Using OntoBuilder

Author: Giovanni Modica

Date: 12/27/2002
1. OntoBuilder Applications

OntoBuilder started as a tool (with a user interface) developed in Java. Later, one of the requirements was to implement OntoBuilder as an agent, removing any user interaction required. Therefore, OntoBuilder was implemented as a TCP agent. OntoBuilder can be accessed as a graphical tool, as a command line tool, as an applet, as a java WebStart application, as a TCP server, and using an HTML interface. Following are the details on how to run OntoBuilder for each type of application.
Graphical Tool
From the command prompt (and assuming you are in the root directory of OntoBuilder) type:

java -jar OntoBuilder.jar

java com.modica.ontobuilder.OntoBuilder

The first is used when running OntoBuilder using the compressed JAR version (see details about how to compress OntoBuilder later). The command has two options:

java com.modica.ontobuilder.OntoBuilder [-v|-verbose] [-r|-result]
The -r option is to show results of the operations performed by OntoBuilder when matching two ontologies, the result is presented as tables. The -v is for a verbose (more detailed) output (including the output obtained with the –r option). I suggest that when using the -v or -r options to run OntoBuilder as

java com.modica.ontobuilder.OntoBuilder -v > results.txt

redirecting the output to a file called results.txt. Open the file to see the information it contains.

Command Line Tool

As a command line tool, OntoBuilder can perform two operations: ontology generation and ontology matching. From the command prompt (and assuming you are in the root directory of OntoBuilder) type:

java com.modica.ontobuilder.OntoBuilder -g|-generate -url <URL> -o|-output <file> [-n|-normalize]

java com.modica.ontobuilder.OntoBuilder -m|-match -targetURL <URL> -candidateURL <URL> -o|-output <file> [-n|-normalize]
The first command is to perform ontology generation from a URL, outputting the results to a file, and optionally normalizing the ontology generated
.
Applet
OntoBuilder can also be run as a java applet. The applet is contained in a page located in the root directory of OntoBuilder, under the name of OntoBuilderApplet.html. In order to successfully run OntoBuilder as an applet, a set of steps are required in the client machine running the application. For a detailed explanation of the steps refer to the instructions.html page in the OntoBuilder’s root directory.
Java WebStart Application

OntoBuilder can be run as a java WebStart application. The application is contained in a page located in the root directory of OntoBuilder, under the name of OntoBuilderWebStart.html. In order to successfully run OntoBuilder as a java WebStart application, a set of steps are required in the client machine running it. For a detailed explanation of the steps refer to the instructions.html page in the OntoBuilder’s root directory.

TCP Server

All the applications types described earlier (except for the command line version) require user interaction in order to build and match ontologies. By using OntoBuilder as a TCP server, clients can send TCP requests for ontology generation and matching using a specific XML format for the requests. To start the OntoBuilder server, type the following:

java com.modica.ontobuilder.OntoBuilder -a|-agent
OntoBuilder will start as a service and wait for requests. In order to stop the service type CRTL-C. If the platform where OntoBuilder is running is a Windows NT machine (by NT machine we mean Windows NT professional and server version 4.0, Windows 2000, and Windows XP), then OntoBuilder can be run as a NT service. Running an application as a service has many advantages, being the most important the fact that the application can run in the background independent of the user currently logged in the system. To install the service, run the file install.bat located under the NTService directory in the OntoBuilder’s root directory. This will add an entry in the Control Panel’s Service applet which can be started and stopped as any standard Windows service.
Once running, the OntoBuilder server runs under the TCP port 7070. It accepts two types of requests: requests for ontology generation and request for ontology matching. Each request is formatted as an XML document. Below is an example of both types of requests:
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ontobuilderRequest SYSTEM "ontobuilderRequest.dtd">

<ontobuilderRequest>

<generateOntology normalize="yes">

<url>http://www.avis.com/AvisWeb/home/AvisHome</url>

</generateOntology>

</ontobuilderRequest>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE ontobuilderRequest SYSTEM "ontobuilderRequest.dtd">

<ontobuilderRequest>

<matchOntologies normalize="yes">

<algorithm threshold="0.25">Graph Match</algorithm>

<targetURL>http://www.avis.com/AvisWeb/home/AvisHome</targetURL>

<candidateURL>http://www.dollar.com</candidateURL>

</matchOntologies>

</ontobuilderRequest>
Each request must be terminated by a double end-of-line, similar to the way requests are made in the HTTP protocol. Once the requests are sent, the server responds by retuning an XML document containing the ontology for the URL specified in the request. The DTDs describing the request XML documents and response XML documents are located in the dtds directory under OntoBuilder’s root directory.
HTML Interface
OntoBuilder has an HTML interface to the agent that makes things easier and abstracts the user of the complexities of the TCP connection and formats. This interface is a JavaServer Pages application that runs under the Tomcat application framework (although others frameworks that support JSP pages and Java Servlets are also valid). In order to install the OntoBuilder’s HTML interface, a new web context must be created under Tomcat (for instructions on how to create a web context in Tomcat see its documentation). The web context must point to the root directory of OntoBuilder.

The application contains two pages: OntoBuilderClient.jsp and OntoBuilderClientRequest.jsp. The first page contains HTML forms where the user can choose whether to send a request for ontology generation or matching, specifying the appropriate URLs for each kind of request. Optionally, the user can send an XML request as explained in the previous section.

2. Maintaining OntoBuilder Source Code

OntoBuilder source code is located under the com directory in OntoBuilder’s root directory. All the source code is relative to the java package com.modica, containing subpackages that correspond to application extensions.
Supporting libraries are located under the lib directory, while images used in the graphical version of the tool can be found in the images directory.

In order to facilitate the repeating tasks of compilation, compression, etc., OntoBuilder relays in Ant, a tool similar to the common make used to automate tasks for C/C++ development. Ant can be downloaded from the Jakarta project at http://www.apache.org. Ant is based on targets, which are defined in a file called build.xml. Each target is responsible of performing a given tasks, such as compiling. The following are the targets defined for OntoBuilder:

· clean: removes all the .class files product of compilation.

· compile: used to compile the source code for OntoBuilder.

· buildjar: used to compress OntoBuilder in a JAR file that can be distributed and used for applet and WebStart execution.

· pack: creates a JAR file (as in the buildjar target) plus signs the JAR file using a digital signature.
· signlibs: signs all the library files (located in the lib directory) to be distributed with the JAR file in applet and WebStart applications.

Targets can be executed using the following syntax:

ant <target>

3. Configuring OntoBuilder
OntoBuilder can be configured by editing the file configuration.xml located in the OntoBuilder’s root directory. The file is an XML document where parameters are specified using a parameter tag containing the name of the parameter, the current value and the default value (in case it has one). Most of the parameters can be set using the graphical interface by using the menu Tools(Options.
� To normalize an ontology is to build a more consistent version of the ontology by means of hierarchical grouping and domain recognition. For details see the publications for MSU Thesis, CoopsIS 2001 and TDKE 2003.

