
CrHacking the
Coding Interview

Gregory Marton

https://bitbucket.org/gregory_marton/coding-interview/src

Licensed under Creative Commons Attribution Share-Alike 3.0

https://bitbucket.org/gregory_marton/coding-interview/src
https://bitbucket.org/gregory_marton/coding-interview/src
https://creativecommons.org/licenses/by-sa/3.0/us/

Who are you? (until 5:10)

A name to call you by today? Course+Year?
One question / what are you most here to learn?

The agenda:
5:10–5:45 What to expect, prep strategies.

5:45–6:20 Getting un-stuck.

6:20-7pm Non-coding discussions.

Please ask questions throughout.

Purpose

Do we want to work with each other?
Resume is verifiable? Currently qualified for role? Future potential?

What are your strengths?

Do you think systematically, with attention?

Can we have a clear, interesting conversation?

Hazing

GitH
ub

Self Care

Most important asset: confident, positive attitude.

Interviews are asymmetric. Shake it off. Have fun.

Take a break: not a stress test.

Sleep. Eat. Smile. Stretch. Be kind. Be grateful.

Interview Types

Technical phone interview: broad, shallow
On-site calibrated coding: narrower, deep
On-site calibrated design: big-picture, organizing
Standardized knowledge interview: IT
Pair programming or mini-project
Behavioral interview
Lunch "interview"

...

Interview Types

Technical phone interview: broad, shallow
On-site calibrated coding: narrower, deep
On-site calibrated design: big-picture, organizing
Standardized knowledge interview: IT
Pair programming or mini-project
Behavioral interview
Lunch "interview"

Each Interview Résumé-
driven

Calibrated
Technical

Candidate's
Questions

The Right Answer™

Coding!

Thought process

Skill in communicating it

Exploring and Comparing Solutions

"Generalist"

Productive conversations
with everyone.

Understands implications
of code at many levels.

Practice

Getting un-Stuck

What you're
thinking

→ → Hints, analogies.

How do you learn
something new?

Q&A (until 5:45)

How do interviewers choose questions?
How important is your experience/school/degree?
How to balance work + life + studying?
I'm nervous/shy. I'm rusty.
I'm a specialist. Interviewer was rude!
I've heard that question! I have a disability.
I know I'll get rejected. ?

Function Signatures / Contracts

Names Domain Range
type1, type2 → result_type

def fn_name(input1, input2)

Quack!

Signatures/Contracts Practice
Problem Statement Function Name Input

Names
Input Types Result Type

Is a binary tree full?

In a list of numbers, find
the closest pair.

Reverse a string, in place.

Given two sorted arrays,
find the common elements.

Play "24": You get 4 digits;
find math operations that
get them to 24.
E.g. given (2, 3, 8, 4),
find (3 * (8 / 2 + 4)).

Signatures/Contracts Practice
Problem Statement Function Name Input

Names
Input Types Result Type

Is a binary tree full? is_full tree Binary Tree Boolean

In a list of numbers, find
the closest pair.

closest_pair choices List of Numbers Pair<Number,
Number>

Reverse a string, in place. reverse str String Modifies input!

Given two sorted arrays,
find the common elements.

common_elements a, b List, List
Items mutually
comparable.

List

Play "24": You get 4 digits;
find math operations that
get them to 24.
E.g. given (2, 3, 8, 4),
find (3 * (8 / 2 + 4)).

twenty_four digits Set of Integers Tree or Stack of
digits and
operations

Let's Code!

❏ Volunteers please!
1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

Let's Code!

3.2 Make a stack class with push, pop, and min.
1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

3.2 Make a stack class with push, pop, and min.

class MinStack

min : MinStack -> value

pop : MinStack! -> value

push : MinStack!, value -> MinStack

end

Use or extend existing stack code
— do not invent your own!

Let's Code!

3.2 Make a stack class with push, pop, and min.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

3.2 Make a stack class with push, pop, and min.
[] push(3) -> [3]

min -> nil
pop -> [], nil

[3] push(3) -> [3, 3]
push(3).min -> 3
push(1) -> [3, 1]
min -> 3
pop -> [], 3

[3, 1] push(5) -> [3, 1, 5]
min -> 1
pop -> [3], 1
pop then min -> 3

[3, 1, 5] push(1) -> [3, 1, 5, 1]
min -> 1
pop -> [3, 1], 5

Let's Code!

3.2 Make a stack class with push, pop, and min.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

3.2 Make a stack class with push, pop, and min.

Time Is it okay for min to take O(n) time? [No! Try for O(1).]
Is it okay for push to take O(log2n) time? [No! Try for O(1).]

Space Can/should we use extra storage? [Yes, if you want it, take up to O(n) space.]

Domain and
Range

Are values always numbers? [No. Store any value, or describe constraints.]
Is there a minimum possible minimum value? [No.]

Special
Values

Can the stack be empty? [Yes.]
Can the stack contain nil? [Up to you. Why or why not?]
Are the inputs required to be distinct? [Up to you. Why do you want it?]

Behavior Do you ever want to pop the minimum value? [No. Why would that be hard?]
Do you ever want to pop multiple values? [No. Why would that be hard?]

Let's Code!

3.2 Make a stack class with push, pop, and min.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

3.2 Make a stack class with push, pop, and min.
[] push(3) -> [3]

min -> nil
pop -> [], nil

[0] push(0) -> [0, 0]
push(0).min -> 0
push(1) -> [0, 1]
min -> 0
pop -> [], 0

[0, -1] push(5) -> [0, -1, 5]
min -> -1
pop -> [0], -1
pop then min -> 0

[0, -1, 5] push(1) -> [0, -1, 5, 1]
min -> -1
pop -> [0, -1], 5

Let's Code!

3.2 Make a stack class with push, pop, and min.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

class MinStack

 # Assumes values are Comparable.

 def initialize()

 @values = []

 @minima = []

 end

 def min() # -> value (or nil)

 return @minima.last

 end

def push!(value) # value -> Stack

 prev_min = self.min()

 @values << value

 @minima << ((prev_min and

 prev_min < value) ?

 prev_min : value)

 return self

 end

 def pop!() # -> value (or nil)

 @minima.pop

 return @values.pop

 end

end # class

01

02

03

04

05

06

07

08

09

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

class MinStack

 EntryPair = Struct.new(:value, :stk_min)

 def initialize()

 @entries = []

 end

 def min(next_value = nil)

 return next_value if @entries.empty?

 last_min = @entries.last.stk_min

 return last_min unless next_value

 return [last_min, next_value].min

 end

 def push(value)

 @entries << EntryPair.new(

 value, self.min(value))

 return self

 end

 def pop()

 return @entries.pop.value

 unless @entries.empty?

 end

end # class

01

02

03

04

05

06

07

08

09

10

11

12

14

15

16

17

18

19

20

21

22

23

24

Timing

Quick Tutorial: Binary Trees

c.class # → Tree
a.name # → "a"
a.left # → b
c.right # → g
f.parent # → c
d.left # → nil
b.right # → nil
a.parent # → nil

 a
 / \
 b c
 / / \
d f g

Note: not a binary search tree!
 (Volunteer to explain?)

Let's Code!

4.7 Given a binary tree and two node ids, find
their closest common ancestor.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

Given a binary tree and two node ids, find their
first common ancestor.

def first_common_ancestor(tree, p, q):

"""tree has .left, .right, and .name, and

p and q are names to find. Returns a name."""

template<typename T>

bool BinaryTree::LCA(

const pair<T, T>& targets, T* ancestor) {

public static Node ClosestAncestor(

Node root, Node a, Node b) { (33)

Let's Code!

4.7 Given a binary tree and two node ids, find
their first common ancestor.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

Given a binary tree and two node ids, find their
first common ancestor.
nil a, a → nil

a, b → nil

a a, a → a
a, b → nil
b, a → nil

 a
 / \
 b c

a, a → a a, b → a b, c → a
b, b → b c, a → a

 a
 / \
 b c
 / / \
d f g

a,a → a (systematically all identities)
a,b → a a,d → a c,f → c a,g → a c,g → c (descendants)
c,d → a b,f → a b,g → a d,f → a (aunts)
f, g → c (lower siblings)
c, e → nil (not found)
 (all symmetries by test helper)

Let's Code!

4.7 Given a binary tree and two node ids, find
their first common ancestor.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

Given a binary tree and two node ids, find their
first common ancestor.

Time Does the tree have parent links? [If too hard, then yes.]
Do we have an index from id to node reference? [If too hard, then yes.]
Otherwise this will be O(n) worst case no matter what, right?
If it was a search tree, I could do better.
Better data structure? Are queries common vs. inserts+deletes?

Space Can/should we use extra storage? [Do we get any advantage? Use case?
 Is caching worthwhile? If so, what kind?]

Domain and
Range

Like a search tree, can we know anything about the children of a node?
Do we only care about ancestors a certain distance away? [Generic nodes.]

Special
Values

Can the tree be empty? Yes. Guaranteed to find the ids? No.
Is the tree balanced? Yes.
What type are node ids? Fast to compare? nil legal? Your choice. Yes. No.
Are the input ids required to be distinct? No.
Are the ids in the tree all distinct? [If too easy, then no.]

Let's Code!

4.7 Given a binary tree and two node ids, find
their first common ancestor.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

Given a binary tree and two node ids, find their
first common ancestor.
nil a, a → nil

a, b → nil

a a, a → a
a, b → nil
b, a → nil

 a
 / \
 b c

a, a → a a, b → a b, c → a
b, b → b c, a → a

 a
 / \
 b c
 / / \
d f g

a,a → a (systematically all identities)
a,b → a a,d → a c,f → c a,g → a c,g → c (descendants)
c,d → a b,f → a b,g → a d,f → a (aunts)
f, g → c (lower siblings)
c, e → nil (not found)
 (all symmetries by test helper)

Let's Code!

4.7 Given a binary tree and two node ids, find
their first common ancestor.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

 def common_prefix_non_solution(p, q)

 p_parents = find_with_parents(p).map{|i| i.name}

 q_parents = find_with_parents(q).map{|i| i.name}

 p_node = p_parents.pop

 q_node = q_parents.pop

 while p_node != q_node

 p_node = p_parents.pop

 q_node = q_parents.pop

 end

 return p_node

 end

01

02

03

04

05

06

07

08

09

10

11

 def fca_common_suffix(p, q)

 p_parents = find_with_parents(p).map{|i| i.name}

 q_parents = find_with_parents(q).map{|i| i.name}

 common_parent = nil

 p_node = p_parents.shift

 q_node = q_parents.shift

 while (p_node == q_node and

 not p_parents.empty? and

 not q_parents.empty?)

 common_parent = p_node

 p_node = p_parents.shift

 q_node = q_parents.shift

 end

 return p_node == q_node ? p_node : common_parent

 end

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

 def fca_with_a_set(p, q)

 p_parents = Set.new(find_with_parents(p).map{|i| i.name})

 q_parents = find_with_parents(q).map{|i| i.name}

 q_parents.reverse.each do |parent|

 if p_parents.include?(parent)

 return parent

 end

 end

 return nil

 end

01

02

03

04

05

06

07

08

09

10

Repeated!Repeated!Repeated!
Repeated!Repeated!

Repeated!

Repeated!
W

it
h

ap
ol

og
ie

s
to

 S
he

l S
ilv

er
st

ei
n!

Sets: Listlike, Unordered, no Duplicates

s = Set.new(["a", "b"])
s << "c"
s.add("a") # no effect. already there.
s.include?("c") # → true
s.include?(3) # → nil
s - ["b"] # → the set with "a" and "c".
s += ["d"] # → the set {"a", "b", "c", "d"} (math font)
s.each works as usual s.first returns an element.

Let's Code!

9.4 Return all the subsets of a set.
1. Function Signature
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

9.4 Return all the subsets of a set.

subsets : Set -> Set ?

9.4 Return all the subsets of a set.

subsets : Set -> Set ?

subsets : Set -> List<Set> ?

9.4 Return all the subsets of a set.

subsets : Set -> Set ?

subsets : Set -> List<Set> ?

subsets : Set -> Set<Set> ?

Let's Code!

9.4 Return all the subsets of a set.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

9.4 Return all the subsets of a set.

{} {{}}
{a} {{}, {a}}
{a,b} { {}, {a}, {b}, {a,b} }

{a,b,c} { {}, {a}, {b}, {a,b}

 {c}, {a,c}, {b,c}, {a,b,c} }
{a,b,c,d} { {}, {a}, {b}, {a,b}, {c}, {a,c}, {b,c}, {a,b,c}

 {d}, {a,d}, {b,d}, {a,b,d}, {c,d}, {a,c,d}, {b,c,d}, {a,b,c,d} }

Let's Code!

9.4 Return all the subsets of a set.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

9.4 Return all the subsets of a set.

Time Can we assume O(1) set operations? [Yes, wherever that's reasonable.]

Space Can/should we use extra storage? [Be careful of extra copying.]

Domain and
Range

Should the empty set always be in the result? [Yes, that's fine.]

Special
Values

Can the initial set be empty? [Yes.]
Can the initial set be nil? [It's fine to assume that it's a set.]

Let's Code!

9.4 Return all the subsets of a set.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

{} {{}}
{a} {{}, {a}}
{a,b} { {}, {a}, {b}, {a,b} }

{a,b,c} { {}, {a}, {b}, {a,b}

 {c}, {a,c}, {b,c}, {a,b,c} }
{a,b,c,d} { {}, {a}, {b}, {a,b}, {c}, {a,c}, {b,c}, {a,b,c}

 {d}, {a,d}, {b,d}, {a,b,d}, {c,d}, {a,c,d}, {b,c,d}, {a,b,c,d} }

9.4 Return all the subsets of a set.

Let's Code!

9.4 Return all the subsets of a set.

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

def subsets(source)

 # Set -> Set of Sets

 result = Set.new([Set.new])

 if source.size > 0

 # Set has #first from Enumerable.

 some_element = source.first

 without = subsets(source - [some_element])

 result.merge(without)

 without.each do |subset|

 result.add(subset + [some_element])

 end

 end

 return result

end

def subsets(source)

 # Set -> Set of Sets

 result = Set.new([Set.new])

 # Taking away each possible way to make it smaller:

 source.each do |some_element|

 without = subsets(source - [some_element])

 result.merge(without)

 without.each do |subset|

 result.add(subset + [some_element])

 end

 end

 return result

end

{a, b, c, d}

{b, c, d}

{c, d}

{d}

{}

Calls to subsets

{a, b, c, d}

{b, c, d} {a, c, d} {a, b, d} {a, b, c}

{c, d} {b, d} {b, c} {c, d} {a, d} {a, c} {a, b}{a, d}{b, d} {b, c} {a, c} {a, b}

{b}{c} {d} {d} {b} {c}

{} {} {} {} {} {}

Calls to subsets

Other question types (6:30)

Q&A

Tell me about this project.

Goal

Breakdown into major pieces,

Your Contribution,

Results.

Exploratory / Design

A good way to sort a million numbers?

Copy a file to a million machines.

Design [interviewer's fav app/site/feature]

If you could do anything...

What are you most excited to do?

A fresh idea? Teach me something!

Where does your motivation come from?

Do you know our company's goals & pain points?

Prior Challenges

A difficult bug to track down.
Details → Experience.

A tough interpersonal situation.
How do you handle adversity?
Resilience? Integrity? Creativity? Leadership?

Problematic

How did you pay for college?*

If I were to look at the web history section of your
browser, what would I learn about you that isn’t
on your resume?*

What do you enjoy doing in your free time?

* From How Google Works by Eric Schmidt, Jonathan Rosenberg, and Alan Eagle, 2014.

Problematic → Turn it Around

What do you hope to learn by asking that?
Why is that important to you?

Are you looking for examples of initiative?

Imagine with them: I think some of your
colleagues might answer … because …

Q&A

The Design Recipe
1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

http://htdp.org/

def fca_anydist_helper(p, q)

 empty = FcaIntermediateResult.new(false, false, nil)

 found_p = @name == p

 found_q = @name == q

 return FcaIntermediateResult.new(true, true, @name) if found_p and found_q

 left_result = @left ? @left.fca_anydist_helper(p, q) : empty

 return left_result if left_result.fca

 right_result = @right ? @right.fca_anydist_helper(p, q) : empty

 return right_result if right_result.fca

 found_p |= (left_result.found_p or right_result.found_p)

 found_q |= (left_result.found_q or right_result.found_q)

 return FcaIntermediateResult.new(true, true, @name) if found_p and found_q

 return FcaIntermediateResult.new(found_p, found_q, nil)

end

def fca_anydist(p, q)

 return fca_anydist_helper(p, q).fca

end

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

Résumés

History → Ad

Recruiter: impressiveness, clarity of fit + purpose.
Interviewer: deep, interesting conversation.

1 page great conversations interesting specifics

(+ a10tion to detail)

Peer Review — Your time.

7-7:30 What to expect, prep strategies.
7:30-8 Guided coding practice.
8:05-8:30
● Other question types
● Fielding bad questions
● q&a
8:30-9 Peer review of resumes and code.

Peer Review — Your time.

Résumés: 1 page ad, recruiter+coworker

Programs: , names!

Your story:

Handout

CrHacking the
Coding Interview

Gregory Marton

https://bitbucket.org/gregory_marton/coding-interview/src

Licensed under Creative Commons Attribution Share-Alike 3.0

https://bitbucket.org/gregory_marton/coding-interview/src
https://bitbucket.org/gregory_marton/coding-interview/src
https://creativecommons.org/licenses/by-sa/3.0/us/

Function Signatures / Contracts

Names Domain Range
type1, type2 → result_type

def fn_name(input1, input2)

Code a contract/signature on the board quickly.
Types help you talk about constraints.

Signatures/Contracts Practice
Problem Statement Function Name Input

Names
Input Types Result Type

Is a binary tree full?

In a list of numbers, find
the closest pair.

Reverse a string, in place.

Given two sorted arrays,
find the common elements.

Play "24": You get 4 digits;
find math operations that
get them to 24.
E.g. given (2, 3, 8, 4),
find (3 * (8 / 2 + 4)).

Quick Tutorial: Binary Trees

c.class # → Tree
a.name # → "a"
a.left # → b
c.right # → g
f.parent # → c
d.left # → nil
b.right # → nil
a.parent # → nil

 a
 / \
 b c
 / / \
d f g

Note: not a binary search tree!
 (Volunteer to explain?)

Sets: Listlike, Unordered, no Duplicates

s = Set.new(["a", "b"])
s << "c"
s.add("a") # no effect. already there.
s.include?("c") # → true
s.include?(3) # → nil
s - ["b"] # → the set with "a" and "c".
s += ["d"] # → the set {"a", "b", "c", "d"} (math font)
s.each works as usual s.first returns an element.

Practice Problems

http://www.careercup.com/
Levels: http://projecteuler.net/ http://www.rankk.org/

Help people: http://stackoverflow.com/

Daily/Weekly:
http://programmingpraxis.com/
http://www.reddit.com/r/dailyprogrammer

http://www.careercup.com/
http://www.careercup.com/
https://projecteuler.net/
http://www.rankk.org/
http://stackoverflow.com/
http://programmingpraxis.com/
http://programmingpraxis.com/
http://www.reddit.com/r/dailyprogrammer
http://www.reddit.com/r/dailyprogrammer

The Design Recipe

http://htdp.org/ Book: How To Design Programs

1. Function Signatures
2. Examples
3. Assumptions
4. Algorithms
5. Code!
6. Checking back, relaxing assumptions.

http://htdp.org/
http://htdp.org/

