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Abstract

In this papemwe presenthe monotonicityprinciple,
asufficientconditionto ensurghatexactmapping
a mappingaswould be performedby a humanob-
sener, is ranked closeto the bestmapping asgen-
eratedautomaticallyby a matchingalgorithm. The
researchs motivatedby theintroductionof the se-
mantic Web vision and the shift towardsmachine
understandabl&/ebresourcesWe supporttheim-
portanceof the monotonicity principle by empiri-
cal analysisof a matchingalgorithm,showing that
algorithmsthat obey this principle rank the exact
mappingcloseto the bestmapping.

keywords: Ontology matching,Novel integration
architectures

1 Intr oduction and motivation

The ambiguousinterpretationof concepts,describingthe
meaningof datain heterogeneousatasourcege.g., database
schemataXML DTDs, andHTML form tags)is commonly
known assemantichetepgeneity Semanticheterogeneitys
a well-known obstacleto datasourceintegration[5], a task
thathasbecomea commonpracticein automatingBusiness-
to-Businessactiities. Semanticheterogeneityis resohed
througha processof semantiaeconciliation which matches
conceptdrom heterogeneoudatasources.Traditionally, se-
manticreconciliationwasperformedby a humanobsener (a
designeror aDBA) [20; 15] dueto its complexity [5]. How-
ever, manualreconciliation(with or without computeraided
tools) tendsto be slowv andinefficient in dynamicerviron-
mentsanddoesnot scalefor obviousreasonsTherefore the
introductionof the semantidWeb vision [3] andthe shift to-
wardsmachineunderstandablé/eb resourcefiasunearthed
theimportanceof automaticsemantiaeconciliation.Conse-
guently new toolsfor automatinghe processsuchasCupid
[17], GLUE[9], andOntoBuilder[19], wereintroduced.
Generally speaking,the processof semanticreconcilia-
tion is performedin two steps. First, given two attribute
sets A and A’ (denotedschematd with n; and n, at-
tributes,respectiely,! adegreeof similarity is computedau-
tomatically for all attribute pairs (one attribute from each

1The useof relationaltermsis in no way restrictive, andis used
hereto avoid theintroductionof an extensie terminologythatis of

schemay, using such methodsas name matching, domain
matching, structure(suchas XML hierarchicalrepresenta-
tion) matching,and Machine Learningtechniquege.g., [2;
8]). As asecondstep,a singlemappingfrom A to A’ is cho-
sento bethebestmapping Typically, thebestmappingis the
onethatmaximizeghesum(or average)of pairwiseweights
of the selectedattributes. We differentiatethe bestmapping
from the exact mapping which is the outputof a matching
processaswould be performedby ahumanobsener.

Automatic matchingmay carry with it a degree of un-
certaintysince“the syntacticrepresentationf schemasand
datado not completely corvey the semanticsof different
databasesf18]. As an example,considernamematching,
a commonmethodin tools suchasCupid [17], OntoBuilder
[12], Proege [11], and Ariadne[16]. With namematching,
oneassumethatsimilar attributeshave similar (or eveniden-
tical) names. However, the occurrenceof synoryms (e.g.,
remuner at i on andsal ary) andhomoryms (e.g., age
referring to either humanage or wine age) may trap this
methodinto erroneousnapping. As a consequencehereis
no guaranteghatthe exact mappingis alwaysthe bestmap-
ping.

We presenthe monotonicityprinciple, a sufficient condi-
tionto ensuraghatexactmappingwould berankedsuficiently
closeto thebestmapping.Roughlyspeakingthemonotonic-
ity principle proclaimsthat by replacinga mappingwith a
better one, scorewise, one getsa more accuratemapping
(from a humanobsener point of view), evenif by doingso,
someof the attribute mappingsare of lessquality. The pa-
per contritution is in demonstratingthroughtheoreticaland
empiricalanalysis thatfor monotonicmappingsthat satisfy
the monotonicity principle, one can safely interpreta high
similarity measureas an indication that more attributesare
mappedcorrectly An immediateconsequencef this result
is theestablishmenof acorroboratiorfor the quality of map-
ping algorithms,basedon their capabilityto generatanono-
tonicmappings We have experimentedvith amatchingalgo-
rithm andreportonourexperience$n Sectiord. Ourfindings
indicate that matchingalgorithmsthat generatemonotonic
mappingsare well-suitedfor automaticsemanticreconcilia-
tion. Anotheroutcomeof the monotonicityprincipleis thata

little benefitin this paper

2Extensiongo this basicmodel(e.qg., [18]) arebeyondthescope
of this paper



goodautomaticsemantiaeconciliationalgorithmwouldrank
the exactmappingrelatively closeto the bestmapping,thus
enablingan efficient searchof the exactmapping[ 1].

2 Preliminaries

We start by introducing the notions of attribute similarity

measue and mapping similarity measue. The interested
readeris referredto [13], wherewe have groundedheseno-

tionsin atheoreticamodelof uncertaintypbasednfuzzy sets.
To illustrate our modelwe shall usesimplified schemataof

two carrentalresenationsystemsasfollows:

Avi sRent al (Rent al No, Pi ckUpLocati onCode, PickUpDate,

Pi ckUpHour, Pi ckUpM nutes, ReturnDate, ReturnHour,

ReturnM nutes, Price.)

Al anpbRent al (Rent al No, Pi ckUpLocati on,
Pi ckUpHour, Pi ckUpM nutes, DropoffDate,
Dropof f M nutes, Price.)

It is worth notingthatthis examplewaslargely simplified,
for the purposeof clarity. In Section4 we provide our empir
ical analysiswhich is basedon datathatwascollectedfrom
multiple Websites.

Pi ckUp- Dat e,
Dr opof f Hour ,

2.1 Attrib ute similarity

Giventwo attribute sets.A and.A’, we associate similarity
measurenormalizedasa similarity degreebetween0 (total
dissimilarity)and1 (equivalence)with any mappingamong
attributesof .4 and.A’. Thereforegiventwo attributesA € A
and A’ € A’, we saythat A and A’ are p-similar to spec-
ify our belief in the mappingquality. The measureof simi-
larity betweenA and 4’ is denotedby p4+4’, or simply by
1, whenever the identity of the comparedattributesis ev-
ident from the context. We assumethat a manualmatch-
ing is a perfectprocesswith . = 1.3 As for automatic
matchingahybrid of algorithms suchaspresentedh [8; 17;
19 or adaptatiorof relevantwork in proximity queries(e.g.,
[6]) andqueryrewriting over mismatchealomains(e.g., [7])
candeterminethe level of u. For illustration purposescon-
sider a matchingalgorithm that computesu, basedon sub-
string matchingasfollows. The similarity of two attributes
A and A’ is defined symmetrically as the maximum size
of a matchingsubstringin A and A’ divided by the maxi-
mum numberof charactersn either A or A’. Considemext

the schematgresentedibove, andlet A =Pi ckUp- Dat e

p— i p— i j—
and A’ =Pi ckUpDat e. Then,u = s tire =

0.55, dueto the hyphenin A. However, by applyingan IR
(Information Retrieval) techniqueknown as dehyphanation
Pi ckUp- Dat e becomesPi ckUpDat e and similarity in-
creaseslramaticallyto . = 1.

2.2 Mapping similarity

Given two attribute sets,.4 and A’, a mappingF’ from A
to A’ is a setof pairs (4, A’), suchthat A € AU {null},

3This is, obviously, not alwaysthe case.In the absencef sufi-
cientbackgroundnformation,humanobserersareboundto err as
well. However, sincethe monotonicityprinciple is basedon com-
paring the bestmappingwith the exact mapping,andthe latter is
basedn humaninterpretationwe keepthis assumption.

A" e A U {null}, and A’ = F(A). A mappingwith a
null value representsio mapping. The mappingsimilarity
measue ;' is afunctiony? = h(ut4'|(4, 4') € F).

[ Attribute pair [ v ]
RentalNo,RentalNo 1
PickUpLocationCode,PickUpLocation 0.89
PickUpDate,PickUp-Date 1
PickUpHourPickUpHour 1
PickUpMinutes,PickUpMinutes 0.95
ReturnDate,DropdDate 0.68
ReturnHouyDropofHour 0.68
ReturnMinutes,DropdMinutes 0.7
Price,Price 1

[ [ 0.88]

Tablel: Computingattribute-setsimilarity measure

Table 1 provides a mapping F, where each at-
tribute pair is associated with an attribute similar
ity measure, computed using substring and domain
matching. We shall demonstratethe p computa-
tion using the (AvisRental.PickUpM nutes,
Al anoRent al . Pi ckUpM nutes)  pair. Us-
ing substring matching, the pair has a perfect
match. However, we assume that the domains
of the two attributes differ. While the domain of
Avi sRent al . Pi ckUpM nutes is {0, 15, 30,
45}, the domainof Al anpRent al . Pi ckUpM nut es is
{0, 10, 20, 30, 40, 50}. Maximizingthepairwise
minimal Euclideandistancepnehasthatthe domainsimilar-
ity is 0.9, andby averagingthe two similarity measurespne
getsy = 0.95. Computingu!" by averagingover 44 of all
pairs(A, A’) in F yieldsu” = 0.88.

A few notesarein orderatthis point. First, we assumehat
pair-wise similarity measurds computedautomatically by
somematchingalgorithm,anddoesnotinvolve humaninter-
vention.Secondthe mappingF’ in Tablel, while beingwith
mostlikelihoodthe exactmapping,is only oneamongmary
(n! for 1 : 1 matching). Finally, a mappingcanbe1 : 1 (in
which casethe mappingbecomes 1 : 1 andontofunction),
1 : n (whereanattribute from the scopecanbe mappednto
multiple attributesin the domain),or n : 1 (see[4] for more
details).Methodsfor computingthe bestmappingdependn
the type of mapping. For example,for a1 : 1 matching,al-
gorithmsfor identifying the bestmappingtypically rely on
weightedbipartitegraphmatching[14].

To simplify thediscussiorin therestof this paperwe shall
assumehat |A| = |A'| = n. Extendingthe discussionto
othercasess straightforvard.

3 Monotonic mappings: measuringmatching
quality

In this sectionwe aim at modelingthe relationshipbetween
a choiceof a mapping,basedon mappingsimilarity, anda
choiceof a mapping,asperformedby a humanobsener. As
we empirically shav in Section4, the morecorrelatecthese
mappingsare,the more effective an automaticmappingpro-
cessbecomesln orderto comparethe effectivenesf vari-
ouschoicesof mappingsandoperatorswe introducethe no-



tion of mappingmprecision whichfollowscommonlR prac-
tice for retrieval effectivenesge.g., [10]). Assumefirst that
amongall possiblemappingsbetweentwo attribute setsof
cardinalityn, we chooseoneandtermit the exact mapping
(denotedF). Intuitively, the exact mappingis the bestpos-
sible mapping,as conceved by a humanobsenrer. Having
selectedhe exact mappingbetweenA and A’, we measure
the imprecisionof ary othermappingG simply by counting
how mary agumentsof F' and G do not coincide. We next
present formal definitionof mappingimprecision.

Definiton 1 Let A = {A4;,...,A,} and A =
{Al,..., Al} beattribute setsof cardinality n. Also, let F
and G be two mappingsover A and A’ andlet A; € A be
anattribute. F' andG differon A; if F(A;) # G(4;). D¢
denoteghe setof attributesof .4 onwhich F' and G differ .

Definition 2 (Impr ecision) Let ' be an exactmappingover
A and A’ andlet G be somemappingover A and A’ such
that there are m < n attributesin .4 on which ¥ and G
differ. ThenG is m-imprecisg(with respecto F'). e denote
by i theimprecisionof G.

The exact mapping between Avi sRental and
Al anpRent al is givenin Tablel. A possible2-imprecise
mappingis a mappingthat variesfrom the one presentedn
Table 1 by associating?i ckUpDat e with Dr opof f Dat e
andRet ur nDat e with Pi ckup- Dat e.

Definition 3 (Similarity presewation) Let ' and G be
mappingsover attribute sets.4 and A’. F and G are sim-
ilarity preservingon an attribute A € A if ir < ig implies
pAEA) 5 AGA)  AMEC denoteshesetof attributesof A
onwhich F' and G are similarity preserving

Example 1 Considerthe 2-imprecisemappinggivenabove

AssociatingPi ckUpDat e with Dr opof f Dat e yields an

attribute similarity measue of © = 0.68, and associating
Ret ur nDat e with Pi ckup- Dat e yieldsp = 0.7. Re-
ferring to this mappingas G and to the mapping of Ta-

ble 1 as F', FF and G are similarity preservingon attribute
Pi ckup-Date, since0 = ip < ig = 2and1l =

pAE@A) 5 AGMA) — 0,68, However F and G are

not similarity preservingon attribute Ret ur nDat e, since
0.68 = pAF(A) %, AGA) = .7, O

Definition 4 (Benefitand cost) Let F' and G be mappings
over attribute sets A and A/, sud that ir < ig. Let
@ = (w1, ..., @, ) beaweightvectorthatsumso unity, asso-
ciating with eac attribute A; € A aweightw;. Thebenefit
of switching fromG to F' is definedto be

Benefit(F,G) = Z (wk (/zAk’F(Ak)

AR eDFGAMEG
Thecostof switching from G to F' is definedio be

Cost(F,G) = Z . (ILAk>G(Ak) _ uAk:F(Ak)))
A, eDF .G\ MF\G

Benefit(F, G) representthebenefitof switchingfrom G
to F. D¢ N MEC representshoseattributesover which
F and G differ, yet are similarity preserving. Cost(F,G)
representsthe loss involved in switching from G to F
DI\ MEC representghoseattributes over which F and
G differ, andthatarenot similarity preserving.

,ILAka(/‘M))

Definition 5 (Monotonicity Principle) Let  F =
{F\, Fs,...,F,} be a set of mappings over attrlbute
sets.A and A’. F is monotonicif the following inequality
holdsfor anypair {F;, F;} C F sudthatip, < ig;:

Benefit(F;, Fj) > Cost(F;, Fj) @

Eachterm in Benefit(F;, F;) addsto the overall sim-
ilarity, yet the attributes that participate in computing
Cost(F;, F;) lower the overall similarity by switchingfrom
Fj to F;. If thebenefitof switchingfrom F; to F; surpasses
the costfor all pairs{F;, F;} € F suchthatip, < ip,, we
considetthesetto bemonotonic.If theexactmappingis cho-
senamongmonotonicmappingsthen the following holds:
if F' € F andF is monotonicthen F's overall similarity
measurds greaterthan the overall similarity degreesof i-
imprecisemappingsn F, evenif suchmappingsyield better
similarity degreeson someattribute pairs.

In [13] we have usedthe monotonicity principle to shav
a practicalresultthatholdsfor a monotonicsetof mappings.
We shaw that,undercertainconditionson i (theaggreation
functionthatis usedfor computingu:”” for amappingF), one
canformally show thati < ig entailsp™ > p©.

Example 2 (Monotonic mappings) The set of possible
mappingsbetweenAvi sRent al and Al anoRent al is
not monotonic. For example considerthe 3-imprecisemap-
ping, in which Rent al No is mappedinto Pi ckUpHour ,
Pi ckUpHour is mappedinto Price, and Price is
mapped into Rent al No.  The similarity measue of
this mappingis 0.54. Considernow a 4-imprecise map-
ping, in which Pi ckUpLocati onCode is mapped
into Pi ckUp-Date, PickUpDate is mapped into
Pi ckUpM nut es, Pi ckUpM nut es is mapped into
Pi ckUpHour, and PickUpHour is mapped into
Pi ckUpLocat i on. Thesimilarity measue of thismapping
is 0.55, slightly higherthana 3-imprecisemapping |

Example 2 demonstratediow difficult it is to achieve
monotonicityevenin atoy example. Theinherentuncertainty
of the matchingprocesgyeneratesariability that may cause
imprecisionsetsto overlapin their similarity measures.In-
deed,in all our experimentsve have never comeacrosssuch
a setof monotonicmappings.

If all onewishesto obtainis theability to identify theexact
mappingthroughthe useof similarity, one needsa wealer
notionof monotonicity asdefinednext.

Definition 6 LetF = {Fy, F», ..., F,,, } bethesetof all pos-
siblemappingover attribute setsA and.A’. F is monotonic
with respectto the exact mapping# € F if the following
inequalityholdsfor any F; € F:

Benefit(F, F;) > Cost(F, F}) 2

The setof all possiblemappingsof the casestudy while
not beingmonotonic(seeExample2) is monotonicwith re-
spectto theexactmapping.Finally, While onecannotalways
achieze monotonicity there may be a generalmonotonic
trend,asformally presentedbelow usingstatisticalterms.

Definition 7 Let 7 = {F, F3,..., F,,} be a set of map-
pingsover attribute sets.4 and .4’ of cardinality n, and let



Fi, Fa, ..., F, besubsetof F sut thatforall 1 < i < n,
F € F; iff F'is i-imprecise We defineM; to be a random
variable representingthe similarity measue of a randomly
choseni-imprecisemapping F is statisticallymonotonicif
thefollowing inequalityholdsfor any1l <i < j < n:

E (M;) > E (M;) 3)
whee E (M) standsfor the expectedvalueof M.

For statisticalmonotonicityto hold, one shouldhypothe-
sizethatthe similarity measureof a mappingis sensitve to
thenumberof attributeson which thetwo schemataiffer. To
evaluatethis hypothesispne needsto examinehow similar-
ity measurevarieswith imprecisionlevel. To do so,alinear
regressionanalysiscan be performed,focusingon the vari-
ability of the residualvaluesaroundthe regressionline. Of
specialinterestarethe R? and X variablecoeficient (there-
gressionline gradient)statistics. The R2 measurendicates
thefractionof thetotal variability thatis explainedby theim-
precisionlevel. Plainly put, a high R? measuremeansthat
by separatinghe setof similarity measuresnto groupsof
imprecisionlevels, differentgroupshave distinguishedsimi-
larity measureé.A positive X variablecoeficientis anindi-
cationof apositive correlationbetweerimprecisionlevel and
similarity measurewhile a negative X variable coeficient
indicatesnegative correlation.Combinedogethera negative
X variablecoeficient and a high R?> measurendicatethat
imprecisionis a major factorin determiningthe level of
andthatthereis aninverserelationbetweerthetwo. Suchan
indicationis sufficientfor ensuringstatisticalmonotonicity

Figurel(top)illustratesalinearregressioranalysisof map-
ping schemataf two Web sites,namely“AbsoluteAgeng/”
and“Adult Singles; from the dating and matchmakingdo-
main. For eachmappingthehorizontalaxisshavstheimpre-
cisionlevel of amappingwhile theverticalaxisprovidesthe
mappingsimilarity measure.The figure shows strongnega-
tive correlationbetweerimprecisionevel andsimilarity mea-
sure. This conclusionis supporteddy the R? and X variable
coeficient of the regressionanalysis. For this pair of sites,
R? = 0.97, i.e., imprecisionlevel explains,in this case 97%
of the original variability. X variablecoeficientis —0.06.
Thereforewe have sufficientevidenceto claimthatstatistical
monotonicityholdsin this case.Figure1(bottom),illustrates
thelinear regressionanalysisof matching“hotels.com”with
“usahotelguid.com(holidayim),” with R? = 0.44. In thisfig-
ure, similarity measuresn eachimprecisionlevel are scat-
tered, ratherthan being concentratedaroundthe regression
line. Therefore,similarity measure®f variousimprecision
levels areinterleaved anddifferentiatingthe varioussimilar-
ity levelsbecomesnuchmoredifficult.

4 Empirical analysis

This sectionpresentsnitial empirical results, evaluating a
matchingalgorithm using the monotonicity principle. The

“For largedatasets the normaldistributionis assumedR? is an
indicatorto how “close” the datais to the medianat eachimpreci-
sionlevel. For normaldistributions,the medianandthe mean(the
unbiasecestimateof the expectedvalue)arethe same.
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Figurel: Linearregressiorgraphs

analysiswve proposés aimedat verifying empiricallythecor
relationbetweena similarity measurggeneratedy a given
algorithm) on the one hand and monotonicity on the other
hand,usingimprecisionevel astheexperimentatioriool. All
datasetswerecollectedfrom real-world Web forms. Dueto
spaceconstraintswe will refrain from detailing our experi-
ments readilyavailablein [13], andfocuson highlightingthe
empiricalmainresults.

All experimentswere conductedusing an inhousetool
namedOntoBuilder® which supportsan array of matching
and filtering algorithms. We have selected36 Web forms,
from four differentdomainsnamelyflight resenation, hotel
resenation, datingandmatchmakingand newspapersearch
enginesFor eachWebform, we have automaticallyextracted
aschemawith numberof attributesrangingfrom tento thirty
attributes. Web forms were paired, and for eachpair (18
all-in-all) we have applieda combinedalgorithm, combin-
ing stringmatchingwith domainmatchingandtwo structural
algorithms. Full discussionof thesealgorithmsis given in
[12]. For eachwebform pair, we computedall attribute pair
wise mappingsu4" anddeterminedhe exact mappingF.
We partitionedall possiblepermutationgn!) into imprecision
levelswith respecto F'. For eachpermutationve computed
uF = h(u|(A,A') € F), whereh is taken to be the
average function.

Table2 summarize®ur regressionanalysis.We have dis-
tinguishedbetweerhigh R? value(above 0.75), mediumR?
value (0.5-0.75) andlow R? value(below 0.5). Low values
of R? indicatethatimprecisionlevel explainslessthan half
of thevariancein similarity measuresThe table shavs that

Shttp:/ivww.cs.msstate.edu/"gmodica/Education/OntoBuilder/



R? Numberof pairs
0.75-1 8
0.5-0.75 7
<0.5 3

Table2: R? distribution

in the vastmajority of our experimentshe algorithmyielded
eithermediumor high R? values. This indicatesthatthe al-
gorithmgeneratestatisticallymonotonicmappings.Thatis,
the lower the imprecisionlevels becomesthe further awvay
would a mappingsimilarity measurée from the exactmap-

ping.

Rank Numberof pairs
0 13
1-5 3
6-99 2
>100 0
[ Averagerank | 4.88 [ ]

Table3: Exactmappingpositioningwith respecto the best
mapping

We next look into the positioning of the exact mapping
within anorderedist of all possiblemappings.Table3 sum-
marizesour findings. A rank of 0 meansthat the algorithm
was successfuln identifying the exact mappingasthe best
mapping. Otherranksshow the positioningwithin all possi-
ble mappings.We obsene thatevenif analgorithmfails to
identify the exactmappingasthe bestmapping high ranking
of theexactmappingcanassisin identifying it within asmall
numberof trials (see[1] for efficient algorithmsto identify
top-K mappings). However, if oneneedsto iterateover all
possiblepermutations searchingthe searchspacebecomes
intractable. Practically speaking,a good algorithm for au-
tomaticsemantiaeconciliationshouldtake into accountthe
inherentuncertaintyof the process.Therefore jt shouldaim
at minimizing the numberof iterationsrequiredfor finding
anexactmapping.acknavledgingthatit is probablyimpossi-
ble to identify analgorithmthatwould alwaysrankthe exact
mappingfirst.

For the majority of the experimentsthe algorithmhaspo-
sitionedthe exactmappingwith arankof 0. Ontheaverage,
thecombinedalgorithmpositionsthe exactmappingbetween
thefourth andfifth positions.

Finally, we analyzethe relationship betweenstatistical
monotonicity and monotonicity with respectto the exact
mapping. A-priori, one may assumethat the latter is indif-
ferentto the behaiior of permutationsaslong astheir sim-
ilarity measurado not exceedthat of the exact mapping. In
particular one shouldnot be concernedvhetherlower im-
precisionlevels demonstratenonotonicbehaior. To dispute
this assumptiorwe shallhypothesizehatthereshouldbe no
correlationbetweenstatisticalmonotonicityand monotonic-
ity with respecto the exactmapping,andshaw thatour hy-
pothesigs invalid. As ameasuremerfbr theformerwe uti-
lize the R? statistic. As for the latter, we countthe number
of permutationghat their similarity measurds “sufficiently
close”totheexactmapping(P.). In ourexperimentsye have
definedthis notionof closenesso includeall of thosepermu-

2500
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1500 \

o
a- 1000

v e © © ~ &~~~ © © o o O 9
ooooooooooooooo

R-square

Figure2: R? vs. P.

tationswhosesimilarity measurds greaterthana threshold
(which was chosento be 0.89. in our case,wherep is the
similarity measuref the exactmapping).

Figure2 provides P. asafunctionof 12 for the combined
algorithm. The clearnegative trendis testimonialto theinva-
lidity of our hypothesis.Thereforethereis a correlationbe-
tweenstatisticalmonotonicityandmonotonicitywith respect
to the exactmapping.Moreover, from Table2 it is clearthat
the combinedalgorithm typically generatesnappingswith
high R2, thusthe combinedalgorithmis likely to rank the
exactmappingin atop positionamongall permutations.

5 Conclusionand futur e work

We have presentedhe monotonicity principle, a sufficient
conditionto ensurahatexactmappingwouldberankedclose
to the bestmapping. We believe this approacthoffers a use-
ful tool for identifying semanticallystrongalgorithms.From
thetheoreticahndempiricalanalysisof themodelit becomes
evidentthatfor monotonicmappingspnemay correlatesim-
ilarity measurewith precision,asconcevedby a humanob-
sener. While monotonicityis a strongnotion, wealer no-
tions suffice for practicalpurposes.Therefore matchingal-
gorithmsthatgeneratenonotonicmappinggin ary form) are
well suitedfor automaticsemantiaeconciliation.

Onepossiblgustificationfor this correlatiorhasto dowith
thevarianceof similarity measurearoundmprecisionevels.
The higher R? is, the lower the variancebecomes. There-
fore, lesspermutationsarelik ely to supersedéhe exactmap-
ping. This reasoningeadsoneto believe thatthe regression
line gradientcanimpactthe quality of a matchingalgorithm,
whichis somethingve planto explore next.

Monotonicity is not definedin “operational”’terms,since
it is comparedto an initially unknowvn exact mapping. In
fact, suchan operationaldefinition may not be generallyde-
veloped,since algorithmsmay perform well only on some
schemapairs. Therefore a taskfor future researchinvolves
possibleclassificationof applicationtypeson which certain
algorithmswould work betterthan others. Best mappings
may also be subjectve at times (lessso in the type of ap-
plicationswe wereexploring, though). It is not clearat this
time how an operationaldefinition canbe developedin such
caseswithout personalizinghealgorithmsto specifichuman
obsenrers.Takento theextreme anadaptve algorithmwould
rank erroneousnappingshigher, simply becaus@f a human
obsener presumptions.This line of researchs alsoleft for
futureinvestigation.



The recentstepstaken in the direction of automatingse-
marttic reconciliation highlight the critical needof this re-
search.As the automationof the processhasalreadybegun
to take shapepftenwithoutthe benefitsof thoroughresearch,
the studyis timely. We ervision multitude of applicationsof
automaticschemamatchingto the semantidieh For exam-
ple, we are currently designingsmartagentsthat negotiate
over information goodsusing schemainformation and can
combatschemaeterogeneity
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