
Aggregate Query Answering under Uncertain
Schema Mappings

Avigdor Gal #1, Maria Vanina Martinez, Gerardo I. Simari, VS Subrahmanian ∗2

#Technion – Israel Institute of Technology
Haifa 32000 Israel

1avigal@ie.technion.ac.il

∗University of Maryland
College Park, MD

2{mvm,gisimari,vs}@cs.umd.edu

Abstract— Recent interest in managing uncertainty in data
integration has led to the introduction of probabilistic schema
mappings and the use of probabilistic methods to answer queries
across multiple databases using two semantics: by-table and by-
tuple. In this paper, we develop three possible semantics for
aggregate queries: the range, distribution, and expected value
semantics, and show that these three semantics combine with
the by-table and by-tuple semantics in six ways. We present
algorithms to process COUNT, AVG, SUM, MIN, and MAX queries
under all six semantics and develop results on the complexity
of processing such queries under all six semantics. We show
that computing COUNT is in PTIME for all six semantics and
computing SUM is in PTIME for all but the by-tuple/distribution
semantics. Finally, we show that AVG, MIN, and MAX are PTIME
computable for all by-table semantics and for the by-tuple/range
semantics. We developed a prototype implementation and experi-
mented with both real-world traces and simulated data. We show
that, as expected, naive processing of aggregates does not scale
beyond small databases with a small number of mappings. The
results also show that the polynomial time algorithms are scalable
up to several million tuples as well as with a large number of
mappings.

I. INTRODUCTION

There has been intense work during the last few years on
schema matching in order to answer queries over multiple
databases [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. More
recently, there has been a realization that methods to automat-
ically match schemas are uncertain — when an algorithm for
schema matching is executed, it might say that there are many
possible mappings between one schema and another, and that a
probability distribution over this set of mappings specifies the
probability that a specific mapping is the correct one [11]. For
example, when a company A merges with a company B, the
employee databases of the two companies need to be merged.
The schemas may be different, and in such a case, there may
be many different ways of mapping one schema to another
and a probability distribution might tell us the probability that
a given schema is correct. Alternatively, a web search engine
doing a product search over the databases of multiple vendors
needs to find mappings between the product database of one
vendor, and the product database of another vendor. Multiple
ways of representing the data might lead to multiple possible

schema mappings, together with a probability distribution over
the set of mappings. In a residential or commercial real estate
web site that aggregates information from multiple realtors
across the country, there is a need to find mappings between
disparate schemas — usually multiple possible mappings are
found by an automated schema mapping tool [12], and a
probability distribution over these mappings can specify the
probability that a given schema is correct. Our paper will use
such a real estate example as a motivating example.

Work to date [11], [13] on probabilistic schema mapping
has studied two semantics for answering queries over multi-
ple databases using probabilistic schema matches — a “by-
table” semantics and a “by-tuple” semantics. However, when
aggregate queries are considered, then in addition to whether
a by-table or by-tuple semantics should be used, we need
to consider the semantics of the aggregates themselves in
the presence of uncertainty. Some work has been done on
aggregates over uncertain data [14], [15], yet none at all w.r.t.
aggregate computations under probabilistic schema mapping.
Aggregates over probabilistic data can be processed in three
ways (at least). In the first way, an aggregate query returns a set
of possible values for the answer, together with a probability
distribution over that set. We call this the “distribution”
semantics. A second method returns just a range specifying
the lowest and highest possible values for the aggregate query.
We call this the “range” semantics. The third semantics returns
an expected value. In this paper, we first propose these three
semantics for aggregate computations and then show that they
combine with the by-table and by-tuple semantics of [11] in six
possible ways, yielding six possible semantics for aggregates
in probabilistic schema mapping.

We develop algorithms to compute COUNT, MIN, MAX,
SUM, and AVG under each of the six semantics and show that
the algorithms are correct. We develop a characterization of
the computational complexity of the problem of computing
these six semantics. For all the above aggregate operators,
we show that semantics based on the by-table semantics
are PTIME computable. For the COUNT operator, we show
that query results for all six semantics can be computed in
PTIME. Computing the SUM operator is in PTIME for all but

the by-tuple/distribution semantics. Finally, we show that for
MIN, MAX, and AVG, the only by-tuple semantics that can be
efficiently computed is the range semantics.

We have developed a prototype implementation of our
algorithms and tested out their efficiency on large data sets,
showing that our algorithms work very efficiently in practice.
Our experiments show the computational feasibility of the dif-
ferent semantics for each of the aggregate operators mentioned
above. We show that, for each aggregate operator considered
in this paper under the by-tuple semantics, the algorithms for
computing the range semantics are very efficient and scalable;
this is also the case for COUNT under the other two semantics.
Furthermore, the expected value semantics for SUM is also
very efficient since we can take advantage of the fact that it is
guaranteed to be equivalent to the by-table semantics, as we
show in this work. In summary, for each aggregate operator,
there is at least one semantics where our experiments show
that it can be computed very efficiently.
To summarize, our contributions are as follows:

• We show six possible semantics for aggregate queries
with uncertain schema mappings.

• We show several cases under the by-tuple semantics
where efficient algorithms exist for aggregate computa-
tion.

• We prove that for the SUM aggregate operator, by-
tuple/expected value and by-table/expected value seman-
tics yield the same answer.

• Using a thorough empirical setup, we show that the
polynomial time algorithms are scalable up to several
million tuples (with some even beyond 30 million tuples)
and with a large number of mappings.

The rest of the paper is organized as follows. Section II
provides background on aggregate query answering under
uncertain schema mapping. The six semantics for aggregate
query processing in the presence of uncertain schema map-
pings is described in detail in Section III. Section IV provides
a set of algorithms for efficient computation of the various
aggregates. Our empirical analysis is provided in Section V
We conclude with a discussion of related work (Section VI)
and directions for future work (Section VII).

II. PRELIMINARIES

This paper focuses on the problem of aggregate query pro-
cessing across multiple databases in the presence of probabilis-
tic schema mappings. The system may contain a number of
data sources and a mediated schema, as in [11]. Alternatively,
a peer database system, with multiple data sources (e.g., DB-
life like information) and no mediated schema, as in [16], [17]
may also be in place.

There are many cases where a precise schema mapping may
not be available. For instance, a comparison search “bot” that
tracks comparative prices from different web sites has — in
real time — to determine which fields at a particular location
correspond to which fields in a database at another URL.
Likewise, as in the case of [11], in many cases, users querying
two databases belonging to different organizations may not

ID price agentPhone postedDate reducedDate

1 100k 215 1/5/2008 1/30/2008
2 150k 342 1/30/2008 2/15/2008
3 200k 215 1/1/2008 1/10/2008
4 100k 337 1/2/2008 2/1/2008

TABLE I

AN INSTANCE DS1

know what is the right schema mapping. We model this
uncertainty about which schema mapping is correct by using
probability theory. This robust model allows us to provide, in
the case of aggregate queries, not only a ranking of the results,
but also the expected value of the aggregate query outcome
and the distribution of possible aggregate values.

We focus on five types of aggregate queries: COUNT, MIN,
MAX, SUM, and AVG. Given a mediated schema, a query Q, and
a data source S, Q is reformulated according to the (probabilis-
tic) schema mapping between S’s schema and the mediated
schema, and posed to S, retrieving the answers according to
the appropriate semantics (to be discussed shortly).

We focus on efficient processing of aggregate queries. An
orthogonal challenge in this setting involves record linkage and
cleansing that relates to duplicates. We assume the presence of
effective tools for solving this problem [18], [19] and focus on
correct and efficient processing of the data. Also, we focus on
the analysis of aggregate queries over a single table, to avoid
mixing issues with joins over uncertain schema mappings. Our
analysis tests the effect of executing an aggregate query over
a single table or a table that is the result of any SPJ query
over the non probabilistic part of the schema.

We define schema mappings between a source schema S
and a target T in terms of attribute correspondences of the
form cij = (si, tj), where si in S is the source attribute and
ti in T is the target attribute. For illustration purposes, we
shall use the following two examples throughout the paper:

Example 1: Consider a real-estate data source S1, which
describes properties for sale, their list price, an agent’s contact
phone, and the posting date. If the price of a property was
reduced, then the date on which the most recent reduction
occurred is also posted. The mediated schema T1 describes
property list price, contact phone number, date of posting, and
comments:
S1 = (ID, price, agentPhone, postedDate, reducedDate)
T1 = (propertyID, listPrice, phone, date, comments)
For the sake of simplicity, we assume that the mapping of ID to
propertyID, price to listedPrice, and agentPhone to phone
is known. In addition, there is no mapping to comments.
Due to lack of background information, it is not clear whether
date should be mapped to postedDate (denoted as mapping
m11) or reducedDate (denoted mapping m12). Because of the
uncertainty regarding which mapping is correct, we consider
both mappings when answering queries. We can assign a
probability to each such mapping (e.g., m11 has probability
0.6 and m12 has probability 0.4). Such a probability may be
computed automatically by algorithms to identify the correct
mapping [9]. Table I shows an instance of a table DS1 of data
source S1.
Suppose that on February 20, 2008 the system receives a query

transactionID auctionID time bid currentPrice

3401 34 0.43 195 195
3402 34 2.75 200 197.5
3403 34 2.8 331.94 202.5
3404 34 2.85 349.99 336.94
3801 38 1.16 330.01 300
3802 38 2.67 429.95 335.01
3803 38 2.68 439.95 336.30
3804 38 2.82 340.5 438.05

TABLE II

AN INSTANCE DS2

Q1, composed on schema T1, asking for the number of “old”
properties, those listed for more than a month:

Q1: SELECT COUNT(*) FROM T1
WHERE date < ’2008-1-20’

Using mapping m11, we can reformulate Q1 into the following
query:

Q11: SELECT COUNT(*) FROM S1
WHERE postedDate < ’2008-1-20’

Example 2: As another example, consider eBay auctions.
These auctions have a strict end date for each auction and
use a second-price model. That is, the winner is the one who
places the highest bid, but the winning price is (a delta higher
than) the second-highest bid. Now consider two (simplified)
database schemas, S2 and T2, that keep track of auction
prices:
S2 = (transactionID, auction, time, bid, currentPrice)
T2 = (transaction, auctionId, timeUpdate, price)
For simplicity, we again assume that the mappings of transac-
tionID to transaction, auction to auctionID and the mapping
of time to timeUpdate are known. The attribute price in T2
can be mapped to either the bid attribute (denoted as mapping
m21) or the currentPrice attribute (denoted as mapping m22)
in S2. Here, the source of uncertainty may be attributed to the
sometimes confusing semantics of the bid and the current price
in eBay auctions. Assume that m21 is assigned probability 0.3
and m22 is assigned probability 0.7. Table II contains data
for two auctions (numbers 34 and 38) with four bids each.
The time is measured from the beginning of the auction and
therefore 0.43 means that about 10 hours (less than half a day)
have passed from the opening of the auction. Suppose that the
system receives a query Q2 w.r.t. schema T2, asking for the
average closing price of all auctions:

Q2: SELECT AVG(R1.price) FROM
(SELECT MAX(DISTINCT R2.price)

FROM T2 AS R2
GROUP BY R2.auctionID) AS R1

The subquery, within the FROM clause, identifies the max-
imum price for each auction. Using mapping m21, we can
reformulate Q2 to be:

Q21: SELECT AVG(R1.currentPrice) FROM
(SELECT MAX(DISTINCT R2.currentPrice)

FROM T2 AS R2
GROUP BY R2.auction) AS R1

We base our model of probabilistic schema mappings on the
one presented in [11], extending it to answer aggregate queries.
In what follows, given relational schemas S and T , S a relation
in S, and T a relation in T , an attribute correspondence is
a one-to-one mapping from the attribute names in S to the
attribute names in T . Also, a one-to-one relation mapping is
a mapping where each source and target attribute occurs in at
most one correspondence.

Definition 1 (Schema Mapping): Let S and T be relational
schemas. A relation mapping M is a triple (S, T, m), where
S is a relation in S , T is a relation in T , and m is a set of
attribute correspondences between S and T .
A schema mapping M is a set of one-to-one relation mappings
between relations in S and in T , where every relation in either
S or T appears at most once.
The following definition, also from [11], extends the concept
of schema mapping with probabilities:

Definition 2 (Probabilistic Mapping): Let S and T be re-
lational schemas. A probabilistic mapping (p-mapping) pM
is a triple (S, T,m), where S ∈ S , T ∈ T , and m is a set
{(m1, P r(m1)), ..., (ml, P r(ml))}, such that

• for i ∈ [1, l], mi is a one-to-one relation mapping between
S and T , and for every i, j ∈ [1, l], i �= j ⇒ mi �= mj .

• Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

A schema p-mapping pM is a set of p-mappings between
relations in S and in T , where every relation in either S or T
appears in at most one p-mapping.

III. SEMANTICS

We now present the semantics of aggregate queries in the
presence of probabilistic schema mappings. We start with a
formal presentation of the by-table and by-tuple semantics,
as introduced in [11] (Section III-A). Then, we move on
to introduce three aggregate semantics and their combination
with the by-table and by-tuple semantics (Section III-B).

A. Semantics of Probabilistic Mappings

The intuitive interpretation of a probabilistic schema map-
ping as presented in [11] is that there is uncertainty about
which of the mappings is the right one. Such uncertainty
may be rooted in the fact that “the syntactic representation
of schemas and data do not completely convey the semantics
of different databases,” [20] i.e., the description of a concept
in a schema can be semantically misleading. As proposed in
[11], there are two ways in which this uncertainty can be
interpreted: either a single mapping should be applied to the
entire set of tuples in the source relation, or a choice of a
mapping should be made for each of these tuples. The former
is referred to as the by-table semantics, and the latter as the by-
tuple semantics. The by-tuple semantics represents a situation
in which data is gathered from multiple sources, each with a
potentially different interpretation of a schema.

As discussed in [11], the high complexity of query answer-
ing under the by-tuple semantics is due to the fact that all
possible sequences of mappings (of length equal to the number
of tuples in the table) must be considered in the general case.

The following examples illustrate the difference between the
two semantics when considering aggregate functions.

Example 3: Consider the scenario presented in Example 1.
Assume the content of table DS1 is as shown in Table I. Using
the two possible mappings, we can reformulate Q1 into the
following two queries, one for each possible way of mapping
attribute date:

Q11: SELECT COUNT(*) FROM S1
WHERE postedDate < ’2008-1-20’

Q12: SELECT COUNT(*) FROM S1
WHERE reducedDate < ’2008-1-20’

We can adapt the procedure described for the by-table se-
mantics in [11] to answer uncertain aggregate queries, by
computing each of the two previous reformulated queries as
if they were the correct mappings and the probability of the
corresponding mapping is assigned to each answer. In this
case, the system provides answer 3 with probability 0.6 (from
query Q11) and answer 2 with probability 0.4 (from query
Q12). Under the by-tuple semantics it is necessary to consider
all possible sequences, i.e., ways of assigning a mapping to a
tuple. For instance, the sequence s = 〈m11, m12, m12, m11〉
represents the fact that tuple 1 and 4 should be interpreted
under mapping m11, in which case attribute date is mapped
to postedDate, and tuples 2 and 3 should be interpreted
using mapping m12 which maps date to reducedDate. Each
sequence has an associated probability equal to the product
of the probability of each mapping in the sequence, since
mappings are independently assigned to tuples. For instance,
the probability of sequence s is

Pr(s) = 0.6 ∗ 0.4 ∗ 0.4 ∗ 0.6 = 0.0576

An answer in this case, as discussed in [11] for general
SPJ queries, can be obtained by computing the aggregate
operator for each possible sequence. The final answer is a
table that contains all the different values obtained from the
answers yielded by each individual computation, each with an
associated probability. The probability for each value is the
sum of the probabilities of all sequences that yield that value.
In this example, the final answer is 1 with probability 0.16, 2
with probability 0.48, and 3 with probability 0.36.

Example 4: Let us now consider Table II and query Q2,
presented in Example 2. Using the two possible mappings,
we can reformulate Q2 into the following two queries:

Q21: SELECT AVG(R1.currentPrice) FROM
(SELECT MAX(DISTINCT R2.currentPrice)

FROM T2 AS R2
GROUP BY R2.auction) AS R1

Q22: SELECT AVG(R1.bid) FROM
(SELECT MAX(DISTINCT R2.bid)

FROM T2 AS R2
GROUP BY R2.auction) AS R1

Using the by-table semantics, the system provides the answer
345.245 with probability 0.3 and 385.945 with probability
0.7. Under the by-tuple semantics, in order to compute an
answer to Q2, given that there are 8 tuples in the database

instance and 2 possible mappings, we have to look at 28 = 256
sequences. We need to compute the answer for each sequence
and then combine the results.

B. Semantics for Aggregate Queries Under Uncertain Schema
Mappings

Aggregate queries provide users with answers that are not
simple cut & paste data from the database. Rather, data is
processed and user expectations are also different. In many
cases, users expect a simple, single answer to an aggregate
query (e.g., counting the number of newly posted houses).
Therefore, when extended to probabilistic schema mappings,
such expectations should be taken into account.

In this work, we consider three common extensions to
semantics with aggregates and probabilistic information. The
range semantics gives an interval within which the aggregate
is guaranteed to lie. The distribution semantics specifies all
possible values that the aggregate can take, and for each such
value, it gives the probability that it is the correct one. Of
course, we can easily derive the answer to an aggregate query
under the range semantics from the answer to the same query
under the distribution semantics. Finally, for those who like the
answer to be a single number, we develop an expected value
semantics which returns the expected value of the aggregate.
Note that the answer to a query under the expected value
semantics can also be computed from the answer to the
query under the distribution semantics. In a sense, the answer
according to the distribution semantics is rich, containing
details that are eliminated in the other two semantics. However,
as we will see below, the other two semantics may be more
efficiently computable without obtaining the distribution at all.

Let m = {(m1, P r(m1)), ..., (ml, P r(mm))} be a set of
all possible mappings from schema S to schema T , each with
an associated probability Pr(mi), where

∑
i Pr(mi) = 1.

Let V = {v1, ..., vn} be the set of results of evaluating the
aggregate function for each possible mapping or a sequence
of mappings. The three possible semantics for query answering
with aggregate functions and multiple possible schema map-
pings can be formalized as follows:

1) Range Semantics: The result of the aggregate func-
tion under the range semantics is the interval
[min(V), max(V)].

2) Probability Distribution Semantics: Under the probabil-
ity distribution semantics, the result of the aggregate
function is a random variable X. For every distinct value
rj ∈ V , we have that

Pr(X = rj) =
∑

vi∈V,vi=rj

Pr(mi) (1)

3) Expected Value Semantics: Let V = {v1, ..., vn} be
the set of results of evaluating the aggregate function
for each possible mapping. The result of the aggregate
function under the expected value semantics is

n∑

i=1

Pr(mi) ∗ vi (2)

The fact that answers to queries under the range and
expected value semantics can be immediately derived
from the answer under the distribution semantics tells us
that if the distribution semantics is PTIME computable,
then the range and expected value semantics should also
be PTIME computable.

Possible Combinations of Semantics. When combining the
by-table and by-tuple semantics with the three aggregate
semantics suggested in Section III-B, a space of six possible
semantics for aggregate queries over probabilistic schema
mappings is created. This space is illustrated in Table III,
where for each semantics we give the query answer to query
Q1.

COUNT Range Distribution Exp. Value

By-Table [2,3] 3 (prob 0.6), 2 (prob 0.4) 2.6
By-Tuple [1,3] see Example 3 2.2

TABLE III

THE SIX SEMANTICS OF AGGREGATE QUERIES OVER PROBABILISTIC

SCHEMA MAPPING

IV. ALGORITHMS FOR AGGREGATE QUERY ANSWERING

A. By-Table Semantics

Figure 1 provides a “generic” algorithm to answer aggregate
queries under the by-table semantics, extending a similar
algorithm in [11]. The algorithm reformulates the input query
into l new queries, one for each possible schema mapping and
obtains an answer ri to the query w.r.t. that mapping. It then
outputs the result using a CombineResults function. Com-
bineResults returns [min(r1, . . . , rm), max(r1, . . . , rm)]
when the semantics chosen is the range semantics. When the
semantics chosen is the expected value semantics, it returns
Σm

i=1Pr(mi) ∗ ri where Pr(mi) is the probability that the
mapping that maps A to Ai is correct. When the semantics
chosen is the distribution semantics, it returns the set of all
pairs {(ri, p) | p = Σrj=riPr(mi)}.

B. By-Tuple Semantics
The by-tuple semantics associates a mapping with each

tuple in a relational table. Hence, if we have n tuples and
m different mappings, there are mn different sequences that
assign mappings to tuples. The problem of answering select,
project, join queries under the by-tuple semantics is in general
#P-complete in data complexity [11]. The reason for the high
complexity stems from the need to assign probabilities to
each tuple. Computing all by-tuple answers without returning
the probabilities is in PTIME. When it comes to aggregate
queries, however, merely computing all possible tuples is not
enough. One also needs to know, for each possible mapping
sequence, whether a tuple belongs to it or not. Therefore, in
the worst case, going through all possible mapping sequences
is unavoidable. To see why, consider the query

SELECT SUM(price) FROM T2

against Table II.
With 2 possible mappings and 8 tuples, there are 28 =

256 possible sequences. In this case, there are 128 different

tupleID low up comment

0 0 initialization
1 0 1 cond. satisfied under m11

2 1 2 cond. satisfied under both mappings
3 1 2 cond. satisfied under no mapping
4 1 3 cond. satisfied under m11

TABLE IV

TRACE OF BYTUPLERANGE FOR QUERY Q1

possible values — in fact, there would have been 256 different
possible values if the bid and currentPrice of the first
tuple did not have the same value (195). Therefore, merely
enumerating all possible answers may yield an exponential
number of answers.

The generic (naı̈ve) algorithm discussed earlier can be
greatly improved when we consider specific aggregate func-
tions. In this section, we show how to achieve this for the
COUNT, SUM, AVG, MAX, and MIN aggregate functions under
the three alternative semantics presented in Section III. We
show that in certain aggregate/semantics combinations, it is
possible to compute an answer in PTIME, whereas for others
PTIME algorithms could not be found.
Aggregate function COUNT. We present algorithms to com-
pute the COUNT aggregate under by-tuple/range and by-
tuple/distribution semantics. The answer for the expected value
semantics can be computed directly from the result provided
by the algorithm for distribution semantics.

We will use our running examples presented in Section II.
Consider the setting from Example 1, the data in Table I, and
query Q1:

SELECT COUNT(*) FROM T1
WHERE date < ’1-20-2008’

COUNT Under the Range Semantics. Under the range seman-
tics, the answer to query Q1 should provide the minimum
and the maximum value for the aggregate, considering any of
the mappings. The algorithm is shown in Figure 2. The idea
behind the algorithm is simple: each tuple, depending on the
mapping that is used for it, may or may not satisfy the selection
condition for the COUNT. Clearly, if a tuple satisfies the select
condition under all mappings, then both the minimum and
maximum possible values for COUNT should be increased.
If the tuple does not satisfy the select condition under all
mappings, then it is never included in the aggregate result.
Finally, if there is at least one mapping under which the tuple
does not satisfy the select condition, then the minimum value
does not change, but the maximum does.

To see how this algorithm works, we include in Table IV
the trace of how the bounds are updated with each tuple in
Table I to answer query Q1. For instance, we can see that for
tuple 1 only the upper bound is incremented because this tuple
satisfies the select condition only for mapping m11. The last
row of the table shows the final answer, [1, 3].

Note that this algorithm looks at each tuple only once, and
in each step it looks at most at all mappings once. Thus,
if n is the number of tuples in S and m is the number of

Algorithm ByTableAggregateQuery
Input: Table S, T; MapList M; Attribute A; Condition C; AggregateFunction Agg;

Semantics S
1. Let |M | = l be the number of mappings for attribute A;
2. Let A1, ...,Al be all the attributes to which A maps;
3. For i = 0 to l,
4. Let ri be the answer for the query:

SELECT Agg(Ai) FROM T WHERE C GROUP BY B;
5. return CombineResults(r1, ..., rl, S);

Fig. 1. Generic by-table algorithm adapted from Halevy’s work for Aggregate Queries

Algorithm ByTupleRangeCOUNT
Input: Table S, T; MapList M; Attribute A; Condition C
1. Let up an low be equal to 0;
2. For each ti ∈ S,
3. if for all mappings mj ∈ M such that ti satisfies C then

low = low + 1; up = up + 1;
else if there exists at least one mapping mj ∈ M for which ti satisfies C then

up = up + 1;
4. return [low,up];

Fig. 2. Algorithm to answer SELECT COUNT(A) FROM T WHERE C under Range Semantics

Algorithm ByTuplePDCOUNT
Input: Table S, T; MapList M; Attribute A; Condition C
1. Let pd be a new probability distribution;
2. In pd set Pr(0) = 1.0;
3. For each ti ∈ S,
4. Let occProb be the sum of the probabilities of the mappings in M under which

ti satisfies C;
5. Let notOccProb be the sum of the probabilities of the mappings in M under

which ti does not satisfy C;
6. In pd set Pr(0) = Pr(0) ∗ notOccProb;
7. For j = 1 to i − 1,
8. In pd set Pr(j) = (Pr(j) ∗ notOccProb) + (Pr(j − 1) ∗ occProb);
9. In pd set Pr(i) = Pr(i − 1) ∗ occProb;
10. return pd;

Fig. 3. Algorithm to answer SELECT COUNT(A) FROM T WHERE C under Distribution Semantics

possible mappings, the number of computations needed for
this algorithm is in O(n ∗ m).

Theorem 1: Algorithm ByTupleRangeCOUNT correctly
computes the result of executing a COUNT query under the
by-tuple range semantics.1

COUNT Under the Distribution Semantics. A naı̈ve way of
computing an answer for a query such as Q1 under the
distribution semantics is to consider all possible sequences
of mappings and to compute the query for each sequence, as
shown in the second part of Example 3. However, we present
a more efficient algorithm that only takes polynomial time in
the number of mappings and the number of tuples in the table.
The pseudo-code of this algorithm is outlined in Figure 3.

Under a given mapping, a tuple can either add 0 to the
COUNT result or 1. Hence, the probability of a tuple adding 1
to the result is that of the mapping itself, and the probability
of adding nothing is the complementary probability. This
reasoning can be easily extended to multiple mappings by
taking the sum of the probabilities for which the tuple adds 1

1Proofs of all theorems in this paper are given in [21].

to the calculation. If we look at each tuple in turn, the value
of the aggregate at a certain time depends on how many tuples
were taken into account. However, at each step, the count can
at most be incremented by one, depending on whether the
tuple at hand satisfies the selection condition. This means that
if we are looking at tuple i, and the count so far is ci−1,
then after looking at tuple i the count will either be ci−1

or ci−1 + 1. Since this can be the case at each update, we
must store all possible values for the result at each step. For
instance, after looking at just one tuple, only two values are
possible (0 and 1), and when we look at another tuple, the
value 2 now becomes possible. The probabilities associated
with each of these results can be easily updated at each step
by looking at two values as shown in the algorithm.

Table V shows the trace of how the probability distribution
is updated with each tuple in Table I to answer query Q1. For
instance, consider the second row in the table, where tuple 2
is processed. This tuple has probability 0 of being part of
the result because under both mappings it does not satisfy
the select condition. The probability of the result being 0 is

tupleID 0 1 2 3 4

1 0.4 0.6
2 0.4 0.6 0
3 0 0.4 0.6 0
4 0 0.16 0.48 0.36 0

TABLE V

TRACE OF BYTUPLEPDCOUNT FOR QUERY Q1

tupleID vmin
i vmax

i low up

0 0
1 195 195 195 195
2 197.5 200 392.5 395
3 336.3 439.95 728.8 834.95
4 340.5 438.05 1069.3 1273

TABLE VI

TRACE OF BYTUPLERANGE FOR QUERY Q2’

now 0.4; this is because the count can only be 0 if it was 0
before and tuple 2 is not part of the count (0.4∗1.0 = 0.4); the
probability of the result being 1 is updated in the following
way: the value can only be 1 if either it was 0 before and
tuple 2 satisfies the condition, or it was already 1 and tuple 2
does not satisfy the condition (0.4 ∗ 0 + 0.6 ∗ 1.0 = 0.6).
Finally, 2 is a new possible value with probability 0 for now.
Note that each row is a probability distribution among the
values considered thus far. The final probability distribution is
the same as shown in Example 3.

Theorem 2: Algorithm ByTuplePDCOUNT correctly com-
putes the result of executing a COUNT query under the by-
tuple/distribution semantics.

In Section III-A, the probability distribution for this example
was computed by looking at the answer of each possible
sequence of mappings assigned to individual tuples. If we have
m mappings and n tuples, then the number of sequences is
mn. The algorithm presented here is polynomial in the number
of mappings and tuples, and the number of computations is in
O(m ∗ n2).
Aggregate functions SUM and AVG

We now present efficient (PTIME) algorithms to com-
pute the SUM aggregate under the by-tuple/range and by-
tuple/expected value semantics. Computing this aggregate
function under the distribution semantics does not scale,
simply because the number of newly generated values may
be exponential in the size of the original table, as was
demonstrated at the beginning of Section IV-B.
SUM Under the Range Semantics. For the range semantics, we
must compute the tightest interval in which the aggregate lies.
The algorithm is presented in Figure 4 and illustrated next.

Consider Example 2, but now suppose we are interested in
a simple computation of the sum of the prices for transactions
whose auctionID is 34; we then use the following query:

Q2’: SELECT SUM(price) FROM T2
WHERE auctionID = ’34’

Table VI shows the trace of the algorithm in Figure 4 to
answer query Q2’. If we look, for instance, at the second row

Sequence SUM p SUM×p

(m21 , m21, m21 ,m21) 1076.93 0.0081 8.723133
(m21 , m21, m21 ,m22) 1063.88 0.0189 20.107332
(m21 , m21, m22 ,m21) 947.49 0.0189 17.907561
(m21 , m21, m22 ,m22) 934.44 0.0441 41.208804
(m21 , m22, m21 ,m21) 1074.43 0.0189 20.306727
(m21 , m22, m21 ,m22) 1061.38 0.0441 46.806858
(m21 , m22, m22 ,m21) 944.99 0.0441 41.674059
(m21 , m22, m22 ,m22) 931.94 0.1029 95.896626
(m22 , m21, m21 ,m21) 1076.93 0.0189 20.353977
(m22 , m21, m21 ,m22) 1063.88 0.0441 46.917108
(m22 , m21, m22 ,m21) 947.49 0.0441 41.784309
(m22 , m21, m22 ,m22) 934.44 0.1029 96.153876
(m22 , m22, m21 ,m21) 1074.43 0.0441 47.382363
(m22 , m22, m21 ,m22) 1061.38 0.1029 109.216002
(m22 , m22, m22 ,m21) 944.99 0.1029 97.239471
(m22 , m22, m22 ,m22) 931.94 0.2401 223.758794

Expected value 975.437

TABLE VII

COMPUTING Q2′ UNDER THE BY-TUPLE/EXPECTED VALUE SEMANTICS

in the table, processing tuple 2 from Table II, vmin
2 = 197.5

and vmax
2 = 200, thus low = 392.5 and up = 395. The answer

to Q2’ is thus [1069.3, 1273]. This algorithm is polynomial
in the number of mappings and tuples, and the number of
computations is in O(m ∗ n), where m is the number of
mappings and n is the number of tuples.

Theorem 3: Algorithm ByTupleRangeSUM correctly
computes the result of executing a SUM query under the
by-tuple/range semantics.
AVG Under the Range Semantics. For the AVG aggregate
operator, the algorithm we developed is very similar to the one
in Figure 4, keeping a counter of the number of participating
tuples for both the lower bound and the upper bound. The
counter for the upper bound is incremented by one at each
step only if there exists a maximum value for the tuple that
satisfies the condition when some mapping is applied. The
counter for the lower bound is incremented only if there is a
minimum value for the tuple that satisfies the condition under
some mapping. The answer is given by dividing each bound
for SUM by the corresponding counter.
SUM Under the Expected Value Semantics. We now address an
efficient way of computing by-tuple/expected value semantics.
We do so not by giving an algorithm, but rather by showing
that an answer to a SUM query using the by-tuple/expected
value semantics is equivalent to its by-table counterpart. Be-
fore introducing this equivalence formally, we start with an
illustrating example:

Example 5: Consider query Q2’. Using the by-
table/expected value semantics, we consider two possible
cases. Using m21 we map price to bid, with a query outcome
of 195 + 200 + 331.94+ 349.99 = 1076.93 and a probability
of 0.3. Using m22 we map price to currentPrice, with a
query outcome of 195 + 197.5 + 202.5 + 336.94 = 931.94
and a probability of 0.7. Therefore, the answer to Q2’,
under the by-table/expected value semantics would be
1076.93 ∗ 0.3 + 931.94 ∗ 0.7 = 975.437. Table VII presents

Algorithm ByTupleRangeSUM
Input: Table S, T; MapList M; Attribute A; Condition C
1. Let low = 0, up = 0;
2. For each ti ∈ S,
3. let vmin

i be the minimum value obtained by applying a mapping in M
that satisfies condition C;
Similarly, let vmax

i be the maximum value
that satisfies condition C.

4. low = low + vmin
i ;

5. up = up + vmax
i ;

6. return [low,up];

Fig. 4. Algorithm to answer SELECT SUM(A) FROM T WHERE C under Range Semantics

the 16 different sequences and for each sequence it computes
the query output, its probability, and the product of the
two (which is a term in the summation defining expected
value). The outcome of Q2’ using the by-tuple/expected value
semantics is identical to that of the by-table/expected value
semantics. To see why, let us trace a single value, 434.99.
This value appears in the fourth tuple and is used in the
computation whenever a sequence contains mapping m21

for the fourth tuple, which is every other row in Table VII.
Summing up the probabilities of all such worlds yields
a probability of 0.3, which is exactly the probability of
using m21 in the by-table semantics. The reason for this
phenomenon is because the association of a mapping to one
tuple is independent of the association with another tuple.

Example 5 explains the intuition underlying Theorem 4
below. It is worth noting that this solution does not extend to
the AVG aggregate because it is a non-monotonic aggregate.

Theorem 4: Let pM = (S, T,m) be a schema p-mapping
and let Q be a SUM query over attribute A ∈ S. The expected
value of Qtuple (DT), a by-tuple answer to Q with respect to
pM , is identical to Qtable (DT), a by-table answer to Q with
respect to pM .
Aggregate functions MAX and MIN

We now present an efficient algorithm to compute the MAX
aggregate under the range semantics for the by-tuple seman-
tics. The techniques presented here for MAX can be easily
adapted for answering queries involving the MIN aggregate.
MAX Under the Range semantics. To compute MAX under
the range semantics, we have to find the minimum and the
maximum value of the aggregate under any possible mapping
sequence, i.e., the tightest interval that includes all the possible
maximum values that can arise. The procedure to find this
interval without the need to look at all possible sequences is
outlined in Figure 5.

To see how this algorithm works, consider Example 2. We
answer the subquery within the FROM clause of query Q2:

SELECT MAX(DISTINCT T2.price)
FROM T2 AS R2 GROUP BY R2.auctionID

This subquery contains a GROUP BY auctionID, which
means we will have one answer for each distinct auctionID. In
this case, looking at Table II we see that the answer will consist
of two different ranges, one for auctionID = 34 and another
for auctionID = 38. We show how to compute the answer

for auctionID = 38; the process to obtain the answer for
auctionID = 34 is analogous. For tuple 5, with transactionID
= 3801, the minimum value obtained by applying a mapping
is vmin

5 = 300, while the maximum is vmax
5 = 330.01. For

tuple 6, vmin
6 = 335.01 and vmax

6 = 429.95; for tuple 7,
vmin
7 = 336.3 and vmax

7 = 439.95. Finally, for tuple 8,
vmin
8 = 340.05 and vmax

8 = 438.05. Now, the range for the
aggregator is given by [maxi{vmin

i }, maxi{vmax
i }]. Where

each bound is computed as:

max
i

{vmin
i } = max{300, 335.01,336.3,340.05}

max
i

{vmax
i } = max{330.01, 429.95, 439.95, 438.05}

and thus, the final answer is [340.05, 439.95]. In general, it
is always the case that the range yielded by the by-table
semantics is a subset of the range yielded by the by-tuple
semantics. This is because by-tuple has the possibility of
choosing a different mapping for each tuple, which means
that the algorithm has the freedom to choose sequences that
are not allowed using the by-table semantics. This is true
for all aggregate functions considered in this work. This
algorithm also requires a polynomial number of computations
in O(m ∗ n), where m is the number of mappings and n is
the number of tuples.

Theorem 5: Algorithm ByTupleRangeMAX correctly
computes the result of executing an MAX query under the
by-tuple/range semantics.

C. Summary of Complexity Results

The tables in Figure 6 are a summary of our results for the
six different kinds of semantics. The algorithms presented in
this section correspond to those that require polynomial time
to compute the answer.

V. EXPERIMENTAL RESULTS

In order to evaluate the difference in the running times of
our algorithms (both PTIME and non-PTIME), and how these
are affected by changes in both the number of tuples in the
database and the number of probabilistic mappings present, we
carried out a series of empirical tests whose results we report
in this section. The algorithms we gave for problems that were
not shown to be PTIME are — as expected — inefficient.
However, the algorithms we gave for problems we showed to

Algorithm ByTupleRangeMAX
Input: Table S, T; MapList M; Attribute A; Condition C
1. For each ti ∈ S,
2. let vmin

i be the minimum value obtained by applying a mapping in M
that satisfies condition C;
Similarly, let vmax

i be the maximum value.
3. return [maxi{vmin

i }, maxi{vmax
i }];

Fig. 5. Algorithm to answer SELECT MAX(A) FROM T under Range Semantics

COUNT Range Distribution Expected Value

By-Table PTIME PTIME PTIME
By-Tuple PTIME PTIME PTIME

SUM Range Distribution Expected Value

By-Table PTIME PTIME PTIME
By-Tuple PTIME ? PTIME

MAX,MIN,AVG Range Probability Distribution Expected Value

By-Table PTIME PTIME PTIME
By-Tuple PTIME ? ?

Fig. 6. Summary of complexity for the different aggregates

Fig. 7. Running times for variation of #tuples using the eBay data;
#attributes = 7, #mappings = 2, results are averages over 5 runs on the eBay
auction data. Solid line: ByTuplePDMAX. Dotted line: ByTupleExpValAVG,
ByTuplePDAVG, ByTuplePDSUM, and ByTupleExpValMAX. Dashed line
(touching the x axis): ByTupleRangeMAX, ByTupleRangeCOUNT, ByTu-
plePDCOUNT, ByTupleExpValCOUNT, ByTupleRangeSUM, ByTupleExp-
ValSUM, and ByTupleRangeAVG.)

be in PTIME are quite efficient when we vary both the number
of tuples and the numbers of mappings — but clearly there
are limits that vary from one algorithm to another. We will
discuss these limits below.

The programs to carry out these tests consist of about 3,300
lines of Java code. All computations were carried out on
a quad-processor computer with Intel Xeon 5140 dual core
CPUs at 2.33GHz each, 4GB of RAM, under the CentOS
GNU/Linux OS (distribution 2.6.9-55.ELsmp). The database
engine we used was PostgreSQL version 7.4.16.
Experimental Setup. We carried out two sets of experiments.
The first set used real-world data of 1,129 eBay 3-day auctions
with a total of 155,688 bids for Intel, IBM, and Dell laptop
computers. The data was obtained from an RSS feed for

Fig. 8. Running times for variation of #mappings; #attributes = 20, #tuples
= 6, results are averages over 5 runs on synthetic data. Solid line: ByTuple-
ExpValAVG, ByTuplePDAVG, ByTuplePDSUM, ByTupleExpValMAX, and
ByTuplePDMAX. Dashed line (touching the x axis): ByTupleRangeMAX,
ByTupleRangeCOUNT, ByTuplePDCOUNT, ByTupleExpValCOUNT, ByTu-
pleRangeSUM, ByTupleExpValSUM, and ByTupleRangeAVG.

a search query on eBay.2 The database schema is the one
presented in Example 2. The sole point of uncertainty lies in
the two price attributes where a reference to Price could mean
either the bid price or the current price. We therefore defined
two mappings: bid mapped to Price with probability 0.3 and
currentPrice mapped to Price with probability 0.7. We have
applied the inner query of query Q2 and also a set of queries
that cover four different operators discussed in this work (all
except MIN).

The second set of experiments was done on synthetic,
randomly generated data in order to be able to evaluate
configurations not possible with the eBay data (in particular,
larger numbers of attributes, tuples, and mappings). The tables
consist of attributes of type real, plus one column of type
int used as id (not included in the number of attributes re-
ported in the results). Mappings were also randomly generated
by selecting an attribute at random and then a set of attributes
that are mapped to it, also with a randomly chosen probability
distribution. Each experiment was repeated several times.
Results. We now present and analyze the experiment results
for small, medium, and large instances.
Small instances. We ran a set of experiments on small rela-
tions to compare the performance of all possible semantics,
including those for which there are no PTIME algorithms.

2http://search.ebay.com/ws/search/

Fig. 9. Running times for variation of #tuples; #attributes = 50, #map-
pings = 20, results are averages over 5 runs on synthetic data. Solid
line: ByTupleRangeAVG, ByTupleRangeSUM, ByTupleRangeCOUNT, and
ByTupleRangeMAX. Dashed line: ByTupleExpValSUM. Dotted line: ByTu-
plePDCOUNT and ByTupleExpValCOUNT.

Fig. 10. Running times for variation of #mappings; #attributes = 500, #tuples
= 50,000, results are averages over 2 runs on synthetic data. Solid line: ByTu-
pleExpValSUM. Dashed line: ByTupleRangeMAX, ByTupleRangeCOUNT,
ByTupleRangeSUM, and ByTupleRangeAVG.

Figures 7 and 8 show the running times of all algorithms on
small instances (#mappings fixed at 2 in the former, #tuples
fixed at 6 in the latter). The former corresponds to runs using
the eBay auction data (results shown on a scatterplot, since
each point corresponds to adding all tuples from an auction),
while the latter reports results from runs on synthetic data.

As we can see, running times climb exponentially for
algorithms we did not show to be in PTIME; the sharp increase
in Figure 7 continues when more auctions are included, with
a completion time of more than 10 days for 4 auctions (36
tuples). On the other hand, the running times of the other
algorithms are negligible. When we varied #tuples, the by-
table algorithms running times lay between 0.07 and 0.13
seconds. When we varied #mappings, the by-table algorithms
took between 0.03 and 0.26 seconds. We also ran experiments
varying #tuples using synthetic data which yielded the same
trends in running times as those in Figure 7. These results are
included in [21].

Fig. 11. Running times for variation of #tuples; #attributes = 50, #mappings
= 20, results are averages over 2 runs on synthetic data. Solid line: By-
TupleRangeMAX and ByTupleRangeAVG. Dashed line: ByTupleRangeSUM
and ByTupleRangeCOUNT. Dotted line: ByTupleExpValSUM.

Medium-size instances. Figure 9 shows the running times
of all our PTIME algorithms when the number of tuples is
increased into the tens and hundreds of thousands (#mappings
fixed at 20). As we can see, the ByTuplePDCOUNT and
ByTupleExpValCOUNT algorithms’ performance is well
differentiated from the rest, as they become intractable at about
50,000 tuples. This is due to the fact that these algorithms must
update the probability distribution for the possible values in
each iteration, leading to a running time in O(m∗n2) as shown
in Section IV-B. In this case, the by-table algorithms’ running
times varied between 0.96 seconds and 5.49 seconds.

Figure 10 shows how the running times increase with the
number of mappings (#tuples fixed at 50,000, #attributes =
500). It is interesting to note that ByTupleExpValSUM is
more affected by the increase in number of mappings than the
other four algorithms, with its running time climbing to almost
90 seconds for 250 mappings. This is because it is a by-table
algorithm, and it must issue as many queries as mappings and
then combine the answers. The other four, on the other hand,
only slightly increase their running times at these numbers of
mappings. The by-table algorithms’ running times in this case
lie between 16.49 and 86.49 seconds.
Large instances. Figure 11 shows how our most scalable by-
tuple algorithms perform when the number of tuples is in-
creased into the millions, showing that ByTupleRangeMAX ,
ByTupleRangeCOUNT , ByTupleRangeAVG , and ByTu-
pleRangeSUM take about 1,300 seconds (about 21 minutes)
to answer queries with 5 million tuples and 20 mappings. This
figure also shows the running time of ByTupleExpValSUM ,
which is much lower than the others because it is actually
equivalent to the by-table algorithm, as seen in Section IV-B.
The corresponding running times for the by-table algorithms
varied between 15.73 and 125.63 seconds. We also ran exper-
iments for 15 to 30 million tuples, the results of which are
shown in Figure 12. For these runs, the by-table algorithms
took between 65.17 seconds and 124.76 seconds.

It should be noted that the greater scalability of the by-table

Fig. 12. Running times for variation of #tuples; #attributes = 20, #mappings =
5, results are averages over 2 runs on synthetic data. Solid line: ByTupleRange-
COUNT. Dotted line: ByTupleRangeSUM and ByTupleRangeAVG. Dashed
line: ByTupleRangeMAX. Dashed and Dotted line: ByTupleExpValSUM.

algorithms with respect to the efficient by-tuple algorithms
presented here is in large part due to the fact that the former
are taking advantage of the optimizations implemented by the
DBMS when answering queries.

VI. RELATED WORK

Uncertainty in the process of data integration is gaining
attention in the research community. [22] argues for the need
“to incorporate inaccurate mappings and handle uncertainty
about mappings. Inaccuracy arises because in many contexts
there is no precise mapping... mappings may be inaccurate
[since] the mappings language is too restricted to express
more accurate mappings.” [23] went even further, arguing
philosophically that even if two schemata fully agree on the
semantics and the language is rich enough, schemata may still
not convey the same meaning, due to some hidden semantics,
beyond the scope of the schemata. Therefore, [22] argues that
“when no accurate mapping exists, the issue becomes one
of choosing the best mapping from the viable ones.” The
latter approach was later extended to handle multiple schema
matchings in parallel [24], [12], [25], [11].

One aspect of such uncertainty stems from the quality of
the underlying schema matchings. Uncertainty management
arose at the core of data integration with the advent of new
approaches to data management, such as dataspaces [26].
Researchers argue for moving to fully-automatic (that is, unsu-
pervised) schema matching in numerous emerging applications
triggered by the vision of the Semantic Web and machine-
understandable Web resources.

Several recent works were devoted to the parallel use of
alternative schema matchings [12], [27], [11]. In this work, we
extend the work in [11] to handle aggregates. In [13], a mech-
anism for generating a set of probabilistic mediator schemas
was proposed. [28] provides a mechanism for generating the
top-K probabilistic schema matchings. Here, we assume a set
of probabilistic schema matchings is given through an existing
algorithm such as one of those mentioned above.

Aggregate queries over imprecise and uncertain data have
been studied in [29], [30], [31], [32], [33]. The work of Afrati
and Kolaitis [34] focuses on answering aggregate queries in
data exchange, which is closely related to our setting of data
integration. The authors provide a different range semantics,
based on glb and lub operators, under which aggregates can be
computed in PTIME, which is a similar result to our version
of the range semantics. The authors also propose a possible
values semantics that is similar to our distribution semantics
but is not probabilistic. Their NP-completeness result for a
value existence decision problem fits well with our assertion
that in general, aggregates under the by tuple/probability distri-
bution semantics cannot be computed in PTIME. Our work is
unique in its setting, involving probabilistic schema matching
and the by-table and by-tuple semantics. For example, in [33],
tuples are assigned an allocation measure, which is similar
to our probability assignment based on probabilistic schema
matchings. They also promote the use of expected value as
a measure that maintains “faithfulness.” However, under their
setting, computing an expected value of the AVG operator can
be done in PTIME using a polynomial number of passes on
the set of tuples. Under the by-tuple/expected semantics such
a computation is not feasible.

[14] introduces the concept of probabilistic aggregates
without independence assumptions based on the distribution
semantics of this paper. They provide a linear programming
approach for computing aggregates over probabilistic DBMSs,
develop algorithms under this approach, analyze their com-
plexity, and introduce several families of approximation algo-
rithms that run in polynomial time. [15] studies the problem
of computing aggregate operators on probabilistic data in an
I/O efficient manner. Under their assumptions, the algorithms
for SUM and COUNT are simple, whereas we show that for the
by-tuple/distribution semantics computing SUM may yield an
answer that is exponential in the original table size. For AVG
and MIN/MAX the authors provide stream approximations. We
show efficient algorithms for the by-table semantics and the
by-tuple/range semantics.

VII. CONCLUSIONS AND FUTURE WORK

Probabilistic schema matching is emerging as a paradigm
for integrating information from multiple databases. In past
work, [11] has proposed two semantics called the by-table
and by-tuple semantics for selection, projection and join query
processing under probabilistic schema mapping.

In this paper, we study the problem of answering aggregate
queries in such an environment. We present three semantics for
aggregates — a range semantics in which a range of possi-
ble values for an aggregate query is returned, a probability
distribution semantics in which all possible answer values
are returned together with their probabilities, and an expected
value semantics. These three semantics combine together with
the semantics of [11] to provide six possible semantics for
aggregates. Given this setting, we provide algorithms to an-
swer COUNT, SUM, AVG, MIN, and MAX aggregate queries. We
develop algorithms for each of these five aggregate operators

under each of the six semantics. The good news is that for
every aggregate operator, at least one (and sometimes more)
semantics are PTIME computable.

We also report on a prototype implementation and experi-
ments with two data sets — a real world eBay data set, and a
synthetic data set. We experimentally show that each aggregate
operator listed above can be computed efficiently in at least
one of these six semantics, even when the data set is large and
there are many different possible schema mappings.

In our future work we intend to extend our system to
support nested aggregate queries by interpreting the results on
inner queries in terms of probablistic databases. We shall also
investigate methods for optimizing some of our algorithms,
including the by-tuple/range semantics of COUNT and SUM.
Finally, we shall investigate sampling methods to provide
efficient answers to MIN, MAX, and AVG under the by-
tuple/distribution semantics.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge funding support for
this work provided by the AFOSR through the Laboratory
for Computational Cultural Dynamics (LCCD) under grants
FA95500610405 and FA95500510298, and the NSF under
grant 0540216. Any opinions, findings or recommendations in
this document are those of the authors and do not necessarily
reflect the views of sponsors.

REFERENCES

[1] W.-S. Li and C. Clifton, “SEMINT: A tool for identifying attribute
correspondences in heterogeneous databases using neural networks,”
Data & Knowledge Engineering, vol. 33, no. 1, pp. 49–84, 2000.

[2] E. Mena, V. Kashayap, A. Illarramendi, and A. Sheth, “Imprecise
answers in distributed environments: Estimation of information loss
for multi-ontological based query processing,” International Journal of
Cooperative Information Systems, vol. 9, no. 4, pp. 403–425, 2000.

[3] R. Miller, M. Hernàndez, L. Haas, L.-L. Yan, C. Ho, R. Fagin, and
L. Popa, “The Clio project: Managing heterogeneity,” SIGMOD Record,
vol. 30, no. 1, pp. 78–83, 2001.

[4] A. Doan, N. Noy, and A. Halevy, “Introduction to the special issue on
semantic integration.” SIGMOD Record, vol. 33, no. 4, pp. 11–13, 2004.

[5] H. He, W. Meng, C. Yu, and Z. Wu, “Wise-integrator: A system for
extracting and integrating complex web search interfaces of the deep
web.” in Proceedings of the International conference on Very Large
Data Bases (VLDB), 2005, pp. 1314–1317.

[6] M. Ehrig, S. Staab, and Y. Sure, “Bootstrapping ontology alignment
methods with apfel.” in Proceedings of ISWC 2005, 4th International
Semantic Web Conference, ISWC 2005, 2005, pp. 186–200.

[7] A. Gal, “Why is schema matching tough and what can we do about it?”
SIGMOD Record, vol. 35, no. 4, pp. 2–5, 2007.

[8] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa,
“Schema mapping verification: The spicy way,” in EDBT, 2008.

[9] X. Chai, M. Sayyadian, A. Doan, A. Rosenthal, and L. Seligman, “Ana-
lyzing and revising mediated schemas to improve their matchability,” in
Proceedings of the International conference on Very Large Data Bases
(VLDB), Auckland, New Zealand, Aug. 2008.

[10] N. Bozovic and V. Vassalos, “Two-phase schema matching in real world
relational databases,” in Proceedings of ICDE 2008, 2008, pp. 290–296.

[11] X. L. Dong, A. Y. Halevy, and C. Yu, “Data integration with uncertainty,”
in VLDB, C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivastava,
K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan, V. Ganti, C.-C.
Kanne, W. Klas, and E. J. Neuhold, Eds. ACM, 2007, pp. 687–698.

[12] A. Gal, “Managing uncertainty in schema matching with top-k schema
mappings,” Journal of Data Semantics, vol. 6, pp. 90–114, 2006.

[13] A. D. Sarma, X. Dong, and A. Halevy, “Bootstrapping pay-as-you-
go data integration systems,” in Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), 2008, pp. 861–874.

[14] R. Ross, V. Subrahmanian, and J. Grant, “Aggregate operators in
probabilistic databases,” J. of the ACM, vol. 52, no. 1, pp. 54–101, 2005.

[15] T. Jayram, S. Kale, and E. Vee, “Efficient aggregation algorithms
for probabilistic data,” in Proceedings of SODA 2007, New Orleans,
Louisiana, USA, Jan. 2007, pp. 346–355.

[16] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. Miller, and
J. Mylopoulos, “The hyperion project: From data integration to data
coordination,” SIGMOD Record, vol. 32, no. 3, 2003.

[17] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov,
“The Piazza peer data management system,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 16, no. 7, pp. 787–798,
2004.

[18] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava, “Text joins for
data cleansing and integration in an rdbms,” in Proceedings of the IEEE
CS International Conference on Data Engineering, 2003, pp. 729–731.

[19] A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco, “A hybrid
approach to private record linkage,” in Proceedings of the IEEE CS
International Conference on Data Engineering, 2008, pp. 496–505.

[20] R. Miller, L. Haas, and M. Hernández, “Schema mapping as query
discovery,” in Proceedings of the International conference on Very
Large Data Bases (VLDB), A. E. Abbadi, M. Brodie, S. Chakravarthy,
U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, Eds. Morgan
Kaufmann, 2000, pp. 77–88.

[21] A. Gal, M. V. Martinez, G. I. Simari, and V. Subrahmanian, “Ag-
gregate query answering under uncertain schema mappings,” Univer-
sity of Maryland College Park, Technical Report 2008-06-27, 2008,
http://www.cs.umd.edu/∼mvm/GalTechReport.pdf.

[22] J. Madhavan, P. Bernstein, P. Domingos, and A. Halevy, “Representing
and reasoning about mappings between domain models,” in Proceedings
of AAAI/IAAI 2002, 2002, pp. 80–86.

[23] M. Benerecetti, P. Bouquet, and S. Zanobini, “Soundness of schema
matching methods,” in Proceedings of ESWC 2005, 2005, pp. 211–225.

[24] A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi, “A framework
for modeling and evaluating automatic semantic reconciliation,” VLDB
Journal, vol. 14, no. 1, pp. 50–67, 2005.

[25] C. Domshlak, A. Gal, and H. Roitman, “Rank aggregation for auto-
matic schema matching,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 19, no. 4, pp. 538–553, 2007.

[26] M. Franklin, A. Halevy, and D. Maier, “From databases to dataspaces: a
new abstraction for information management.” SIGMOD Record, vol. 34,
no. 4, pp. 27–33, 2005.

[27] Y. Qi, K. Candan, and M. Sapino, “FICSR: Feedback-based
InConSistency Resolution and query processing on misaligned data
sources,” in Proceedings of the ACM-SIGMOD conference on Manage-
ment of Data (SIGMOD), 2007, pp. 151–162.

[28] H. Roitman, A. Gal, and C. Domshlak, “Providing top-k alternative
schema matchings with ontomatcher,” in Proceedings of the Interna-
tional Conference on Conceptual Modeling (ER), 2008.

[29] E. Rundensteiner and L. Bic, “Evaluating aggregates in possibilistic
relational databases,” Data & Knowledge Engineering, vol. 7, pp. 239–
267, 1991.

[30] A. Chen, J.-S. Chiu, and F.-C. Tseng, “Evaluating aggregate operations
over imprecise data,” IEEE Transactions on Knowledge and Data
Engineering (TKDE), vol. 8, no. 2, pp. 273–284, 1996.

[31] S. McClean, B. Scotney, and M. Shapcott, “Aggregation of imprecise and
uncertain information in databases,” IEEE Transactions on Knowledge
and Data Engineering (TKDE), vol. 13, no. 6, pp. 902–912, 2001.

[32] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating probabilistic
queries over imprecise data,” in Proceedings of the ACM-SIGMOD
conference on Management of Data (SIGMOD), 2003, pp. 551–562.

[33] D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, and
S. Vaithyanathan, “Olap over uncertain and imprecise data,” in Proceed-
ings of the International conference on Very Large Data Bases (VLDB),
2005, pp. 970–981.

[34] F. Afrati and P. G. Kolaitis, “Answering aggregate queries in data
exchange,” in PODS ’08: Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. New York, NY, USA: ACM, 2008, pp. 129–138.

