
OntoBuilder: Fully Automatic Extraction and
Consolidation of Ontologies from Web Sources using

Sequence Semantics

Haggai Roitman, Avigdor Gal

Technion – Israel Institute of Technology
Technion City, Haifa 32000, Israel

1 Introduction

Ontologies, formal specifications of domains, have evolved in recent years as a lead-
ing tool in representing and interpreting Web data. The inherent heterogeneity of Web
resources, the vast amount of information on the Web, and its non-specific nature re-
quires a semantically rich tool for extracting the essence of Web source content. The
OntoBuilder project [5] supports the extraction of ontologies from Web interfaces, rang-
ing from simple Search Engine forms to multiple-pages, complex reservation systems.
Ontologies from similar domains are then matched to identify ontology mappings.

Given a sample form, filled by the user, and given a new form, from another Web
site, OntoBuilder finds the best mapping between the two forms. This, in turn, can serve
a system in automatically filling the fields, a sort of a query rewriting.

Unlike systems such as Protégé [2] OntoBuilder enables fully-automatic ontology
matching, and therefore falls within the same category as GLUE [1]. The use of on-
tologies, as opposed to relational schema or XML, as an underlying data model allows
a flexible representation of metadata, that can be tailored to many different types of
applications. OntoBuilder contains several unique matching algorithms, that can match
concepts (terms) by their data types, constraints on value assignment, and above all, the
sequencing of concepts within forms (termed precedence), capturing sequence seman-
tics that reflect business rules.

2 Overview of OntoBuilder

OntoBuilder was developed using Java, which makes it portable to various platforms
and operating system environments. OntoBuilder generates dictionary of terms by ex-
tracting labels and field names from Web forms, and then it recognizes unique relation-
ships among terms, and utilize them in its matching algorithms. There are two types
of relationships OntoBuilder is specifically equipped to deal with, namely composition
and precedence. The latter is discussed later in this section.

OntoBuilder is a generic tool and serves as a module for several projects at the Tech-
nion. For example, we have designed a framework for evaluating automatic schema
matching algorithms [4], and we use OntoBuilder both for evaluation and for improv-
ing our methodology. This framework provides a sufficient condition (we term mono-
tonicity) for a matching algorithm to generate “good” ontologies. Our empirical results



2

dept_time_1

dept_time_2

returnTime

departureTime

(a) (b)

Fig. 1. AA versus Delta

with OntoBuilder show that its algorithms satisfy one of the forms of monotonicity we
present in [4]. Also, algorithms from OntoBuilder are being employed in an agent ne-
gotiation protocol for trading information goods [6]. Finally, OntoBuilder is used as a
testbed for experimenting with simulataneous top-K mapping evaluation [3].

The rest of this section presents the main features and highlights of OntoBuilder,
focusing on the sequence semantics. The detailed description can be found in [5, 7].
The process of ontology extraction and matching is divided into four phases. The input
to the system is an HTML page representing a Web site main page. First, the HTML
page is parsed and all form elements and their labels are identified. Next, the system
produces an initial version of global (target) ontology and local (candidate) ontologies.
Finally, the ontologies are matched to produce amapping.

Ontology matching aims at refining domain information by mapping various ontolo-
gies within the same domain. OntoBuilder supports an array of matching and filtering
algorithms. Additional algorithms can be implemented and added to the tool as plug-
ins. Algorithm parameters (such as weights) are specified using an XML configuration
file which can be edited using a user-friendly interface.

Ontology matching is based on term and value matching, the former compares la-
bels and field names using string matching, while the latter provides a measure of sim-
ilarity among domains, as reflected by constrained data fields, such as drop-down lists
and radio buttons. OntoBuilder provides several preprocessing techniques, based on In-
formation Retrieval well-known algorithms such as stoplists and dehyphenation. It also
supports automatic domain recognition and normalization to enhance the matching.

Once terms are extracted, OntoBuilder analyzes the relationships among them to
identify ontological structures of composition and precedence. We focus here on the
latter. Precedence determines the order of terms in the application according to their
relative order within a page and among pages. In any interactive process, the order
in which data are provided may be important. In particular, data given at an earlier
stage may restrict the availability of options for a later entry. For example, car rental
forms will present pickup information before return information. Also, airline reser-



3

Fig. 2. The OntoBuilder user interface

vation systems will introduce departure information before return information. Such
precedence relationships can usually be identified by the activation of a script, such as
(but not limited to) the one associated with a SUBMIT button. It is worth noting that
the precedence construct rarely appears as part of basic ontology constructs. This can
be attributed to the view of ontologies as static entities whose existence is independent
of temporal constraints. It is our conjecture (supported by experiments) that precedence
reflects time constraints of the application business rules and thus can be used to match
better heterogeneous ontologies.

OntoBuilder employs unique algorithms for identifying structure similarity using
composition and precedence constructs. Structure similarity is determined based on
structure partitioning into subontologies, using terms as pivots, and comparison of sub-
ontologies. For example, using the precedence construct and two terms in two ontolo-
gies as pivots within their own ontology, OntoBuilder computes the similarity of sub-
ontologies that contain all terms that precede the pivots and also the subontologies that
contain all terms that succeed the pivots (recall that Web forms enforce complete order-
ing of fields). A higher similarity among subontologies increases the similarity of the
pivot terms themselves. This simple, yet powerful algorithm, has proven to be success-
ful in a series of experiments performed with OntoBuilder on variety of Web sites. For
example, consider Figure 1. The form of Delta airline reservation system contains two
time fields, one for departure and the other for return. Due to bad design (or designer’s
error), the departure time entry is named dept time 1 while return time is named
dept time 2. Both terms carry an identical label, Time, since the context can be easily
determined (by a human observer of course) from the positioning of the time entry with
respect to the date entry. For American Airlines reservation system (see Figure 1 on the



4

right), the two time fields of the latter were not labeled at all (relying on the proximity
matching capabilities of an intelligent human observer), and therefore were assigned,
using composition by association, with the label Departure Date and Return Date.
The fields were assigned the names departureTime and returnTime. Term matching
would prefer matching both Time(dept time 1) and Time(dept time 2) of Delta
with Return Date(returnTime) of American Airlines (note that ‘dept’ and ‘depar-
ture’ do not match, neither as words nor as substrings). Value matching cannot differ-
entiate the four possible combinations. Using precedence matching, OntoBuilder was
able to correctly map the two time entries, since the subontologies of the predecessors
of Time(dept time 2) and Return Date(returnTime) match better than subontolo-
gies of other combinations.

OntoBuilder provides an easy to use environment for ontology authoring. Therefore,
it can be used to build ontologies from scratch or refine extracted ontologies. In order to
provide an intuitive interface to the user, the system implements common visualization
techniques such as graph representations and hyperbolic views for ontologies, Web site
maps, and document structures. Figure 2 provides a snapshot of OntoBuilder’s user
interface.

3 System demonstration

We will demonstrate OntoBuilder using an easy-to-follow example of matching Car
rental ontologies. The system will create ontologies of car rental Web sites on-the-fly,
and combine them into a global ontology. The benefits of OntoBuilder in resolving, in
an automatic manner, semantic heterogeneity, including synonyms and designer errors,
will be highlighted. In particular, we will focus on the use of the precedence construct
in correctly identifying mappings.
OntoBuilder is available at http://ie.technion.ac.il/OntoBuilder.

References

1. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between ontologies
on the semantic web. In Proceedings of the eleventh international conference on World Wide
Web, pages 662–673. ACM Press, 2002.

2. N. Fridman Noy and M.A. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), pages 450–455, Austin, TX, 2000.

3. A. Gal. Managing uncertainty in schema matching with top-k schema mappings. Journal of
Data Semantics, 2006. Accepted for Publication.

4. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling and
evaluating automatic semantic reconciliation. VLDB Journal, 14(1):50–67, 2005.

5. A. Gal, G. Modica, H.M. Jamil, and A. Eyal. Automatic ontology matching using application
semantics. AI Magazine, 26(1), 2005.

6. G. Koifman, O. Shehory, and A. Gal. Negotiation-based price discrimination for information
goods. In Proc. of the Third International Conference on Autonomous Agents & Multi Agent
Systems, NY, NY, 2004.

7. G. Modica. A framework for automatic ontology generation from autonomous web applica-
tions. Master’s thesis, Mississippi State University, July 2002.


