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Abstract
In thispaperwepresentthemonotonicityprinciple,
a sufficientconditionto ensurethatexactmapping,
a mappingaswould beperformedby a humanob-
server, is rankedcloseto thebestmapping, asgen-
eratedautomaticallyby a matchingalgorithm.The
researchis motivatedby theintroductionof these-
manticWeb vision and the shift towardsmachine
understandableWebresources.We supporttheim-
portanceof the monotonicityprinciple by empiri-
cal analysisof a matchingalgorithm,showing that
algorithmsthat obey this principle rank the exact
mappingcloseto thebestmapping.
keywords: Ontologymatching,Novel integration
architectures

1 Intr oduction and motivation
The ambiguousinterpretationof concepts,describingthe
meaningof datain heterogeneousdatasources(e.g., database
schemata,XML DTDs, andHTML form tags)is commonly
known assemanticheterogeneity. Semanticheterogeneityis
a well-known obstacleto datasourceintegration[5], a task
thathasbecomea commonpracticein automatingBusiness-
to-Businessactivities. Semanticheterogeneityis resolved
througha processof semanticreconciliation, which matches
conceptsfrom heterogeneousdatasources.Traditionally, se-
manticreconciliationwasperformedby a humanobserver (a
designeror a DBA) [20; 15] dueto its complexity [5]. How-
ever, manualreconciliation(with or without computer-aided
tools) tendsto be slow and inefficient in dynamicenviron-
mentsanddoesnot scalefor obviousreasons.Therefore,the
introductionof thesemanticWebvision [3] andtheshift to-
wardsmachineunderstandableWebresourceshasunearthed
theimportanceof automaticsemanticreconciliation.Conse-
quently, new toolsfor automatingtheprocess,suchasCupid
[17], GLUE [9], andOntoBuilder[19], wereintroduced.

Generallyspeaking,the processof semanticreconcilia-
tion is performedin two steps. First, given two attribute
sets � and ��� (denotedschemata) with ��� and �	� at-
tributes,respectively,1 adegreeof similarity is computedau-
tomatically for all attribute pairs (one attribute from each

1Theuseof relationaltermsis in no way restrictive, andis used
hereto avoid theintroductionof anextensive terminologythat is of

schema),2 using such methodsas namematching,domain
matching,structure(suchas XML hierarchicalrepresenta-
tion) matching,andMachineLearningtechniques(e.g., [2;
8]). As a secondstep,a singlemappingfrom � to ��� is cho-
sento bethebestmapping. Typically, thebestmappingis the
onethatmaximizesthesum(or average)of pair-wiseweights
of the selectedattributes. We differentiatethe bestmapping
from the exact mapping, which is the outputof a matching
processaswouldbeperformedby ahumanobserver.

Automatic matchingmay carry with it a degree of un-
certaintysince“the syntacticrepresentationof schemasand
data do not completelyconvey the semanticsof different
databases”[18]. As an example,considernamematching,
a commonmethodin toolssuchasCupid [17], OntoBuilder
[12], Prot́eǵe [11], andAriadne[16]. With namematching,
oneassumesthatsimilarattributeshavesimilar(or eveniden-
tical) names. However, the occurrenceof synonyms (e.g.,
remuneration andsalary) andhomonyms (e.g., age
referring to either humanage or wine age) may trap this
methodinto erroneousmapping.As a consequence,thereis
no guaranteethat theexactmappingis alwaysthebestmap-
ping.

We presentthe monotonicityprinciple, a sufficient condi-
tion to ensurethatexactmappingwouldberankedsufficiently
closeto thebestmapping.Roughlyspeaking,themonotonic-
ity principle proclaimsthat by replacinga mappingwith a
better one, scorewise, one getsa more accuratemapping
(from a humanobserver point of view), even if by doingso,
someof the attribute mappingsareof lessquality. The pa-
percontribution is in demonstrating,throughtheoreticaland
empiricalanalysis,that for monotonicmappingsthat satisfy
the monotonicityprinciple, one can safely interpreta high
similarity measureas an indication that more attributesare
mappedcorrectly. An immediateconsequenceof this result
is theestablishmentof acorroborationfor thequalityof map-
ping algorithms,basedon their capabilityto generatemono-
tonicmappings.Wehaveexperimentedwith amatchingalgo-
rithmandreportonourexperiencesin Section4. Ourfindings
indicate that matchingalgorithmsthat generatemonotonic
mappingsarewell-suitedfor automaticsemanticreconcilia-
tion. Anotheroutcomeof themonotonicityprincipleis thata

little benefitin thispaper.
2Extensionsto thisbasicmodel(e.g., [18]) arebeyondthescope

of this paper.



goodautomaticsemanticreconciliationalgorithmwouldrank
the e
 xactmappingrelatively closeto the bestmapping,thus
enablinganefficient searchof theexactmapping[1].

2 Preliminaries
We start by introducing the notions of attribute similarity
measure and mappingsimilarity measure. The interested
readeris referredto [13], wherewe have groundedtheseno-
tionsin atheoreticalmodelof uncertaintybasedonfuzzysets.
To illustrateour modelwe shall usesimplified schemataof
two carrentalreservationsystems,asfollows:
AvisRental(RentalNo, PickUpLocationCode, PickUpDate,

PickUpHour, PickUpMinutes, ReturnDate, ReturnHour,

ReturnMinutes, Price.)

AlamoRental(RentalNo, PickUpLocation, PickUp-Date,

PickUpHour, PickUpMinutes, DropoffDate, DropoffHour,

DropoffMinutes, Price.)

It is worth notingthat this examplewaslargely simplified,
for thepurposeof clarity. In Section4 weprovideourempir-
ical analysis,which is basedon datathatwascollectedfrom
multiple Websites.

2.1 Attrib ute similarity
Given two attributesets� and � � , we associatea similarity
measure,normalizedasa similarity degreebetween� (total
dissimilarity)and � (equivalence),with any mappingamong
attributesof � and��� . Therefore,giventwo attributes����
and �������� , we say that  and �� are � -similar to spec-
ify our belief in the mappingquality. The measureof simi-
larity between and �� is denotedby ����� ��� , or simply by� , whenever the identity of the comparedattributes is ev-
ident from the context. We assumethat a manualmatch-
ing is a perfect processwith ����� .3 As for automatic
matching,ahybridof algorithms,suchaspresentedin [8; 17;
19] or adaptationof relevantwork in proximity queries(e.g.,
[6]) andqueryrewriting overmismatcheddomains(e.g., [7])
candeterminethe level of � . For illustrationpurposes,con-
sidera matchingalgorithm that computes� , basedon sub-
string matchingasfollows. The similarity of two attributes and �� is definedsymmetricallyas the maximum size
of a matchingsubstringin  and �� divided by the maxi-
mumnumberof charactersin either  or  � . Considernext
the schematapresentedabove, andlet �� PickUp-Date
and �� � PickUpDate. Then, �!� " (for PickUp)�#� (for PickUp-Date) ��%$ &'& , dueto the hyphenin  . However, by applyingan IR
(InformationRetrieval) techniqueknown asdehyphanation,
PickUp-Date becomesPickUpDate and similarity in-
creasesdramaticallyto �(��� .
2.2 Mapping similarity
Given two attribute sets, � and ��� , a mapping ) from �
to ��� is a setof pairs *+-,.��+/ , suchthat 0���21435�7698:8:; ,

3This is, obviously, not alwaysthecase.In theabsenceof suffi-
cientbackgroundinformation,humanobserversareboundto err as
well. However, sincethe monotonicityprinciple is basedon com-
paring the bestmappingwith the exact mapping,and the latter is
basedonhumaninterpretation,we keepthis assumption.

��<�=����1>35�7698:8:; , and ��?�@)�*+ / . A mappingwith a
null value representsno mapping. The mappingsimilarity
measure ��A is a function ��AB��C7*D����� � �FE *+-,.��+/G�H)�/ .

Attributepair I
RentalNo,RentalNo 1
PickUpLocationCode,PickUpLocation 0.89
PickUpDate,PickUp-Date 1
PickUpHour,PickUpHour 1
PickUpMinutes,PickUpMinutes 0.95
ReturnDate,DropoffDate 0.68
ReturnHour,DropoffHour 0.68
ReturnMinutes,DropoffMinutes 0.7
Price,Price 1

0.88

Table1: Computingattribute-setsimilarity measure

Table 1 provides a mapping ) , where each at-
tribute pair is associated with an attribute similar-
ity measure, computed using substring and domain
matching. We shall demonstrate the � computa-
tion using the (AvisRental.PickUpMinutes,
AlamoRental.PickUpMinutes) pair. Us-
ing substring matching, the pair has a perfect
match. However, we assume that the domains
of the two attributes differ. While the domain of
AvisRental.PickUpMinutes is 3 0, 15, 30,
45 ; , the domainof AlamoRental.PickUpMinutes is3 0, 10, 20, 30, 40, 50 ; . Maximizingthepair-wise
minimalEuclideandistance,onehasthatthedomainsimilar-
ity is 0.9,andby averagingthetwo similarity measures,one
gets�J�(�%$ K'& . Computing� A by averagingover � ��� � � of all
pairs *+-,L��+/ in ) yields ��AM�J�%$ N'N .

A few notesarein orderat thispoint. First,weassumethat
pair-wise similarity measureis computedautomatically by
somematchingalgorithm,anddoesnot involvehumaninter-
vention.Second,themapping) in Table1, while beingwith
mostlikelihoodtheexactmapping,is only oneamongmany
(��O for ��P9� matching).Finally, a mappingcanbe ��PG� (in
which casethemappingbecomesa ��P7� andontofunction),�QPR� (whereanattributefrom thescopecanbemappedinto
multiple attributesin thedomain),or �SP�� (see[4] for more
details).Methodsfor computingthebestmappingdependon
the type of mapping.For example,for a ��P9� matching,al-
gorithmsfor identifying the bestmappingtypically rely on
weightedbipartitegraphmatching[14].

To simplify thediscussionin therestof thispaper, weshall
assumethat E � E � E ��� E �=� . Extendingthe discussionto
othercasesis straightforward.

3 Monotonic mappings: measuringmatching
quality

In this sectionwe aim at modelingthe relationshipbetween
a choiceof a mapping,basedon mappingsimilarity, anda
choiceof a mapping,asperformedby a humanobserver. As
we empiricallyshow in Section4, the morecorrelatedthese
mappingsare,themoreeffective anautomaticmappingpro-
cessbecomes.In orderto comparetheeffectivenessof vari-
ouschoicesof mappingsandoperators,we introducetheno-



tion of mappingimprecision, whichfollowscommonIR prac-
tice for

T
retrieval effectiveness(e.g., [10]). Assumefirst that

amongall possiblemappingsbetweentwo attribute setsof
cardinality � , we chooseoneandterm it the exact mapping
(denoted U) ). Intuitively, the exact mappingis the bestpos-
sible mapping,asconceived by a humanobserver. Having
selectedthe exact mappingbetween� and ��� , we measure
the imprecisionof any othermapping V simply by counting
how many argumentsof U) and V do not coincide. We next
presenta formaldefinitionof mappingimprecision.

Definition 1 Let � � 3WX�5,L$.$.$L,.ZY[; and � � �3W�� � ,L$.$.$L,.��Y ; be attribute setsof cardinality � . Also, let )
and V be two mappingsover � and ��� and let �\��B� be
an attribute. ) and V differ on Z\ if )�*FZ\]/_^��V�*+�\#/ . ` A�� a
denotesthesetof attributesof � onwhich ) and V differ .

Definition 2 (Impr ecision) Let U) bean exactmappingover� and ��� and let V be somemappingover � and ��� such
that there are bdce� attributes in � on which U) and V
differ. Then V is b -imprecise(with respectto U) ). We denote
by f a theimprecisionof V .

The exact mapping between AvisRental and
AlamoRental is given in Table1. A possibleg -imprecise
mappingis a mappingthat variesfrom the onepresentedin
Table1 by associatingPickUpDate with DropoffDate
andReturnDate with Pickup-Date.

Definition 3 (Similarity preservation) Let ) and V be
mappingsover attribute sets� and � � . ) and V are sim-
ilarity preservingon an attribute h�4� if f Aji f a implies����� Alkm�on�p4����� a�km�on . qeA�� a denotesthesetof attributesof �
on which ) and V aresimilarity preserving.

Example1 Considerthe g -imprecisemappinggivenabove.
AssociatingPickUpDate with DropoffDate yields an
attribute similarity measure of �r�r�%$ s'N , and associating
ReturnDate with Pickup-Date yields �t�r�u$wv . Re-
ferring to this mappingas V and to the mappingof Ta-
ble 1 as U) , U) and V are similarity preservingon attribute
Pickup-Date, since �x�yf�zA i f a �{g and �t������ zAlkm�on|p}����� a�km�on2�}�u$ sRN . However, U) and V are
not similarity preservingon attribute ReturnDate, since�%$ s'N~������� zAlkm�on��>����� a�km�on��(�%$�v . �
Definition 4 (Benefitand cost) Let ) and V be mappings
over attribute sets � and ��� , such that f Ayi f a . LetU� �S* � � ,.$D$D$�, � Y / bea weightvectorthatsumsto unity, asso-
ciating with each attribute �\Z�?� a weight � \ . Thebenefit
of switching from V to ) is definedto be��� Y �+� \�� kmA���a7n�� ����#���7��� �����Q��� �Q�:� � � I ��� � ��� ���+�u  I ��� � ��� ���+�¢¡£¡
Thecostof switching from V to ) is definedto be¤	¥#¦ � kmA��wa�n�� ����§���7��� �%¨§�Q��� ���©� � � I ��� � ��� ���+�   I ��� � ��� ���§� ¡£¡ª�« � «�¬ f©�*+)G,.V�/ representsthebenefitof switchingfrom V
to ) . `�A�� a>®~qeA�� a representsthoseattributesover which) and V differ, yet are similarity preserving. ¯±°£²§�*+)G,.V�/
representsthe loss involved in switching from V to ) .`�A�� a´³µqeA7� a representsthoseattributesover which ) andV differ, andthatarenotsimilarity preserving.

Definition 5 (Monotonicity Principle) Let ¶ �3W) � ,L) � ,.$D$D$�,L)[·�; be a set of mappings over attribute
sets � and ��� . ¶ is monotonicif the following inequality
holdsfor anypair 3W) \ ,L)[¸�;X¹(¶ such that f A�º9i f A�» :ª�« � «�¬ f©�*+)[\+,.) ¸ /�pS¯±°£²]�*+)[\],.) ¸ / (1)

Each term in
ª�« � «�¬ f¼�*F) \ ,L)[¸£/ addsto the overall sim-

ilarity, yet the attributes that participate in computing¯±°£²]�*F)7\],.) ¸ / lower the overall similarity by switchingfrom)7¸ to ) \ . If thebenefitof switchingfrom )[¸ to ) \ surpasses
the costfor all pairs 3W) \ ,L)[¸W;�¹½¶ suchthat f A�º_i f A�» , we
considerthesetto bemonotonic.If theexactmappingis cho-
senamongmonotonicmappings,then the following holds:
if U)¾�h¶ and ¶ is monotonicthen U) ’s overall similarity
measureis greaterthan the overall similarity degreesof f -
imprecisemappingsin ¶ , evenif suchmappingsyield better
similarity degreeson someattributepairs.

In [13] we have usedthe monotonicityprinciple to show
a practicalresultthatholdsfor a monotonicsetof mappings.
We show that,undercertainconditionson C (theaggregation
functionthatis usedfor computing��A for amapping) ), one
canformally show that f A(i f a entails��AJp(��a .

Example2 (Monotonic mappings) The set of possible
mappingsbetweenAvisRental and AlamoRental is
not monotonic.For example, considerthe3-imprecisemap-
ping, in which RentalNo is mappedinto PickUpHour,
PickUpHour is mapped into Price, and Price is
mapped into RentalNo. The similarity measure of
this mapping is �u$ &R¿ . Considernow a 4-imprecisemap-
ping, in which PickUpLocationCode is mapped
into PickUp-Date, PickUpDate is mapped into
PickUpMinutes, PickUpMinutes is mapped into
PickUpHour, and PickUpHour is mapped into
PickUpLocation. Thesimilarity measureof thismapping
is �u$ &R& , slightlyhigherthana 3-imprecisemapping. �

Example 2 demonstrateshow difficult it is to achieve
monotonicityevenin atoy example.Theinherentuncertainty
of thematchingprocessgeneratesvariability thatmaycause
imprecisionsetsto overlapin their similarity measures.In-
deed,in all our experimentswe havenevercomeacrosssuch
a setof monotonicmappings.

If all onewishesto obtainis theability to identify theexact
mappingthroughthe useof similarity, oneneedsa weaker
notionof monotonicity, asdefinednext.

Definition 6 Let ¶À�j3W) � ,.) � ,.$D$D$�,L)[·�; bethesetof all pos-
siblemappingsoverattributesets� and ��� . ¶ is monotonic
with respectto the exact mapping U)Á�½¶ if the following
inequalityholdsfor any ) \ �Â¶ :ª�« � «�¬ f¼�* U)X,L)[\#/�pS¯±°£²]�* U)±,.)7\]/ (2)

The setof all possiblemappingsof the casestudy, while
not beingmonotonic(seeExample2) is monotonicwith re-
spectto theexactmapping.Finally, While onecannotalways
achieve monotonicity, there may be a generalmonotonic
trend,asformally presentedbelow usingstatisticalterms.

Definition 7 Let ¶ ��3W) � ,L) � ,.$D$�$D,.)7·�; be a set of map-
pingsover attribute sets� and ��� of cardinality � , and let



¶ � ,§¶ � ,L$�$D$�,§¶ Y be subsetsof ¶ such that for all ��cÃf�cÃ��,)0�B¶_\ iff ) is f -imprecise. We define ÄÅ\ to be a random
variable, representingthe similarity measure of a randomly
chosenf -imprecisemapping. ¶ is statisticallymonotonicif
thefollowing inequalityholdsfor any �Xc4f�cJÆQcJ� :Ç *+ÄÅ\§/9p Ç *FÄ ¸ / (3)

where
Ç *§ÄÈ/ standsfor theexpectedvalueof Ä .

For statisticalmonotonicityto hold, oneshouldhypothe-
sizethat the similarity measureof a mappingis sensitive to
thenumberof attributesonwhichthetwo schematadiffer. To
evaluatethis hypothesis,oneneedsto examinehow similar-
ity measurevarieswith imprecisionlevel. To do so,a linear
regressionanalysiscanbe performed,focusingon the vari-
ability of the residualvaluesaroundthe regressionline. Of
specialinterestarethe É � andÊ variablecoefficient (there-
gressionline gradient)statistics. The É � measureindicates
thefractionof thetotalvariability thatis explainedby theim-
precisionlevel. Plainly put, a high É � measuremeansthat
by separatingthe set of similarity measuresinto groupsof
imprecisionlevels,differentgroupshave distinguishedsimi-
larity measures.4 A positive Ê variablecoefficient is anindi-
cationof apositivecorrelationbetweenimprecisionlevel and
similarity measure,while a negative Ê variablecoefficient
indicatesnegativecorrelation.Combinedtogether, anegativeÊ variablecoefficient anda high É � measureindicatethat
imprecisionis a major factor in determiningthe level of �
andthatthereis aninverserelationbetweenthetwo. Suchan
indicationis sufficient for ensuringstatisticalmonotonicity.

Figure1(top)illustratesalinearregressionanalysisof map-
ping schemataof two Websites,namely“AbsoluteAgency”
and“Adult Singles,” from the datingandmatchmakingdo-
main.For eachmapping,thehorizontalaxisshowstheimpre-
cisionlevel of amapping,while theverticalaxisprovidesthe
mappingsimilarity measure.The figure shows strongnega-
tivecorrelationbetweenimprecisionlevelandsimilaritymea-
sure.This conclusionis supportedby the É � andÊ variable
coefficient of the regressionanalysis. For this pair of sites,É � �>�%$ Kov , i.e., imprecisionlevel explains,in this case,Kov'Ë
of the original variability. Ê variablecoefficient is ÌZ�u$ �Rs .
Therefore,wehavesufficientevidenceto claimthatstatistical
monotonicityholdsin this case.Figure1(bottom),illustrates
the linear regressionanalysisof matching“hotels.com”with
“usahotelguid.com(holidayinn),” with É � �J�u$ ¿R¿ . In thisfig-
ure, similarity measuresin eachimprecisionlevel are scat-
tered,ratherthan being concentratedaroundthe regression
line. Therefore,similarity measuresof variousimprecision
levelsareinterleavedanddifferentiatingthevarioussimilar-
ity levelsbecomesmuchmoredifficult.

4 Empirical analysis
This sectionpresentsinitial empirical results,evaluatinga
matchingalgorithm using the monotonicityprinciple. The

4For largedatasets,thenormaldistribution is assumed.ÍÏÎ is an
indicatorto how “close” the datais to themedianat eachimpreci-
sion level. For normaldistributions,themedianandthe mean(the
unbiasedestimateof theexpectedvalue)arethesame.
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Figure1: Linearregressiongraphs

analysisweproposeis aimedatverifying empiricallythecor-
relationbetweena similarity measure(generatedby a given
algorithm) on the one handand monotonicityon the other
hand,usingimprecisionlevel astheexperimentationtool. All
datasetswerecollectedfrom real-world Webforms. Dueto
spaceconstraints,we will refrain from detailingour experi-
ments,readilyavailablein [13], andfocusonhighlightingthe
empiricalmainresults.

All experimentswere conductedusing an inhousetool
namedOntoBuilder,5 which supportsan array of matching
and filtering algorithms. We have selected36 Web forms,
from four differentdomains,namelyflight reservation,hotel
reservation,datingandmatchmaking,andnewspapersearch
engines.For eachWebform,wehaveautomaticallyextracted
aschema,with numberof attributesrangingfrom tento thirty
attributes. Web forms were paired, and for eachpair (18
all-in-all) we have applieda combinedalgorithm, combin-
ing stringmatchingwith domainmatchingandtwo structural
algorithms. Full discussionof thesealgorithmsis given in
[12]. For eachWebform pair, wecomputedall attributepair-
wise mappings����� � � anddeterminedthe exact mapping U) .
Wepartitionedall possiblepermutations(��O ) into imprecision
levelswith respectto U) . For eachpermutationwe computed��Ar�ÁC[*w����� � �¼E *+-,L��+/?��)�/ , where C is taken to be theÿ�� «�� ÿ�� « function.

Table2 summarizesour regressionanalysis.We have dis-
tinguishedbetweenhigh É � value(above �%$�v5& ), medium É �
value(�u$ & -�u$wvµ& ) andlow É � value(below �%$ & ). Low values
of É � indicatethat imprecisionlevel explainslessthanhalf
of the variancein similarity measures.The tableshows that

5http://www.cs.msstate.edu/˜gmodica/Education/OntoBuilder/



���
Numberof pairs

0.75-1 8
0.5-0.75 7�

0.5 3

Table2: É � distribution

in thevastmajority of our experimentsthealgorithmyielded
eithermediumor high É � values.This indicatesthat theal-
gorithmgeneratesstatisticallymonotonicmappings.That is,
the lower the imprecisionlevels becomes,the further away
would a mappingsimilarity measurebefrom theexactmap-
ping.

Rank Numberof pairs
0 13
1-5 3
6-99 2	

100 0

Averagerank 4.88

Table3: Exactmappingpositioningwith respectto the best
mapping

We next look into the positioningof the exact mapping
within anorderedlist of all possiblemappings.Table3 sum-
marizesour findings. A rank of � meansthat the algorithm
wassuccessfulin identifying the exact mappingasthe best
mapping.Otherranksshow thepositioningwithin all possi-
ble mappings.We observe that even if an algorithmfails to
identify theexactmappingasthebestmapping,high ranking
of theexactmappingcanassistin identifyingit within asmall
numberof trials (see[1] for efficient algorithmsto identify
top-
 mappings).However, if oneneedsto iterateover all
possiblepermutations,searchingthe searchspacebecomes
intractable. Practicallyspeaking,a good algorithm for au-
tomaticsemanticreconciliationshouldtake into accountthe
inherentuncertaintyof theprocess.Therefore,it shouldaim
at minimizing the numberof iterationsrequiredfor finding
anexactmapping,acknowledgingthatit is probablyimpossi-
ble to identify analgorithmthatwould alwaysranktheexact
mappingfirst.

For themajority of theexperimentsthealgorithmhaspo-
sitionedtheexactmappingwith a rankof � . On theaverage,
thecombinedalgorithmpositionstheexactmappingbetween
thefourth andfifth positions.

Finally, we analyzethe relationshipbetweenstatistical
monotonicity and monotonicity with respectto the exact
mapping. A-priori, onemay assumethat the latter is indif-
ferentto the behavior of permutations,aslong astheir sim-
ilarity measuredo not exceedthat of the exact mapping. In
particular, one shouldnot be concernedwhetherlower im-
precisionlevelsdemonstratemonotonicbehavior. To dispute
this assumptionwe shallhypothesizethat thereshouldbeno
correlationbetweenstatisticalmonotonicityandmonotonic-
ity with respectto theexactmapping,andshow thatour hy-
pothesisis invalid. As a measurementfor theformerwe uti-
lize the É � statistic. As for the latter, we countthe number
of permutationsthat their similarity measureis “sufficiently
close”to theexactmapping( �� ). In ourexperiments,wehave
definedthisnotionof closenessto includeall of thosepermu-

�
�����
� �����
� �����
�������
�������

���� !�"#$%�&'()�*+,-�./01�2314�5678�9:;<�=>?@�ABCD�EFDG�HIJK�LMNO�PQOR�STT UWV XZY\[Z]_^ `
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Figure2: É � vs. � �

tationswhosesimilarity measureis greaterthana threshold
(which waschosento be �u$ NRK£� in our case,where � is the
similarity measureof theexactmapping).

Figure2 provides �� asa functionof É � for thecombined
algorithm.Theclearnegativetrendis testimonialto theinva-
lidity of our hypothesis.Therefore,thereis a correlationbe-
tweenstatisticalmonotonicityandmonotonicitywith respect
to theexactmapping.Moreover, from Table2 it is clearthat
the combinedalgorithm typically generatesmappingswith
high É � , thus the combinedalgorithm is likely to rank the
exactmappingin a top positionamongall permutations.

5 Conclusionand futur e work
We have presentedthe monotonicityprinciple, a sufficient
conditionto ensurethatexactmappingwouldberankedclose
to the bestmapping. We believe this approachoffers a use-
ful tool for identifying semanticallystrongalgorithms.From
thetheoreticalandempiricalanalysisof themodelit becomes
evidentthatfor monotonicmappings,onemaycorrelatesim-
ilarity measurewith precision,asconceivedby a humanob-
server. While monotonicity is a strongnotion, weaker no-
tions suffice for practicalpurposes.Therefore,matchingal-
gorithmsthatgeneratemonotonicmappings(in any form) are
well suitedfor automaticsemanticreconciliation.

Onepossiblejustificationfor thiscorrelationhasto dowith
thevarianceof similaritymeasuresaroundimprecisionlevels.
The higher É � is, the lower the variancebecomes.There-
fore, lesspermutationsarelikely to supersedetheexactmap-
ping. This reasoningleadsoneto believe that the regression
line gradientcanimpactthequality of a matchingalgorithm,
which is somethingwe planto explorenext.

Monotonicity is not definedin “operational” terms,since
it is comparedto an initially unknown exact mapping. In
fact,suchanoperationaldefinitionmaynot begenerallyde-
veloped,sincealgorithmsmay perform well only on some
schemapairs. Therefore,a taskfor future researchinvolves
possibleclassificationof applicationtypeson which certain
algorithmswould work better than others. Best mappings
may also be subjective at times (lessso in the type of ap-
plicationswe wereexploring, though). It is not clearat this
time how anoperationaldefinitioncanbedevelopedin such
caseswithout personalizingthealgorithmsto specifichuman
observers.Takento theextreme,anadaptivealgorithmwould
rankerroneousmappingshigher, simply becauseof a human
observer presumptions.This line of researchis alsoleft for
futureinvestigation.



The recentstepstaken in the directionof automatingse-
manticc reconciliationhighlight the critical needof this re-
search.As the automationof the processhasalreadybegun
to takeshape,oftenwithout thebenefitsof thoroughresearch,
thestudyis timely. We envision multitudeof applicationsof
automaticschemamatchingto thesemanticWeb. For exam-
ple, we are currently designingsmartagentsthat negotiate
over information goodsusing schemainformation and can
combatschemaheterogeneity.
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mapping as query discovery. In A. El Abbadi,
M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G.Schlageter, andK.-Y. Whang,editors,Proceedingsof
theInternationalconferenceon veryLarge Data Bases
(VLDB), pages77–88.MorganKaufmann,2000.

[19] G. Modica,A. Gal, andH. Jamil. Theuseof machine-
generatedontologiesin dynamic information seeking.
In C. Batini, F. Giunchiglia, P. Giorgini, and M. Me-
cella, editors, Cooperative Information Systems,9th
International Conference, CoopIS2001, Trento, Italy,
September5-7, 2001, Proceedings, volume 2172 of
Lecture Notes in ComputerScience, pages433–448.
Springer, 2001.

[20] A. ShethandJ.Larson.Federateddatabasesystemsfor
managingdistributed,heterogeneous,andautonomous
databases.ACM ComputingSurveys, 22(3):183–236,
1990.


