
Managing Uncertainty in Schema Matching with Top-K Schema

Mappings

Avigdor Gal

Technion – Israel Institute of Technology
Technion City, Haifa 32000, Israel

Abstract. In this paper, we propose to extend current practice in schema matching with the simul-
taneous use of top-K schema mappings rather than a single best mapping. This is a natural extension
of existing methods (which can be considered to fall into the top-1 category), taking into account the
imprecision inherent in the schema matching process. The essence of this method is the simultane-
ous generation and examination of K best schema mappings to identify useful mappings. The paper
discusses efficient methods for generating top-K methods and propose a generic methodology for the
simultaneous utilization of top-K mappings. We also propose a concrete heuristic that aims at improv-
ing precision at the cost of recall. We have tested the heuristic on real as well as synthetic data and
anlyze the emricial results.
The novelty of this paper lies in the robust extension of existing methods for schema matching, one
that can gracefully accommodate less-than-perfect scenarios in which the exact mapping cannot be
identified in a single iteration. Our proposal represents a step forward in achieving fully automated
schema matching, which is currently semi-automated at best.

1 Introduction

Matching concepts describing the meaning of data in heterogeneous distributed data sources (e.g., HTML
form tags and database and XML schemata) is one of the basic operations of data integration. Due to the
cognitive complexity of this matching process [8], it has traditionally been performed by human experts
(Web designers, database analysts, and even lay users, depending on the context of the application) [32, 20].
As data integration has been made more automated, the ambiguity in concept interpretation, also known as
semantic heterogeneity, has become one of the main obstacles to this process. For obvious reasons, manual
concept reconciliation in dynamic environments (with or without computer-aided tools) is inefficient to the
point of being infeasible, and so cannot provide a general solution. Introduction of the Semantic Web vision [4]
and the shift towards machine-understandable Web resources have underscored the importance of automatic
matching between sets of elements, also known as schema matching.

As a result, several tools for automated schema matching, such as GLUE [11] and OntoBuilder [15], have
been developed in recent years. Given two data schemata (e.g., two sets of attributes), these tools output a
single mapping from elements of one schema to elements of the other. The outputted mapping is considered
to be the best of all possible mappings between these schemata.

Although these tools comprise a significant step towards fulfilling the vision of automated schema match-
ing, it has become obvious that the user must accept a degree of imperfection in this process [14]. A prime
reason for this is the enormous ambiguity and heterogeneity of data description concepts: It is unrealistic to
expect a single mapping engine to identify the correct mapping for any possible concept in a set. Another
(and probably no less crucial) reason is that “the syntactic representation of schemas and data do not com-
pletely convey the semantics of different databases” [26]; i.e., the description of a concept in a schema can
be semantically misleading. Therefore, managing uncertainty in schema matching has been recognized as the
next issue on the research agenda in the realm of data integration [24].

In this work, we offer an uncertainty management tool, using top-K mappings. We propose to extend
current practice in schema matching by using top-K schema mappings rather than a single best mapping.
This is a natural extension of existing methods (which can be considered to fall into the top-1 category),
taking into account the uncertainty described above. The essence of this method is the simultaneous

generation of K schema mappings and the use of heuristics on them to improve the matching process. We
demonstrate our approach using a heuristic, dubbed stability analysis, to analyze top-K mappings. The
usefulness of the heuristic is demonstrated through an empirical analysis of real-world schemata as well as
synthetic data.

1.1 Motivating example

Fig. 1. Motivating example

Figure 1 presents two Web sites that offer matchmaking services. In each of these sites, one has to fill in
personal information (e.g., name, country of residence, and birthdate). We have applied a schema matcher
called Combined, which is part of the toolkit of OntoBuilder [15]. The matcher returned the best mapping,
containing a set of possible attribute mappings. We shall present a formal model of the matching process in
Section 2.

www.cybersuitors.com www.date.com

select: Country: (cboCountries) select: Select your Country (countrycode)

select: Birthday: (cboDays) select: Date of Birth (dob day)

select: Birthday: (cboMonths) select: Date of Birth (dob month)

select: Birthday: (cboYears) select: Date of Birth (dob year)

checkbox: (chkAgreement2) image: ()

checkbox: (chkAgreement1) checkbox: Date.com - Join Now for Free! (over18)

select: State (if in USA): (cboUSstates) select: I am a (i am)
Table 1. Best mapping of the motivating example

A list of these mappings appear in Table 1. Each column in the table contains information about one field
in a registration form in one of the Web sites. The information consists of the type of field (e.g., select field
and checkbox), the label as appears at the Web site, and the name of the field, given here in parentheses and
hidden from the user. Each row in the table represents an attribute mapping, as proposed by the matcher.
The top part of the table contains four correct mappings. The bottom part of the table contains three
incorrect mappings.

Schema matchers face two obstacles in providing the best mapping. First, correct mappings should be
identified and provided to the user. Second, incorrect mappings should be avoided. These two tasks can be
measured by the classical IR metrics of recall and precision. The former judges how many correct mappings
the matcher identifies, while the latter measures how many incorrect mappings the matcher has managed to
avoid. Separating correct from incorrect mappings is a hard task. One technique that is often used is that of a
threshold. Using a threshold, a matcher can discard attribute mappings that do not reach sufficient similarity,
assuming that those attribute mappings with low similarity measures are less adequate than those with high
similarity measure. By doing so, a schema matcher (hopefully) increases precision, at the expense of recall.
Using a threshold, however, works only in clear-cut scenarios. Moreover, tuning the threshold becomes an
art in itself. As an example, consider the case study in Figure 1 and Table 1. The four correct attribute
mappings received similarity measures in the range [0.49, 0.7] while the other similarity measures ranged
from 0 to 0.5. Any arbitrary apriori selection of a threshold may yield false negatives (if the threshold is set
above 0.49) or false positives, in case the threshold is set below 0.49.

Consider now an alternative, in which the matcher generates top-10 mappings, that is, the best 10 map-
pings between the two schemata, such that mapping i differs from mappings 1, 2, ...i− 1 by at least one at-
tribute mapping. For example, the second best mapping maps checkbox: (chkAgreement2)with checkbox:

Date.com - Join Now for Free! (over18) and checkbox: (chkAgreement1) is mapped with image: ()

(this last attribute is actually a button and has no associated label or field name). The method proposed in
this paper assumes that such a scenario represents a “shaky” confidence in this mapping to start with and
removes it from the set of proposed attribute mappings (see Section 3.2). Simultaneous analysis of the top-
10 mappings reveals that the four correct attribute mappings did not change throughout the 10 mappings,
while the other attributes were mapped with different attributes in different mappings. Stability analysis, the
heuristic proposed in this paper, suggests that the four mappings, for which consistent attribute mappings
were observed in the top-10 mappings, should be proposed as the “best mapping,” yielding a precision of
100% without adversely affecting recall.

1.2 Related work

Schema matching has been an active field of study for many years now. In this section, we review past
research in two areas, heterogeneous databases and ontology design.

Heterogeneous databases The evolution of organizational computing, from “islands of automation” to
enterprise-level systems, has created the need to homogenize heterogeneous databases. More than ever before,
companies are seeking integrated data that go well beyond a single organizational unit. In addition, a high
percentage of organizational data is now supplied by external resources (e.g., the Web and extranets). Data
integration is thus becoming increasingly important for decision support in enterprises [5]. This development
also implies that databases with heterogeneous schemata increasingly face the prospect that their data
integration process will not effectively manage semantic differences. This may result, at least to some degree,
in the mismatching of concepts. Hence, methods for schema matching should take into account a certain
level of uncertainty.

Many matchers have been proposed over the past two decades, by researchers in both academia and
industry (e.g., [33, 6, 13, 10, 28, 24]) to increase automation of the matching process and reduce semantic

mismatch problems. A useful classification of the various solutions can be found in [31]. A few other systems
(MOMIS [3] and Clio [27], to name a couple) aim at resolving semantic heterogeneity in heterogeneous
databases using manual intervention. For example, MOMIS input includes manual specification of concept
semantic meaning and context as a prerequisite to the matching process.

Several systems offer facilities for iteratively scanning the search space, which can be considered an
iterative variation of top-K. Clio presents the user with the best mapping and revises it if the user rejects
the mapping. LSD [10] exploits domain constraints to produce the best mapping. A user then examines
each concept mapping in the best mapping. If a user specifies a concept mapping as incorrect, it is fed
to LSD as an additional constraint, and LSD then produces the next best mapping. Other matchers, such
as similarity flooding [25] can be easily adapted to provide such top-K facilities. What is common to all
these works is the manual involvement in the iterative process. We aim, in this work, at reducing manual
involvement. Therefore, we suggest a heuristic for automatic analysis of information that can be generated
from simultaneous (rather than iterative) analysis of top-K mappings.

Another variation of top-K exists [25, 19], in which the user is presented with top-K (K = 3 as a default
in [25]) concept level mappings. That is, for each concept the user is presented with the best top-K concept
mappings, out of which it can choose the one that fits best its needs. While top-K here is simultaneous,
there are two main differences with our work. First, it ignores concept inter-relationships, and burdens the
user with enforcing matching constraints (such as cardinality constraints). Secondly, there is no automatic
reasoning involved in deciding which of the top-K is preferred.

There is sparse academic literature on the imprecision of automatic schema matching. A study of repre-
sentations and reasoning about mappings between domain models was presented in [24]. The paper provides
a model representation and inference analysis. It recognizes managing uncertainty as the next step on the
research agenda in this area, and leaves this issue open for future research. The research described in [14]
fills this gap by providing a model that represents uncertainty (as a measure of imprecision) in the match-
ing process outcome. In the current paper, we build on the results of [14] in extending the current “best
mapping” approach into one that considers top-K mappings as an uncertainty management tool.

Ontology design The second body of literature concerned with schema matching is that of ontology design.
Ontologies have been widely accepted as the model of choice for modeling heterogeneous data sources by
various communities, including the areas of databases [11, 21, 15] and knowledge representation [13], to name
just two.

The realm of information science has produced an extensive body of literature and practice in ontology
construction, using tools such as thesauri, and in terminology rationalization and matching of different
ontologies (e.g., [1, 35]). Elsewhere, as in the DOGMA project [21, 34], an engineering approach to ontology
management is taken. Finally, researchers in the area of knowledge representation have studied ontology
interoperability, resulting in systems such as Protégé [13].

The body of research aiming at matching schemata by using ontologies has traditionally focused on
interactive methods requiring human intervention, massive at times. However, the vision of the semantic
Web makes it necessary to minimize human intervention, replacing it with measures of syntactic similarity
designed to approximate semantic matching. Recent papers (e.g., [11, 15]) have explored the idea of automatic
semantic reconciliation using ontologies. It was observed previously that automatic matching is imperfect
[26]. Our approach, focusing on top-K mappings rather than the best mapping, handles this imperfection
well.

The QOM (Quick Ontology Mapping) approach [12] is the closest we are aware of to our proposed
framework. In this work, an iterative matching process is proposed, in which the mapping of a previous
iteration is utilized in determining (the equivalence of our top-K) ontology elements to consider in the next

iteration (note the difference of this approach from other iterative approaches, e.g., similarity flooding, in
which there is no selectivity between iterations). The decision is either manual (with the support of a user)
or by using a threshold. As already discussed, both methods have disadvantages. In this work, we generalize
this approach. One other limitation of QOM is that its top-K is computed per concept, as in [25, 19], ignoring
overall ontology constraints (such as 1 : 1 mapping).

1.3 Contributions and outline

The specific contributions of this paper are as follows:

– We formalize the notion of top-K schema mappings within the framework of schema matching.
– We provide a classification of top-K matchers according to cardinality constraints.
– We demonstrate that there exists a correlation between patterns in top-K mappings and the correctness

of the mapping, which makes the case for the need for top-K mapping analysis.
– We present a heuristic that makes use of simultaneous top-K mappings to improve mapping precision.
– We show experimental results to substantiate the usefulness of top-K mappings in improving precision

and evaluate the trade-offs of applying methods based on top-K mappings.

The rest of the paper is organized as follows. Section 2 presents a model for schema matching as a basis for
the formal introduction of top-K mappings. Next, we provide a generic heuristic for using top-K mappings
(verification) and instantiate it into a concrete heuristic (Section 3). Section 4 outlines our experiments with
the verification heuristic. We conclude in Section 5.

2 The model

This section introduces formally the concept of top-K mappings in the context of schema matching. A model
for schema matching is presented in Section 2.1, followed by the modeling of top-K in Section 2.2.

2.1 A model for schema matching

As a basis for this work we next layout a model for schema matching and explicitly specify the set of
assumptions we shall use throughout the paper. Let S1 and S2 be two schemata, defined using some data
model (e.g., relational or ontological), with n1 and n2 attributes, respectively. Attributes can be joint into
elements, sets of attributes. The process of schema matching yields schema mapping(s), in which elements
of S1 are mapped onto elements of S2.

Generally speaking, the process of schema matching is performed in two steps [9]. First, a degree of
similarity is computed automatically for all element pairs (one element from each schema in each pair), using
such methods as name matching, domain matching, and structure (such as XML hierarchical representation)
matching. Recall that an element may consist of more than a single attribute. For illustration purposes,
consider Table 3 (Section 2.2) to be described in details later. Each entry in the table represents a degree
of similarity of a single element pair. The degree of similarity is typically defined on a [0, 1] scale, where 0
represents no similarity and 1 represents fully similar elements.

As a second step, a single mapping is chosen to be the best mapping. The best mapping is a mapping
that optimizes some target function F , subject to matching constraints. For example, many schema matching

tools aim at maximizing the sum (or average) of pair-wise weights of the selected elements. When deciding on
a best mapping, a matcher should decide which elements from one schema are to be mapped with elements of
another schema. Also, the matcher may decide that some elements do not satisfy some matching constraints
(e.g., minimal degree of similarity) and cannot be mapped. For further illustration, consider Table 3 once
more. The bold-face entries in the table (jointly) represent the best mapping.

COMA [9], OntoBuilder, Cupid, and other schema matching tools apply variations of this model in their
matching process. Others (such as Prompt and similarity flooding) also apply this two step methodology,
yet do not support a mode that provides the user with all pairwise element mappings. However, it can be
expected that making their internal representation of attribute similarity measures available for generating
top-K mappings is feasible.

A convenient data structure for modeling the matching problem is to view it as an undirected bipartite
graph, G = (X, Y, E), with a node set V = X

⋃

Y representing elements, where X and Y denote the sides
of the graph (each side representing one schema), and an edge set E. Weights w : E → R+ are assigned
with edges, representing the degree of similarity between elements. G does not have to be a complete graph.
Threshold constraints may result in the elimination of some edges. Also, some matchers (e.g., similarity
flooding) present only partial pairwise similarity measures. Again, such constraints are interpreted as an
incomplete graph.

A mapping in G is a subset of pair-wise edges of E. We denote a mapping by M ⊆ E. F (M) represents
the target function value of M . Each edge e ∈ M is an element mapping.

Using the proposed data structure, the matching problem becomes a problem of selecting an optimal
mapping (i.e., a subset of E that optimizes F). Given a matching problem and a set of matching constraints,
we denote by Abest the best known algorithm for solving the bipartite graph matching problem, given the
matching constraints. We denote by C (Abest) the complexity of Abest.

Typical classification of matching constraints partitions matching problems into either 1 : 1 matching,
1 : n matching, n : 1 matching, and general (n : m) matching [31]. We now discuss three special cases within
this classification and the methods for solving the matching problem in these cases, using an undirected
bipartite graph as the underlying data structure. Henceforth, we shall assume that F (M) =

∑

e∈M kew (e),
a weighted average where ke is a parameter that can represent the relative importance of an edge e. The
study of top-K using other target functions is left for future research.

1 : 1 matching When constraining the mapping to be 1 : 1, the node set represents individual attributes,
where the X node set contains all attributes of one schema (|X | = n1) and the Y node set contains all
attributes of the other schema (|Y | = n2). A mapping in G is a subset of pair-wise disjoint edges of E.
An efficient algorithm for identifying the best mapping in this case is given as a variation of the weighted
bipartite graph matching problem [16]. Such an algorithm has a complexity of C (Abest) = O

(

n3
)

[23],1

where n = max(n1, n2).

Before moving on to the next two cases, we would like to offer a refined categorization of matching
constraints. Consider, for example, a 1 : n constraint. Such a constraint may indicate that a single attribute
in one schema can be replicated to more than a single attribute in another schema (e.g., a Password attribute
in one schema vs. Type Password and Retype Password in another schema). Alternatively, such a constraint
may indicate that an attribute in one schema is decomposed into several attributes in another schema (e.g.,
Name in one schema is decomposed into Given Name and Surname in another schema). We denote the former
a replication constraint and the latter a decomposition constraint.

1 Here we consider the complexity of the best sequential algorithm for finding a maximum weight mapping in a
bipartite graph. Likewise, an alternative algorithm for this problem is presented in [17], and its time complexity is
O(n2.5 log (nW)), where W stands for the highest edge weight in the graph.

When a replication constraint is applied, matching decisions of individual attributes are independent of
one another. Therefore, matching Passwordwith Type Password is independent of the matching of Password
with Retype Password. However, a decomposition constraint cannot be evaluated by some aggregation of
matching of individual attributes. For example, consider the attribute Name and the attribute pair Given

Name and Surname. Machine learning techniques are likely to rate the comparison of concatenation of values
from Given Name and Surname against Name, higher than comparing each of the attributes independently.
Therefore, decomposition constraints require the evaluation of elements as well as individual attributes.

The bipartite graph can support the provision of such comparison by adding feasible attribute sets as
elements (nodes) in the graph. Such enhancement entails, in many cases, higher complexity of the matching
process. For example, if the matching constraint allows a single attribute in S1 to be matched with up to 2
attributes in S2, one needs to consider all possible pairs in a schema. Therefore, n1 elements of S1 are matched

with

(

n2

2

)

= 1
2n2 (n2 − 1) elements of S2, which increases the number of nodes in G to |V | = O

(

n2
)

. This

computation can be generalized to any (sufficiently small) constant c, constraining the number of attributes
in an element. The complexity in this case is of O (nc).

1 : n matching with replications Using the bipartite graph as a data structure, the following simple
algorithm can be devised. Consider a matching constraint that allows an attribute in one schema to be
replicated several times in another schema. Therefore, nodes on one side of the bipartite graph (say, the
Y nodes) cannot have more than a single incidenting edge. Such a constraint does not apply to the other
side of the graph (X nodes). Therefore, all one has to do is to identify the best edge incidenting upon
each node that requires unique mapping. Let v ∈ Y be a node in the graph and ve be the set of all edges
incident on v. The following simple algorithm can thus be applied, where argmaxve

w(e) stands for the
edge of ve that maximizes w.

Algorithm 1:

Se ← ∅

For each v ∈ Y do

Se ← Se ∪ {argmaxve
w(e)}

Return Se

The complexity of Algorithm 1 is C (Abest) = O (|E|) = O
(

(nc)
2
)

= O
(

n2c
)

.

n : m matching with decomposition When replacing single attributes with elements, traditional algo-
rithms for solving matching problems in bipartite graphs can no longer ensure unique attribute selection.
Therefore, two elements that contain the same attribute A can be chosen as part of a mapping, which
means that A no longer has a unique mapping. Nevertheless, certain n : m constraints can be supported
by the bipartite graph data structure. As an example, consider a constraint enforcing each attribute in
one schema to be mapped uniquely to a single combination of attributes. Therefore, if Name in S1 is
mapped to the combination of Given Name and Surname in S2, no other attribute in S1 can be mapped
to this combination (although a different combination of Surname and OfficeNumber in S2 may be the
appropriate combination for InitialPassword in S1). This special case can fall into the category of 1 : 1
global cardinality and n : m local cardinality, according to the classification of [31].

Such a constraint is mapped into the data structure in the following way. The X set of nodes represent
individual attributes of one schema. The Y set of nodes represent all legal elements of the other schema.
We can then apply an algorithm for solving the weighted bipartite graph matching problem in this graph.

The complexity of this algorithm can be defined in terms of attributes as followed.

C (Abest) = O
(

|V |
3
)

= O
(

(nc)
3
)

= O
(

n3c
)

2.2 Modeling top-K mappings

Let G = (X, Y, E) be an undirected bipartite graph with edges representing the degree of similarity between
elements. Top-K can be defined recursively as follows. For K = 1, the K-th best mapping M ∗

1 is any
maximum weight mapping in G. Let M∗

i denote the i-th best mapping, for any i > 0. Then, given the best
i − 1 mappings M∗

1 , M∗
2 , . . . , M∗

i−1, the i-th best mapping M∗
i is defined as a mapping of maximum weight

over mappings that differ from each of M ∗
1 , M∗

2 , . . . , M∗
i−1. Therefore, given top-K mappings, any mapping

M ⊆ E such that M /∈ {M∗
1 , M∗

2 , . . . , M∗
K} satisfies F (M) ≤ min1≤j≤k F (M∗

j) = F (M∗
k).

cybersuitors.com date.com

101. select: Country: (cboCountries) 201. select: Select your Country (countrycode)

102. select: Birthday: (cboYears) 202. select: Date of Birth (dob year)

103. select: Birthday: (cboMonths) 203. select: Date of Birth (dob month)

104. .select: Birthday: (cboDays) 204. select: Date of Birth (dob day)

105. checkbox: (chkAgreement1)

106. checkbox: (chkAgreement2)

107. text: Last name: (txtLastName)

108. text: First name: (txtFirstName)

109. text: Use this name instead of my
first name: (cboPenName)

110. text: Your city town village: (txtPlace)

111. select: State (if in USA): (cboUSstates)

112. password: Please choose a password
This ... (txtPassword)

113. password: Re-enter password: (txtPassword2)

114. text: Your email address: (txtEmail)

115. text: Please retype your email address
to confirm it: (txtEmail2)

205. image: ()

206. checkbox: Date.com - Join Now for Free! (over18)

207. select: I am a (i am)
Table 2. running example attributes

To illustrate the notion of top-K mappings, consider the following example.

Example 1 (Running example schemata). Table 2 is an extension of Table 1, presenting attributes of two
schemata, cybersuitors.com and date.com. Matching attributes are presented in the same row.

Attribute names were extracted from the labels as appear on the Web site and the field names (in
parentheses) of the form entries. Field names are used for matching the values returned by the client to the
server’s database schema, hence the condensed form. Attribute names are preceded by field type (e.g., select,
checkbox, etc.), also used to enhance the matching process. The field image: () is an image field, used as a
submit button, that is not associated with name or label. We refer the interested reader to [15] for a detailed
description of the extraction process. Henceforth, we number vertices rather than using attribute names, for
the sake of clarity.

↓ cybersuitors.com/ date.com→ 201 202 203 204 205 206 207

101 0.5937 0.0597 0.0639 0.0597 0 0.0597 0.0542

102 0.0575 0.4944 0.184 0.184 0 0.0618 0.0625

103 0.0620 0.1833 0.6847 0.1833 0 0.0611 0.0618

104 0.0620 0.2516 0.2507 0.7042 0 0.0627 0.0634

105 0.05774 0.0538 0.0577 0.0538 0.4 0.5038 0.0538

106 0.0577 0.0538 0.0577 0.0538 0.4 0.5038 0.0538

107 0.0075 0.0101 0.0101 0.0101 0 0.0473 0.0216

108 0.0071 0.0153 0.0153 0.0153 0 0.0469 0.0194

109 0.0085 0.009 0.009 0.009 0 0.034 0.014

110 0.051 0.0089 0.0089 0.0089 0 0.0115 0.0089

111 0.0649 0.0712 0.0712 0.0712 0 0.0629 0.1101

112 0.013 0.0052 0.0052 0.0052 0 0.0124 0.0124

113 0.01 0.0108 0.0108 0.0108 0 0.0125 0.0075

114 0.0563 0.0094 0.0094 0.0094 0 0.0118 0.0094

115 0.0599 0.0083 0.0083 0.0083 0 0.0083 0.0319
Table 3. Edge weights in the example

The edge weights of the bipartite graph of the example are given in Table 3, as computed automatically

by OntoBuilder. We refer the interested reader to [15] for a detailed description of OntoBuilder matching
techniques. In this example, we constrain the matching process to result in 1 : 1 mappings.

The exact mapping (as determined by a human observer) is: {e101,201, e102,202, e103,203, e104,204}, while
the outcome of Abest for the bipartite graph is the best mapping
M∗ = {e101,201, e102,202, e103,203, e104,204, e105,205, e106,206, e111,207}. M∗ contains the exact mapping, with
additional three attribute mappings. As discussed in Section 1.1, the exact mapping cannot be found by
setting a threshold. �

To motivate our research, we now offer an intuitive interpretation of top-K mappings. Suppose an edge
weight represents the belief of a matcher in the correctness of an element mapping. A higher weight indicates
a higher confidence in the element mapping correctness. When switching from the i-th best mapping to the
(i + 1) best mapping, the matcher is forced to give up at least one element mapping, while maintaining an
overall high confidence in a schema mapping. To do so, the matcher cedes an element mapping in which it
is less confident. Therefore, generating top-K mappings can be observed as a process in which a matcher
iteratively abandons element mappings in which it is less confident.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

K

(a) (b)

A
v

e
ra

g
e

 C
o

rr
e

c
t

U
n

c
h

a
n

g
e

d

A
v

e
ra

g
e

 I
n

c
o

rr
e

c
t

U
n

c
h

a
m

g
e

d

Fig. 2. Average unchaged attribute mappings

We substantiate this intuitive interpretation with an empirical analysis, based on experiments with real
world data. The details of the experiments are provided in Section 4, together with a thorough empirical
analysis. Here, we provide an initial motivation to our work. Figure 2 provides an analysis of the attribute
mapping stability. K is given at the x axis. For each K, we measure the percentage of correct (incorrect)
attribute mappings that were not changed throughout the K mappings. That is, those attribute pairs that
appear in all top-K mappings. Figure 2(a) illustrates the results for correct attribute mappings. Figure 2(b)
illustrates the results for incorrect mappings. It is easy to observe that correct attribute mappings were less
subject to change (less than 16%) with K then incorrect attribute mappings (dropping 60%). Therefore, by
analyzing top-K mappings, it is likely that correct attribute mappings will remain stable, while incorrect
attribute mappings will keep on changing.

Precision Sim
ila

rit
y m

ea
su

re

Number

of

occurences

Fig. 3. Similarity measures distribution according to imprecision levels

It can be argued that top-K mappings are not different from any K mappings. Therefore, by choosing
any K mappings (and not necessarily the top ones), one can derive useful information on the quality of
the schema matching process. We justify the decision to use top-K mappings in an earlier research [14]. A
class of schema matchers (termed monotonic) was defined in [14], for which a higher similarity measure is
an indication of a more precise mapping. For completeness sake, we now provide an illustrative example of
one form of monotonicity, dubbed statistical monotonicity in [14]. Figure 3 presents a pictorial illustration
of a distribution of similarity measure values of all possible mappings between two schemata, according to
precision levels. These results are based on similarity measure, as assigned by the Combined matcher, already
mentioned in Section 1.1. At each precision level, similarity measures seem to be normally distributed with
a decreasing mean. Therefore, the higher the precision of a mapping is, the higher would be the similarity
measure assigned by the matcher. In the absence of any variance, one would expect the top-1 mapping to be
the exact mapping. However, as shown in [14] and illustrated here, the variance in each precision level allows
mappings within any given precision level to overlap in their similarity measure with other precision levels.
Therefore, monotonicity ensures that the top-K mappings are sufficiently “close” to the exact mapping.

The analysis in [14] shows that due to the uncertainty inherent in the matching process, no matcher can
be expected to identify the exact mapping as the best mapping at all times. If a matcher were required to
iterate over all possible permutations, the search would become infeasible. However, if the top-K mappings
contain sufficient information to predict most of the correct mappings and K can be determined to be
sufficiently small, precision may be increased at a negligible cost.

Based on the observations of this section, and the empirical analysis we have conducted, a reasonable
approach involves a simultaneous analysis of possible mappings to determine the best mapping. This approach

is in contrast to current practice, in which a system seeks the best mapping and resorts to manual intervention
for additional input whenever using the best mapping fails. The most prominent drawback of the current
approach has to do with the reliance on manual intervention. We aim at minimizing such intervention, and
therefore we propose to enhance automatic reasoning on top-K mappings.

3 Schema matching verification

To overcome the uncertainty in mapping results, we propose the following generic methodology. Let S1 and
S2 be two schemata. The methodology contains five steps as follows:

1. Computing: G = (X, Y, E) =Generate similarity graph.

2. Matching: {M∗
1 , M∗

2 , . . . , M∗
K} =Generate top-K mappings, using G.

3. Verifying: A = {(a, a′)} =Analyze {M∗
1 , M∗

2 , . . . , M∗
K}.

4. Recomputing: G′ = (X, Y, E′) =compute w(a, a′) for each (a, a′) ∈ A.

5. Rematching: M∗ =Generate top-1 mapping, using G′.

According to this generic methodology, a similarity graph is generated and top-K mappings are generated
and analyzed to identify element pairs that are worthy of further consideration (i.e., verification). It then
recomputes the similarity measures and generates the best mapping.

Three main differences exist between the proposed methodology and existing practice in schema matching.
First, most of current methods do not use top-K mappings. For those who use top-K mappings (e.g., [25,
12]), it is done locally, on an attribute-based cases. Therefore, it can capture only local similarities, while
ignoring global constraints, such as cardinality constraints, and global phenomenon, such as accumulation of
elements from one schema around a single element from another schema. The reasoning behind local top-K
mappings brings us to the second difference. Current methods assume the assistance of a user in the process,
by refuting certain mappings, or setting new constraints. Clearly, cognitive limitations of users make it much
harder to compare whole schemata, while attribute-based comparison is a much easier task. In contrast,
our approach is aimed at fully-automatic schema matching, recognizing the inherent uncertainty in such a
process. With humans outside the loop, there is no reason to simplify the task at the expanse of accuracy,
whenever it can be avoided. Finally, the verification step analyzes all top-K mappings simultaneously, rather
the iteratively, as was proposed in approaches such as Clio [27]. This difference can also be attributed to
the presence of a user in the loop in current practice. In user presence, iterations provide an opportunity
for incremental improvement, a process that fits human cognitive capabilities. With automatic matching, on
the other hand, no feedback is given, and the use of simultaneous analysis can provide insights that are not
necessarily evident with pairwise comparison. One final comment has to do with machine learning methods
for schema matching. Such methods allow a training period on annotated data, to be followed by matching
schemata, unknown beforehand. Feedback is only given during the learning phase. Therefore, the proposed
approach can serve as a complementary method once the learning phase is completed.

The first step is beyond the scope of this paper. As discussed in Section 1.2, many worthy methods and
heuristics have been proposed in generating G, and any that satisfy the monotonicity condition, as set in
[14], would suffice. The last step has also been extensively discussed in the literature. In Section 2.1 we have
discussed the use of bipartite graphs in representing the schema matching problem, and solving the top-1
problem.

In the rest of this paper we focus on steps 3-4. For completeness sake, we next introduce an analysis of
existing algorithms for step 2, finding top-2 mappings and top-K mappings.

3.1 Algorithms for finding top-K mappings

The assignment ranking problem involves the enumeration of K assignments with least cost. The first
algorithm of O(K |V |

4
) for ranking assignments was suggested by Murty in 1968 [29], where |V | is the

number of nodes in the assignment graph. In 1985/6, Hamachar and Queyranne proposed an alternative
general algorithm for ranking solutions of combinatorial problems [18]. This algorithm was later specialized

for bipartite matchings [7], in O(K |V |3), using flow networks. In [30], another O(K |V |3) algorithm was
presented, using a specific order of analyzing assignments.

In [7] it was shown that finding the second best assignment is equivalent to finding the shortest cycle in a
residual network relatively to the best assignment. This demands solving at most n shortest path problems,
and therefore solving the top-2 problem is of O(|V |

3
) complexity. Therefore, the top-2 problem can be solved

for the case of 1 : 1 mapping in O(n3). The case of m : n with decomposition is also reduced to 1 : 1 mapping
(see Section 2.1), yielding a solution to the top-2 problem in O(n3c).

For the case of 1 : n with replication, an efficient algorithm for generating top-K mappings can be devised
as follows, summarized in Algorithm 2 as a pseudo-code. Let G = (X, Y, E) be the matching bipartite graph.
First, for each node v ∈ Y , a sorted list of all edges {(u, v) |u ∈ X } in a decreasing order of similarity is
generated (Line 2). In the next step, we compute for each node v ∈ Y the weight difference between the
edge (u, v) with maximum similarity and the next edge in the list (Line 3). These values are then inserted
into a minimum heap (Line 4). Lines 5-7 generate the best mapping. At an iteration i, we remove an edge
(u, v) from M∗

i−1 such that its weight difference is minimal (Line 9) and replace it by an edge (u′, v), which
precedes it in the sorted list of v (lines 10 and 11). The weight difference between (u′, v) and the next edge
in the sorted list of v is then inserted into the heap (Line 12).

Algorithm 2:

1 For each v ∈ Y do

2 vsorted =create a sorted list of {u ∈ X} in a decreasing order of w(u, v)

3 ∆vmax = w(u(1), v)− w(u(2), v)

4 H =Build-Min-Heap(
{(

u(1), v
)

, ∆vmax |v ∈ Y
}

)

5 M∗
1 =

˘`

max
˘

vsorted
¯

, v
´

|v ∈ Y
¯

6 For each v ∈ Y do

7 vsorted =vsorted\max
{

vsorted
}

8 For i = 2 to k do

9 (u(l), v),∆v=Heap-Extract-Min(H)

10 M∗
i = M∗

i−1\
{

(u(1), v)
}

∪
(

max
{

vsorted
}

, v
)

11 vsorted =vsorted\max
{

vsorted
}

12 Min-Heap-Insert
`

H, (u(l+1), v), w(u(l+1), v)− w(u(l+2), v)
´

13 Return {M∗
i }

k

i=1

Sorting the edge weights for each node takes O (n lg n). Therefore, the overall sorting takes O
(

n2 lg n
)

.
Building the heap is O (n) and the generation of the best mapping takes O (n). Each additional mapping
requires O (lg n), due to the heap operations. Therefore, the overall complexity is O

(

n2 lg n + K lg n
)

.

An adaptation of Murty’s algorithm for top-K and Chegireddy’s and Hamacher’s algorithm for top-2 to
the schema matching world is detailed in [2]. We have implemented the algorithms and embedded them in
OntoBuilder [15], which was used for experimenting with the heuristic proposed in this paper.

3.2 Stability analysis

We are now ready to introduce a concrete heuristic, instantiating the generic verification methodology pre-
sented earlier. Let S1 and S2 be two schemata and let G = (X, Y, E) be a bipartite graph, modeling the
matching alternatives between S1 and S2. Given a set {M∗

1 , M∗
2 , . . . , M∗

K} of K top mappings, and a user
threshold t ∈ [0, 1], the analysis step of the stability analysis heuristic first computes for each edge e ∈ E
the number of times it appears in {M∗

1 , M∗
2 , . . . , M∗

K}, dubbed ι (e). It is worth noting that 0 ≤ ι (e) ≤ K.

Then, it generates a set of edges A = {(a, a′)} such that (a, a′) ∈ A iff ι(e)
K

≤ t. That is, the set A contains
all edges that do not appear a sufficient number of times in the top-K mappings, {M ∗

1 , M∗
2 , . . . , M∗

K}. The
recomputation phase revises G by setting w(a, a′) = 0 for each (a, a′) ∈ A.

www.cybersuitors.com www.date.com ι(e)
K

101 201 1.0

102 202 1.0

103 203 1.0

104 204 1.0

111 207 0.6

105 205 0.5

106 205 0.5

107 206 0.4

108 206 0.4

115 207 0.4

109 206 0.2
Table 4. Stability analysis of the motivating example

Example 2 (Stability analysis example). Consider Example 1. Table 4 provides ι(e)
K

values of all edges whose
count in the top-10 mappings is non-zero, in a decreasing order. For t > 0.6, the only non-zero edges will be
those of the exact mapping. �

For the stability analysis to work, a schema matcher should be monotonic [14]. Therefore, our underlying
assumption is that stable attribute mappings represent those mappings that are part of the exact mapping.
Our empirical analysis show that this heuristic indeed works better for a matcher which was shown to be
monotonic in [14].

4 Experiments

We now present an empirical evaluation of stability analysis, to support our hypothesis that simultaneous
analysis of top-K mappings improves the quality of mapping. We report in details on our experimental setup

(Section 4.1), the data that was used (Section 4.2), and the evaluation methodology (Section 4.3). We then
present in Section 4.4 the experiment results and provide an empirical analysis of these results.

4.1 Experiment setup

a b

dc

Fig. 4. Demo snapshots

We have implemented several top-K algorithms (including Murty’s, Chegireddy and Hamacher’s, and
our version of 1 : n mappings with replication) as part of the development of OntoBuilder. OntoBuilder runs
under the Java 2 JDK version 1.4 or greater and is downloadable from http://ie.technion.ac.il/OntoBuilder.
We chose for Abest (whenever 1 : 1 mapping is applicable) the maximum weighted bipartite algorithm
implementation suggested in LEDA ([22], pp. 132-150). The Abest algorithm was implemented in Java,
and plugged in for use within our top-K algorithms. We have also generated a demo presentation showing
execution of the top-K mappings. Figure 4 provides the visual output of the algorithm, with K = 3.

OntoBuilder specializes in extracting ontologies from Web forms, a feature we have used in our experi-
ments. OntoBuilder accepts two ontologies as input, a candidate ontology and a target ontology. It attempts
to match each attribute in the target ontology with an attribute in the candidate ontology. OntoBuilder
supports an array of matching and filtering algorithms and can be used as a framework for developing new
schema matchers which can be plugged-in and used via GUI or as an API. In our experiments we have used
the following four matchers (detailed description of which can be found in [15]):

Term: A term is a combination of a label and a name. Term matching compares labels and names to
identify syntactically similar terms. To achieve better performance, terms are preprocessed using sev-
eral techniques originating in IR research. Term matching is based on either complete word or string
comparison.

Value: Value matching utilizes domain constraints (e.g., drop lists, check boxes, and radio buttons) to
compute similarity measure among terms. The availability of constrained value-sets becomes valuable
when comparing two terms that do not exactly match through their labels.

Composition: A composite term is composed of other terms (either atomic or composite). Composition can
be translated into a hierarchy. This schema matcher assigns similarity to terms, based on the similarity
of their neighbors.

Precedence: The precedence relationship is unique to OntoBuilder and therefore worth of a lengthier dis-
cussion. In any interactive process, the order in which data are provided may be important. In particular,
data given at an earlier stage may restrict the availability of options for a later entry. For example, a car
rental site may determine which car groups are available for a given session, using the information given
regarding the pick-up location and time. Therefore, once those entries are filled in, the information is
sent back to the server and the next form is brought up. Such precedence relationships can usually be
identified by the activation of a script, such as (but not limited to) the one associated with a SUBMIT
button. Precedence can be translated into a precedence graph. The matching algorithm is based on a
technique we dub graph pivoting, as follows. When matching two terms, we consider each of them to be
a pivot within its own ontology, thus partitioning the graph into semantically related subgraphs. The
semantics of pivoting is taken from the ontological analysis, and in the case of precedence the graph
it partitioned into a subgraph of all preceding terms and all succeding terms. By comparing preceding
subgraphs and succeding subgraphs, we determine the confidence strength of the pivot terms.

4.2 Data

For our experiments with stability analysis, we have selected 86 Web forms from different domains, such as
dating and matchmaking, job hunting, Web mail, hotel reservation, news, and cosmetics. We extracted each
Web form ontology using OntoBuilder. We have matched the Web forms in pairs, where pairs were taken
from the same domain. The ontologies vary in size, from 5 to 64 attributes with about half of the ontologies
have between 10 and 20 attributes. They also vary in the proportion of number of attribute pairs in the
exact mapping relative to the target ontology. This proportion ranges from 16.6% to 94.7%; the proportion
in about half of the ontologies is more than 60%. Another dimension is the size difference between matched
ontologies, ranging from equal size ontologies to about 3 times difference between ontologies. In about half
of the pairs, the difference was less than 30% of the target ontology size. Finally, the best mapping precision
results range from 5% to 100%, with about half the ontology pairs were mapped by both matchers (see
below) with precision of more than 40%.

In addition to the real data, we generated 50 synthetic ontology pairs, as follows. We have selected the
ontology pair taut.securesites.com and www1522.boca15-verio.com. Both ontologies are of medium size (18
and 19 attributes, respectively), strongly similar (the exact mapping contains 18 attributes), and close in size.
The best mapping of the Combined matcher is the exact mapping. Based on the similarity matrix of these
ontologies we have generated 50 similarity matrices, for which each value val is replaced with val + val ∗ f
and f is randomly taken from [−v, v]. v ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (10 matrices for each v value).

We ran two schema matchers, namely Term and Combined, to generate the top-10 mappings. The Com-
bined matcher aggregates the results of the four matchers, detailed in Section 4.1, using weighted average.
We ran a total of 1860 experiments (93 ontology pairs, 2 schema matchers, and 10 best mappings). Note
that in our experiments, generating top-1, top-2, etc. can be performed in one pass.

4.3 Evaluation methodology

In order to evaluate the stability analysis heuristic, we measured its performance using two main metrics,
namely precision and recall. Precision is computed as the ratio of correct element mappings, with respect
to some exact mapping, out of the total number of element mappings suggested by a heuristic. Recall is
computed as the ratio of correct element mappings, out of the total number of element mappings in the
exact mapping. Both recall and precision are measured on a [0, 1] scale. An optimal schema matching results
in both precision and recall equal to 1. Lower precision means more false positives, while lower recall suggests
more false negatives.

The independent variables of the experiments were K, the number of simultaneous mappings, and t, the
threshold.

4.4 Results and analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

Improvement
ratio

Term

Precision

Recall

0.8

0.9

1

1.1

1.2

1.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Improvement
ratio

Threshold

Precision

Recall

Combined
0.8

0.9

1

1.1

1.2

1.3

Fig. 5. Precision and Recall for Stability analysis with K = 10

In our first experiment we have measured precision and recall for a fixed K ∈ {1, 2, ..., 10}, varying the
threshold t. Figure 5 presents the average change to precision and recall for different thresholds over all
43 real data pairs. K was set to 10. Figure 5(left) illustrates the results for the Term matcher and Figure
5(right) illustrates the results for the Combined matcher. In both cases, precision increases (in general) up to
t = 0.9 with the increased threshold. Recall demonstrates a monotonic decrease with the increased threshold.
Such a phenomenon accords with our initial intuition and is expected for monotonic matchers. In [14] we
have shown that both the Term and the Combined matchers are monotonic.

A closer look at the amount of improvements reveals that the precision of the Term matcher increases by
up to 15.4% (with t = 0.9). The Combined matcher provides an increase of 25.6% (again with t = 0.9). As
for recall, it decreases to a maximum of 11.9% for the Term matcher and by a smaller 8% for the Combined
matcher (for t = 1). Therefore, stability analysis works better for the Combined matcher than for the Term
matcher. This conclusion can be aligned with the discussion in [14], where the exact mapping was found, on
average, at K = 7 for the Combined matcher and for K > 100 for the Term matcher.

Looking at the shape of the graphs, it seems that with both matchers, the improvements (in terms of
precision) levels off at about t = 0.9. We hypothesize that, in general, the increased demand of a higher
threshold benefit the heuristic up to a point, from which it will become impossible for the top-K algorithm
to keep even its stronger attribute mappings. We believe that the “break-even point” depends to a great
extent on the size of the ontology, some evidence to which is given below. The Term matcher has a more
wiggly precision result, with some decreases in precision for t = 0.1, 0.6, and 0.7. Therefore, the performance

Term Combined
Ontology precision recall precision recall

class max increase t max decrease t max increase t max decrease t

strongly similar 19.8% 1.0 10.1% 1.0 28.5% 1.0 5.8% 1.0

weekly similar 12.1% 0.9 13.7% 1.0 23.3% 0.9 10.3% 1.0

big 7.6% 1.0 8.5% 1.0 16.7% 1.0 3.6% 1.0

small 20.7% 1.0 14.3% 1.0 29.5% 1.0 11.1% 1.0

similar 8.9% 0.9 11.3% 1.0 19.9% 0.9 7% 1.0

disimilar 24.1% 1.0 12.6% 1.0 32.3 0.9 9% 1.0

low initial precision 11.4% 0.9 16.9% 1.0 27.6% 0.9 11.6% 1.0

high initial precision 19.2% 1.0 7.1% 1.0 24.5% 1.0 4.7% 1.0
Table 5. Stability analysis of ontology classes

of the Term matcher is less predicted (although the difference is not statistically significant) than that of
the Combined matcher. This conclusions was also reached in [14].

Next, we have partitioned the ontologies into two groups, based on ontology similarity. We define an
ontology pair for which 60% or more of the terms in the target ontology can be matched to terms in the
target ontology to be strongly similar. 22 pairs out of the 43 pairs were strongly similar, with similarity
ranging from 60% to 94.7%. Table 5 summarizes the analysis for this and following partitions. Again, K was
set to 10. The results show improvement over the whole group in the precision level, with smaller decrease
in the recall level. The precision of the Term matcher increases by up to 19.8% (with t = 1). The Combined
matcher provides an increase of 28.5% (again with t = 1). As for recall, it decreases by 10.1% for the Term
matcher and by a smaller 5.8% for the Combined matcher. The main conclusion for this experiment is that
stability analysis works better for strongly similar ontologies.

We also partitioned the ontologies based on size. We define an ontology to be big (relative to ontology
sizes we have in our data set) if it has more than 20 attributes. There were 18 big target ontologies. The
results show less improvement in the precision level for bigger ontologies, yet with smaller decrease in the
recall level. The precision of the Term matcher increases by up to 7.6% (with t = 1). The Combined matcher
provides an increase of 16.7% (again with t = 1). As for recall, it decreases by 8.5% for the Term matcher and
by 3.6% for the Combined matcher. The smaller gain in precision and the smaller reduction in recall for bigger
ontologies can be justified by the smaller marginal impact a single attribute has on the overall performance.
Generally speaking, however, it seems that stability analysis is better suited for smaller ontologies.

We next experimented with ontologies that differ in size. Ontology pairs were considered similar if the
difference between the number of attributes of the candidate and target ontologies was less then 30% of
the target ontology (there were 23 such pairs). The results show less improvement in the precision level
for similar-size ontologies. The precision of the Term matcher increases by up to 8.9% (with t = 0.9). The
Combined matcher provides an increase of 19.9% (again with t = 0.9). As for recall, it decreases by 11.3% for
the Term matcher and by 7% for the Combined matcher. We found no clear explanation to the phenomenon
in which stability analysis is better suited for ontologies that differ in size.

The last partitioning is based on the best mapping precision level. Out of the 43 pairs, 21 pairs (20
pairs for the Combined schema matcher) had a precision level of less than 0.4 for the best mapping. Here,
our analysis show different results for the Term matcher and the Combined matcher. The stability analysis
heuristic using the Term matcher seem to be more effective for pairs which had high initial precision,
increasing the precision by an average of 19.2%. Using the Combined matcher, the difference between the
two groups is much smaller, showing slightly better performance (27.6% vs. 24.5%) for the ontology pairs
with low initial precision. Recall, for both matchers, was significantly less affected by for ontologies with high
initial precision.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Improvement
ratio

Threshold

Precision

0.9

1

1.1

1.2

1.3

10% deviation 20% deviation 30% deviation

40% deviation 50% deviation original

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Improvement
ratio

Threshold

Recall

0.7

0.8

0.9

1

Fig. 6. Stability analysis on synthetic data: Combined algorithm

Our final experiment was aimed at analyzing the impact of noise in schema matcher similarity measures.
We have generated top-K mappings for the synthetic matrices (see Section 4.2), applied the stability analysis
heuristic and measured precision and recall as before. Figure 6 illustrates the change of precision and recall,
partitioned according to the various v (maximum deviation) values. We present the results for the Combined
matcher only since the results for the Term matcher share the same trends. The synthetic data demonstrates
the same trends as the real data, increase of precision as the threshold increases, leveling off at around t = 0.9.
Somewhat surprising, the heuristic becomes more effective, in terms of precision, as v increases. Clearly, the
good starting point of the original mapping serves in the good performance, even with increased noise.
When we applied the heuristic to randomly generated matrices (in which each attribute pair got a uniformly
distributed value in [0, 1]) the result was a complete chaos, and the heuristic was practically useless. Recall
deterioration (Figure 6(right)) serves as an indication to the impact of noise. With more noise, the heuristic
throws out more attribute mappings, including good ones. Therefore, with v = 0.5, the matcher lost 26% in
its recall level for t = 10 (compare this with an average of 12% recall loss for real data).

5 Discussion and conclusion

In this paper, we have investigated a major shortcoming of standard methods for automatic semantic rec-
onciliation: namely, that they commit to the best mapping, typically chosen as that which maximizes the
sum (or average) of pair-wise similarities under certain constraints (e.g., 1:1 mapping). The problem is that,
due to uncertainty in concept interpretation, the best mapping chosen by the matcher can actually be an
unsuccessful choice. To alleviate this shortcoming, we propose that instead of using just the best mapping, a
set of top-K mappings should be generated and examined iteratively until a good mapping is found. Using
this approach, the exact mapping is likely to be identified if the matcher ranks it sufficiently high (but not
necessarily as the best).

We have proposed a generic framework for the simultaneous utilization of top-K mapping and provide a
concrete heuristic, termed stability analysis, to utilize top-K mappings in improving mapping precision (at
the cost of recall). Stability analysis was shown empirically to provide good results for monotonic schema
matchers.

An ongoing research involves the investigation of efficient methods for utilizing input from multiple
schema matchers. Choosing among the current variety of schema matchers is far from being trivial. First,
the number of heuristics is continuously growing, and this diversity by itself complicates our decision making.
Second, as one would expect, recent empirical analysis shows that there is no (and may never be) a single
dominant schema matcher that performs best, regardless of the data model and application domain [14].
Bearing these observations in mind, we believe that customers of schema matching would expect some degree

of robustness, despite the biases and shortcomings of individual heuristics. Therefore, tools for determining
the best “cocktail” of schema matchers would seem to be the next natural step in schema matching research.
Future work involves the identification of additional heuristics for top-K utilization. Such heuristics may
be based on the separation of matchers into groups. For example, matchers can be partitioned into costly
vs. cheap matchers. Cheap matchers are utilized in identifying potential points of failures and more costly
matchers will be applied to this problem subset, thus reducing the overall cost of the matching process
(hopefully) without hurting its accuracy.

Acknowledgement

The work of Gal was partially supported by Technion V.P.R. Fund - New York Metropolitan Research Fund,
The Fund for the Promotion of Research at the Technion, and the IBM Faculty Award for 2003/2004 on
“Self-Configuration in Autonomic Computing using Knowledge Management.” We thank Haggai Roitman
for his assistance in implementing the algorithms and Amir Taller for his assistance in running experiments.

References

1. J. Aitchison, A. Gilchrist, and D. Bawden. Thesaurus construction and use: a practical manual. Aslib, London,
third edition, 1997.

2. A. Anaby-Tavor. Enhancing the formal similarity based matching model. Master’s thesis, Technion-Israel Institute
of Technology, May 2003.

3. S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration of heterogeneous information
sources. Data & Knowledge Engineering, 36(3), 2001.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American, May 2001.

5. M. Brodie. The grand challenge in information technology and the illusion of validity. Keynote lecture at the
International Federated Conference ‘On the Move to Meaningful Internet Systems and Ubiquitous Computing’,
2002.

6. S. Castano, V. De Antonellis, M.G. Fugini, and B. Pernici. Conceptual schema analysis: Techniques and appli-
cations. ACM Transactions on Database Systems (TODS), 23(3):286–332, 1998.

7. C.R. Chegireddy and H.W. Hamacher. Algorithms for finding k-best perfect matchings. Discrete Applied Math-
ematics, 18:155–165, 1987.

8. B. Convent. Unsolvable problems related to the view integration approach. In Proceedings of the International
Conference on Database Theory (ICDT), Rome, Italy, September 1986. In Computer Science, Vol. 243, G. Goos
and J. Hartmanis, Eds. Springer-Verlag, New York, pp. 141-156.

9. H.H. Do and E. Rahm. COMA - a system for flexible combination of schema matching approaches. In Proceedings
of the International conference on very Large Data Bases (VLDB), pages 610–621, 2002.

10. A. Doan, P. Domingos, and A.Y. Halevy. Reconciling schemas of disparate data sources: A machine-learning
approach. In Walid G. Aref, editor, Proceedings of the ACM-SIGMOD conference on Management of Data
(SIGMOD), Santa Barbara, California, May 2001. ACM Press.

11. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies on the semantic web.
In Proceedings of the eleventh international conference on World Wide Web, pages 662–673. ACM Press, 2002.

12. M. Ehrig and S. Staab. Qom quick ontology mapping. In Proceedings of the Third International Semantic Web
Conference (ISWC’2004), pages 683 – 697, October 2004. Lecture Notes in Computer Science, Volume 3298.

13. N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology merging and alignment.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), pages 450–455,
Austin, TX, 2000.

14. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and evaluating automatic
semantic reconciliation. VLDB Journal, 14(1):50–67, 2005.

15. A. Gal, G. Modica, H.M. Jamil, and A. Eyal. Automatic ontology matching using application semantics. AI
Magazine, 26(1), 2005.

16. Z. Galil. Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys, 18(1):23–38,
March 1986.

17. U. Güntzer, W-T. Balke, and W. Kießling. Optimizing multi-feature queries in image databases. In Proceedings
of the Twenty Sixth Very Large Databases (VLDB) Conference, pages 419–428, Las Vegas, 2001.

18. H.W. Hamacher and M. Queyranne. K-best solutions to combinatorial optimization problems. Annals of Oper-
ations Research, 4:123–143, 1985/6.

19. A. Heß and N. Kushmerick. Learning to attach semantic metadata to web services. In Proceedings of the Second
Semantic Web Conference, 2003.

20. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective. In Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 51–61. ACM Press,
1997.

21. M. Jarrar and R. Meersman. Formal ontology engineering in the DOGMA approach. In Proceedings International
Federated Conference ‘On the Move to Meaningful Internet Systems and Ubiquitous Computing’, pages 1238–1254,
October 2002.

22. K.Mehlhorn and S.Naher, editors. LEDA, A platform for combinatorial and geometric computing. Cambridge
University Press, 1999.

23. B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, second edition, 2002.
24. J. Madhavan, P.A. Bernstein, P. Domingos, and A.Y. Halevy. Representing and reasoning about mappings

between domain models. In Proceedings of the Eighteenth National Conference on Artificial Intelligence and
Fourteenth Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI), pages 80–86, 2002.

25. S. Melnik, E. Rahm, and P.A. Bernstein. Rondo: A programming platform for generic model management. In
Proceedings of the ACM-SIGMOD conference on Management of Data (SIGMOD), pages 193–204, San Diego,
California, 2003. ACM Press.

26. R.J. Miller, L.M. Haas, and M.A. Hernández. Schema mapping as query discovery. In A. El Abbadi, M.L. Brodie,
S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, editors, Proceedings of the International
conference on very Large Data Bases (VLDB), pages 77–88. Morgan Kaufmann, 2000.

27. R.J. Miller, M.A. Hernàndez, L.M. Haas, L.-L. Yan, C.T.H. Ho, R. Fagin, and L. Popa. The Clio project:
Managing heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

28. G. Modica, A. Gal, and H. Jamil. The use of machine-generated ontologies in dynamic information seeking. In
C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Cooperative Information Systems, 9th International
Conference, CoopIS 2001, Trento, Italy, September 5-7, 2001, Proceedings, volume 2172 of Lecture Notes in
Computer Science, pages 433–448. Springer, 2001.

29. K.G. Murty. An algorithm for ranking all the assignments in order of increasing cost. Operations Research,
16:682–687, 1968.

30. M. Pascoal, M.E. Captivo, and J. Cl’imaco. A note on a new variant of Murty’s ranking assignments algorithm.
4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(3):243–255, 2003.

31. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema matching. VLDB Journal, 10(4):334–
350, 2001.

32. A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous, and autonomous
databases. ACM Computing Surveys, 22(3):183–236, 1990.

33. A.P. Sheth, S.K. Gala, and S.B. Navathe. On automatic reasoning for schema integration. Intenational Journal
on Intelligent Cooperative Information Systems (IJICIS), 2(1):23–50, June 1993.

34. P. Spyns, R. Meersman, and M. Jarrar. Data modelling versus ontology engineering. ACM SIGMOD Record,
31(4), 2002.

35. B.C. Vickery. Faceted classification schemes. Graduate School of Library Service, Rutgers, the State University,
New Brunswick, N.J., 1966.

