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Abstract

In this paper we provide a comparison, both an-
alytic and empirical, of two algorithms that were
used in the literature for ensuring a 1 : 1 cardi-
nality constraint in schema matching. We com-
pare an application of a solution to the maximum
weighted bipartite graph to schema matching to
that of solving a stable marriage problem. Us-
ing real-world testbed we show that in practice,
both algorithms yield similar results. We then
analyze the roots of this similarity, by offering
a variation of the stable marriage algorithm for
schema matching (royal couples) and show the re-
lationships between the royal couples stable mar-
riage problem and the maximum weights bipartite
graph problem. Finally, we propose a new heuris-
tic for schema matching, based on the royal cou-
ples observation and show its performance with
respect to the two algorithms.

Introduction

Schema matching is the task of matching between con-
cepts describing the meaning of data in various hetero-
geneous, distributed data sources. It is recognized to
be one of the basic operations required by the process
of data and schema integration (Melnik 2004), and thus
has a great impact on its outcome.

A heavily studied area of schema matching involves
the enforcement of 1 : 1 mapping cardinality. That is,
an element (e.g., a relational database attribute) can
be mapped to at most one element of another schema.
Two main methods were used to enforce 1 : 1 car-
dinality constraints. The first represents the schema
matching problem as a bipartite graph and then solves a
Maximum Weighted Bipartite Graph (MWBG) prob-
lem. The second represents the schema matching prob-
lem as a set of ranking lists, in which each schema el-
ement ranks all elements of the other schema in a de-
creasing order of similarity. Then, a best mapping is
achieved by solving a Stable Marriage (SM ) problem.
Both algorithms fall into the category of constraint en-
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forcers in (Lee et al. 2007) and both enforce a cardinal-
ity constraint of 1 :1.

In this paper we provide a comparison, both analytic
and empirical, of the two algorithms. Using real-world
testbed we show that in practice, both algorithms yield
similar results. We then analyze the roots of this simi-
larity, by offering a variation of the stable marriage algo-
rithm for schema matching (dubbed royal couples) and
show the relationships between the royal couples stable
marriage problem and the maximum weights bipartite
graph problem. Finally, we propose a new heuristic
for schema matching, based on the royal couples ob-
servation and show its performance with respect to the
algorithms.

The specific contribution of this work are as follows:

• We show the relationships between MWBG and SM
in the specific context of schema matching.

• We propose a new schema matching heuristic,
Dominant Matching (DM ), that is based on the ob-
servations regarding the royal couples stable marriage
problem.

• We present a thorough empirical analysis of the per-
formance of MWBG, SM, and DM. Our compara-
tive analysis shows that DM can increase the Pre-
cision over both MWBG and SM by about 30%,
accompanied by a reduction in Recall of about 6%,
making it a reasonable candidate for today’s schema
matching tasks.

The rest of the paper is organized as follows. We first
present a model of schema matching, to be used in this
paper, and provide a brief introduction to MWBG and
SM. An analysis of the two schema matchers is given
next, both emprically and analytically. Then, we intro-
duce DM, followed by a comparative empirical analysis.

Model
The model we present here is based on (Domshlak, Gal,
& Roitman 2007). Let schema S = {A1, A2, ..., An}
be a finite set of some attributes. We set no particu-
lar limitations on the notion of schema attributes; at-
tributes can be both simple and compound, compound
attributes should not necessarily be disjoint, etc. For



any schemata pair S and S′, let S = S×S′ be the set of
all possible attribute mappings between S and S′. Let
M (S, S′) be an n× n′ similarity matrix over S, where
Mi,j represents a degree of similarity between the i-th
attribute of S and the j-th attribute of S′. The major-
ity of works in the schema matching literature define
Mi,j to be a real number in (0, 1). M (S, S′) is a binary
similarity matrix if for all 1 ≤ i ≤ n and 1 ≤ j ≤ n′,
Mi,j ∈ {0, 1}.

Let the power-set Σ = 2S be the set of all possible
schema mappings between this pair of schemata and let
Γ : Σ → {0, 1} be a boolean function that captures the
application-specific constraints on schema mappings,
e.g., cardinality constraints and inter-attribute map-
ping constraints. We say Γ is a null constraint function
if for all σ ∈ Σ, Γ(σ) = 1. Given a constraint specifi-
cation Γ, the set of all valid schema mappings in Σ is
given by ΣΓ = {σ ∈ Σ | Γ(σ) = 1}.

Formally, the input to the process of schema match-
ing is given by two schemata S and S′ and a constraint
boolean function Γ : Σ → {0, 1}.1 The output of the
schema matching process is a schema mapping σ ∈ ΣΓ.

Schema matchers are instantiations of the schema
matching process. Various schema matchers differ
mainly in the measures of similarity they employ, yield-
ing different similarity matrices. These measures can be
arbitrarily complex, and may use various techniques for
name matching, domain matching, structure matching
(such as XML hierarchical representation), etc.

Let G = (S, S′, E) be an undirected bipartite graph,
with a node set V = S

⋃
S′ representing attributes,

where S and S′ denote the sides of the graph, and an
edge set E. Weights w : E → R+ are assigned to
edges, representing the degree of similarity between the
attributes. A mapping σ in G is a subset of pair-wise
disjoint edges of E. An efficient algorithm O(n3) for
identifying the best mapping, given all pair-wise simi-
larities, is given as a variation of the MWBG matching
algorithm (Galil 1986).2

The SM problem, introduced by Gale and Shapley
(Gale & Shapley 1962), was used in (Melnik, Garcia-
Molina, & Rahm 2002) to generate schema mappings.
In the SM problem, each of n men and n women lists
the members of the opposite sex in strict order of pref-
erence. The goal is to find a stable marriage E, a com-
plete matching of men and women with the property
that there is no unmatched pair (m,w) such that m
prefers w to his partner in E, and w prefers m to her
partner in M . Such a pair is called a blocking pair.

Gale and Shapley have shown that a stable marriage
1For ease of exposition, we constraint our presentation

to a matching process of two schemata. Some approaches
to schema matching, such as holistic schema matching (He
& Chang 2005; Su, Wang, & Lochovsky 2006) operate on
any number of schemata, and although their presentation in
the form of a high-dimensional matrix is possible, we refrain
from presenting it herein.

2More sophisticated (parallel) algorithms solve this prob-
lem in O(n2.5).

always exists and can be found in O(n2). Their algo-
rithm works through a series of proposals where ev-
ery time a free man proposes to the most preferred
woman on his list that did not previously reject him.
If a woman is proposed to by a man whom she prefers
over her current fiancé or she has not been engaged yet,
she frees her current fiancé (if exists) and engages with
the proposed man, otherwise she rejects him. Thus,
during the execution of the algorithm, men propose to
women and some men and some women become en-
gaged. Women can break engagements if they receive a
better offer.

It is worth noting that under the model presented in
this section, applying the SM algorithm to the process
of schema matching involves an additional effort that is
needed in transforming a matrix of weights to lists of
preferences. This effort involves sorting each row and
column in the matrix and therefore the complexity of
constructing these lists is O(n2 log n), dominating the
total complexity of the algorithm.

Royal Couple Matching
We now present a matching algorithm that is based on
an interesting observation pertaining to the SM appli-
cation to solving schema matching problems, as follows:
Recall that the preference lists in the SM algorithm are
generated from a similarity matrix. Therefore, at each
iteration of the algorithm there is at least one couple
whose elements prefer each other. This is the couple
whose entry in the matrix has a maximum value. We
term such a pair a royal couple.

Algorithm 1 Royal Couples

1: Input: an n× n similarity matrix M
2: repeat
3: Find the maximum value in M
4: Insert the maximum value M(i, j) to the output

mapping
5: Delete the i -th row and the j -th column from M
6: until M is not empty

We use this observation in constructing the royal cou-
ple algorithm (Algorithm 1). At each iteration, the al-
gorithm selects a pair of attributes (i, j) with the max-
imum value Mi,j in the similarity matrix M , adds the
pair (i, j) to the output mapping E and deletes the i-th
row and the j-th column of M , to satisfy the 1:1 cardi-
nality constraint. The time complexity of Algorithm 1
is O(n2 log n), which is again the cost of sorting all rows
and all columns.

Theorem 1 The matching computed by the Royal
Couples algorithm is a stable marriage.

Proof. Let E be the mapping computed by the Royal
Couples matching algorithm. We need to show that
there is no blocking pair (m,w). Suppose, by way of
contradiction, that there is a blocking pair (m,w) 6∈ E.
Assume (m,w′) ∈ E and (m′, w) ∈ E. Assume also,



without loss of generality, that (m,w′) was selected be-
fore (m′, w). Consider the iteration i in which the al-
gorithm selects (m,w′). There are two possible cases:

• At iteration i, (m,w) was still in the matrix:
Since the algorithm selected (m,w′) at iteration i,
(m,w′) is the current maximum value. In particular,
Mm,w′ > Mm,w , i.e., m prefers w′ to w and therefore
(m,w) is not a blocking pair, a contradiction.

• At iteration i, (m,w) was already removed from the
matrix: this case is impossible as we shall now show.
At iteration i, (m,w′) is still in the matrix and
also (m′, w), since (m,w′) is removed before (m′, w).
However, since (m,w) was deleted before this itera-
tion, it means that either row m or column w were
deleted (line 5 of Algorithm 1) ⇒ (m,w′) or (m′, w)
is not in the matrix anymore, a contradiction.

According to Theorem 1, Algorithm 1 can serve in
solving the stable marriage problem. It is worth noting
that Algorithm 1 does not improve on Gale and Shapely
algorithm in any way. In particular, its worst case time
complexity is the same. Still, its presentation serves in
demonstrating the inter-relationships between SM and
MWBG and serves as a basis for the new heuristic
presented in this paper.

Empirical Comparison of MWBG and
SM

We now present an empirical evaluation of MWBG
and SM. We report in details on our experimental
setup, the data that was used, and the evaluation
methodology. We then present the experiment results
and provide an empirical analysis of these results.

Experiment setup
For generating the similarity matrices, we have used
the Combined OntoBuilder heuristic (Gal et al. 2005),
combining four matchers as detailed below:

Term: A term is a combination of a label and a name.
Term matching compares labels and names to iden-
tify syntactically similar terms. To achieve better
performance, terms are preprocessed using several
techniques originating in IR research. Term matching
is based on either complete word or string compari-
son.

Value: Value matching utilizes domain constraints
(e.g., drop lists, check boxes, and radio buttons)
to compute similarity measure among terms. The
availability of constrained value-sets becomes valu-
able when comparing two terms that do not exactly
match through their labels.

Composition: A composite term is composed of
other terms (either atomic or composite). Composi-
tion can be translated into a hierarchy. This schema
matcher assigns similarity to terms, based on the sim-
ilarity of their neighbors.

Precedence: The precedence relationship is unique
to OntoBuilder and therefore worth of a lengthier
discussion. In any interactive process, the order in
which data are provided may be important. In par-
ticular, data given at an earlier stage may restrict
the availability of options for a later entry. For ex-
ample, a car rental site may determine which car
groups are available for a given session, using the in-
formation given regarding the pick-up location and
time. Therefore, once those entries are filled in, the
information is sent back to the server and the next
form is brought up. Such precedence relationships
can usually be identified by the activation of a script,
such as (but not limited to) the one associated with
a SUBMIT button. Precedence can be translated
into a precedence graph. The matching algorithm is
based on a technique we dub graph pivoting, as fol-
lows. When matching two terms, we consider each
of them to be a pivot within its own ontology, thus
partitioning the graph into semantically related sub-
graphs. The semantics of pivoting is taken from the
ontological analysis, and in the case of precedence the
graph it partitioned into a subgraph of all preced-
ing terms and all succeeding terms. By comparing
preceding subgraphs and succeeding subgraphs, we
determine the confidence strength of the pivot terms.

In addition to Combined, we have also experimented
with the matrices of Composition and Precedence in-
dividually. We have applied MWBG and SM to
each matrix (see dataset description below). All al-
gorithms were implemented using Java 2 JDK version
1.5.0 09 environment, using an API to access Onto-
Builder’s matchers and get the output matrices. The
experiments were run on a laptop with Intel Centrino
Pentium m, 1.50GHz CPU, 760MB of RAM Windows
XP Home edition OS.

Data
For our experiments, we have selected 230 Web forms
from different domains, such as dating and matchmak-
ing, job hunting, Web mail, hotel reservation, news, and
cosmetics. We extracted each Web form ontology us-
ing OntoBuilder. We have matched the Web forms in
pairs (115 pairs), where pairs were taken from the same
domain, and generated the exact mapping (a mapping
generated by a human observer) for each pair.3 The
ontologies vary in size and the proportion of number of
attribute pairs in the exact mapping relative to the tar-
get ontology. Another dimension is the size difference
between matched ontologies.

Evaluation methodology
For evaluation we use two main metrics, namely Preci-
sion and Recall. Precision is computed as the ratio of
correct attribute mappings, with respect to some exact

3All ontologies and exact mappings are avail-
able for download from the OntoBuilder Web site,
http://ie.technion.ac.il/OntoBuilder).



mapping, out of the total number of attribute mappings
suggested by a heuristic. Recall is computed as the ratio
of correct attribute mappings, out of the total number
of attribute mappings in the exact mapping. Both Re-
call and Precision are measured on a [0, 1] scale. An
optimal schema matching results in both Precision and
Recall equal to 1. Lower precision means more false pos-
itives, while lower recall suggests more false negatives.
To extend Precision and Recall to the case of non 1 : 1
mappings, we have adopted a correctness criteria ac-
cording to which any attribute pair that belongs to the
exact mapping is considered to be correct, even if the
complex mapping is not fully captured. This method
aims at compensating the matchers for the 1 : 1 car-
dinality enforcement. We have also used F-measure, a
harmonic average of Precision and Recall.

Results

% Average Average Average

Precision Recall F-measure

Improv. Improv. Improv.

MWBG>SM 12.50 40.71 39.62 40.26

SM>MWBG 14.29 22.09 22.09 22.09

SM∼MWBG 46.43

SM=MWBG 26.79

Table 1: Comparison of MWBG and SM : Combined

Table 1 summarizes the results of our empirical com-
parison with the Combined algorithm. MWBG>SM
means that MWBG outperformed SM in terms
of both Precision and Recall and vice versa for
SM>MWBG. SM∼MWBG means that their Pre-
cision and Recall values were exactly the same and
SM=MWBG means that not only they share the
same Precision and Recall value, but also their best
mappings were identical. The second column shows the
percentage of the pairs for which the relationship holds.
For those cases where the performance differ, we also
record the improvement in each of the measures the
superior algorithm had over the inferior one.

The main observations from these experiments are
that in about 73% of the pairs, MWBG perform ex-
actly the same as SM, and in 37% out of these exper-
iments, they also propose the same mapping. For the
remaining 32%, no algorithm is shown to be dominant.
Nevertheless, for those cases where MWBG outper-
formed SM it achieves on average double as much im-
provement than when SM outperformed MWBG.

Tables 2 and 3 show results for the Composition and
Precedence algorithms, respectively. Again, for the ma-
jority of the pairs, MWBG and SM perform the same.
Here, however, the average improvement of one algo-
rithm over the other is about the same.

MWBG and SM interrelationship
Our empirical results served as a motivation to explore
a sufficient condition that ensures equal performance

% Average Average Average

Precision Recall F-measure

Improv. Improv. Improv.

MWBG>SM 14.04 18.74 18.74 18.74

SM>MWBG 13.16 18.74 18.74 18.74

SM∼MWBG 48.25

SM=MWBG 24.56

Table 2: Comparison of MWBG and SM : Composi-
tion

% Average Average Average

Precision Recall F-measure

Improv. Improv. Improv.

MWBG>SM 26.79 27.00 27.00 27.00

SM>MWBG 14.29 29.57 29.57 29.57

SM∼MWBG 41.96

SM=MWBG 16.96

Table 3: Comparison of MWBG and SM : Precedence

of the two algorithms in schema matching applications.
In this section we aim at analyzing the interrelation-
ship between the MWBG algorithm and the SM al-
gorithm. First, to assist us in our analysis, we shall
introduce the notion of a dominant pair.

Definition 2 Let M be a similarity matrix over a pair
of schemata S and S′. A pair (i, j) is dominant if 1)
Mi,j ≥ Mi,j′ for 1 ≤ j′ ≤ n and 2) Mi,j ≥ Mi′,j for
1 ≤ i′ ≤ n.

In the following lemmas, we assume, for simplicity
sake, that the similarity matrix does not contain two
identical values. Also, we assume that S and S′ are
of identical arity, i.e., there are n attributes in each
schema. These assumptions do not affect the correct-
ness of our lemmas, they just make it simple to prove
them. We first show the importance of dominant pairs
to the output of SM.

Lemma 3 Let S and S′ be two sets of attributes, and
M be a similarity matrix over S and S′. Each domi-
nant pair in M must be included in the stable marriage
computed by Gale and Shapley algorithm.

Proof. Let (i, j) be a dominant pair, and let σs be a
stable marriage computed by Gale and Shapley algo-
rithm. Suppose (i, j) 6∈ σs. Assume also, (i, j′) ∈ σs

and (i′, j) ∈ σs. Since (i, j) is a dominant pair, j ap-
pears before j′ in i’s preference list, and i appears before
i′ in j’s preference list. In other words, i prefers j to
its partner in σs (j′) and j prefers i to its partner in σs

(i′). Thus, the pair (i, j) is a blocking pair according to
σs. A contradiction.

Lemma 4 provides an upper bound on the weight of
a mapping, generated by MWBG.

Lemma 4 Let S and S′ be two sets of attributes,
and M be a similarity matrix over S and S′.
The weight of the mapping (the sum of the
weights of the pairs in the mapping) computed



by the MWBG is at most min (
∑n

i=1 ri,
∑n

i=1 ci),
where ri = max(Mij : j = 1, . . . , n) and cj =
max(Mij : i = 1, . . . , n)

Proof. Suppose, without loss of generality, that∑n
i=1 ri ≤

∑n
i=1 ci. Let σ denotes the maximum

weighted matching, and Wσ denotes its weight. Wσ =∑n
i=1 Mi,σi

. Since ∀i(Mi,σi
≤ ri), then Wσ ≤

∑n
i=1 ri

Theorem 5 Let S and S′ be two sets of attributes, and
M be a similarity matrix over S and S′. If there are
n dominant pairs and no two dominant pairs reside in
the same row or the same column, then the MWBG
algorithm and the SM algorithm are equivalent, i.e.,
result in the same matching.

Proof. Assume, without loss of generality, that∑n
i=1 ri ≤

∑n
i=1 ci. Let σ be the set of all the dom-

inant pairs. σ is a complete 1 : 1 mapping. According
to Lemma 3, σ is a stable matching. Let di denote the
dominant pair in the i -th row and W (di) its value in
the matrix. W (di) = ri ⇒

∑n
i=1 di =

∑n
i=1 ri. Since

W (σ) =
∑n

i=1 di then W (σ) =
∑n

i=1 ri. And accord-
ing to Lemma 4 σ is a maximum matching.

Theorem 5 provides a sufficient condition for the
equivalence of the MWBG algorithm and the SM
algorithm, in terms of dominant pairs. We conclude
with the following observation. The MWBG algo-
rithm maximizes the overall benefit of the output map-
ping while the SM algorithm maximizes the local ben-
efits of one of the genders (may it be men or women).
In schema matching problem instances, the stable mar-
riage instance is symmetric. Thus, when maximizing
the local benefits of the men, it also maximizes the lo-
cal benefits of the women. Thus, we obtain a powerful
stable marriage that is both male-optimal and female-
optimal.

Dominants
To illustrate a possible benefit of the analysis above,
we now propose a new heuristic for schema matching.
Recall that in Algorithm 1 we constraint the best map-
ping to be of cardinality 1 :1, following SM. The basic
assumption behind the Royal Couples algorithm is that
the pair (i, j) with the maximum confidence measure in
the matrix has the highest chance of being in the ex-
act mapping. Then, to maintain the 1 : 1 cardinality
constraint, we delete the row i and the column j from
the matrix. These deletions may affect the next max-
imum value in the matrix. In other words, deletion of
a row or a column that contains relatively high confi-
dence values, may generates new maximum values that
were relatively low. Consequently our basic assumption
becomes weaker.

Theorem 5 provides a sufficient condition to the iden-
tical behavior of MWBG and SM. What happens
when this condition is not satisfied? One such scenario
may occur whenever there are less than n dominant
values. In such a scenario, both MWBG and SM are
bound to err and add false positive attribute mappings.

Those false positive mappings may be different between
the two algorithms. Another scenario involves non-1 :1
mappings, with more than n dominant values. In this
case, there are several dominant values in a single row
or column (note that those dominant values must have
identical values). MWBG and SM will fail to identify
some of the dominant values, and will be forced to make
some arbitrary choices, and again the two algorithms
may make different choices. To be able to identify such
scenarios, we make a do with the 1 : 1 cardinality con-
straint, and offer a heuristic that finds the pairs with
the best chance of being in the exact mapping, in a way
that selecting one pair would not affect others.

Algorithm 2 Dominants Matching
1: Input: an n× n similarity matrix M
2: for all row i do
3: calculate the maximum value in i, insert this

value to array R.
4: end for
5: for all column j do
6: calculate the maximum value in j, insert this

value to array C
7: end for
8: for all column j do
9: If M(i, j) = R(i) = C(j), insert (i, j) to the out-

put mapping.
10: end for

The Dominants Matching (DM ) heuristic is
given in Algorithm 2. The main assumption guiding
this heuristic is that the dominant pairs are the most
probable to be in the exact mapping since the two at-
tributes involve in a dominant pair prefer each other
most. Note that with this heuristic not all the tar-
get attributes are mapped and that an attribute in one
schema may be mapped to more than one attribute
in another schema, whenever attribute pairs share the
same similarity level (effectively, introducing no cardi-
nality constraint). The time complexity of Algorithm 2
is O(n2).

Figure 1 compares between the average performance
of MWBG, SM, and DM for the Combined algo-
rithm. For each of the three heuristics we present their
average Precision, Recall, and F-measure. We first note
that an average Precision of 45% is common on large
and challenging real-world schemata. We refer the in-
terested reader to the new benchmark of OAEI4 for
more information.

DM is the clear winner in terms of Precision (in-
crease of about 29%) while sacrificing in terms of Recall
(decrease of about 6%). For a predefined weighing of
Precision and Recall, using F-measure, DM is again
the best heuristic improving over both MWBG and
SM by about 7%). Similar results were observed for
the Precedence and Graph algorithms, and we refrain
from showing the results here.

4http://oaei.ontologymatching.org/2006/results/directory/



Figure 1: Comparative Performance Analysis for the Combined Algorithm

Conclusions

In this paper we focused on the inter-relationships be-
tween two well known algorithms for constrained, 1 : 1
schema matching. We provided an empirical analysis,
showing their comparable performance and then pro-
vided a theoretical analysis, showing a sufficient condi-
tion for both algorithms to yield identical outcome.

This analysis can serve in the design of new heuris-
tics, as was already shown in this paper. Other direc-
tions for the design of new heuristics involve the use of
both algorithms together to improve one measure (e.g.,
Precision) at the cost of another (e.g., Recall).
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