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Abstract

Schema integration is the process by which
schemata from heterogeneous databases are concep-
tually integrated into a single cohesive schema. In
this work we propose a modeling framework for
schema integration, capturing the inherent uncer-
tainty accompanying the integration process. The
model utilizes a fuzzy framework to express a con-
fidence measure, associated with the outcome of a
schema integration process. In this paper we pro-
vide a systematic analysis of the process properties

and establish a criterion for evaluating the quality of
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matching algorithms, which map attributes among

heterogeneous schemata.

1 Introduction and motivation

Schema integration is the process by which
schemata from heterogeneous databases are con-
ceptually integrated into a single cohesive schema.
In this work we propose a modeling framework for
schema integration, capturing the inherent uncer-
tainty accompanying the integration process. We
assert that the proposed formal model provides
a solid foundation for analyzing the quality of a
schema integration process. To substantiate our
claim, we provide a systematic analysis of the pro-
cess properties and establish a criterion for evaluat-
ing the quality of matching algorithms, which map
attributes among heterogeneous schemata. This
criterion (dubbed monotonicity) demonstrates the

usefulness of the model and can serve in a com-



parative empirical analysis of various algorithms.
Our research is motivated by the shift from man-
ual schema integration, as was proposed in [23, 15]
to semiautomatic schema integration [12] and fully
automatic schema integration [18]. The latter is
of particular importance in supporting the reason-
ing capabilities of software agents in the Semantic
Web. The proposed model, to be given in details
in Section 2, utilizes a fuzzy framework to model a
confidence measure, associated with the outcome of
a schema integration process. For example, given
two attribute sets A and A’, the model associates a
similarity measure, normalized between 0 (total dis-
similarity) and 1 (equivalence) with any mapping
among attributes of A and A’. Therefore, given
two attributes A € A and A’ € A', A and A’ are
p-similar (denoted A «,,,, A'), specifying a confi-
dence measure for the mapping. We assume that a
manual matching is a perfect process, resulting in
a crisp mapping, with pq = 1. As for automatic
matching, a hybrid of algorithms, such as those pre-
sented in [7, 18, 21] or adaptation of relevant work in
proximity queries (e.g., [5, 2]) and query rewriting
over mismatched domains (e.g., [6]) can determine
the level of pgs- Identifying a similarity measure
1, in and by itself, is insufficient for matching pur-
poses. One may claim, and justly so, that the use
of syntactic means to identify semantic equivalence,
may be misleading in that a mapping with a high p
can be less precise, as conceived by an expert, than
a mapping with a lower u. We therefore propose a
family of “well-behaved” mappings (termed mono-
tonic mappings), for which one can safely interpret

a high similarity measure as a good semantic map-

ping. An immediate consequence of this result is
the establishment of a corroboration for the quality
of mapping techniques, based on their capability to

generate monotonic mappings.

Despite a vast body of research on heterogeneous
schemata matching (MOMIS [3], DIKE [22], Clio
[20], Cupid [18], and OntoBuilder [21], to name a
few), there is sparse academic literature on appro-
priate evaluation tools for proposed algorithms and
matching methods in this area. A recent work on
representing mappings between domain models was
presented in [17]. This work provides a model rep-
resentation and inference analysis. Managing un-
certainty was recognized as the next step on the
research agenda in this area and was left open for
a future research. Our work fills this gap in pro-
viding a framework that models and enables rea-
soned analysis of uncertainty. In [19], a model for
estimating information loss in a matching process
was introduced. The model computes precision and
recall of substitutions of terms in a generalization-
specialization hierarchy. The proposed metrics (and
their combination, as suggested in [19]) serve as al-
ternatives to the pu-similarity measure we propose
in this paper. However, no evaluation of the corre-
spondence of these measures with the “goodness” of
the mapping, as perceived by an expert, are avail-
able. Our work shows that p-similarity can be cor-
related with mapping quality. Our approach was
inspired by works of Fagin [10], who proposed a
method of combining answers to queries over differ-
ent data sources using simple fuzzy set theory con-
cepts and a method for allowing users to weight dif-

ferent parts of their queries. This work extends im-



precision to metadata and identifies a family of map-
pings for which imprecision calculations is mean-
ingful. An alternative to the fuzzy sets framework
exists in the form of probabilistic methods (e.g.,
[9]). A probabilistic-based approach assumes that
one has an incomplete knowledge on the portion of
the real world being modeled. However, this knowl-
edge can be encoded as probabilities about events.
The fuzzy approach, on the other hand, aims at
modeling the intrinsic imprecision of features of the
modeled reality. Therefore, the amount of knowl-
edge at the user’s disposal is of little concern. Our
choice, in addition to philosophical reasoning, is also
based on pragmatic reasoning. Probabilistic reason-
ing typically relies on event independence assump-
tions, making correlated events harder to assess.
Our approach is supported by the results presented
in [8], where a comparative study of the capabili-
ties of probability and fuzzy methods is presented.
This study shows that although probabilistic anal-
ysis is intrinsically more expressive than fuzzy sets,
fuzzy methods demonstrate higher computational

efficiency.

The rest of the paper is organized as follows.
Section 2 introduces the proposed schema integra-
tion model. We formally define similarity relations
(primitive and compound) as fuzzy relations and
demonstrate these concepts by defining similarities
among data values, domains, individual attributes,
and mappings. We next define a class of monotonic
mappings in Section 3, for which we show that fuzzy
matching reflects the precision of the mapping itself.
In Section 4 we analyze some properties of com-

pound similarity relations. In particular, we provide

a justification, in retrospect, for the common use of
weighted bipartite matching in identifying the best
mapping. The paper is concluded in Section 5 with
a discussion of the model applicability and direc-

tions for future research.

2 The model

In this section we provide a formal model for com-
puting similarities among attribute sets, based on
fuzzy relations [4], as follows. A fuzzy set A over
a domain D is a set, characterized by a member-
ship function d4 : D — [0, 1], where d4(a) = p is
the fuzzy membership degree of the element a in A.
In what follows we use 4@ to specify the elements
of interest whenever it cannot be clearly identified
from the context. Given domains Dq,Ds,....D,
and their Cartesian product D = Dy XDy X - -- X D,,,
a fuzzy relation R over the domains Dy, D3, ..., D),
is a fuzzy set of elements (tuples) of D. We next
introduce two types of similarity relations. Prim-
itive similarity relations are introduced in Section
2.1. Section 2.2 introduces compound similarity re-

lations.
2.1 Primitive similarity relations

Given domains D and D', a primitive similarity
relation is a fuzzy relation over D U D’, denoted
~u, where p is a membership function such that

the following properties hold:

o (ref) For every d € DUD’, d ~, d (using an

infix notation) with p = 1.

e (sym)FordeD,d €D',d~,d —d ~,d



e (trin) For d € D, d' € D' and d” € D" (where
D" is a third domain and the similarity relation
is defined over DUD' UD"), (d~, d Nd' ~
d") — d ~,» d” such that p” < p+ p'.

A primitive similarity relation is a fuzzy relation
(over D, D’) whose membership degree is computed
using some distance metric among domain mem-
bers. We can also require the partition of the do-
main such that for d # d', if {d,d’} CDor {d,d'} C
D', then d ~, d" with 4 = 0. Such partition-
ing is natural in our case, given that our aim is to
match elements of different domains. We annotate
by ud’d, the similarity between d and d’. As an ex-
ample, consider two non-negative numeric domains
D = {0,15,30,45} and D’ = {0, 10, 20, 30,40, 50},
both representing a fraction of an hour in which a
car will be picked up. Assume that the similarity of
elements d € D and d’ € D’ is measured according
to their Euclidean distance, normalized between 0
and 1:

d—d

d,d’ -1—
maxd;,d; epup{|di — dj|}

(1)

Therefore, the similarity score between 15 (in D)
and 30 (in D') is 0.7. pu®%, as defined in Equation
1, is a primitive similarity relation.

The properties of primitive similarity relations
are desirable properties when it comes to schema
integration. Reflexivity ensures that exact match-
ing receives the highest possible score (as in the case
of two attributes with the same name). Symmetry
ensures that the order in which two schemata are
compared has no effect on the final outcome. Fi-
nally, the triangular property enables the generation

of similarity classes, sets of attributes (one of each

schema) that are synonymical. This last property
enables a desirable learning feature for automatic

schema integration.
2.2 Compound similarity relations

Compound similarity relations use similarity
measures (either primitive or compound) to com-
pute new similarity measures. In this section we
introduce compound similarity relations via an ex-
ample. We defer the formal analysis of such rela-
tions to Section 4. As an example, we can com-
pute the similarity of two numeric domains, based
on the similarity of their values. Let D and D’ be
the domains. Let pgom be a function, termed the
domain similarity measure. Then, ~,, is a do-
main similarity relation (over a set of domains) and
D ~,,... D' is the domain similarity of the domains
D and D'. pgom is a function of the similarities of
every pair of elements from D and D’. For example,

one may compute Lo, as:

uD’DI = min
dom deD,d’ €D’

(uwl, MD,’d) (2)

where for all & € T/, yP¢ = maxgep (,ﬂyd’) and
for all d € D, uDl’d = maxy ep’ (,ud”il). That is,
each value in D is matched with the “best” value in
D’, and vice versa, and the strength of pgom is de-
termined by the strength of the “weakest link.” Our
use of min and max is in line with fuzzy logic con-
ventions, where max is interpreted as disjunction
and min is interpreted as conjunction. We shall
discuss alternative operators in Section 4, provid-
ing constraints on the possible operator selection.
As a concrete example, consider D and D’ given

above. Computing ,udDo’E according to Equation 2



yields a matching of 0 with 0, 10 and 20 with 15,

D,'D”

dem = 0.9, since each element in D" has a

etc. 1
corresponding element in D which is at most 5 min-
utes apart (and 1 — & = 0.9). It is worth noting
that the similarity measure given by Equation 2 is
both reflexive and symmetric.

3 Monotonic mappings: measuring

matching quality

In this section we aim at modeling the relation-
ship between a choice of a mapping, based on sim-
ilarity of attributes, and a choice of a mapping, as
performed by a human expert. The more corre-
lated these mappings are, the more effective would
an automatic mapping process be. In order to com-
pare the effectiveness of various choices of mappings
and operators, we introduce the notion of mapping
imprecision, which follows common IR practice for
retrieval effectiveness (e.g., [11]). Assume first that
among all possible mappings between two attribute
sets of cardinality n (n! such mappings for 1 : 1
matching), we choose one and term it the ezact
mapping (denoted F). Intuitively, the exact map-
ping is the best possible mapping, as conceived by a
human expert. Having selected the exact mapping
between A and A’, we measure the imprecision of
any other mapping G simply by counting how many
arguments of F' and G do not coincide. We next

present a formal definition of mapping imprecision.

Definition 1 Let A = {4;,...,A,} and A’ =
{A],..., AL} be attribute sets of cardinality n. Also,
let F and G be two mappings over A and A’ and
A; € A an attribute. F discord with G over A; if

F(A;) # G(A;). DFY denotes the set of attributes
of A over which F discord with G .

Definition 2 Let F be an exact mapping over A
and A" and let G be a mapping over A and A’ such
that there are m < n attributes in A over which F
discord with G. Then G is m-imprecise (with respect

to F'). We denote by iq the imprecision of G.

Definition 3 Let F' and G be mappings over at-
tribute sets A and A'. F and G are similarity pre-
serving on an attribute A € A if ip < ig implies
uft’f(A) > ,LtaAt’tG(A). MEC denotes the set of at-

tributes of A on which F and G are similarity pre-

serving.

Definition 4 Let F = {Fy, Fy, ..., F,,,} be a set of
mappings over attribute sets A and A’, and let @ =
(w1, ..., n) be a weight vector that sums to unity,
associating with each attribute A; € A a weight w;.
F is monotonic if the following inequality holds for

any pair {F;, Fj} C F such that ip, <ip,;:

A, Fi(A Ay, Fi(A
> (e (" ) >

AgeDFolinmFiT
S (e (il - )

ApeDTFi\mFi Ty

The sum on the left represents the benefit of
switching from Fj to F;. DFoFi 0 MFiFi repre-
sents those attributes over which Fj discord with
Fj, yet are similarity preserving. Since ip, < ig;,
each term in the sum adds to the overall similarity.
The sum on the right represents the loss involved
in switching from F} to Fj. DFsF\ MFFs repre-
sents those attributes over which Fj discord with

F};, and that are not similarity preserving. These



attributes lower the overall similarity by switching
from Fj to Fj. If the benefit of switching from Fj
to F; surpasses the cost for all pairs {F}, F;} C F
such that ip, < ip;, we consider the set to be mono-
tonic. If the exact mapping is chosen among mono-
tonic mappings, then the following holds: if F' € F
and F is monotonic then s overall similarity mea-
sure is greater than the overall similarity degrees
of i-imprecise mappings in F, even if such map-
pings yield better similarity degrees on some pairs
of domain elements and on some pairs of attribute
names. If all one wishes to obtain is the ability to
identify the exact mapping through the use of sim-
ilarity, one needs a weaker notion of monotonicity,

as defined next.

Definition 5 Let F = {F}, Fb, ..., Fi, } be the set of
all possible mappings over attribute sets A and A’.
F is monotonic with respect to the exact mapping
F € F if the following inequality holds for any F; €
F:

> (m (™ ) >

AkG'DFi’FﬁMFi‘F

> (e () )

ApeDFiF\MFiF

4 Compound similarity properties

Having defined the framework for expressing
schema mapping similarity, we turn our attention
to compound similarity properties. In Section 4.1,
we discuss the set of alternative operators we have at
our disposal and their inter-relationship. Section 4.2
presents some interesting properties of monotonic

mappings. The main result of this section states

that, under appropriate hypotheses made explicit
in Section 4.2, a monotonic set of mappings orders

mappings according to their imprecision level.
4.1 Similarity operators

In this section we present two families of similar-
ity operators, namely triangular norms and fuzzy
aggregate operators, and compare their properties.
Operators from both families are typically used in
fuzzy-based applications to combine various fuzzy
membership degrees. Since the study of different
ways of combining similarities is crucial to this work,
we provide a brief introduction of their main prop-
erties.

The min operator was introduced in Section 2.1
for computing the similarity degree of two domains.
This operator is the most well-known representa-
tive of a large family of operators called triangular
norms (t-norms, for short), routinely deployed as
interpretations of fuzzy conjunctions. In the fol-
lowing, we define t-norms and discuss their relevant
properties. We refer the interested reader to [16] for
an exhaustive treatment of the subject.

A triangular norm T : [0,1] x [0,1] — [0,1] is a
binary operator on the unit interval satisfying the

following axioms for all =, y, z € [0, 1]:

e (boundary condition) T'(z,1) = =z,

e (monotonicity) < y implies T'(x, z) < T'(y, 2),
e (commutativity) T'(z,y) = T(y, x),

e (associativity) T'(z, T (y, 2)) = T(T (z,vy), 2).

Examples of t-norms that are typically used as

interpretations of fuzzy conjunctions include mini-



mum (Tm(z,y) = min(z,y)), product (T'p(z,y) =
z - y), and the Lukasiewicz t-norm (Tl(z,y) =
max(z +y — 1,0)). It is worth noting that T'm is
the only idempotent t-norm. That is, Tm(z,z) = .
This becomes handy when comparing t-norms with
fuzzy aggregate operators. Also, it can be eas-
ily proven (see [14]) that Ti(z,y) < Tp(z,y) <
Tm(x,y) for all z,y € [0,1].

The average operator that is typically used for
the computation of the similarity of attribute sets
does not satisfy the t-norm axioms. Rather, it be-
longs to another large family of operators termed

fuzzy aggregate operators [16]. A fuzzy aggregate
operator H : [0,1]" — [0,1] satisfy the following

axioms for every x1,...,2, € [0,1]:
e (idempotency) H(x1,21,...,21) = 21 ,
e (increasing monotonicity) for every

Y1:Y2,---,Yn € [0,1] such that z; < y;,

H(xlvx%"':xn) SH(ylay27"'7yn)a

e H is a continuous function.

Let Z = (z1,...,%,) be a vector such that for
all 1 <i < n,x; €[0,1] and let @ = (w1, ..., wy)
be a weight vector that sums to unity. Examples of
fuzzy aggregate operators include the average op-
erator Ha(z) = £ > 7 x; and the weighted average
operator Hwa(Z,@) = Z - @. Clearly, average
is a special case of the weighted average opera-
tor, where w; = --- = w,. It is worth noting
that T (the min t-norm) is also a fuzzy aggre-
gate operator, due to its idempotency (its associa-
tive property provides a way of defining it over any

number of arguments). However, Tp and T are

not, fuzzy aggregate operators. T-norms and fuzzy

aggregate operators are comparable, using the in-

equality min(xy,...,2,) < H(z1,...,z,) for all
Z1y...,2y € [0,1] and function H satisfying idem-
potency, increasing monotonicity and continuity ax-

ioms.
4.2 Monotonic mappings revisited

In this section we present some relevant proper-
ties of compound similarity operators. In particu-
lar, we show that for a monotonic set of mappings,
the use of a weighted average to compute mapping
similarity orders mappings according to their im-

precision level.

Theorem 1 Let F be a monotonic set of mappings
and let { F;, F;} € F be mappings over attribute sets
A and A" with imprecision i, and ig;, respectively,
such that ip, < iF,. If the corresponding similar-
ity measures are combined using the Hwa (weighted
average) operator yielding respectively ut' and p©,

then p¥ > p¢.

Theorem 1 requires that similarities are com-
bined using the Hwa (weighted average) opera-
tor. We now show that the use of weighted aver-
age is preferred over any t-norm operator to com-
pute mapping similarity. For simplicity sake, we re-
strict our discussion to similarity among attribute
pairs and their combination into similarities among
schemata. The following result can be easily gen-
eralized to any similarity measure method. We de-
note by X1 X5 a particular selection of operators for
computing attribute similarity (X7), and mapping
similarity (X3). We next show that, in most cases,

a selection of type X1 Ha is superior to any selec-



tion of type X171, where T stands for any t-norm

operator.

Definition 6 Let A = {A1,...,A,} and A" =
{A],..., A} be attribute sets of cardinality n.

D

and A’ are closely related if for any mapping

over A and A', if (A, A") € F, then Mﬁtf, > 0.

Closely related attribute sets consist of attributes
that may map well in various combinations. Our
experience show that this is hardly ever the case,
since attributes tend to vary in names and domains.
We next present a proposition arguing that t-norms
are not suitable for modeling attribute sets that are

not closely related.

Proposition 1 Let A = {A;,...,A,} and A" =
{A],..., A} be attribute sets of cardinality n. If A
and A" are not closely related, any selection of oper-
ators of type X1T yields a non monotonic mapping

set.

An immediate corollary to Proposition 1 relates
to mappings using weighted bipartite graph match-
ing. Given two attribute sets, A and A’, one may
construct a weighted bipartite graph G = (V, E),
such that V = AU A, and (v;,v;) € E if v; € A,
v; € A

[0,1] is defined to be w(vi,v;) = pas’. The

The weight function w : A x A —

weighted bipartite graph matching algorithm yields
a 1 : 1 mapping F with maximum weight QF =
> (viyer @(viyv;). Given that A and A" are at-
tribute sets of cardinality n, that are not closely re-
lated, and assuming a selection of operators of type
X, Ha, such mapping yields puf = %QF There-

fore, the use of weighted bipartite graph matching is

equivalent to a selection of operators of type X1 Ha,
which yields results as good as any selection of op-

erators of type X7, and possibly better.

5 Conclusion and future work

We have presented a formal model for schema
matching, capturing the inherent uncertainty of the
outcome of automating the process. The model pre-
sentation is followed by an analysis of the model
properties and the identification of a sufficient con-
dition for the correlation of the automatic process
outcome with that of a manual process. The formal
model borrows from fuzzy set theory in modeling
uncertainty. The theoretical analysis of the model
have yielded that for monotonic mappings one may
correlate similarity measure with precision, as con-
ceived by a human expert. While monotonicity is a
strong notion, weaker notions, such as monotonicity
with respect to an exact match suffices for practi-
cal purposes (such as identifying the exact mapping
within a small number of iterations). Therefore,
matching algorithms that generate monotonic map-
pings (in any form) are well suited for automatic se-
mantic reconciliation. Unless attributes in schemata
are closely related, mapping similarity cannot utilize
any t-norm as its computation vehicle. A preferred
operator would come from the fuzzy aggregate oper-
ator family, e.g., the average operator. This result
provides a theoretical support for the use of varia-
tions of the weighted bipartite graph matching for
computing schema mapping.

We have performed initial experiments, aiming at
verifying empirically the correlation between a sim-

ilarity measure (generated by a given algorithm) on



the one hand and monotonicity on the other hand,
using imprecision level as the experimentation tool.

A full report of the experiments is available in [13].

We envision multitude of applications for auto-
matic schema matching. For example, the research
is likely to aid in the design of smart agents that
will negotiate over information goods using schema
information and provide them with some practical
tools to combat schema heterogeneity. Towards this
end, we shall conduct a thorough analysis of schema
usability, to enable a realistic evaluation of the out-
comes of a top-K algorithm [1] on a practical level.
The top-K algorithm, presented in [1], enables an
efficient identification of K mappings with the high-
est similarity measure. The outcome of the analysis
would be the development of robust methods for as-
sessing the usability of mappings to a user. Using
these methods, an agent performing on behalf of a
user will be able to filter out non-usable matchings
from the top- K group, so that the remaining results,
that are to be presented to the user, would be of the

best quality.
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