is computable in time linear in

m.

Considering the time complexity of theTA algorithm while ignoring the specifics of the

schema meta-matching problem, it can be easily shown that this algorithm may have to access

in a sorted manner as many as half of each sorted list (e.g., see Example 6.3 in [17]). And

while we found no setting of schema-matching problem on which the TA algorithm performs

that bad, the next theorem shows that in the context of schemameta-matching it may still have

exponentially long runs.

Theorem 1 The time complexity of schema meta-matching usingTA is Ω((η
2
)!).

Proof: The proof of this lower bound is by construction of a certain set of similarity

matrices for which theTA algorithm finds the best mapping only afterO((η
2
)!).

Consider two algorithms,A1 andA2, and a pair of schemataS andS ′, each consisting ofn

attributes, wheren = 2k, k ∈ N (and thus,η = n). Likewise, let thel-aggregatorsf (1) = f (2)

both be the regularproduct (denoted byf), ΣΓ be the set of all1-1 mappings fromΣ, and the

g-aggregatorF be the utilitarian aggregatormin. Given S andS ′, the similarity matricesM (1)

andM (2), induced byA1 andA2, respectively are as follows:

M
(1)
i,j =

8

>

>

>

>

<

>

>

>

>

:

x, (i ≤ n/2) ∧ (j ≤ n/2) ∧ (i 6= j)

x − ǫ, i = j

0, otherwise

M
(2)
i,j =

8

>

>

>

>

<

>

>

>

>

:

x, i > n/2 ∧ j > n/2 ∧ i 6= j

x − ǫ, i = j

0, otherwise

for arbitrary positive values ofx and ǫ, whereǫ ≪ x, andx − ǫ > 0. Below we illustrate

these matrices forn = 4:

M (1) =

0

B

B

B

B

B

@

x − ǫ x 0 0

x x − ǫ 0 0

0 0 x − ǫ 0

0 0 0 x − ǫ

1

C

C

C

C

C

A

M (2) =

0

B

B

B

B

B

@

x − ǫ 0 0 0

0 x − ǫ 0 0

0 0 x − ǫ x

0 0 x x − ǫ

1

C

C

C

C

C

A

August 13, 2006 DRAFT

12

First, considerM (1). Each valid mapping between the firstn/2 attributes ofS and the first

n/2 attributes ofS ′ (see the top left quadrant ofM (1)) results in a non-zero value off restricted

to these attributes. There are(n
2
)! such mappings. Any other mapping of any of these attributes

will nullify the value of f . On the other hand, the lastn/2 attributes ofS have to be mapped

to the n/2 last attributes ofS ′, and there is only one such mapping leading to a non-zero

value of f , namely the main diagonal of the bottom right quadrant ofM (1). Therefore, we

have constructively shown thatM (1) induces exactly(n
2
)! mappingsσ such thatf(σ, M (1)) > 0.

Denote this set of mappings byΣ+
1 ⊂ ΣΓ. By a similar construction, the same holds forM (2),

i.e., |Σ+
2 | = (n

2
)!. Now consider the setsΣ+

1 andΣ+
2 , and letσI denote the indentity mapping,

i.e., the mapping captured by the main diagonals ofM (1) and M (2). Evidently, for l ∈ {1, 2},

we haveσI ∈ Σ+
l , and, for eachσI 6= σ ∈ Σ+

l , we havef(σ, M (l)) > f(σI , M
(l)). Therefore,σI

will be discovered by theTA algorithm after exactly(n
2
)! q-top queries to each ofA(1) andA(2).

On the other hand, we haveΣ+
1 ∩ Σ+

2 = {σI}, and thus, for each mappingσ ∈ Σ, we have:

〈f, F 〉 (σ) = min

{

n
∏

i=1

M
(1)
i,σ(i),

n
∏

i=1

M
(2)
i,σ(i)

}

=

n(x − ǫ), σ = σI

0, otherwise

This means that, under the considered aggregatorsf andF , the top-1 mapping betweenS and

S ′ has to beσI . However, it will take theTA algorithm (n
2
)! iterations to discoverσI .

B. The Matrix-Direct Algorithm

Theorem 1 provides a strong motivation to seek more efficientalternatives to theTA algorithm.

In [17], however, this algorithm is shown to be optimal in a strong sense of “instance optimality.”

For the formal definition of instance optimality we refer thereader to [17]; roughly, for any set

of data and any other rank aggregation algorithmA with the time complexityComp(A), instance

optimality of theTA algorithm implies that its time complexity is of the order ofthat ofA, i.e.,

Comp(TA) = O(Comp(A)). Hence, at least at first view, it seems that using theTA algorithm

for schema meta-matching is the best we can do. However, below we show that, for a certain

class of aggregators〈~f, F 〉, an extremely simple technique exploiting specifics of the schema

matching problem provides a significantly better performance. Note that this does not contradict

the instance optimality of theTA algorithm as the latter is a generic algorithm, independentof

the actual grading mechanisms. In particular, theTA algorithm in our domain considers only

the outputs ofq-top queries, and does not intervene in their processing. Hence,it is possible

August 13, 2006 DRAFT

13

that one can devise algorithms outperformingTA by exploiting some properties of the specific

problem domain at hand.

To begin with an example, let us considerl- andg-aggregators

∀l ∈ {1, . . . , m} : f (l)(σ, M (l)) =

n
∑

i=1

M
(l)
i,σ(i)

〈~f, F 〉(σ) =
m

∑

l=1

klf
(l)(σ, M (l)).

(4)

Observe that the summations in Eq. 4 can be distributed, resulting in

〈f, F 〉 (σ) =
n

∑

i=1

m
∑

l=1

klM
(l)
i,σ(i),

where the vector notation~f is replaced withf to explicitly highlight the uniqueness of the

l-aggregator in this case. That is, if thel-aggregatorf and g-aggregatorF happen to be as in

Eq. 4, then usingF for local weight aggregation andf for global weight aggregation will be

equivalentto usingf and F in their original roles. In other words, in case of Eq. 4 we have

〈f, F 〉 (σ) = 〈F, f〉 (σ) for any mappingσ between any pair of schemataS andS ′. The special

case of Eq. 4 can be generalized as follows.

Definition 1 Given a set of similarity matricesM (1), . . . , M (m) over a pair of schemasS, S ′, and

a pair of l-aggregatorf andg-aggregatorF , we say thatf andF commute onM (1), . . . , M (m)

if and only if, for every mappingσ betweenS and S ′, we have:

〈f, F 〉 (σ) = 〈F, f〉 (σ) (5)

Likewise, iff andF commute on all possible sets of similarity matrices, then wesay thatf and

F are strongly commutative.

For instance, the aggregatorsf and F as in Eq. 4 are strongly commutative. To illustrate

commutativity in the absence of strong commutativity, consider a pair of aggregators corre-

sponding tomin andproduct, respectively. While these two aggregators are clearly notstrongly

commutative, they do commute, for instance, on any set of boolean similarity matrices.

The commutativity between thel- andg-aggregators leads to an extremely efficient algorithm

for schema meta-matching. Specifically, in Figure 2 we present the Matrix-Direct algorithm (or

MD, for short), generalizing the applicability of the composite method of COMA [8] to any

schema meta-matching problem in which (i) all the judges usethe samel-aggregator, and (ii)

August 13, 2006 DRAFT

14

Algorithm MD
1) Given A1, . . . , Am, (schematically) construct a new schema matcherA∗ with (a) similarity matrixM∗ such that, for

1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = F (M
(1)
i,j , · · · , M

(m)
i,j), and (b)l-aggregatorf(σ, M∗).

2) Using queriesq-top(1), . . . , q-top(K) to A∗, generate top-K valid mappings with respect toA∗.

Fig. 2. The Matrix-Direct (MD) Algorithm.

the l- and g-aggregators commute on the given set of similarity matrices. The correctness and

time complexity of theMD algorithm are stated by Theorem 2 below.

Theorem 2 Given a set of schema matchersA1, . . . , Am, and a pair of local and global aggre-

gators〈f, F 〉, let M∗ be a matrix defined asM∗
i,j = F (M

(1)
i,j , · · · , M

(m)
i,j), for all 1 ≤ i ≤ n, 1 ≤

j ≤ n′. If f and F commute on the similarity matricesM (1), . . . , M (m), then theMD algorithm

correctly finds top-K valid mappings with respect to the aggregated ranking in timeO(η2m+Φ),

whereΦ is the combined time complexity of iteratively executed queries q-top(1), . . . , q-top(K)

over M∗.

Proof: The correctness is immediate from the construction of theMD algorithm and

Definition 1. AsF is assumed to be computable in time linear in the number ofF ’s parameters,

generatingM∗ takes timeO(η2m). Thus, the overall complexity of theMD algorithm isO(η2m+

Φ). For instance, for aggregators as in Eq. 4 andΓ enforcing1-1 cardinality constraint, the time

complexity of theMD algorithm isO(η4K + η2m).

IV. M ATRIX -DIRECT ALGORITHM WITH BOUNDING

Reading so far, it seems natural to conclude that the schema meta-matching problems satisfying

the conditions of Theorem 2 should be processed usingMD while all other problems should be

processed usingTA (i.e., we are back to an instance optimal algorithm for general quantitative

rank aggregation). However, below we show that, while the former conclusion is sound, the

latter is not necessarily so.

Definition 2 Consider a set of similarity matricesM (1), . . . , M (m) over a pair of schemasS,

S ′, and two sets ofl- and g-aggregators〈~f, F 〉 and 〈~f ′, F ′〉. We say that〈~f ′, F ′〉 dominates

〈~f, F 〉 on M (1), . . . , M (m) (denoted as〈~f ′, F ′〉 ≻ 〈~f, F 〉) if, for every mappingσ from S to S ′,

August 13, 2006 DRAFT

15

we have:

〈~f ′, F ′〉(σ) ≥ 〈~f, F 〉(σ) (6)

Likewise, if Eq. 6 holds for all possible sets of similarity matrices, then we say that〈~f ′, F ′〉

strongly dominates〈~f, F 〉.

Consider a schema meta-matching problem defined by a set of similarity matricesM (1), . . . , M (m)

and a set ofl- andg-aggregators〈~f, F 〉 that do notcommute onM (1), . . . , M (m). Suppose that

there exists a pair of functions〈h, H〉 that (i) do commute onM (1), . . . , M (m), and (ii) dominate

〈~f, F 〉 on these matrices. The next Corollary 3, which follows immediately from the definition

of the MD algorithm, gives us a simple property of this algorithm thatprovides some intuition

for the subsequent steps of construction.

Corollary 3 Given a set of schema matchersA1, . . . , Am, and a pair of local and global

aggregators〈h, H〉 commuting onM (1), . . . , M (m), the top-K result of theMD algorithm with

respect to〈h, H〉 is a correct top-K aggregation with respect to any set ofl- and g-aggregators

〈~f, F 〉, such that both〈h, H〉 ≻ 〈~f, F 〉 and 〈~f, F 〉 ≻ 〈h, H〉 hold onM (1), . . . , M (m).

In general, nothing prevents Corollary 3 to be realized. To illustrate that, consider the following

set of four real-valued functions:f(x) = x2, F (x) = x/2, h(x) = x2/2, H(x) = x. While f and

F do not commute on reals (F (f(x)) = x2/2 and f(F (x)) = x2/4), the functionsh and H

are strongly commutative (H(h(x)) = h(H(x)) = x2/2), and we haveH(h(x)) = F (f(x)).

However, the practical realizability of Corollary 3 with respect to schema meta-matching is less

clear, as it is not clear whether there exists a set of four functions that will be interesting in

practice for schema meta-matching.

Corollary 3, however, does provide us with some useful intuition. Consider a schema meta-

matching problem defined by a set of similarity matricesM (1), . . . , M (m) andl- andg-aggregators

〈~f, F 〉 that do not commute onM (1), . . . , M (m). Suppose that there exists a pair of functions

〈h, H〉 that do commute onM (1), . . . , M (m), and dominate〈~f, F 〉 on these matrices, yet is not

dominated by〈~f, F 〉. For instance, letF be a weighted sum as in Eq. 4, andf be defined as:

f (i)(σ, M) =

∑n
j=1 Mj,σ(j),

∑n
j=1 Mj,σ(j) > ti

0, otherwise
, (7)

August 13, 2006 DRAFT

16

Algorithm MDB
1) Given A1, . . . , Am, (schematically) construct a new schema matcherA∗ with (a) similarity matrixM∗ such that, for

1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = H(M
(1)
i,j , · · · , M

(m)
i,j), and (b)l-aggregatorh(σ, M∗).

2) Starting withi = 1, do incremental (on growingi) querying ofA∗ with q-top(i).

a) As a mappingσ is introduced, obtain the actual weightsf (1)(σ, M (1)), · · · , f (m)(σ, M (m)) by queryingA1, . . . , Am

with q-estim(σ), and compute the aggregated weight〈~f, F 〉(σ). If this weight is one of theK highest we have seen

so far, then rememberσ.

b) Define the threshold valueτ
MDB

to be h(σ, M∗).a If K mappings have been seen whose weight is at leastτ
MDB

,

then halt.

3) Let Y be a set containingK mappings with the highest grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

aIt is worth noting that, due to commutativity ofh andH (either strong or just with respect toM (1), . . . , M (m)), we have

τ
MDB

= 〈H,h〉(σ) = 〈h, H〉(σ).

Fig. 3. The Matrix-Direct with Bounding (MDB) algorithm.

where ti > 0 is some predefined constant threshold. The intuition behindEq. 7 is that judges

that can no longer provide mappings with sufficient similarity measure (set as the thresholdti)

“quit” by nullifying all further mappings. Another example, reflecting one of the currently used

settings in schema matching (e.g., [4], [37]), is:

f (i)(σ, M) =
n

∑

j=1

(

Mj,σ(j) · δ
(

Mj,σ(j) > tj
))

(8)

whereδ is the Kronecker discrete delta function. According to Eq. 8, individual pair-wise attribute

mappings that do not pass a predefined, matcher-specific threshold are nullified. In both cases, it

is not hard to verify that~f andF do not commute (in all but trivial cases of effectively redundant

thresholds.) On the other hand, functionsh andH standing for simple sum and weighted sum

(as in Eq. 4) are (strongly) commutative, and we have〈~f, F 〉 ≺ 〈h, H〉 for both Eqs. 7 and 8.

For such cases we now present the Matrix-Direct-with-Bounding algorithm (orMDB, for short).

This algorithm draws upon both theTA and MD algorithms, addressing problems with non-

commutative pairs of local and global aggregation functions, while being more efficient than the

TA algorithm in at least some such problem instances.

August 13, 2006 DRAFT

17

The MDB algorithm is shown in Figure 3. Consider a schema meta-matching problem with

schema matchersA1, . . . , Am, and aggregators〈~f, F 〉 that do not commute onM (1), . . . , M (m).

As we already mentioned, the basic idea behind theMDB algorithm is to use a pair of functions

〈h, H〉 (that both dominate〈~f, F 〉 and commute onM (1), . . . , M (m)) as an upper bound for the

“inconvenient” 〈~f, F 〉 of our actual interest. Informally, theMDB algorithm behaves similarly

to the MD algorithm if the latter is given with the aggregators〈h, H〉. However, instead of

reporting immediately on the generated mappingsσ, the MDB algorithm uses the decreasing

aggregated weights〈h, H〉(σ) to update the value of a thresholdτ
MDB

. In turn, much as the way

the thresholdτ
TA

is used in theTA algorithm, the thresholdτ
MDB

is used to judge our progress

with respect to the weights〈~f, F 〉 that really matter. Theorem 4 shows that theMDB algorithm

is correct for any such upper bound〈h, H〉.

Theorem 4 Consider a set of schema matchersA1, . . . , Am, with 〈~f, F 〉 being theirl- and g-

aggregators. Given a function pair〈h, H〉 that both commute and dominate〈~f, F 〉 onM (1), . . . , M (m),

the MDB algorithm correctly finds top-K valid mappings with respect to〈~f, F 〉.

Proof: Let Y be as in step 3 of theMDB algorithm. We need only show that every mapping

σ ∈ Y has at least as high weight according to〈~f, F 〉 as every mappingσ′ 6∈ Y . By definition

of Y , this is the case for each mappingσ′ 6∈ Y that has been seen byMDB. Thus, assume

that σ′ was not seen. By the definition ofτ
MDB

as in step 2b of theMDB algorithm and the

incrementality of queryingA∗ with q-top, for each such unseenσ′ and for eachσ ∈ Y we have:

〈~f, F 〉(σ) ≥ τ ≥ 〈h, H〉(σ′) ≥ 〈~f, F 〉(σ′)

whereτ is the value ofτ
MDB

at termination ofMDB. The second inequality holds sinceσ′ has

not been seen and therefore〈h, H〉(σ′) cannot receive a value higher thanτ . Thus, we have

proven thatY contains top-K mappings with respect to〈~f, F 〉.

Returning to the question of performance, recall that our intention in developing theMDB

algorithm was to provide an alternative to theTA algorithm for ensemble-aggregation settings

where the standardMD is not applicable. Have we achieved our goal, or will theTA algorithm

always be more efficient anyway? We now show that, for schema meta-matching,MDB can

significantly outperformTA.

August 13, 2006 DRAFT

18

Theorem 5 Given a schema meta-matching problem instance, the time complexity of theTA

algorithm on this instance can be exponentially worse than that of theMDB algorithm.

Proof: The proof is by example of the corresponding problem instance. Specifically, we

consider the class of schema meta-matching problems used inthe proof of Theorem 1, and show

that, for a certain subclass of these problems, theMDB algorithm can identify the best mapping

after only two iterations.

Consider the schema meta-matching problem exactly as in theproof of Theorem 1, and

assume further thatx ∈ (0, 1]. We already showed that on this problem instance theTA algorithm

performsΩ((n
2
)!) iterations forK = 1. Recall that the aggregatorsf andF in this example stand

for productand min, respectively. Hence,f andF do not commute on this problem similarity

matrices, and thus theMD algorithm cannot be used for this problem instance. Now, consider

a pair of functions〈h, H〉, where bothh andH stand for a simpleaverage. Observe that, since

the entries of both matricesM (1) and M (2) lie in the interval[0, 1], we have〈f, F 〉 ≺ 〈h, H〉.

Likewise, sinceh andH are (trivially) strongly commutative, we can solve this problem instance

using theMDB algorithm with〈h, H〉. The matrixM∗, constructed by theMDB algorithm from

the matricesM (1) and M (2) usingH, is defined as below on the left, where on the right it is

illustrated forn = 4:

M∗

i,j =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x/2, (i ≤ n/2) ∧ (j ≤ n/2) ∧ (i 6= j)

x/2, (i > n/2) ∧ (j > n/2) ∧ (i 6= j)

x − ǫ, i = j

0, otherwise

M∗ =

0

B

B

B

B

B

@

x − ǫ x/2 0 0

x/2 x − ǫ 0 0

0 0 x − ǫ x/2

0 0 x/2 x − ǫ

1

C

C

C

C

C

A

Sincex − ǫ > x/2 for any ǫ < x/2, the mapping processed in thefirst iteration of theMDB

algorithm will be the mappingσI , corresponding to the main diagonal ofM∗, with 〈f, F 〉(σI) =

(x−ǫ)n. Also, at theseconditeration theMDB algorithm we haveτ
MD

= (x−ǫ)n−1 ·(x/2). The

MDB algorithm would halt at the second iteration ifτ
MD

≤ 〈f, F 〉(σI), which holds for example

for x = 0.98 andǫ = 0.01. Likewise, in the proof of Theorem 1 we have already shown that σI

is the best mapping with respect to〈f, F 〉. Hence, the time complexity of theTA algorithm on

this problem instance withK = 1 is exponentially worse than this of theMDB algorithm (with

properly chosen upper bound〈h, H〉).

August 13, 2006 DRAFT

19

Theorem 5 shows that theTA algorithm does not dominate theMDB algorithm, but it says

nothing about the opposite direction: Does theMDB algorithm dominate theTA algorithm, or

maybe the relative attractiveness of these two algorithms (complexity-wise) depends on the actual

meta-matching instance at hand? The problem with answeringthis question in a general manner

is that the running time of theMDB algorithm depends on the choice of bounding functions.

Therefore, dominance of theMDB algorithm over theTA algorithm would mean that, foreach

meta-matching problem instance andeachK, the optimal choice of bounding functions〈h, H〉

will make theMDB algorithm at least as efficient asTA. At this stage, we have no evidence that

this is actually the case. In fact, so far it is not even clear that the above notion of optimality

has a clear mathematical semantics. It is worth noting here that the actual tightness of〈h, H〉

with respect to〈~f, F 〉 is only one factor in determining the efficiency of theMDB algorithm,

and the optimality as above should also relate to this or another notion of order preserving:

Intuitively, the MDB algorithm is most efficient if the order induced by〈h, H〉 over alternative

schema matchings coincides with the order induced by〈~f, F 〉, and 〈h, H〉 is sufficiently tight

to allow the discovered mappings to crossτ
MDB

quickly enough. On the other extreme, the

MDB algorithm is least efficient if the order induced by〈h, H〉 is the inversion of the order

induced by〈~f, F 〉. Later we provide an algorithm that makes use of the “good” mappings that

were discovered by theMDB algorithm even when〈h, H〉 fails to provide a sufficiently tight

threshold. As for order preserving, the superiority of the algorithm should hold for all problem

instances and all choices ofK, and it is not clear how (if at all) this notion can be defined ina

problem-instance independent manner.

In the absence of a general relation as above, the question now is whether we can say something

about the attractiveness of theTA algorithm with respect to theMDB algorithm that is equipped

with a “reasonable” pair of bounding aggregators. Theorem 6below provides an affirmative

answer to this question, and shows thatTA can significantly outperformMDB.

Theorem 6 Given a schema meta-matching problem instance, the time complexity of theMDB

algorithm on this instance can be exponentially worse than this of theTA algorithm.

Proof: This proof is by example of a corresponding class of schema meta-matching

problems: On any instance of this problem class, theTA algorithm identifies the best mapping

on the first iteration, yet it will be thelast mapping discovered by theMDB algorithm.

August 13, 2006 DRAFT

20

Consider two algorithms,A1 andA2, and a pair of schemataS andS ′, each consisting ofn

attributes. Likewise, let thel-aggregatorf be theproduct operator,g-aggregatorF be themin

operator, andΣΓ be the set of all1-1 mappings fromΣ. GivenS andS ′, the similarity matrices

M (1) andM (2), induced byA1 andA2, respectively are as follows:

M
(1)
i,j =

8

>

<

>

:

ǫ, i = j

0, otherwise
M

(2)
i,j =

8

>

<

>

:

1 − 3ǫ, i = j

1, otherwise

for an arbitrary1/3 > ǫ > 0. Below we illustrate such matrices forn = 4:

M (1) =

0

B

B

B

B

B

@

ǫ 0 0 0

0 ǫ 0 0

0 0 ǫ 0

0 0 0 ǫ

1

C

C

C

C

C

A

M (2) =

0

B

B

B

B

B

@

1 − 3ǫ 1 1 1

1 1 − 3ǫ 1 1

1 1 1 − 3ǫ 1

1 1 1 1 − 3ǫ

1

C

C

C

C

C

A

Considering the execution of theTA algorithm onM (1) andM (2) as defined above, first notice

that the only mappingσ, for which we havef(σ, M (1)) > 0, is the mappingσI (i.e., the identity

permutation). Therefore,σI will be discovered by theTA algorithm on thefirst iteration, with

τTA = 〈f, F 〉(σI). Second, notice that all the entries ofM (1) andM (2) lie in the interval[0, 1].

Thus, for allσI 6= σ ∈ ΣΓ, we have〈f, F 〉(σ) = 0. Finally, sincef(σI , M
(2)) > 0, we have

〈f, F 〉(σ) > 0, and thusσI is the best mapping with respect to〈f, F 〉.

It is not hard to see that the aggregatorsf and F do not commute on ourM (1) and M (2).

Consider a pair of functions〈h, H〉, where bothh and H stand for a simpleaverage. Since

the entries of both matricesM (1) and M (2) lie in the interval[0, 1], we have〈f, F 〉 ≺ 〈h, H〉.

Likewise, sinceh andH are (trivially) strongly commutative, we can solve this problem instance

using theMDB algorithm with〈h, H〉. The matrixM∗, constructed byMDB from the matrices

M (1) andM (2) usingH, is defined as below on the left, where on the right it is illustrated for

n = 4:

M∗
i,j =

1
2
− ǫ, i = j

1
2
, otherwise

M∗ =

1
2
− ǫ 1

2
1
2

1
2

1
2

1
2
− ǫ 1

2
1
2

1
2

1
2

1
2
− ǫ 1

2

1
2

1
2

1
2

1
2
− ǫ

For each mappingσ ∈ ΣΓ, let kσ be the number of attributesi ∈ S, such thatσ(i) = i (i.e., the

number of the attribute mappings inσ that lie on the main diagonal ofM∗). For eachσ ∈ ΣΓ,

August 13, 2006 DRAFT

21

we havekσ ∈ {1, 2, . . . , n − 3, n − 2, n}, and:

h(σ, M∗) =

1
2
, kσ = 0,

1
2
− kǫ

n
, 0 < kσ ≤ n − 2,

1
2
− ǫ, kσ = n

Therefore, for eachσI 6= σ ∈ Σ, we have〈h, H〉(σ) > 〈h, H〉(σI), and thus (the best mapping!)

σI will be the last mapping discovered by theMDB algorithm.

V. THE CROSSTHRESHOLD ALGORITHM

The main conclusion to be drawn from Theorem 6 is that theMDB algorithm should not

replace but rather complement theTA algorithm. Thus, it would be natural to adopt a parallel

execution ofTA andMDB, i.e., performingm + 1 parallelq-top querying of schema matchers.

This way, we involve both algorithms in computing the top-K mappings, halting as soon as one

of these algorithms reaches the desired goal.

The question that suggests itself immediately is whether wecan improve the performance of

this parallel execution of theTA and MDB algorithms by either monitoring their intermediate

behavior, or lettingTA and MDB share some information gathered from their own individual

computations. Our discussion of this possibility leads to specification and analysis of a mixed

version of theTA and MDB algorithms, in whichTA and MDB are executed in parallel, yet

these parallel executions are not independent, but communicating and mutually enhancing.

A. Is an early winner a true winner?

A naı̈ve approach to accelerate parallel execution of theTA andMDB algorithms corresponds

to the hypothesis that by observing the performance of bothTA andMDB in identifying the top-i

mappings (wherei < K), a decision can be taken to continue with only one of these algorithms

in identifying the remainingK− i mappings. Observe that such an “early winner detection” will

be especially helpful in problems wherede factoMDB outperformsTA, sinceTA’s execution of

m parallelq-top querying is more costly than executingMDB.

Unfortunately, such a selection strategy provides us with no guarantee that the performance will

not worsen after abandoning the “so-far looser” algorithm.More interestingly, our experiments

show that this absence of guarantee is not of theoretical interest only. For instance, Figure 4

August 13, 2006 DRAFT

22

compares the performance of theTA and MDB algorithms on two schemata from the hotel

reservation domain. The x- and y-axes in Figure 4 correspondto the requested number of the

top mappingsK, and the (plotted on a logarithmic scale) number of iterations performed by

the algorithms, respectively. On this problem instance, the MDB algorithm manages to get the

top-4 mappings faster than theTA algorithm. However, fromK = 6 on, TA outperformsMDB.

This example demonstrates that in practice as well, the relative performance of theTA andMDB

algorithms for anyi < K cannot serve as a perfect indicator for their future behavior. (We

discuss our experiments in more details in Section VI.)

Fig. 4. Crossing performance of theTA andMDB algorithms on a certain problem instance from our experiments.

B. Can theTA and MDB algorithms help each other?

While we have shown that neither theTA algorithm nor theMDB algorithm can be safely

abandoned, a natural next step would be to allow these two algorithms to share a pool of top-

K candidates. This way, both algorithms will contribute to each other new candidates as they

come along, possibly replacing other, less attractive candidates (discovered by either of the two

algorithms.) Moreover, such a pool sharing suggests aggregating the thresholds used in theTA

and MDB algorithms, achieving a new threshold that is more effective than the original two.

This way, the schema mappings selected by theTA algorithm as candidates for the top-K set

can be “approved” by means of the information obtained by theMDB algorithm, and vice versa.

Figure 5 formalizes the resulting algorithm which we refer to asCrossThreshold. The joint

thresholdτ used in this algorithm is set tomin {τ
TA

, τ
MDB

}, and Theorem 7 shows the correctness

of the CrossThreshold algorithm with such a threshold. Note that this choice ofτ for the

CrossThreshold algorithm is optimal, because any otherτ ′ > τ cannot be more effective than

August 13, 2006 DRAFT

23

Algorithm CrossThreshold
1) Given A1, . . . , Am, (schematically) construct a new schema matcherA∗ with (a) similarity matrixM∗ such that, for

1 ≤ i ≤ n, 1 ≤ j ≤ n′, M∗

i,j = H(M
(1)
i,j , · · · , M

(m)
i,j), and (b)l-aggregatorh(σ, M∗).

2) Starting withi = 1, do incremental (on growingi) parallel querying ofA1, . . . , Am, A∗ with q-top(i).

a) As a mappingσ is introduced by one of thesem+1 matchers, obtain the remainingf (1)(σ, M (1)), · · · , f (m)(σ, M (m))

by querying the other matchers (excludingA∗) with q-estim(σ), and compute the aggregated weight〈~f, F 〉(σ). If

this weight is one of theK highest we have seen so far, then rememberσ.

b) Let σ1, . . . , σm, σ∗ be the mappings returned by thelast q-top queries byA1, . . . , Am, A∗, respectively. Define the

threshold valueτ = min {τ
T A

, τ
MDB

}, where τ
TA

= F
“

f (1)(σ1, M
(1)), · · · , f (m)(σm, M (m))

”

and τ
MDB

=

h(σ∗, M
∗). If K mappings have been seen whose weight is at leastτ , then halt.

3) Let Y be a set containingK mappings with the highest grades seen so far. The output is then the graded set
nh

σ, 〈~f, F 〉(σ)
i

| σ ∈ Y
o

.

Fig. 5. TheCrossThreshold algorithm.

τ , while settingτ to any value lower thanmin {τ
TA

, τ
MDB

} cannot guarantee the soundness of

the procedure.

Theorem 7 Let A1, . . . , Am be a set of schema matchers with〈~f, F 〉 being their l- and g-

aggregators. Given a function pair〈h, H〉 that both commute and dominate〈~f, F 〉 onM (1), . . . , M (m),

the CrossThreshold algorithm correctly finds top-K valid mappings with respect to〈~f, F 〉.

Proof: Let Y be the set of mappings as in step 3 of theCrossThreshold algorithm. We need

only show that every mappingσ ∈ Y has a weight at least as high, according to〈~f, F 〉, as every

mappingσ′ 6∈ Y . By definition ofY , this is the case for each mappingσ′ 6∈ Y that has been seen

by theCrossThreshold algorithm. Assume thatσ′ was not seen, and letτ ′, τ ′
TA

, andτ ′
MDB

be the

value ofτ , τ
TA

, andτ
MDB

, respectively, at the termination ofCrossThreshold. If τ ′
MDB

> τ ′
TA

, by

monotonicity ofF , we haveτ ′ = τ ′
TA

≥ 〈~f, F 〉(σ′) for everyσ′ 6∈ Y . Otherwise, ifτ ′
MDB

≤ τ ′
TA

,

from the incrementality of queryingAi with q-top, we haveτ ′ ≥ 〈h, H〉(σ′) ≥ 〈~f, F 〉(σ′) for

everyσ′ 6∈ Y . But by definition ofY , for everyσ ∈ Y we have〈~f, F 〉(σ) ≥ τ ′. Therefore, for

everyσ′ 6∈ Y , we have〈~f, F 〉(σ) ≥ τ ′ ≥ 〈~f, F 〉(σ′), as desired.

While Theorem 7 shows the correctness of theCrossThreshold algorithm, the reader may

rightfully wonder whether it can provide any computationalspeedup compared to the basic

August 13, 2006 DRAFT

24

independent parallel execution of theTA andMDB algorithms. Below we provide an affirmative

answer to this question.

Considering the generation of top-K mappings for a general schema meta-matching problem,

let I be the minimal number of iterations required for this purpose by theCrossThreshold

algorithm, andI
TA

, I
MDB

be the corresponding minimal number of iterations requiredby inde-

pendently running theTA andMDB algorithms, respectively. If usingCrossThreshold provides

any computational speedup on this problem instance, then weshould have

I < min {I
TA

, I
MDB

} (9)

To obtain some intuition on when (if at all) Eq. 9 may hold, letτ [x], τ
TA

[x], and τ
MDB

[x] be

the values obtained afterx iterations byτ , τ
TA

, and τ
MDB

, respectively. By definition of the

CrossThreshold algorithm and its reported top-K list Y , we have

∀σ ∈ Y : 〈~f, F 〉(σ) ≥ τ [I] = min {τ
TA

[I], τ
MDB

[I]}, (10)

and, without loss of generality, assume thatτ
TA

[I] 6= τ
MDB

[I].

First, suppose that the value ofτ [I] is contributed by theTA algorithm, i.e., τ [I] = τ
TA

[I],

and thus Eq. 10 can be reformulated as

∀σ ∈ Y : 〈~f, F 〉(σ) ≥ τ
TA

[I] (11)

On the other hand, Eq. 9 in particular implies that there exists at least one mappingσ ∈ Y that

has not been seen byTA. Thus, afterI iterations, such a mappingσ is exclusivelyprovided to the

shared pool of candidates by theMDB algorithm, yet theTA algorithm can successfully verify

membership ofσ in the top-K list. The situation withτ [I] = τ
MDB

[I] is symmetric; in this case,

there exists at least one mappingσ ∈ Y that is exclusively discovered by theTA algorithm, and

yet its membership in the top-K list can be successfully verified by theMDB algorithm.

We now formalize this intuition to characterize schema meta-matching problem instances

on which theCrossThreshold algorithm can provide a computational speedup over its basic,

“asynchronous” counterpart. Starting with Eqs. 9-10, we provide two lemmas that significantly

reduce the spectrum of scenarios in which such a speedup is theoretically possible. Specifically,

Lemmas 8 and 9 below restrict the global aggregator value of mappings that are identified by

one algorithm and verified with the appropriate threshold ofthe other algorithm to beequal to

the joint thresholdτ .

August 13, 2006 DRAFT

25

Extending the notation introduced in Section V-B, letY = Y
TA

∪ Y
MDB

be a (possibly

not disjoint) cover ofY , whereY
TA

and Y
MDB

contain the top-K mappings provided to the

CrossThreshold algorithm by theq-top queries toA1, . . . , Am andA∗, respectively.

Lemma 8 If I < I
TA

and τ [I] = τ
TA

[I], thenY \Y
TA

6= ∅, and for eachσ ∈ Y \Y
TA

, we have:

〈~f, F 〉(σ) = τ
TA

[I] (12)

Proof: The assumption of the lemma thatI < I
TA

implies that there exists at least one

mappingσ ∈ Y that would have been discovered by (independently running)TA only at some

iterationI ′ > I, and thus we haveY \Y
TA

6= ∅. Now, considering mappingsσ ∈ Y \Y
TA

, recall

that τ
TA

[I] = F (f (1)(σ1, M
(1)), . . . , f (m)(σm, M (m))), whereσ1, . . . , σm are mappings provided

by A1, . . . , Am at the iterationI, respectively. From the lemma assumption (τ [I] = τ
TA

[I]) and

Eq. 10, we have

τ
TA

[I] = F (f (1)(σ1, M
(1)), . . . , f (m)(σm, M (m)))

≤ 〈~f, F 〉(σ)

= F (f (1)(σ, M (1)), . . . , f (m)(σ, M (m)))

(13)

for all σ ∈ Y . On the other hand, by the definition of theq-top queries we havef (i)(σi, M
(i)) ≥

f (i)(σ, M (i)) for each mappingσi as in Eq. 13. Thus, by the monotonicity ofF we have

F (f (1)(σ1, M
(1)), . . . , f (m)(σm, M (m))) ≥ F (f (1)(σ, M (1)), . . . , f (m)(σ, M (m))), (14)

and together, Eq. 13 and Eq. 14 imply Eq. 12.

Lemma 9 If I < I
MDB

and τ [I] = τ
MDB

[I], thenY \ Y
MDB

6= ∅, and for eachσ ∈ Y \ Y
MDB

,

we have:

〈~f, F 〉(σ) = τ
MDB

[I] (15)

Proof: Similar to the proof of Lemma 8, the assumption thatI < I
MDB

implies that there

exists at least one mappingσ ∈ Y that would have been discovered by (independently running)

MDB only at some iterationI ′ > I, and thus we haveY \Y
MDB

6= ∅. Considering such mappings

σ ∈ Y \ Y
MDB

, from the assumption thatτ [I] = τ
MDB

[I], we have

τ
MDB

[I] = 〈h, H〉(σ′) ≤ 〈~f, F 〉(σ), (16)

August 13, 2006 DRAFT

26

whereσ′ is the mapping discovered by theMDB algorithm at the iterationI. Likewise, since

σ ∈ Y \ Y
MDB

, we have:

〈h, H〉(σ) ≤ 〈h, H〉(σ′) (17)

Finally, since〈h, H〉 dominates〈~f, F 〉, we have:

〈~f, F 〉(σ) ≤ 〈h, H〉(σ). (18)

Together, Eqs. 16-18 provide us with the lemma claim that〈~f, F 〉(σ) = τ
MDB

[I].

At first view it seems that the restrictions posed by Lemmas 8 and 9 are too strict for the

CrossThreshold algorithm to provide a significant computational speedup (if any). However,

below we show that even in such boundary situations, the speedup is not only possible, but also

potentially significant.

Theorem 10 There exist schema meta-matching problem instances for which the time complexity

of both theTA and MDB algorithms is exponentially worse than that of theCrossThreshold

algorithm.

Proof: The proof is by example of the corresponding problem instance. Consider two

algorithms,A1 andA2, and a pair of schemataS andS ′, each consisting ofn attributes. Likewise,

let thel-aggregatorf be the regularproduct, and theg-aggregatorF be the utilitarian aggregator

min. GivenS andS ′, the similarity matricesM (1) andM (2), induced byA1 andA2, respectively

are as follows:

M
(1)
i,j =

8

>

<

>

:

x + 2ǫ, (i = j) ∨ (i + j < n + 1)

0, otherwise
M

(2)
i,j =

8

>

<

>

:

x, (i = j) ∨ (i + j > n + 1)

0, otherwise

such thatx > 0, ǫ > 0, andx + 2ǫ < 1. Below we illustrate the matrices forn = 5:

M (1) =

0

B

B

B

B

B

B

B

B

@

x + 2ǫ x + 2ǫ x + 2ǫ x + 2ǫ 0

x + 2ǫ x + 2ǫ x + 2ǫ 0 0

x + 2ǫ x + 2ǫ x + 2ǫ 0 0

x + 2ǫ 0 0 x + 2ǫ 0

0 0 0 0 x + 2ǫ

1

C

C

C

C

C

C

C

C

A

M (2) =

0

B

B

B

B

B

B

B

B

@

x 0 0 0 0

0 x 0 0 x

0 0 x x x

0 0 x x x

0 x x x x

1

C

C

C

C

C

C

C

C

A

Likewise, consider a pair of bounding functions〈h, H〉, where bothh andH stand foraverage.

Since the entries of both matricesM (1) and M (2) lie in the interval[0, 1], we have〈f, F 〉 ≺

August 13, 2006 DRAFT

27

〈h, H〉. The matrixM∗, constructed by theMDB algorithm from the matricesM (1) and M (2)

usingH, is defined as below on the left, where on the right it is illustrated forn = 5:

M∗

i,j =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

x + ǫ i = j

x
2

+ ǫ, (i 6= j) ∧ (i + j < n + 1)

0, i + j = n + 1

x
2
, otherwise

M∗ =

0

B

B

B

B

B

B

B

B

@

x + ǫ x
2

+ ǫ x
2

+ ǫ x
2

+ ǫ 0

x
2

+ ǫ x + ǫ x
2

+ ǫ 0
x
2

x
2

+ ǫ x
2

+ ǫ x + ǫ x
2

x
2

x
2

+ ǫ 0
x
2

x + ǫ x
2

0
x
2

x
2

x
2

x + ǫ

1

C

C

C

C

C

C

C

C

A

First, consider the execution of theTA algorithm on this problem instance. Letσ
I

stand for

the mappings captured by the primary diagonal. That is, for1 ≤ i ≤ n, σ
I
(i) = i. It is not hard

to see that

〈f, F 〉(σ
I
) = min {(x + 2ǫ)n, xn} = xn,

while, for each mappingσ 6= σ
I
, we have eitherf

(

σ, M (1)
)

= 0 or f
(

σ, M (2)
)

= 0, and thus

〈f, F 〉(σ) = 0. Hence, the top-1 mapping for this problem instance cannot be anything but{σ
I
}.

On the other hand,M (1) inducesΘ
(

(n
2
− 1)!

)

mappingsσ having

f
(

σ, M (1)
)

= (x + 2ǫ)n = f
(

σI , M
(1)

)

,

andM (2) inducesΘ
(

(n
2
− 1)!

)

mappingsσ having

f
(

σ, M (2)
)

= xn = f
(

σI , M
(2)

)

,

Therefore, the best mappingsσ
I

might be discovered by theTA algorithm only afterΘ
(

(n
2
− 1)!

)

iterations.

In turn, consider the performance of theMDB algorithm on this problem instance, and further

assume thatxn < (x+ǫ)/n. From the description ofM∗, it is not hard to see that the best mapping

σ
I

will be discovered by theMDB algorithm on the first iteration. However, observe that the

lowest value obtained byτ
MDB

on M∗ will be higher than(x+ ǫ)/n. Since〈f, F 〉(σ
I
) = xn, we

conclude that theMDB algorithm couldverify that the candidateσ
I

is indeed the best mappings

only afterΘ (n!) iterations.

Now, consider the “cooperative” execution ofTA andMDB in the scope of theCrossThresh-

old algorithm. Following our discussion above, assume thatTA would fail to discoverσ
I

for the

first Θ
(

(n
2
− 1)!

)

iterations. However, immediately after the first iterationwe haveτ
TA

= xn.

Recall thatσ
I

is discovered by theMDB algorithm at the first iteration. It is easy to see that after

August 13, 2006 DRAFT

28

the first iteration of theCrossThreshold algorithm we haveτ = τ
TA

, and thus we immediately

conclude that:

〈f, F 〉(σ) = xn = τ

Hence, the best mappingσ
I

is discovered by theCrossThreshold algorithm immediately after

the first iteration, while bothI
TA

andI
MDB

for this top-1 problem are exponential inn.

VI. EMPIRICAL EVALUATION

We have implemented the generic versions of the four algorithmsTA, MD, MDB, andCrossThresh-

old.7 In this implementation, each algorithm can be plugged-in with a concrete schema model

(e.g., relational), a set of (standard or user-defined) schema matchers, and a pair ofl- and g-

aggregators.

As a testbed, we have gathered 24 Web forms from 6 different domains, namely dating and

matchmaking, job hunting, Web mail, hotel reservation, news, and cosmetics. We first extracted

the schemata of these Web forms using the OntoBuilder ontology extractor. Then, we generated

the similarity matrices for all pairs of domain-compatibleWeb forms using four different schema

matchers calledTerm, Value, Composition, and Precedence [23]. The valid schema

mappings have been defined to be all the mappings obeying1-1 cardinality constraint.

In our experiments, we have evaluated theTA, MDB, andCrossThreshold algorithms on five

pairs of these matchers, namely{Term, Value}, {Term, Precedence}, {Term, Composition},

{Value, Precedence}, and{Value, Composition}. Likewise, all these 15 schema meta-

matching settings have been evaluated on nine pairs ofl- and g-aggregators〈f, F 〉, namely

〈avg, min〉 and 〈avg(t), avg〉, whereavg(t) stands for the average version of Eq. 7, andt ∈

{0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75}. To eliminate possible influence of having differentl-

aggregators for different schema matchers on the conclusiveness of the evaluation, in all these 135

experiment configurations the matchers have been set to use the samel-aggregator. Likewise, in

all these configurations we have used〈avg, avg〉 as the dominating pair of bounding aggregators

〈h, H〉, and generated up toK = 20 top mappings.

7Requires Java 2 JDK 1.4 (or higher), and is available as part of the OntoBuilder distribution from

http://ie.technion.ac.il/OntoBuilder.

August 13, 2006 DRAFT

29

(a) (b)

Fig. 6. TheTA andMDB algorithms with schema matchers{Term, Precedence} and〈f, F 〉 = 〈avg(0.25), avg〉, evaluated

on two different pairs of schemata.

To summarize, we have experimented with 12 pairs of schemata, 5 groups of schema matcher

pairs, and 9 pairs ofl- and g-aggregators, to a total of 540 comparative experiments between

the TA, MDB, andCrossThreshold algorithms. Below we discuss the results of our empirical

evaluation ofTA, MDB, and CrossThreshold. Note that empirical evaluation of theMD al-

gorithm is redundant, as the running time ofMD on a given problem instance can be derived

analytically from Theorem 2.

A. Evaluating theTA and MDB algorithms

Recall that Theorems 5 and 6 show that theTA andMDB algorithms do not dominate each

other. These formal results, however, say little about the practical relationship between the two

algorithms. Interestingly, our experiments on real-worldschemata support the formal conclusion

of Theorems 5 and 6 that there is no clear winner between theTA andMDB algorithms.

To start with a concrete example, in Figure 6 we present the performance of theTA and

MDB algorithms on two different pairs of schemata, while employing thesamepair of matchers

{Term, Precedence}, and thesamepair of l- and g-aggregators〈f, F 〉 = 〈avg(0.25), avg〉

(bounded by〈h, H〉 = 〈avg, avg〉.) The x- and y-axes in these graphs correspond respectively

to the requested number of the top mappingsK, and the number of iterations performed by the

algorithms (plotted on a logarithmic scale). It is easy to see that theMDB algorithm significantly

outperforms theTA algorithm on the problem instance depicted in Figure 6(a), while the TA

algorithm significantly outperforms theMDB algorithm on the problem instance depicted in

Figure 6(b). Thus, Figure 6 clearly shows that performance incomparability between theTA and

MDB algorithms is not restricted to some extreme pathological problem instances. Moreover,

August 13, 2006 DRAFT

30

this example illustrates that these two algorithms are incomparable even if there is no difference

between their settings neither in the choice of schema matchers, nor in the choice ofl- and

g-aggregators.

TA ≥ MDB MDB ≥ TA TA=MDB no winner

〈avg(0.025), avg〉 8% 57% 27% 8%

〈avg(0.05), avg〉 17% 53% 22% 8%

〈avg(0.10), avg〉 28% 40% 18% 13%

〈avg(0.15), avg〉 42% 33% 15% 10%

〈avg(0.20), avg〉 47% 23% 12% 18%

〈avg(0.25), avg〉 65% 20% 3% 12%

〈avg(0.50), avg〉 78% 15% 0% 7%

〈avg(0.75), avg〉 97% 2% 0% 2%

〈avg, min〉 95% 2% 0% 3%

TABLE I

RELATIVE PERFORMANCE OF THEMDB AND TA ALGORITHMS.

Table I summarizes the relative performance of theMDB andTA algorithms on various pairs

of schemata and various choices of schema matcher groups. The rows in Table I correspond to

the different choices of thel- andg-aggregators, while its four columns capture the percentage

of experiments in which (i)TA performed at least as well asMDB for all 1 ≤ K ≤ 20 and

outperformedMDB for at least one suchK, (ii) MDB performed at least as well asTA for

all 1 ≤ K ≤ 20 and outperformedTA for at least one suchK, (iii) TA and MDB performed

exactly the same, and (iv) none of these two algorithms dominated the other forall 1 ≤ K ≤ 20.

This table further illustrates that the performance of theMDB and TA algorithms is generally

incomparable. Likewise, as it was expected, Table I shows that the performance of theMDB

algorithm correlates with the relative informativeness ofour bounding aggregators〈avg, avg〉

with respect to the actuall- and g-aggregators in use. Specifically, the lower the threshold is,

the better theMDB algorithm performs.

B. Evaluating theCrossThreshold algorithm

Next we compare the empirical performance of theCrossThreshold algorithm with the inde-

pendent in-parallel execution of theTA andMDB algorithms. Recalling that theCrossThreshold

August 13, 2006 DRAFT

31

algorithm is always at least as effective as its basic counterpart, and that Theorem 10 implies

the theoretical feasibility of Eq. 9, our intention here is to check whether the computational gain

from using theCrossThreshold algorithm can also be observed in practice.

Let Imin = min {I
TA

, I
MDB

} denote the number of iterations required to solve a given schema

meta-matching problem using the basic in-parallel execution of theTA and MDB algorithms.

Figure 7 illustrates the relative performance of theCrossThreshold algorithm with respect to

in-parallel execution by plotting the ratioImin/I averaged over all twelve tested pairs of schemata

and five tested pairs of schema matchers. Since we always haveI ≤ Imin, the (averaged) ratio

Imin/I is always bounded from below by1. Each vertex on this surface corresponds to an

average ratio for a certain number of required mappingsK (x-axis), and a certain choice ofl-

andg-aggregator functions (y-axis).

Figure 7 clearly shows that using theCrossThreshold algorithm is beneficial not only in

theory, but also in practice. Averaging over all 540 experimental sessions, theCrossThreshold

algorithm was≈ 16% faster than its basic counterpart. For the aggregator pairs 〈avg(t), avg〉,

the relative benefit of using theCrossThreshold communication between theTA and MDB

algorithms was roughly proportional to the cutoff valuet. The intuition behind this relationship

is that, ast gets closer to0, the values that the bounding functions〈avg, avg〉 provide to the

mappings are closer to those provided by the actual aggregators〈avg(t), avg〉, and thus theMDB

algorithm is getting closer to the “perfect” algorithmMD.

Now, consider the pair of local and global aggregators〈avg, min〉. Recall that in our experi-

ments with this pair of aggregators theTA algorithm outperformed theMDB algorithm in95%

of the experiments for any1 ≤ K ≤ 20 (see the last row in Table I). If so, then one would

expect the performance of theCrossThreshold algorithm on these problems to be similar to

that of theTA algorithm, as it seems that theMDB algorithm will have nothing to contribute to

the process. However, Figure 7 shows exactly the opposite; not only does theCrossThreshold

algorithm outperformed theTA algorithm on this problem set, but the marginal contribution of

using it was the largest among all the pairs ofl- andg-aggregators considered.

This phenomenon corresponds to a certain interesting form of “mutual assistance” between

the TA andMDB algorithms inCrossThreshold, possibility of which we have exploited in our

proof of Theorem 10. Recall our discussion that the efficiency of theMDB algorithm is affected

by two separate factors. First, top mappings with respect to〈~f, F 〉 might be pushed down when

August 13, 2006 DRAFT

32

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0KA v g (0 . 0 2 5) / A v gA v g (0 . 0 5) / A v gA v g (0 . 1) / A v gA v g (0 . 1 5) / A v gA v g (0 . 2) / A v gA v g (0 . 2 5) / A v gA v g (0 . 5) / A v gA v g (0 . 7 5) / A v gA v g / M i nA g g r e g a t o r s11 . 0 51 . 11 . 1 51 . 21 . 2 51 . 31 . 3 51 . 41 . 4 51 . 5II m i n

Fig. 7. TheCrossThreshold algorithm versus independent in-parallel execution of theTA andMDB algorithms.

using 〈h, H〉. However, even if this is not the case and theMDB algorithm immediately finds

the true top mappings, the algorithm may not be able to verifythem due to the thresholdτ
MDB

,

which is too high. Now, considerMDB embedded in theCrossThreshold algorithm and a

schema matching problem instance corresponding to the latter situation. Despite the fact that

theMDB algorithm fails to report the top-K mappings, it can still successfully provide the right

candidates. In turn, these candidates can be approved by the (lower) thresholdτ
TA

, while the

TA algorithm may fail to generate good candidates by itself. Insuch situations the marginal

contribution of using theCrossThreshold algorithm is expected to be the highest, and this was

exactly the typical situation in our experiments on probleminstances with〈f, F 〉 = 〈avg, min〉.

To summarize, our experiments demonstrate the practical advantages of using theCrossThresh-

old algorithm over the basic in-parallel execution of theTA and MDB algorithms. Hence, the

CrossThreshold algorithm provides a more appealing solution for situations in which one

is uncertain about the relative attractiveness of theTA and MDB algorithms in a domain of

discourse.

August 13, 2006 DRAFT

33

VII. CONCLUSIONS AND FUTURE WORK

We introduced schema meta-matching, a novel computationalframework for robust automatic

schema matching that generalizes and extends previous proposals for exploiting an ensemble

of schema matchers. We presented several algorithms for schema meta-matching, varying from

adaptation of a standard technique for quantitative rank aggregation in the area of database

middleware, to novel techniques developed especially for the problem of schema matching.

We provided a formal computational analysis of all algorithms, and characterized their relative

applicability. In particular, our formal analysis allowedus to devise a pair of strictly superior

algorithmsMD and CrossThreshold, where the choice between the two depends on whether

the l- andg- aggregators commute on the schema matching problem at hand, an easy-to-check

property. Likewise, we evaluated all the algorithms empirically on a set of real-life schemata

gathered from Web forms, and a set of state-of-the-art schema matchers. Our experiments

demonstrate the benefit of using theCrossThreshold algorithm over using theTA or MDB

algorithms independently or in parallel.

Our work opens several venues for future research, two of which are discussed below. First,

observe that in theTA algorithm (and thus, in theCrossThreshold algorithm), the parallel

querying of different matchers with theq-top queries is kept uniform, that is, each iteration of

the TA algorithm progresses onall the matchers. In general-purpose aggregation of quantitative

rankings [17] this strategy is indeed expected to be as good as any other strategy. However,

having additional knowledge about the data can provide us with (at least heuristically) better

strategies, and currently we are exploring this direction to further improve the performance of the

CrossThreshold algorithm. Second, as discussed in Section IV, it is clear that the complexity of

ourMDB algorithm depends crucially on the quality of the chosen pair of dominating aggregators.

Therefore, we are looking into refining our notion of dominance by incorporating topological

measures of ordering and tightness.

ACKNOWLEDGMENTS

We thank Ilan Shimshoni for useful discussions. We also thank the anonymous reviewers for

their useful comments. The work of Gal was partially supported by Technion V.P.R. Fund –

E. and J. Bishop Research Fund, the Fund for the Promotion of Research at the Technion, and

the IBM Faculty Award for 2003/2004 on “Self-Configuration in Autonomic Computing using

August 13, 2006 DRAFT

34

Knowledge Management.” The work of Domshlak was partially supported by the Intelligent

Information Systems Institute, Cornell University (AFOSRgrant F49620-01-1-0076). The views

and conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied, of the

U.S. Government.

REFERENCES

[1] J. Berlin and A. Motro. Autoplex: Automated discovery ofcontent for virtual databases. In C. Batini, F. Giunchiglia,

P. Giorgini, and M. Mecella, editors,Cooperative Information Systems, 9th International Conference, CoopIS 2001, Trento,

Italy, September 5-7, 2001, Proceedings, volume 2172 ofLecture Notes in Computer Science, pages 108–122. Springer,

2001.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semanticWeb. Scientific American, May 2001.

[3] P.A. Bernstein and S. Melnik. Meta data management. InProceedings of the IEEE CS International Conference on Data

Engineering. IEEE Computer Society, 2004.

[4] A. Bilke and F. Naumann. Schema matching using duplicates. In Proceedings of the IEEE CS International Conference

on Data Engineering, pages 69–80, 2005.

[5] B. Convent. Unsolvable problems related to the view integration approach. InProceedings of the International Conference

on Database Theory (ICDT), Rome, Italy, September 1986. InComputer Science, Vol. 243, G. Goos and J. Hartmanis,

Eds. Springer-Verlag, New York, pp. 141-156.

[6] R. Dhamankar, Y. Lee, A. Doan, A.Y. Halevy, and P. Domingos. iMAP: Discovering complex mappings between database

schemas. InProceedings of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages 383–394, 2004.

[7] H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. InProceedings of the 2nd Int. Workshop

on Web Databases (German Informatics Society), 2002., 2002.

[8] H.H. Do and E. Rahm. COMA - a system for flexible combination of schema matching approaches. InProceedings of

the International conference on very Large Data Bases (VLDB), pages 610–621, 2002.

[9] A. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources: A machine-learning approach.In

Walid G. Aref, editor,Proceedings of the ACM-SIGMOD conference on Management of Data (SIGMOD), Santa Barbara,

California, May 2001. ACM Press.

[10] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies on the semantic web. In

Proceedings of the eleventh international conference on World Wide Web, pages 662–673. ACM Press, 2002.

[11] A. Doan, N.F. Noy, and A.Y. Halevy. Introduction to the special issue on semantic integration.SIGMOD Record, 33(4):11–

13, 2004.

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web. InProceedings of the Tenth

International World Wide Web Conference (WWW 10), pages 613–622, Hong Kong, China, May 2001.

[13] D.W. Embley, D. Jackman, and L. Xu. Attribute match discovery in information integration: Exploiting multiple facets of

metadata.Journal of Brazilian Computing Society, 8(2):32–43, 2002.

[14] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top-k lists. SIAM J. of Discrete Math., 17(1):134–160, 2003.

[15] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank aggregation. InProceedings

of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages 301–312, 2003.

August 13, 2006 DRAFT

35

[16] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. InProceedings of the ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems(PODS). ACM, 2001.

[17] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.Journal of Computer and System

Sciences, 66:614–656, 2003.

[18] G.H.L. Fletcher and C.M. Wyss. Data mapping as search. In Advances in Database Technology - EDBT 2006, 10th

International Conference on Extending Database Technology, Munich, Germany, March 26-31, 2006, Proceedings, pages

95–111, 2006.

[19] N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology merging and alignment. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 450–455, Austin, TX,

2000.

[20] A. Gal. On the cardinality of schema matching. InIFIP WG 2.12 and WG 12.4 International Workshop on Web Semantics

(SWWS), pages 947–956, 2005.

[21] A. Gal. Managing uncertainty in schema matching with top-k schema mappings.Journal of Data Semantics, 2006.

Accepted for Publication.

[22] A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and evaluating automatic semantic

reconciliation.VLDB Journal, 14(1):50–67, 2005.

[23] A. Gal, G. Modica, H.M. Jamil, and A. Eyal. Automatic ontology matching using application semantics.AI Magazine,

26(1), 2005.

[24] H.W. Hamacher and M. Queyranne. K-best solutions to combinatorial optimization problems.Annals of Operations

Research, 4:123–143, 1985/6.

[25] B. He and K. Chen-Chuan Chang. Statistical schema matching across Web query interfaces. InProceedings of the ACM-

SIGMOD conference on Management of Data (SIGMOD), pages 217–228, San Diego, California, United States, 2003.

ACM Press.

[26] B. He and K.C.-C. Chang. Making holistic schema matching robust: an ensemble approach. InProceedings of the Eleventh

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, August 21-24,

2005, pages 429–438, 2005.

[27] A. Heß and N. Kushmerick. Learning to attach semantic metadata to web services. InProceedings of the Second Semantic

Web Conference, 2003.

[28] R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. InProceedings of the ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems(PODS), pages 51–61. ACM Press, 1997.

[29] G. Koifman, A. Gal, and O. Shehory. Schema mapping verification. In H. Davulcu and N. Kushmerick, editors,Proceedings

of the VLDB-04 Workshop on Information Integration on the Web, pages 52–57, Toronto, Canada, August 2004.

[30] J. Madhavan, P.A. Bernstein, P. Domingos, and A.Y. Halevy. Representing and reasoning about mappings between domain

models. InProceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on

Innovative Applications of Artificial Intelligence (AAAI/IAAI), pages 80–86, 2002.

[31] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. InProceedings of the International

conference on very Large Data Bases (VLDB), pages 49–58, Rome, Italy, September 2001.

[32] S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-Verlag, 2004.

[33] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching algorithm and its application

to schema matching. InProceedings of the IEEE CS International Conference on DataEngineering, pages 117–140, 2002.

August 13, 2006 DRAFT

36

[34] S. Melnik, E. Rahm, and P.A. Bernstein. Rondo: A programming platform for generic model management. InProceedings

of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages 193–204, San Diego, California, 2003. ACM

Press.

[35] R.J. Miller, L.M. Haas, and M.A. Hernández. Schema mapping as query discovery. In A. El Abbadi, M.L. Brodie,

S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, editors,Proceedings of the International conference

on very Large Data Bases (VLDB), pages 77–88. Morgan Kaufmann, 2000.

[36] R.J. Miller, M.A. Hernàndez, L.M. Haas, L.-L. Yan, C.T.H. Ho, R. Fagin, and L. Popa. The Clio project: Managing

heterogeneity.SIGMOD Record, 30(1):78–83, 2001.

[37] G. Modica, A. Gal, and H. Jamil. The use of machine-generated ontologies in dynamic information seeking. In C. Batini,

F. Giunchiglia, P. Giorgini, and M. Mecella, editors,Cooperative Information Systems, 9th International Conference,

CoopIS 2001, Trento, Italy, September 5-7, 2001, Proceedings, volume 2172 ofLecture Notes in Computer Science, pages

433–448. Springer, 2001.

[38] P. Mork, A. Rosenthal, L.J. Seligman, J. Korb, and K. Samuel. Integration workbench: Integrating schema integration

tools. InProceedings of the 22nd International Conference on Data Engineering Workshops, ICDE 2006, 3-7 April 2006,

Atlanta, GA, USA, page 3, 2006.

[39] N. Friedman Noy, A. Doan, and A.Y. Halevy. Semantic integration. AI Magzine, 26(1):7–10, 2005.

[40] M. Pascoal, M.E. Captivo, and J. Cl’imaco. A note on a newvariant of Murty’s ranking assignments algorithm.4OR:

Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(3):243–255, 2003.

[41] E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching.VLDB Journal, 10(4):334–350, 2001.

[42] P. Rodriguez-Gianolli and J. Mylopoulos. A semantic approach to XML-based data integration. InProc. of the International

Conference on Conceptual Modelling (ER’01), pages 117–132, Yokohama, Japan, 2001. Lecture Notes in Computer Science,

Springer-Verlag.

[43] B. Srivastava and J. Koehler. Web service composition -Current solutions and open problems. InWorkshop on Planning

for Web Services (ICAPS-03), Trento, Italy, 2003.

[44] L. Xu and D.W. Embley. A composite approach to automating direct and indirect schema mappings.Information Systems,

2006. accepted for publication.

August 13, 2006 DRAFT

