
AHA! Modelling Tools Manual i

AHA! Modelling Tools Manual

AHA! Modelling Tools Manual ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

f4b9c7d9d69c 2017/10/10 SB

AHA! Modelling Tools Manual iii

Contents

1 Software tools and requirements 1

2 Coding style: General guidelines and tips 3

2.1 Code formatting rules . 3

2.2 Efficient Fortran programming . 5

2.3 Using strings . 10

3 Document code as you write it with Doxygen 10

4 Version control: Subversion (SVN) 13

4.1 Overview . 13

4.2 First time setup of the working copy . 14

4.2.1 Command line tool . 15

4.2.2 TortoiseSVN on Windows . 16

4.3 Standard workflow . 17

4.4 Log of changes . 18

4.5 Using branches . 18

4.5.1 Make a branch copying old code . 19

4.5.2 Merge changes between branches . 19

4.5.3 Reintegrate final revision from branch back to the trunk . 19

4.6 Other features . 20

4.7 GUI Tools . 21

5 Object-oriented programming and modelling 22

5.1 General principles . 22

5.2 Simple basics . 23

5.3 Type-bound procedures . 23

5.4 Module structure . 25

5.5 Class diagram . 26

5.6 Arrays of objects . 26

5.7 Implementation of objects . 26

5.8 A trivial example: Stopwatch object . 27

5.9 More information . 28

6 Introduction to the AHA Fortran modules 29

6.1 Overview of AHA modules . 29

6.2 Modules in Fortran . 30

AHA! Modelling Tools Manual iv

7 Module: BASE_UTILS 31
7.1 Function: TOSTR . 31

7.1.1 Examples: . 31

7.2 Subroutines: STDOUT and STDERR . 33

7.3 Function: CLEANUP . 34

7.4 Determining the runtime platform: PLATFORM_IS_WINDOWS . 34

7.5 Linearly spaced array: LINSPACE . 34

7.6 Interpolation: LINTERPOL, DDPINTERPOL, INTERP_LINEAR, INTERP_LAGRANGE 35

7.7 Subroutines: ARRAY_INDEX and ARRAY_RANK . 35

7.8 Subroutine: RANDOM_SEED_INIT_SIMPLE . 36

8 Module: CSV_IO 37
8.1 Overview . 37

8.2 Subroutine: CSV_OPEN_WRITE . 40

8.3 Subroutine: CSV_CLOSE . 40

8.4 Subroutine: CSV_HEADER_WRITE . 41

8.5 Function: GET_FILE_UNIT . 41

8.6 Function: GET_FREE_FUNIT . 42

8.7 Function: CHECK_UNIT_VALID . 42

8.8 Function: CHECK_FILE_OPEN . 43

8.9 Subroutine: CSV_RECORD_APPEND . 43

8.9.1 Overview . 43

8.9.2 Examples . 44

8.10 Function: CSV_GUESS_RECORD_LENGTH . 44

8.11 Function: CSV_RECORD_SIZE . 45

8.12 Function: CSV_FILE_LINES_COUNT . 45

8.13 Subroutine: CSV_RECORD_WRITE . 46

8.14 Subroutine: CSV_MATRIX_WRITE . 46

8.14.1 Two-dimensional matrix . 46

8.14.2 One-dimensional arrays . 47

8.14.3 Combining multiple arrays with RESHAPE . 48

8.15 Function: CSV_MATRIX_READ . 49

8.15.1 Truncated rows . 50

8.15.2 Real kind=8 data . 51

8.16 Derived type: csv_file . 51

8.16.1 Basic Example . 51

8.16.2 Arrays of structures . 51

8.17 Extended example . 52

8.18 Procedures to manipulate the filesystem . 54

8.18.1 Subroutine: FS_MKDIR . 55

8.18.2 Subroutine FS_RENAME . 55

8.18.3 Subroutine FS_UNLINK . 55

8.18.4 Subroutine FS_REMOVE . 55

AHA! Modelling Tools Manual v

9 Module: BASE_RANDOM 55

9.1 Subroutine: RANDOM_SEED_INIT . 56

9.2 Function: RAND_I . 56

9.3 Functions: RAND_R4 (RAND) and RAND_R8 . 56

9.4 Functions: RNORM_R4, RNORM_R8, RNORM . 56

9.5 Function: RAND_STRING . 57

9.6 Arrays of random numbers: RAND_ARRAY and RNORM_ARRAY . 57

9.7 Random permutation: PERMUTE_RANDOM function . 57

9.8 Usage Notes . 57

9.9 Build details . 58

10 Module: LOGGER 59

10.1 Overview . 59

10.2 Subroutine: LOG_STARTUP . 60

10.3 Subroutine: LOG_CONFIGURE . 60

10.4 Function: LOG_ISINITIALIZED . 61

10.5 Subroutine: LOG_CGET . 61

10.6 Subroutine: LOG_DELIMITER . 61

10.7 Subroutine: LOG_SHUTDOWN . 62

11 Module: BASE_STRINGS 62

11.1 Subroutine: PARSE . 62

11.2 Subroutine: COMPACT . 63

11.3 Subroutine: REMOVESP . 63

11.4 Subroutine: VALUE . 63

11.5 Subroutine: SHIFTSTR . 63

11.6 Subroutine: INSERTSTR . 63

11.7 Subroutine: DELSUBSTR . 63

11.8 Subroutine: DELALL . 63

11.9 Function: UPPERCASE . 64

11.10Function: LOWERCASE . 64

11.11Subroutine: READLINE . 64

11.12Subroutine: MATCH . 64

11.13Subroutine: WRITENUM . 64

11.14Subroutine: TRIMZERO . 64

11.15Subroutine: WRITEQ . 64

11.16Function: IS_LETTER . 64

11.17Subroutine: IS_DIGIT . 65

11.18Subroutine: SPLIT . 65

AHA! Modelling Tools Manual vi

12 IEEE Arithmetics 65

12.1 Overview . 65

12.2 IEEE Exceptions . 65

12.3 Implementation details . 67

13 Build system: GNU make 68

13.1 Overview . 68

13.2 Using make . 68

13.2.1 Building and running the model . 69

13.2.2 Cleanup . 69

13.2.3 Debugging . 69

13.2.4 Profiling . 70

13.2.5 Compiling documentation . 70

13.2.6 Using Intel Parallel Studio on Windows (command line) . 71

13.3 Tweaking Makefile . 73

13.3.1 Concepts . 73

13.3.2 Basic parameters . 75

14 Using Microsoft Visual Studio 76

14.1 Working with the source code of the Modelling Tools . 76

14.2 Building the Modelling Tools as a static library . 76

15 Using Code::Blocks IDE 79

15.1 Building the Modelling Tools as a static library . 79

15.2 Using the custom Makefile . 81

16 Manual builds of HEDTOOLS 82

16.1 Editing source codes . 82

16.2 Using static library . 82

17 Plotting tools 83

17.1 List of utilities . 83

17.2 Notes on PGPLOT Windows (GrWin) . 84

18 Using IaaS workstation: AHA_Workshop 84

18.1 Linux-based Workstation . 84

18.1.1 Connecting the cloud workstation . 85

18.1.2 Initial setup: Subversion and IDE Project . 87

18.1.3 Notes on the tools . 89

18.1.4 System maintenance . 92

19 Index 93

AHA! Modelling Tools Manual vii

Abstract

HEDTOOLS is a set of modelling utilities and tools (implemented as portable Fortran modules, not object-oriented) that have
general applicability and are used for data conversion, input/output, random number generation and execution logging. There are
also a few computational tools. Even though HEDTOOLS modules are primarily designed to be used in the AHA Model, they
are designed such that they can be used in many different simulation projects.

This document describes HEDTOOLS and outlines the software requirements and general coding style for the AHA model.

Modern Fortran can be considered as an almost ideal language for agent-based modelling. It is high-level (e.g. it allows to
work with whole arrays and slices) and partly object-oriented. It also contains many similar constructions with Matab, so the
later can be used for rapid prototyping. Nonetheless, it is compiled and strictly typed which makes coding big and complex
projects safer. Compilers are easily available, including free GNU gfortran. Recent compilers generate highly efficient and
extremely fast machine code. Modern Fortran includes some built-in parallel calculation instructions, and libraries and tools for
high performance parallel computations are readily available. As such, Fortran is one of the favourite languages for computation-
intensive works.

Document date: 2017-10-10. The document is generated with the AsciiDoc markup processor.

Latest PDF version:
http://158.37.63.57/doc/HEDTOOLS.pdf

http://asciidoc.org/
http://158.37.63.57/doc/HEDTOOLS.pdf

AHA! Modelling Tools Manual 1 / 96

1 Software tools and requirements

Most tools needed for the model are already available on Linux (e.g. gfortran, make, Subversion, console, midnight commander
etc) and are trivial to install using the standard package manager (e.g. apt-get install gfortran on Ubuntu). On
Windows they can be installed manually from their official web sites. On Mac use homebrew to install many of the utils. Below
are some details on the Windows software.

The UiB IaaS-based virtual cloud desktop includes all the essential software components for working with and developing the
model.

• Fortran Compiler (Mandatory)

Intel Fortran compiler, a commercial software available at UiB. Intel Fortran is also installed on the UiB HPC cluster fimm. Free
GNU Fortran distribution along with make and other tools is available from the Equation solution http://www.equation.com/-
servlet/equation.cmd?fa=fortran. There is also Oracle Solaris Studio combining Fortran compiler and an NetBeans-based IDE,
freely available from http://www.oracle.com/technetwork/server-storage/solarisstudio, Linux and Solaris OSs only (no Windows
or Mac). An extensive set of documentation for GNU gfortran can be found here: https://gcc.gnu.org/onlinedocs/gfortran

• GNU Make and utils (Mandatory)

This is an automated program build system that keeps track of changes in different components of the source code and generates
header files automatically depending on the platform and compiler used. It is possible to work without it, but in such a case
everything should be tweaked manually. GNU make is trivial to install on Linux. For Windows, it goes bundled with the
Equation solution GNU Fortran.

If GNU Fortran is not needed, executable make can be downloaded separately from the Equation solution web site. It is also
available from the Cygwin system and other GNU core utils distros for Windows.

Important
Two GNU core utilities are mandatory to use the GNU make system: grep, expr, cut, sed and awk They can be installed
from any of the GNU distros for Windows.

The official site of GNU make with the code, manuals etc. is here: https://www.gnu.org/software/make/. An almost complete
GNU distribution for Windows is here: http://www.cygwin.com/.

• Subversion (Mandatory)

Subversion is a version control system. Windows GUI (graphical user interface) for Subversion is TortoiseSVN (supported by
UiB IT): https://tortoisesvn.net/. It is very helpful to have also console Subversion client software: TortoiseSVN includes console
tools but they are not installed by default. A good command-line-only Windows tool is SilkSVN https://sliksvn.com/download/.
There are many other GUI tools, e.g. PySVN-Workbench and TkCVS that are open source tools available for Windows, Linux
and Mac. SmartSVN is a commercial (with free edition) Java-based multi-platform GUI client (http://www.smartsvn.com).
There is also SmartGit multiplatform Java-based GUI client that integrates Subversion with Git and Mercurial (other types of
version control software), see here: https://www.syntevo.com/smartgit/. Subversion can be integrated with text editors, IDEs and
other tools using various third party plugins.

• Console terminal (Highly recommended)

The Windows console (cmd) is extremely weak. Conemu https://conemu.github.io/ is a much better alternative, especially with
the Far manager, a two-panel console file manager similar to the ancient Norton commander for DOS (or Midnight commander
on Linux): http://www.farmanager.com/download.php?l=en.

http://brew.sh
http://docs.hpc.uib.no/wiki/Available_resources#Linux_cluster_fimm.hpc.uib.no
http://www.equation.com/servlet/equation.cmd?fa=fortran
http://www.equation.com/servlet/equation.cmd?fa=fortran
http://www.oracle.com/technetwork/server-storage/solarisstudio
https://gcc.gnu.org/onlinedocs/gfortran
http://www.equation.com/servlet/equation.cmd?fa=fortran
http://www.equation.com/servlet/equation.cmd?fa=make
http://www.cygwin.com/
https://en.wikipedia.org/wiki/Grep
https://en.wikipedia.org/wiki/Expr
https://en.wikipedia.org/wiki/Cut_(Unix)
https://en.wikipedia.org/wiki/Sed
https://en.wikipedia.org/wiki/AWK
https://www.gnu.org/software/make/
http://www.cygwin.com/
https://tortoisesvn.net/
https://sliksvn.com/download/
http://pysvn.tigris.org/project_downloads.html
http://www.twobarleycorns.net/tkcvs.html
http://www.smartsvn.com
https://www.syntevo.com/smartgit/
https://conemu.github.io/
http://www.farmanager.com/download.php?l=en

AHA! Modelling Tools Manual 2 / 96

It is also very helpful to have (on the Microsoft Windows) the GNU core utilities (grep, cut, sed, awk etc.). Some of them
are used in the GNU make build system, and the bare minimum set is included with the Equation solutions gfortran. However,
mandatory grep and expr are not there should be installed separately.

There are several distributions available, e.g. GnuWin32, Cygwin, MinGW, busybox-w32, ezwinports, UnxUtils, Gow, winbash.
Among these available distros, Cygwin is the most complete and available for both 32 and 64 bit Windows platforms. It is
recommended for installation.

• Doxygen: Automatically generate program documentation (Highly Recommended)

This is a tool for writing software reference documentation. The documentation is written within code using special markup
and can include formatting, formulas, tables, graphics etc. Doxygen can cross reference documentation and code, so that the
user/reader of a document can easily refer to the actual code. It is trivial to install on Linux, but probably not so on Windows.
Using the full power of the tool is not trivial though. Available from http://doxygen.org/. On Windows is is also highly desirable
to have a LaTeX distribution, such as MikTeX (http://miktex.org) and Ghostscript (http://www.ghostscript.com), both are free
software. LaTeX and Ghostscript are required to generate PDF.

• Asciidoc: Markup text processor (Recommended)

Asciidoc is a markup text processor. This manual is written in asciidoc, but it is not used for anything except compiling a
PDF version of this document. Asciidoc is trivial to install on Linux (check your package manager), but requires more ef-
forts (due to many dependencies e.g. python, LaTeX etc.) on Windows. Check out asciidoc web site: http://asciidoc.org/ (or
http://www.methods.co.nz/asciidoc/).

• Geany (Recommended)

Lightweight IDE, Editor for code and any text files (including AsciiDoc). Works on Linux, Windows and Mac. http://www.geany.org/-
Also need plugins: http://plugins.geany.org/ (The Geany SVN plugin for Windows requires command line tools like SilkSvn to

work.)

• Code::Blocks for Fortran (Recommended)

IDE for Fortran. Works with many compilers, including Intel and GNU gfortran. http://cbfortran.sourceforge.net/. Installation
by unpacking into some directory (i.e. does not require administrative rights). How to use this program for building for the AHA
model is described below.

• Follow: A logfile reading program (Optional)

Following a logfile while executing a program is done trivially on Linux: tail -f some_log_file.txt. There is a Java
GUI program for reading log files that works on all major platforms installs by just placing in some directory: Follow. Available
from http://sourceforge.net/projects/follow/.

https://en.wikipedia.org/wiki/GNU_Core_Utilities
http://gnuwin32.sourceforge.net/
http://www.cygwin.com/
http://www.mingw.org/
http://frippery.org/busybox/index.html
http://sourceforge.net/projects/ezwinports/
http://unxutils.sourceforge.net/
http://github.com/bmatzelle/gow/wiki
http://win-bash.sourceforge.net/
http://www.cygwin.com/
http://doxygen.org/
http://miktex.org
http://www.ghostscript.com
http://asciidoc.org/
http://www.methods.co.nz/asciidoc/
http://asciidoc.org/
http://www.geany.org/
http://www.geany.org/
http://plugins.geany.org/
https://sliksvn.com/download/
http://cbfortran.sourceforge.net/
http://sourceforge.net/projects/follow/

AHA! Modelling Tools Manual 3 / 96

2 Coding style: General guidelines and tips

2.1 Code formatting rules

To get an easier and more efficient work with the code, it is good to follow universal rules in code formatting consistently.

Important
Here are some links to Fortran programming style: Coding tips and Fortran style.

• Line length should be short, not exceeding 80 characters. Use the ampersand symbol & to wrap lines. Too long lines may
not work on some compilers by default and do a lot of mess when you code on the terminal or have to check diff.

call CSV_MATRIX_WRITE (reshape(&
[proto_parents%individual%body_length, &
proto_parents%individual%body_mass, &
proto_parents%individual%stomach_content_mass, &
proto_parents%individual%thyroid_level, &
proto_parents%individual%smr, &
proto_parents%individual%energy_current], &

[POPSIZE, 6]), &
"out_" // MODEL_NAME // "_" // TAG_MMDD() // &
"_gen_" // TOSTR(realgen, GENERATIONS) // csv, &
["LEN ","MASS", "STOM", "THYR","SMR ","ENRG"] &

)
........
!> Log generation timing
call LOG_MSG ("Generation " // TOSTR(realgen) // ", took " // &

TOSTR(stopwatch_generation%elapsed(),"(f8.4)") // &
" s since generation start")

• Use lowercase for most of the coding. Specifically, fortran keywords, intrinsic functions etc. as well as normal variables
should be in lowercase. Global and local parameters that are not allowed to change, in UPPERCASE (so they become
easily identifiable). For example:

!> Genotype to phenotype gamma2gene initialisation value for **thyroid**
real, parameter, public :: THYROID_INIT = 0.5
....
call this%hormone_init(this%thyroid_level, THYROID_GENOTYPE_PHENOTYPE, THYROID_INIT)

• Global variables that are defined in the upstream module but are not fixed parameters and so can change their value are in the
"Camel Case" or, when very short, in UPPERCASE.

!> MMDD tag, year, month and day, used in file names and outputs.
character(LABEL_LENGTH), public :: MMDD

!> The current time step of the model. This is the global non-fixed-parameter
!! variable that is used and updated downstream in the subroutines.
integer, public :: Time_Step_Model_Current

• External and library procedures that are not part of the Fortran intrinsic set and not part of the current model code should
be in UPPERCASE. So they are easy to identify. Spherically, modelling tools functions and subroutines from the HEDTOOLS
bundle should be in UPPERCASE, e.g.

http://stellar.cleanscape.net/products/fortranlint/fortran-programming_tips.html
http://www.fortran.com/Fortran_Style.pdf

AHA! Modelling Tools Manual 4 / 96

! LOG_MSG and TOSTR are external procedures
call LOG_MSG ("Generation :" // TOSTR(realgen))

• Global class names and all the derived classes are in UPPERCASE, so they are easy to identify within the code, e.g.

!> This type adds hormonal architecture extending the genome object
type, public, extends(INDIVIDUAL_GENOME) :: HORMONES

• Block labels for particularly long or important pieces of the code are in UPPERCASE, so they are easy to identify, e.g.

ENVIRON_RESTRICT: if (present(environment_limits)) then ! Block label UPPERCASE

do while (.NOT. test_object%is_within(environment_limits))
call test_object%position(SPATIAL(current_pos%x + delta_shift(), &

current_pos%y + delta_shift(), &
current_pos%depth + delta_shift()))

....

• Always explicitly use the intrinsic type conversion functions, whenever conversion between types is necessary — even if
automatic implicit conversion works correctly. This will avoid many bugs.

if (((real(sex_locus_sum,SRP)/real(sex_locus_num,SRP)) / &
(ALLELERANGE_MAX - ALLELERANGE_MIN)) <= SEX_RATIO) then

• Always use the result-style functions (i.e, with a result variable). This makes it easier to control the function type and avoid
bugs.

elemental function alleleconv(raw_value) result (converted)
......

!> Type 1: no conversion from 0:1 to output allele value
!! @note identical to old alleleconv 1
!! ‘converted = raw_value‘
converted = raw_value

end function alleleconv

• Always explicitly set the intent of all parameters in any procedure. There should be no parameter without explicit intent. This
helps avoid bugs and makes it much easier to convert procedures to pure and elemental.

• Declare procedures pure or elemental whenever possible. There is a huge advantage of using elemental procedures as they
transparently work with arrays and can be automatically parallelized by the compiler too!

elemental function carea(R) result (area_circ) ! Declare elemental
real(SRP), intent(in) :: R ! Set intent even in
real(SRP) :: area_circ ! the simplest cases.
area_circ = PI * R * R

end function carea

AHA! Modelling Tools Manual 5 / 96

2.2 Efficient Fortran programming

Important
A very helpful collection of advises and tips for efficient programming in Fortran can be found here: Fortran Best
Practices

• Avoid using very long lines of code. They are difficult to read, especially if you (or your collaborator) use terminal editor
limited by a 80 columns terminal. Working on the HPC cluster is always via the terminal. Also, compilers often do not like very
long lines and may drop extra characters (resulting in compile errors). For example 132 characters is a standard limitation.
But the default rules may be different on different compilers and platforms. Best try to use code lines limited by 80 characters
— many editors have options to show a 80-characters limit line at the right.

Important
In GNU gfortran compiler, -ffree-line-length-N flag controls how many characters (N) are allowed in a single
line of code. The default valus is 132. none removes any limnt, so the whole line is used: gfortran -ffree-
line-length-none code.f90.

• Use the ampersand & line continuation symbol and indents to format code showing its structure for easy reading.

• Avoid non-standard and non-portable Fortran constructions that work on some compilers but not in others. Intel Fortran
compiler can be especially notorious in implementing such constructs. Refer to the Fortran standard: Adams, J.C et al., 2009.
The Fortran 2003 Handbook. Springer, DOI: 10.1007/978-1-84628-746-6.

• Work at high level, use these tools, use objects, isolate as much as possible into subroutines In this way of coding, it
becomes more clear what each part of the program is really doing and it is also easier to modify components of the program so
that they don’t affect other irrelevant components.

GENERATIONS_LOOP: do while &
(realgen <= GENERATIONS .and. &
parents(1)%fitness > 0)

call sort_by_fitness()

call selection()

call mate_reproduce()

call offspring_fitness()

call generations_swap()

realgen = realgen +1

end do GENERATIONS_LOOP

• Modularise: many small subroutines are easier to code, test, understand, reuse, and maintain that a single monolithic piece or
very few general subroutines. Modularity can also involve hierarchical organisation, it is sometimes quite useful, when a limited
scope is required, to define subroutines within subroutines (the keyword contains can be used within other subroutines and
functions!):

http://www.fortran90.org/src/best-practices.html
http://www.fortran90.org/src/best-practices.html

AHA! Modelling Tools Manual 6 / 96

! This is the main module
module THE_GENOME

use COMMONDATA

implicit none

.....

.....

contains

! It contains this subroutine...
subroutine chromosome_sort_rank_id(this)
class(CHROMOSOME) :: this
.....
call qsort(this%allele)
.....

contains

! And the above subroutine contains two further subroutines
recursive subroutine qsort(A)
.....
.....
end subroutine qsort

subroutine qs_partition_rank_id(A, marker)
.....
.....
end subroutine qs_partition_rank_id

end subroutine chromosome_sort_rank_id

end module THE_GENOME

• Use short procedures rather than long ones. A single subroutine/function should ideally occupy not more than a single screen
page (with vertical screen orientation). So the whole bunch of code is easy to overview and work with. Short procedures are
particularly helpful in the object oriented code.

!> Calculate surface light at specific time step of the model.
!! Light (surlig) is calculated from a sine function. Light intensity
!! just beneath the surface is modeled by assuming a 50 % loss by scattering
!! at the surface: @f$ L_{t} = L_{max} 0.5 sin(\pi dt / \Omega) @f$.
elemental function surface_light(tstep) result (surlig)

!> @returns surface light intensity
real(SRP) :: surlig

!> @param tstep time step of the model, limited by maximum LIFESPAN
integer, intent(in) :: tstep

surlig = DAYLIGHT*0.5_SRP*(1.01_SRP+sin(PI*2._SRP* &
DIELCYCLES*real(tstep,SRP)/(1._SRP*LIFESPAN)))

end function surface_light

• Use meaningful labels. Global variable names should have longer names, sometimes even written in full, separate words
with underscore _, e.g. some_global_variable so that Emacs, Vim and other advanced programming editors could

AHA! Modelling Tools Manual 7 / 96

make use of the words (i.e. SomeGlobalVariable is much less useful). Global names must therefore comment themselves,
abbreviations should be very limited to the most obvious cases (e.g. fry_length is much better than FLEN). Local variables
can have shorter names though, because they are used in limited contexts.

Also, using labels to mark do..end do, if ..end if, forall and other similar constructs may greatly improve the
readability of the code and make it more easy to understand, especially if there are many nested loops if..then..end if
constructs. No need to label all such things (this will just increase clutter), but those that are really important or very big must
be. A couple of examples are below:

GENERATIONS_LOOP: do while &
(realgen <= GENERATIONS .and. &
parents(1)%fitness > 0)

.....
realgen = realgen + 1

... exit GENERATIONS_LOOP ! it is now clear which loop to "exit"

...

... cycle GENERATIONS_LOOP ! and clear which loop to "cycle"
! if there are several nested loops...

end do GENERATIONS_LOOP

SELECT_DEVIANT_CLASS: if (dev == 2) then
.....
else if (dev == 3) then SELECT_DEVIANT_CLASS
.....
else if (dev == 4) then SELECT_DEVIANT_CLASS
......
end if SELECT_DEVIANT_CLASS

• Use whole-array operations and array slices instead of loops, prefer built-in loop-free and parallel instructions and array
assignments (where, forall etc.): it is faster. Fortran 95, 2003 and 2008 has several looping/array assignment constructions
that have been optimised for speed in multi-processor parallel environments. Never use loops to initialise arrays, and avoid
using them to calculate array components. Whenever possible, reverse the order of indices in nested loops, e.g. first looping
should be over the columns, and then over the rows. Nested loops may have huge speed overhead! Use FORALL and WHERE
for "parallelized" array assignments. Below is a little test conducted on an average amd64 system using GNU Fortran (-O3 -
funroll-loops -fforce-addr, timing is by Linux time).

! *** Test 1: Multiple nested loops, execution time = 0m12.488s
use BASE_UTILS
use BASE_RANDOM
implicit none
integer, parameter :: n=1000, a=100,b=100,c=100
integer :: nn, i,j,k
real :: random_r
real, dimension(a,b,c) :: M ! The above header part is the same in all tests

call random_seed_init

MATRLOOP: do nn=1,n
random_r = rand_r4()
do i=1,a ! Multiple nested loops
do j=1,b

do k=1,c
M(i,j,k) = random_r

end do
end do

end do
end do MATRLOOP

AHA! Modelling Tools Manual 8 / 96

! *** Test 2: Direct array assignment, execution time = 0m1.046s
! header the same as above...
call random_seed_init

MATRLOOP: do nn=1,n
random_r = rand_r4()
M=random_r ! Direct array assignment

end do MATRLOOP

! *** Test 3: +forall+ instruction, execution time = 0m1.042s
! header the same as above...
call random_seed_init

MATRLOOP: do nn=1,n
random_r = rand_r4()
forall (i=1:a, j=1:b, k=1:c) M(i,j,k) = random_r ! Parallelised assignment

end do MATRLOOP

! *** Test 4: Reverse order of nested loops (cols then rows), execution time = 0m1.046s
! header the same as above...
call random_seed_init

MATRLOOP: do nn=1,n
random_r = RAND_R4()
do i=1,a
do j=1,b

do k=1,c
M(k,j,i) = random_r ! Order of looping is reversed

end do
end do

end do
end do MATRLOOP

Multiple nested loops with the most "natural and intuitive" indices order (rows then cols) had a really huge execution speed
overhead 1, more than ten times slower than the other methods (compare 12.5s and 1.0s!). The code is also more concise
and easier to read. The same tests with Oracle Solaris Fortran (f95) turning on aggressive optimization and automatic loop
parallelization (-fast -autopar -depend=yes) run much faster, but the speed differences still remained quite impressive
(first test execution time = 0m0.010s, all other = 0m0.006s). So compiler-side aggressive CPU optimisation does work, although
the tricks remain very useful.

Fortran has many built-in functions that work on whole arrays and these would be faster than multiple nested loops coded
manually. For example, many arithmetic functions (abs, . . . cos,. . . log, . . . sin. . .) work with arrays as well as scalars.
These are also useful: where, forall, as well as array logical operators with mask: all, any, count, maxloc, minloc,
maxval, minval, merge, pack, unpack, product, sum. The code below illustrates some loop-free constructions:

!---
! This program illustrates some loop-free Fortran constructions.
! Note that the order of indices here is: (column, row).
!---
program LOOP_FREE

! Declare arrays and variables we need
implicit none
character(len=*), parameter :: fmt_str_r = "(3F8.1)" ! these are just for
character(len=*), parameter :: fmt_str_i = "(3I8)" ! output formatting

! Assign 2-D array values from a 1-D vector using ’reshape’
real, dimension(3,4) :: A = reshape([1.1 , 2.1 , 3.1 ,&

1.2 , 2.2 , 3.2 ,&

1 This is because allocation of arrays in the computer memory goes in an "index-reverse" order in Fortran, see http://www.fortran90.org/src/best-
practices.html#multidimensional-arrays

http://www.fortran90.org/src/best-practices.html#multidimensional-arrays
http://www.fortran90.org/src/best-practices.html#multidimensional-arrays

AHA! Modelling Tools Manual 9 / 96

1.3 , 2.3 , 3.3 ,&
1.4 , 2.4 , 3.4] , [3 , 4])

integer, dimension(3,4) :: B = 0
integer, dimension(3) :: S = 0
logical, dimension(3) :: AB = F ! logical, can be either .TRUE. of .FALSE.
!---
! Print original arrays
print (fmt_str_r), A(:,1) ! 1.1 2.1 3.1
print (fmt_str_r), A(:,2) ! 1.2 2.2 3.2
print (fmt_str_r), A(:,3) ! 1.3 2.3 3.3
print (fmt_str_r), A(:,4) ! 1.4 2.4 3.4

! *** Example 1: Assign values based on logical condition in ’where’
where(A > 3.) ! ’where’ clearly produces much simpler and
A=100. ! more concise code than two nested loops,

elsewhere ! it is also easier for the compiler to optimise
B=10 ! and therefore result in faster machine code.

end where
! Here is the result of this array operation:
print *, "---------------------------"
print (fmt_str_r), A(:,1) ! 1.1 2.1 100.0
print (fmt_str_r), A(:,2) ! 1.2 2.2 100.0
print (fmt_str_r), A(:,3) ! 1.3 2.3 100.0
print (fmt_str_r), A(:,4) ! 1.4 2.4 100.0
print *, "---------------------------"
print (fmt_str_i), B(:,1) ! 10 10 0
print (fmt_str_i), B(:,2) ! 10 10 0
print (fmt_str_i), B(:,3) ! 10 10 0
print (fmt_str_i), B(:,4) ! 10 10 0

! *** Example 2: Calculate sums of elements for the second (= cols) dimension of A
S = sum(A, dim=2)
print *, "---------------------------"
print (fmt_str_i), S ! 5 9 400

! *** Example 3: Find if the condition holds, for all values over the second (rows)
! dimension, similar function ’any’ evaluates for any of these values.

AB = all(A > B, dim=2) ! Here we output values .TRUE. as T or .FALSE. as F
print *, AB ! F F T

end program LOOP_FREE

Note that newer versions of Fortran compilers can become smart enough to adjust the order of looping in the machine code.
Nonetheless it is better to write "optimised" code, preferably not requiring hand-optimisation of the looping order, such as loop-
free array constructions, that works fast just everywhere. Many of the Fortran loop-free constructions actually resemble similar
Matlab functions.

• Use parallel processing constructions. The latest F2008 standard includes specific language constructs that enable parallel
processing in a standard and portable way: do concurrent and coarray Fortran. This is an example of a parallel looping
construction implementing do concurrent:

do concurrent (i=1:ADDITIVE_COMPS)
d1 = (perception / alleleconv(allelescale(gh(i))) &

) ** alleleconv(allelescale(gs(i)))
neuronal_response = neuronal_response + d1/(1._SRP+d1)

end do

On systems and compilers that do not yet support automatic parallel processing, this is equivalent to the standard do-loop.
Note that parallel processing capability should be invoked in the compiler. For Intel Fortran it is -parallel (Linux) or /
Qparallel (Windows) compiler options.

AHA! Modelling Tools Manual 10 / 96

2.3 Using strings

• Always use assumed length strings defined as an asterisk length in subroutine and function dummy input parameters (int
ent(in)) rather than fixed length parameters. The latter may result in a "Character length argument mismatch" compiler
error (or warning) if the function is, for example, called with literal string that does not have exactly the same length as in the
definition.

That is, use such definition of the label parameter (assumed length):

subroutine allele_label_set(this, label)
class(GENE) :: this
character(len=*) :: label ! assumed length string, use this!

this%allele_label = label

end subroutine allele_label_set

Rather than this one (length fixed to LABEL_LENGTH characters):

subroutine allele_label_set(this, label)
class(GENE) :: this
character(len=LABEL_LENGTH) :: label

this%allele_label = label

end subroutine allele_label_set

In the former case, such code is safe even when "SEX_DETERMINATION" length (17) is unequal to LABEL_LENGTH:

some_allele%allele_label_set("SEX_DETERMINATION")

3 Document code as you write it with Doxygen

Doxygen is a very useful tool which allows to extract and produce documentation from the source code in a highly structured
manner. Prior to parsing the code to get the documentation, one has to provide a configuration file for Doxygen. The doxywi
zard generates a wizard-like GUI to make this configuration file easily. There are many formatting symbols, Markdown codes
are supported. Thus, it is easy to document the code extensively as it is being written.

Comments that are parsed through Doxygen are inserted into the source code using special markup language. The basic usage is
quite simple. You should start comment line with "!>" rather than just "!", continuing Doxygen comments is done with two
exclamation marks: "!!". Only comments formatted with this style are processed with Doxygen, you are free to insert "usual"
comments, they are just ignored by the documentation generator.

The documentation description for a particular unit of the program, e.g. module, subroutine, function or variable definition,
should normally go before this unit. Here is an example:

!---
!> @brief Module **COMMONDATA** is used for definine various global
!! parameters like model name, tags, population size etc.
!! @details Everything that has global scope and should be passed to many
!! subroutines/functions, should be defined in ‘COMMONDATA‘.
!! It is also safe to include public keyword to declarations.
!! ‘COMMONDATA‘ may also include subroutines/functions that have
!! general scope and used by many other modules of the model.
module COMMONDATA
......

!> MODNAME always refers to the name of the current module for use by
!! the LOGGER function LOG_DBG. Note that in the debug mode (if IS_DEBUG=TRUE)
!! LOGGER should normally produce additional messages that are helpful for

AHA! Modelling Tools Manual 11 / 96

!! debuging and locating possible sources of errors.
!! Each procedure should also have a similar private constant PROCNAME.
character (len=*), parameter, private :: MODNAME = "COMMONDATA"

!> This is the target string, only for the prototype test
character(len=*), parameter, public :: GA_TARGET = "This is a test of genetic algorithm."

!> Model name for tags, file names etc. Must be very short.
character (len=*), parameter, public :: MODEL_NAME = "HEDG2_01"

There are various options and keywords. A few of them should be particularly useful in documenting the model(s) codes:

@param describes a function or subroutine parameter, may optionally include [in] (or out or in,out) specifier. An example is
below

subroutine LOG_DBG(message_string, procname, modname)
implicit none
! Calling parameters:
!> @param[in] message_string String text for the log message
character (len=*), intent(in) :: message_string
!> @param[in] procname Optional procedre name for debug messages
character (len=*), optional, intent(in) :: procname

@returns describes a function return value. @retval is almost the same but starts with the function return value.

function TAG_MMDD() result (MMDD)
implicit none
!> @retval MMDD Returns an 8-character string for YYYYMMDD
character(8) MMDD

@brief starts a paragraph that serves as a brief description. @details starts the detailed description.

!---
!> @brief LOG_DBG - debug message to the log
!! @details **PURPOSE:** This subroutine is a wrapper for writing debug
!! messages by the module ‘LOGGER‘. The debug message message
!! defined by the ‘message_string‘ parameter is issued only
!! when the model runs in the debug mode, i.e. if ‘IS_DEBUG=.TRUE.‘
subroutine LOG_DBG(message_string, procname, modname)

implicit none

@note insert a note with special emphasis in the doc text. @par start a new paragraph optionally with a title in parentheses.
In the example above note also the use of Markdown formatting, such as double asterisks (*) for strong emphasis (bold) and
reverse quote (`) for inline code (variable names etc.).

Doxygen parses the source code and produces highly structured documentation in different formats (e.g. html, rtf, latex, pdf
etc.).

There are different options to generate HTML documents. For example, a bundle of HTML files with images , cross-references,
code syntax highlighting and search functionality can be prepared. Alternatively, a single simpler HTML file can be done. LaTex
output can be converted to PDF with references and index.

Examples of HTML and PDF outputs are below.

AHA! Modelling Tools Manual 12 / 96

Here is an example of LaTeX formula in the autogenerated documentation file. Note that formulas are delimited with @f$ on
both sides.

!> Fitness is just the "distance" between the agent’s string and the target
!! string: sum of all absolute differences between the numerical value of
!! the symbol across the whole string: @f$ \sum |a_i - T_i| @f$
this%fitness = sum([(abs(iachar(this%str(i:i)) - iachar(GA_TARGET(i:i))), &

i = 1, len(GA_TARGET))])

This is rendered as follows:

AHA! Modelling Tools Manual 13 / 96

To make the formula appear on a separate line, delimit it within @f[and @f].

!> ### Implementation details ###
!> The cost of swimming is calculated as:
!! @f[C_{s} = M^{0.6} \cdot \beta \cdot d / L , @f] where
!! @f$ M @f$ is the body mass, @f$ \beta @f$ is a parameter factor
!! defined as ‘SWIMMING_SPEED_COST_BURST‘, @f$ d / L @f$ is the distance
!! in units of the agent’s body length.
cost_swimming = this%body_mass**SWIM_COST_EXP * SWIMMING_SPEED_COST_BURST &

* distance / this%body_length

Important
LaTeX, dvips and Ghostscript should be installed for the formula rendering to work correctly. There are web-
based LaTeX equation editors, e.g. https://www.codecogs.com/latex/eqneditor.php

Documenting a complex model is very important! It is also not really difficult, but requires some additional discipline. It is much
easier to include Doxygen comments as you write the model code than to look through the whole (huge) amount of the code a
month later just to recall what the code is actually doing. Thus, the model becomes much more understandable to the level of its
finest details. And Doxygen allows inclusion of various markup commands and styles, LaTeX formulas and graphics. Doxygen
documentation, faq’s and howtos are available here: http://doxygen.org

In the AHA GNU make system used to build the executables, documentation is generated using this simple command:

make docs

4 Version control: Subversion (SVN)

AHA Repository: https://subversion.uib.no/repos/aha-fortran/

AHA Tools stable version (trunk): https://subversion.uib.no/repos/aha-fortran/trunk/HEDTOOLS/

4.1 Overview

Subversion (SVN) is a version control system used in the AHA project. Use version control not only for just managing versions,
but also for organising your coding. Every new code commit should ideally be a specific task, function or logical workflow unit.
And the commit message should reflect this task.

https://www.codecogs.com/latex/eqneditor.php
http://doxygen.org
https://subversion.uib.no/repos/aha-fortran/
https://subversion.uib.no/repos/aha-fortran/trunk/HEDTOOLS/

AHA! Modelling Tools Manual 14 / 96

For example, it would be perfect to commit changes in pieces involving implementation of a specific function in the model or to
correct a specific bug. Use the log messages to describe briefly what has been done.

The usefulness of the whole version control workflow is limited if the commit pattern is haphazard and any single commit
involves different kinds of code changes in many different places. It will be, for example, very difficult to revert from a single
change that have previously introduced a bug. Revision history is a very valuable component of the development process!

If several people are working on the same piece of code, it is important to make commits frequently. Also frequently integrate
others’ changes. Otherwise, there is an increasing change to get version conflicts that have to be solved manually.

Important
Always try to commit some logically integrated piece of code rather than do it haphazardly. Write informative commit
messages. Commit changes frequently.

The examples below assume you use a terminal console, but most SVN commands can also be easily performed from various
GUI tools.

For example, imagine you add a neural response function. Commit the change, as soon as it is ready then (with log message
like "Added general neural response function for neural bundles"). Go to the next logical piece of the work (e.g. fixing gamma
2gene) afteer this commit and again commit this change when more or less ready (i.e. go to the next step only after you have
commited the current changes). Then the versions you have will be organised into meaningful pieces:

svn commit model1.f90 -m "Added general neural response function for neural bundles"
.....
svn commit model1.f90 -m "Fixed gamma2gene function, Gaussian perception error"

A typical SVN repository organisation usually includes a trunk directory for the main development line and many branches for
different purposes created by different developers. For example, the current AHA repo has this structure:

|-- branches # Branches are the private workspace for users
| |-- budaev
| |-- christian
| |-- judy
| ‘-- ryan
|
|-- old_archived # Some old code
|
‘-- trunk # Place for the main, "production-ready" model codes

|-- DOC # Docs that do not change but handy, e.g. Fortran Handbook
|-- HEDTOOLS # Stable version of the modelling tools
|-- hormonemodel # One of the models, "production-ready"
‘-- scripts # Templates of scripts and makefiles for reuse

The HEDTOOLS folder itself has the following structure

‘-- HEDTOOLS # Main place for the source files
|-- doc # Documentation for HEDTOOLS
|-- IEEE # Non-intrinsic IEEE math modules
‘-- template # Templates for user Makefile’s and

HPC cluster batch scripts

4.2 First time setup of the working copy

Important
AHA Tools in trunk (stable version) can be found here: https://subversion.uib.no/repos/aha-fort
ran/trunk/HEDTOOLS/; Development versions are here: https://subversion.uib.no/repos/aha-
fortran/branches/budaev/HEDTOOLS/. So standard checkout (the stable version) is like this:
svn checkout https://subversion.uib.no/repos/aha-fortran/trunk/HEDTOOLS/

https://subversion.uib.no/repos/aha-fortran/trunk/HEDTOOLS/

AHA! Modelling Tools Manual 15 / 96

4.2.1 Command line tool

First time setup of the working copy of the model (working directory):

• For a new project (run/experiment etc.), get into the working directory where the model code will reside (cd) (possibly make a
new directory mkdir), and checkout: get the model code (one branch, no need to get everything!) from the server with svn
checkout https://path_to_branch. When a specific repository is used for the first time, you should also include
the user name for this repository (--username your_user_name) and then the program asks for the password. SVN
server name, username and password is then saved, so subsequently it is not necessary to state the username/password you
connect to the same SVN server from the same workstation. For example, first time checkout (for user u01):

svn --username u01 checkout https://subversion.uib.no/repos/aha-fortran/branches/budaev/ ←↩
HED18

next, just this should work:

svn checkout https://subversion.uib.no/repos/aha-fortran/branches/budaev/HED18

This will get the HED18 into the directory HED18 within the current working directory. If we use HEDTOOLS, it should also be
placed here:

svn checkout https://subversion.uib.no/repos/aha-fortran/branches/budaev/HED18
...
svn checkout https://subversion.uib.no/repos/aha-fortran/branches/budaev/HEDTOOLS

So, we now get HED18 and HEDTOOLS in our working directory.

https://path_to_branch

AHA! Modelling Tools Manual 16 / 96

4.2.2 TortoiseSVN on Windows

• Using the TortoiseSVN on Windows, initial setup is also simple.

First, choose some folder for keeping the working copies of the development files, open it in the Windows Explorer.

Then right-click somewhere within this folder, then choose TortoiseSVN and click Checkout. This will bring a window to enter
the Subversion repository address. Now paste the address of the folder you are going to clone on the local machine. It is perhaps
good to get the HEDTOOLS modelling tools initially as they are used anyway.

Important
Unlike the command line client, TortoiseSVN by default clones to the repository directory into the current folder and
does not create local folder with the same name as the remote one.

It may therefore be necessary to retype the local directory name the same as the remote one:

Initially the system will also ask for the username and password.

Repository browser that is called in the Checkout menu . . . button is a tool to explore the contents of the repository on the
server. In Checkout menu it can be used to select the folder project to be cloned to the local machine. Also, using Repository

AHA! Modelling Tools Manual 17 / 96

browser you can make a private project directory on the server under /branches/your_name and then clone it to the local
system using the Checkout menu.

Alternatively, you can create project on the local machine first and use the menu item Import to import it to the repository.
However, in the later case make sure you include only the Fortran (Matlab etc) program code into the Subversion and do not
include the many accessory files created by the Microsoft Studio. They make clutter and are not needed in the versioning sytem.
Use the TortoiseSVN→ Settings→ Ignore manu item for setting up ignore file patterns.

4.3 Standard workflow

Now you can work within this directory. This is the standard workflow.

• update code from the server: svn up

• edit the code using any favoured tools, build, run model etc. . .

• diff (svn diff) to check what are the differences between the local file(s) or directory and those in the repository, to use
specific visual diff tool use --diff-cmd diff_tool.

AHA! Modelling Tools Manual 18 / 96

• commit when ready (e.g. when a new piece of code has been implememnted): svn commit

commit will ask you to provide a short descriptive log message. It will run the standard text editor for this by default (can be
configured). But you can provide such a message just on the command line with the -m option:

svn commit Hed18.f90 -m "New sigmoid function"

Both update and commit can be done for the working directory as well as for specific file. E.g. to commit only the model
code Hed18.f90 do:

svn commit Hed18.f90

Both update and commit can be performed within any subdirectory of the working copy. In such cases they are limited to this
subdirectory only.

4.4 Log of changes

The svn log command will issue the list of log messages, by default in the reverse order (the most recent logs go first), so the
development progress is seen. The log messages can be filtered by date, revision number etc. Check out svn help log.

Example: To show only 5 most recent log messages for the specific file Hed18.f90 use such a command:

svn log -l 5 Hed18.f90

Important
There is a small caveat with svn log. By default it shows log messages from the local working copy (not repository).
So, if you did many commits lately but did not svn update, the latest messages will be absent from the log. So, do
svn update!

There is a useful utility svn2cl that generates standard GNU-style ChangeLog file. This utlity can be found in the standard
Debian-based Linux repositories (subversion-tools). So, installation is trivial on Linux. Download it from the official site:
svn2cl.

Example: The command below produces a slightly more concise daily log.

svn2cl --group-by-day

4.5 Using branches

A branch in Subversion is just a directory on the SVN server. It can be thought of in the same way as common file system
directory/folder. Creating a new folder is easy:

Making a new directory for old code -- use the mkdir command
svn mkdir https://subversion.uib.no/repos/aha-fortran/old_archived

It is also easy to move or copy parts of the repository across the repository:

Move a model branch to the archive folder -- use mv (move) command
svn mv https://subversion.uib.no/repos/aha-fortran/trunk/model_20151013 \

https://subversion.uib.no/repos/aha-fortran/old_archived/model_20151013
....
Copy a file to another branch -- use cp (copy) command
svn cp https://subversion.uib.no/repos/aha-fortran/trunk/hormones/Hormones.f90 \

https://subversion.uib.no/repos/aha-fortran/branches/camilla/hormones/Hormones.f90

Do not forget to update the local working copy after deleting/moving/copying directories on the SVN server, then local copy will
be in sync with the server.

https://www.gnu.org/prep/standards/html_node/Change-Logs.html
https://arthurdejong.org/svn2cl/downloads.html

AHA! Modelling Tools Manual 19 / 96

4.5.1 Make a branch copying old code

The copy command is very useful to create a copy of some repository part to a separate branch. Then some new features or
functions can be implemented in the branch and then reintegrated back to the parent project. Or an independent new model can
be initialised in such a way.

Making a branch is easy, use svn copy source_svn_path destination_svn_path to do this. For example, the
following command makes a copy of the whole sub-tree for the model code HED18 from user budaev private branch to the
user natasha private branch. Now natasha can work on her own copy of the code and, when done, merge the changes back
to budaev’s code. Finally, budaev’s (and natasha’s) code can be reintegrated back to the trunk main line.

svn copy https://subversion.uib.no/repos/aha-fortran/branches/budaev/HED18 \
https://subversion.uib.no/repos/aha-fortran/branches/natasha/HED18 \
-m "Creating private branch."

4.5.2 Merge changes between branches

If several people are simultaneously working on the project, it make sense to merge changes from the parent branch back to the
current branch (e.g. from trunk to budaev and natasha). Thus does not allow the code to diverge too far and reduces the
chances to get version conflicts. Merging ongoing changes from the parent project is easy. For example, the following will merge
changes from trunk back to the current branch (note that ˆ substitutes the SVN repository web address):

svn merge ^/trunk/HEDTOOLS/

That is, with this syntax we have provided the source for merging (ˆ/trunk/HEDTOOLS/) into the current directory.

Merge can be conducted in both ways (to and from different branches to keep them in sync). This is the main component in
branch maintenance. And it is quite trivial. Make a branch — merge changes from trunk or another branch.

To undo a merge that has not yet been committed to the server, e.g. if it was done by mistake in a wrong directory, do this:

svn revert -R .

Important
Only the simple merge is enough in most cases, e.g. merge from trunk to branch and back from branch to the trunk.

If you made the final changes in the subproject branch and like to do a final and ultimate merge, reintegrate should work.

4.5.3 Reintegrate final revision from branch back to the trunk

Suppose you have a private branch/branches .../branches/budaev/HEDTOOLS where you work on the code. Now you
are going to reintegrate your branch back to the trunk (the main development line: .../trunk/HEDTOOLS).

Important
Reintegrate is used only for the ultimate merge effectively "closing" the sub-project, not for routine maintenance.

For this you need several simple steps:

Step 1. Merge possible changes in trunk back to the branch:

If someone is working on the trunk, you need to keep your branch in sync with it, e.g. all other files you are not working on are
synchronised.

AHA! Modelling Tools Manual 20 / 96

First, make sure you are in the branch .../branches/budaev/HEDTOOLS
pwd

Second, Do final check/update
svn status
svn update

Merge possible changes from trunk to the (current) branch working copy
--dry-run does everything but does not change any data, it is good to run it
first to make sure everything is okay (e.g. yo are really in the correct
directory, there are no errors etc.):
svn merge ^/trunk/HEDTOOLS/ --dry-run
For example, if the working copy is not up to date (need commit or revert),
there may be issues like this:
svn: E195016: Cannot merge into a working copy that has local modifications
to check what is wrong (modified), the command: svn diff is helpful. Also,
commit local changes before merging.
When everything is in order, do the real merge:
svn merge ^/trunk/HEDTOOLS/

if merge was used, commit changes back to the repository, even though the
files are unchanged, tags and properties may have changes
svn commit -m "Will merge back to trunk now"

Obviously, this first step is not always necessary. In many cases you can be sure that no one did changes in the trunk (or the other
directoy to which merge is planned).

Step 2. Actually do the reintegrate changes from your branch back to the trunk. For this we need the code from the trunk.

First, make sure you are in the trunk local working copy .../trunk/HEDTOOLS
if necessary, checkout this directory somewhere just for this merge... but
you need the code for the trunk.
pwd

Second, do final checks/updates
svn status
svn update

Do the reintegration of changes from branch back to (current) trunk working copy
it is first good to try with --dry-run to make sure everything is okay
svn merge --reintegrate ^/branches/budaev/HEDTOOLS --dry-run
and finally do the real thing
svn merge --reintegrate ^/branches/budaev/HEDTOOLS

Finally, commit these changes back to the SVN repository
svn commit -m "Merged my changes to trunk"

Step 3. Now, the user’s branch can be removed - everything is saved and the trunk is the latest version.

If the user’s branch should be left alive, we need to do a further command in the branch (not in trunk):

svn update # cd to the branch for the final update
Updating ’.’: # keeping branch alive
Updated to revision 993.
991 is the latest revision where we reintegrated to the trunk
$ svn merge --record-only -c 991 ^/trunk/HEDTOOLS/

4.6 Other features

Keywords. Subversion has a very useful feature: you can set various properties (svn propset). For example, one can set
tags on files or directories. A very interesting feature is that svn:keyword properties can be incorporated into the source files

AHA! Modelling Tools Manual 21 / 96

under SVN control. For example, you can include specific tags into the Fortran (or any other managed) source code so that they
are updated automatically.

One user case for this is this. Define special $Id tag. This tag includes the file name, last changed revision number, revision date
and time and the user who did the revision. This is how it will appear in the source code:

! The comment below incorporates SVN revision ID, it should apparently be
! inserted into a comment, so does not affect the compiler:
! $Id: HEDTOOLS.adoc f4b9c7d9d69c 2017/10/10 09:09:53 sergey $
! other code follows...
......
implicit none
......
! Public constants
integer, public, parameter :: MAX_UNIT=255 ! Maximum unit number (in old

To set up this tag we just have to issue such command:

svn propset svn:keywords "Id" file_name_to_set_keyword.f90

and include two strings $Id anything in between initially $ in this source text to set where the keywords should
be placed. Obviously, we have to commit change to the server after this. From now on, the information will be updated
automatically between the $id ... and $ symbols. So the source code itself will have comments indicating the revision
number etc. There are many useful tags that can be placed in such a way. For example $Date $Revision $HeadURL
$LastChangedDate. If several tags should be placed, one can set up several keywords for a particular file:

svn propset svn:keywords "Id Date Revision HeadURL LastChangedDate" file_name.f90

Check out full documentation in the SVN manual about propset and svn:keyword.

Important
Subversion keywords are case sensitive, so $ID or $id won’t work.

Change Subversion main repository address. If the main svn repository address is changed for some reason, svn relocate
command is useful:

svn relocate --username user_name https://subversion.uib.no/repos/aha-fortran/

TortoiseSVN client on Windows has a Relocate menu item under TortoiseSVN.

WebDAV access. It is possible to access the Subversion repository using the standard WebDAV protocol (https://) as a virtual
folder without installing any client software. WebDAV is supported by most operating systems, including Windows and Linux.
On Windows, use the "Map network drive"" menu to establish connection to the server. On Linux, just place such an address
in the file manager ("Ctrl L" may be required to go to the address line): davs://subversion.uib.no/repos/aha-
fortran/

4.7 GUI Tools

Using the GUI tools like TortoiseSVN is similar to using the terminal commands. With GUI you should just select the appropriate
item from the menu list.

AHA! Modelling Tools Manual 22 / 96

Initial setup for the repository in TortoiseSVN is simple.

Checking changes, diff-ing, setting properties and keywords etc. is also very easy and visual with the built-in tool. Another
useful feature is the revision graphs showing sequence of versions and pattern of branching. TortoiseSVN is incorporated into
the Windows explorer and uses small overlay icons to show the status of the files and directories.

Similar GUI tools, although not as mature as TortoiseSVN, exist for Linux. For example, there is thunar-vcs-plugin (Git
and Subversion integration into the Thunar file manager).

Subversion also integrates with numerous other tools, e.g. there is an SVN plugin for the Geany editor (GeanyVC), plugins for
the Microsoft Visual Studio IDE etc. Do not forget that version control systems are not only for just program code but any text-
based files. So writing papers in LaTeX benefits from a built-in Subversion support in the TexStudio. There is even integration
for Microsoft Office although non-free.

5 Object-oriented programming and modelling

5.1 General principles

Modern Fortran (F2003 and F2008 standards) allows coding in a truely object-oriented style. Object oriented style allows to
define user’s abstractions that mimic real world objects, isolate extra complexity of the objects and create extensions of objects.

Object oriented programming is based on the following principles:

https://en.wikipedia.org/wiki/Thunar
http://plugins.geany.org/geanyvc.html
https://tortoisesvn.net/visualstudio.html
http://www.texstudio.org/
http://magnetsvn.com

AHA! Modelling Tools Manual 23 / 96

• Abstraction: defining and abstracting common features of objects and functions.

• Modularity and hiding irrelevant information: An object is written and treated separately from other objects. Details about
internal functioning of the object are effectively hidden, what is important is the interface of the object, i.e. how it interacts
with the external world. This reduces complexity.

• Encapsulation: combining components of the object to create a new object.

• Inheritance: components of objects (both data and functions) can be inherited across objects, e.g. properties the "genome"
object inherited by a more general object "the individual."

• Polymorphism: the provision of a single interface to objects of different types.

5.2 Simple basics

Stated simply, the object-oriented programming paradigm is based on the notion of object. Here object is an entity that inte-
grates data and procedures that are implemented to manipulate these data. In the simplest case, data can be considered as the
"properties"" or "attributes" that describe the object. Procedures that are linked with the object, on the other hand, provide other
derived attributes of the object or describe what the object can "do".

Different objects can be arranged in various ways (e.g. form more complex objects like arrays). For instance a population of
agents (another object) can be simply formed by arranging individual agents (other objects) into an array. Various agents can
also interact with each other.

For example, a single "agent" object is an entity having such attributes as sex, spatial position, body mass, body length etc. It
can also have such boolean attributes as "is alive" (true or false). For any such object, one can calculate instantaneous risk of
predation and other transient derived properties. Also, the agent can interact with objects of various other kinds. For example,
an agent can change its spatial position (its position attribute is changed), approach a food item and "eat" it (basically, absorb the
mass attribute of the item, the item is destroyed thereafter). Agent can also do many other things, e.g. "die". The functions that
are linked to the object are usually called methods.

When an instance of the object is created, it is initialised in a function (e.g. init) that is often called the constructor. Another
procedure is sometimes implemented to destroy and deallocate the object, it is the destructor.

5.3 Type-bound procedures

Object-oriented code in modern Fortran is based on what is called type-bound procedures.

Briefly, a derived type is declared using the type keyword; it can contain several intrinsic and other derived types. Thus, a data
structure is implemented.

type, public :: SPATIAL_POINT
real(SRP) :: x, y, depth
character(len=LABEL_LENGTH) :: label
....

end type SPATIAL_POINT

A procedure can then be declared that operates specifically on this derived type.

• The first parameter this refers to the object that the procedure operates on.

• The base object this is declared as class in the procedure, which allows to accept any extension of the this object as the
first parameter. This is called "polymorphic objects."

Note that the other parameters (non this) can be declared as class or as type. In the former case, the procedure could accept
any extensions (the procedure is then polymorphic) of the object, while in the latter, only this specific type (non-polymorphic
procedure).

Components of the object are separated from its name with the percent sign %, e.g. the x coordinate is this%x.

AHA! Modelling Tools Manual 24 / 96

function spatial_distance_3d (this, other) result (distance_euclidean)
class(SPATIAL_POINT), intent(in) :: this
real(SRP) :: distance_euclidean
class(SPATIAL_POINT), intent(in) :: other
distance_euclidean = dist([this%x, this%y, this%depth], &

[other%x, other%y, other%depth])
end function spatial_distance_3d

The procedure is then included into the derived type declaration.

The name of the procedure that is implemented (e.g. spatial_distance_3d in the example above) is not directly called in
calculations and can be declared private. Instead, a public interface name is declared in the derived type that defines how
the procedure should be called, in the example below it is distance.

Note that the interface name can coincide for several different objects, however the actual procedure name (spatial_dista
nce_3d) must be unique within the module that defines the derived type and its procedures.

type, public :: SPATIAL_POINT
real(SRP) :: x, y, depth
character(len=LABEL_LENGTH) :: label
....
contains
procedure, public :: distance => spatial_distance_3d
....

end type SPATIAL_POINT

Now, the procedure is called for the specific instance of the object (it comes to the procedure as the this first "self" parameter)
using the public interface name (distance) rather than the "actual" procedure name (spatial_distance_3d).

type(SPATIAL_POINT) :: point_a, point_b
...
distance_between_points = point_a%distance(point_b) ! use public interface

An extension object can be declared, using the extends keyword, that will use all the properties and type-bound procedures of
the base object and add its own additional ones. All the data attributes (x, y, depth) of the base class SPATIAL_POINT are
now defined (inherited) also for the new derived type SPATIAL_MOVING. Additionally, the new type can define new properties
ans add new type-bound procedures.

This allows creating complex inheritance hierarchies across objects.

type, public, extends(SPATIAL_POINT) :: SPATIAL_MOVING
! The following component adds an array of history of the object
! movements:
type(SPATIAL_POINT), dimension(HISTORY_SIZE_SPATIAL) :: history
...
contains
....
procedure, public :: go_up => spatial_moving_go_up
procedure, public :: go_down => spatial_moving_go_down
....

end type SPATIAL_MOVING

It is also possible to redefine the type-bound procedures for the new derived type. For example, a subroutine init can be
defined for the base type SPATIAL_POINT that sets the default x, y and depth. A different type-bound procedure with the
same public interface init defined for the SPATIAL_MOVING extended type can then set the default x, y and depth and, in
addition, a default move. When such init procedure is called, the result of the computation is based on the exact nature of the
object on which the procedure is executed. This is called procedure overloading for a polymorphic object.

call instance_object%init()

AHA! Modelling Tools Manual 25 / 96

• If the instance_object is SPATIAL_POINT, the init procedure defined for SPATIAL_POINT is executed on the
object;

• if the instance_object is SPATIAL_MOVING, the init procedure defined for SPATIAL_MOVING is executed.

5.4 Module structure

The structure of a module that defines an inheritance hierarchy of objects and their type-bound functions is like this. The module
skeleton below implements also two init procedures such that spatial_moving_init overloads the spatial_init.

module SPATIAL_OBJECTS
! Declarations of objects:
type, public :: SPATIAL_POINT
real(SRP) :: x, y, depth
character(len=LABEL_LENGTH) :: label
....
contains
procedure, public :: init => spatial_init
procedure, public :: distance => spatial_distance_3d
....

end type SPATIAL_POINT
....
type, public, extends(SPATIAL_POINT) :: SPATIAL_MOVING
! The following component adds an array of history of the object
! movements:
type(SPATIAL_POINT), dimension(HISTORY_SIZE_SPATIAL) :: history
...
contains

....
procedure, public :: init => spatial_moving_init
procedure, public :: go_up => spatial_moving_go_up
procedure, public :: go_down => spatial_moving_go_down
....

end type SPATIAL_MOVING
.....
! other declarations
.....
contains
! Here go all the procedures declared in this module
function spatial_distance_3d (this, other) result (distance_euclidean)

class(SPATIAL_POINT), intent(in) :: this
real(SRP) :: distance_euclidean
class(SPATIAL_POINT), intent(in) :: other

distance_euclidean = dist([this%x, this%y, this%depth], &
[other%x, other%y, other%depth])

end function spatial_distance_3d

subroutine spatial_init(this)
class(SPATIAL_POINT), intent(inout) :: this
....

end subroutine spatial_init

subroutine spatial_moving_init(this)
class(SPATIAL_MOVING), intent(inout) :: this
....

end subroutine spatial_init

! Any other procedures

AHA! Modelling Tools Manual 26 / 96

..........

end module SPATIAL_OBJECTS

An object or several related objects (derived types) together with their type-bound procedures are defined within the same Fortran
module.

5.5 Class diagram

Relationships between different objects (classes) can be represented graphically in a class diagram. Here, a class (derived type)
is represented by a box with a title that gives its name. The relationships are then depicted by several types of lines and arrows
that connect these boxes.

The simplest and most widespread symbols in a class diagram are presented below.

aggregation

OBJECT COMPONENT

OBJECT COMPONENT

composition

SPATIAL_POINT
(base)

SPATIAL_MOVING
(extended)

inheritance

• inheritance shows which class is the base class and which is its extension;

• aggregation indicates that several objects are "assembled" to create a more complex composite object;

• composition is a strong form of "aggregation" that points to a "part versus whole" relationship."

5.6 Arrays of objects

Components of a derived type are referred using the percent symbol %, e.g. agent%sex refers to a component sex of the object
agent. Both data components and "methods" are referred in this way, although methods use parentheses (e.g. parents%ind
ividual%probability_capture()).

Derived type data objects can be combined into arrays as normal intrinsic type variables. For example, the sex component of
the i-th element of the array of derived type agent is referred as agent(i)%sex.

If arrays are defined at several levels of the object hierarchy, it can create quite a complex structure:

population%individual(i)%chromosome(j,k)%allele(l)%allele_value(m)

5.7 Implementation of objects

The above declarations just define an object. To use the object, we must instantiate it, i.e. create its specific instance and give it
a value. This is analogous to having a specific data type, e.g. integer. We cannot use "just an integer," we need (1) to create
a specific variable (variable is also an object though trivial!) of the type integer (e.g. integer ::Var_A) and (2) to assign a
specific value to it (Var_A=1).

AHA! Modelling Tools Manual 27 / 96

For example, the following creates two instance arrays of the type INDIVIDUAL_FISH. Both arrays are one-dimensional and
have POPSIZE elements. So we now have two fish populations, generation_one and generation_two. Each individual
value of such an array, e.g. generation_one(1) is an instance of the object of the type INDIVIDUAL_FISH that can be
quite a complex data structure including many different data types, even arrays and lower-order derived types. So, instead of
being arrays of simple values these object arrays are in fact arrays of complex data structures potentially consisting of many
different data types and arrays:

type(INDIVIDUAL_FISH), dimension(POPSIZE) :: generation_one
type(INDIVIDUAL_FISH), dimension(POPSIZE) :: generation_two

We can now assign concrete values to each of the previously defined components of generation_one array, e.g.

generation_one(i)%sex = "male" ! assign values to individual components
generation_one(i)%alive = .true. ! of the object instance
generation_one(i)%food(j) = "spaghetti"

We can also use the subroutines and type-bound functions that we have defined within the object definitions to do specific
manipulations on the object and its components:

subroutine population_init()
....

do i = 1, POPSIZE
call generation_one(i)%init() ! Initialise the i-th fish object in the

end do ! "generation_one" population array
! using the object-bound subroutine init

end subroutine population_init

5.8 A trivial example: Stopwatch object

Here is a trivial example implementing a stopwatch object —TIMER_CPU. The comments in the code are self-explanatory.

!> Here we define CPU timer container object for debugging and
!! speed/performance control. Therefore we can instantiate arbitrary timers
!! for different parts of the code (and also global). "Class," so can extend.
!! Using a specific timer (‘timer_general‘)
!! is like this: ‘call stopwatch%start()‘ to start the stopwatch, then the
!! function ‘stopwatch%elapsed()‘ returns the elapsed time.
!! @note The near-trivial nature of this object makes it ideal for learning
!! how to implement objects. TODO: add to doc full implementation.
type, public :: TIMER_CPU

!> Define start time for the stopwatch.
!! @note We need to keep only the start time as raw values coming out
!! of ‘cpu_time‘ are machine-dependent
!! @note It does not seem good to move ‘TIMER_CPU‘ to *HEDTOOLS* as they
!! are for portability (require only F90) and do not use OO.
!! ‘TIMER_CPU‘ uses full OO extensible class implementation so
!! requires *F2003* minimum.
real(SRP) :: cpu_time_start

contains
procedure, public :: start => timer_cpu_start ! subroutine
procedure, public :: elapsed => timer_cpu_elapsed ! function

end type TIMER_CPU
....
....

!===
! The two procedures below are for the CPU timer / stopwatch object

AHA! Modelling Tools Manual 28 / 96

!---
!> Start the timer object, stopwatch is now ON.
!! @note We do not need exact low-level time as it is machine-specific.
subroutine timer_cpu_start(this)
class(TIMER_CPU) :: this

!> this turns on the CPU stopwatch
call cpu_time(this%cpu_time_start)

end subroutine timer_cpu_start

!---
!> Calculate the time elapsed since the stopwatch subroutine was called
!! for this instance of the timer container object. Can be called several
!! times showing elapsed time since the grand start.
function timer_cpu_elapsed (this) result (cpu_time_elapsed)
class(TIMER_CPU) :: this
!> @returns the time elapsed since ‘timer_cpu_start‘ call (object-bound).
real(SRP) :: cpu_time_elapsed

! Local var
real(SRP) :: cpu_time_finish

!> We use the intrinsic ‘cpu_time‘ to get the finish time point.
call cpu_time(cpu_time_finish)

!> Elapsed time is then trivial to get.
cpu_time_elapsed = cpu_time_finish - this%cpu_time_start

end function timer_cpu_elapsed

Declarations for the instantiation of such an object look like this:

!> This is the stopwatch objects for global and for timing each generation
type(TIMER_CPU) :: stopwatch_global, stopwatch_generation

The use of the stopwatch objects is now rather simple:

! Start global stopwatch
call stopwatch_global%start()
....
....
! Print elapsed time in the log message;
! check out the function stopwatch_global%elapsed() that actually gets
! the elapsed time:
call LOG_DBG("Initialisation of generation one completed, took " // &

TOSTR(stopwatch_global%elapsed(), "(f8.4)") // &
"s since global procedure start.")

5.9 More information

Below are some books that should be referred for more information on object-oriented programming in modern Fortran.

• Adams, J. C., et al., (2009). The Fortran 2003 Handbook. Springer.

• Akin, E. (2003). Object-Oriented Programming via Fortran 90/95. Cambridge University Press.

• Brainerd, W. S. (2015). Guide to Fortran 2008 Programming. Springer.

• Chapman, S. J. (2007). Fortran 95/2003 for Scientists and Engineers. McGraw-Hill.

• Clerman, N. S., & Spector, W. (2012). Modern Fortran: Style and usage. Cambridge University Press.

AHA! Modelling Tools Manual 29 / 96

6 Introduction to the AHA Fortran modules

6.1 Overview of AHA modules

The modelling framework is build on these principles: (1) modularity, (2) extensibility, (3) portability.

The Modelling framework is composed of two separate components: (1) HEDTOOLS, modelling utilities and tools (imple-
mented as portable Fortran modules, not object-oriented) that have general applicability and are used for data conversion, output,
random number generation and execution logging. HEDTOOLS modules are designed such that they can be used in many dif-
ferent simulation projects, not only the AHA model; (2) The AHA model, an object oriented evolutionary agents simulation
framework implementing standard reusable module components.

BASE_UTILS

CSV_IO

RANDOM

LOGGER

COMMONDATA

STRINGS

THE_GENOME

THE_BODY

THE_EVOLUTION

THE_ENVIRONMENT

THE_POPULATION

THE_INDIVIDUAL

THE_NEUROBIO

HEDTOOLS The AHA Model
(Modelling tools)

(I
m

pl
e

m
en

t t
he

 in
di

vi
du

al
 a

g
en

t)

IEEE Math

THE_HORMONES

HEDTOOLS:

• Module BASE_UTILS — utility functions.

• Module CSV_IO — Data output in CSV (comma separated values) format.

• Module BASE_RANDOM — Utilities for random number generation.

• Module LOGGER — Logging facility.

• Module BASE_STRINGS — String manipulation utilities.

• Non-intrinsic IEEE modules — implement IEEE arithmetic checks and exceptions tracking.

The AHA Model

• Module COMMONDATA Setting common parameters for the model.

• Module THE_GENOME Implementation of the genome objects, gene, alleles, chromosomes.

http://158.37.63.57/doxydoc/classcommondata.html
http://158.37.63.57/doxydoc/classthe__genome.html

AHA! Modelling Tools Manual 30 / 96

• Module THE_HORMONES Architecture of the hormones and their functions.

• Module THE_NEUROBIO Implements neurobiological architectures based on sigmoid function, decision making and GOS.

• Module THE_INDIVIDUAL Implements the individual agent in the final form and the individual-based model functions.

• Module THE_POPULATION Implements the population(s) of agents.

• Module THE_ENVIRONMENT Implements the environment and its variation.

• Module THE_EVOLUTION Implements the genetic algorithm.

Important
Solaris Studio Fortran compiler f95 v. 12.4 does not support all object-oriented features (most probably the type-bound
functions and polymorphic classes) of the Fortran 2003 standard and does not compile the AHA model code issuing
this error: f90:Internal Error, code=fw-interface-ctyp1-796. Though, it does compile the more
portable non-object-oriented HEDTOOLS modules without issues. It is believed that the next major release of Oracle
Studio will include full support of these Fortran features. Recent Intel and GNU compilers work as expected with all
object-oriented code.

6.2 Modules in Fortran

Module is just a piece of Fortran program that contains variable or constant declarations and functions and subroutines. Modules
are defined in such a simple way:

module SOME_MODULE

character (len=*), private, parameter :: text_string = "its value"
integer :: some_variable
real, dimension(:)

contains ! subroutines and functions go after "contains"

subroutine SOME_SUBROUTINE(parameters)
...
end subroutine SOME_SUBROUTINE

end module SOME_MODULE

To use any variable/constant/subroutine/function from the module, the program must include the use MODULE_NAME statement:

use SOME_MODULE
....

Invoking the modules requires the use keyword in Fortran. use should normally be the first statements before implicit
none:

program TEST

use BASE_UTILS ! Invoke the modules
use CSV_IO ! into this program

implicit none

character (len=255) :: REC
integer :: i
real, dimension(6) :: RARR = [0.1,0.2,0.3,0.4,0.5,0.6]
character (len=4), dimension(6) :: STARR=["a1","a2","a3","a4","a5","a6"]

http://158.37.63.57/doxydoc/classthe__hormones.html
http://158.37.63.57/doxydoc/classthe__neurobio.html
http://158.37.63.57/doxydoc/classthe__individual.html
http://158.37.63.57/doxydoc/classthe__population.html
http://158.37.63.57/doxydoc/classthe__environment.html
http://158.37.63.57/doxydoc/classthe__evolution.html

AHA! Modelling Tools Manual 31 / 96

..........

end program TEST

Building the program with these modules using the command line is normally a two-step process:

build the modules, e.g.

gfortran -g -c ../BASE_CSV_IO.f90 ../BASE_UTILS.f90

This step should only be done if the source code of the modules change, i.e. quite rarely.

build the program (e.g. TEST.f90) with these modules

gfortran -g -o TEST.exe TEST.f90 ../BASE_UTILS.f90 ../BASE_CSV_IO.f90

or for a generic F95 compiler:

f95 -g -c ../BASE_CSV_IO.f90 ../BASE_UTILS.f90
f95 -g -o TEST.exe TEST.f90 ../BASE_UTILS.f90 ../BASE_CSV_IO.f90

A static library of the modules could also be built, so the other more changeable code can be just linked with the library.

Note
The examples above assume that the module code is located in the upper-level directory, so ../. The make system used
to build the model cares about the HEDTOOLS modules automatically.

7 Module: BASE_UTILS

This module contains a few utility functions and subroutines. So far there are two useful things here: STDOUT, STDERR,
TOSTR, CLEANUP, and RANDOM_SEED_INIT.

7.1 Function: TOSTR

TOSTR converts everything to a string. Accepts any numeric or non-numeric type, including integer and real (kind 4, 8, 16),
logical and strings. Also accepts arrays of these numeric types. Outputs just the string representation of the number. Aliases:
STR (same as TOSTR), NUMTOSTR (accepts only numeric input parameter, not logical or string)

7.1.1 Examples:

Integer:

STRING = TOSTR(12)
produces "12"

Single precision real (type 4)2

print *, ">>", TOSTR(3.1415926), "<<"
produces >>3.14159250<<

Double precision real (type 8)

2 Note that float point calculations, especially single precision (real type 4) may introduce a rounding error

AHA! Modelling Tools Manual 32 / 96

print *, ">>", TOSTR(3.1415926_8), "<<"
produces >>3.1415926000000001<<

TOSTR also converts logical type to the "TRUE" or "FALSE" strings and can also accept character string as input. In the latest
case it just output the input.

Optional parameters

TOSTR can also accept standard Fortran format string as the second optional string parameter, for example:

print *, ">>", TOSTR(3.1415926,"(f4.2)"), "<<"
produces >>3.14<<

print *, ">>", TOSTR(12,"(i4)"), "<<"
produces >> 12<<

With integers, TOSTR can also generate leading zeros, which is useful for auto-generating file names or variable names. In such
cases, the number of leading zeros is determined by the second optional integer parameter. This integer sets the template for the
leading zeros, the maximum string. The exact value is unimportant, only the number of digits is used.

For example,

print *, ">>", TOSTR(10, 100), "<<"
produces >>010<<

print *, ">>", TOSTR(10, 999), "<<"
also produces >>010<<

print *, "File_" // TOSTR(10, 10000) // ".txt"
produces File_00010.txt

Examples of arrays

It is possible to convert numeric arrays to their string representation:

real, dimension(6) :: RARR = [0.1,0.2,0.3,0.4,0.5,0.6]
.....
print *, ">>", TOSTR(RARR), "<<"
produces > 0.100000001 0.200000003 0.300000012 0.400000006 0.500000000 0.600000024<<

Fortran format statement is also accepted for arrays:

real, dimension(6) :: RARR = [0.1,0.2,0.3,0.4,0.5,0.6]
.....
print *, ">>", TOSTR(RARR,"(f4.2)"), "<<"
produces >> 0.10 0.20 0.30 0.40 0.50 0.60<<

It is possible to use array slices and array constructors with implicit do:

print *, ">>", TOSTR(RARR(1:4)), "<<"
print *, ">>", TOSTR((/(RARR(i), i=1,4)/)), "<<"
both produce >> 0.100000001 0.200000003 0.300000012 0.400000006<<

or using the newer format with square brackets:

print *, ">>", TOSTR([(RARR(i), i=1,4), 200.1, 400.5]), "<<"
produces >> 0.100000001 0.200000003 0.300000012 0.400000006 200.100006 400.500000<<

the same with format:

AHA! Modelling Tools Manual 33 / 96

print *, ">>", TOSTR([(RARR(i), i=1,4), 200.1, 400.5], "(f9.3)"), "<<"
produces >> 0.100 0.200 0.300 0.400 200.100 400.500<<

The subroutine TOSTR is useful because it allows to change such confusing old-style Fortran string constructions as this

!print new gene pool. First make file name !BSA 18/11/13
if (gen < 10) then

write(gen1,2902) "gen-0000000",gen
else if (gen < 100) then

write(gen1,2903) "gen-0000000",gen
else if (gen < 1000) then

write(gen1,2904) "gen-000000",gen
else if (gen < 10000) then

write(gen1,2905) "gen-00000",gen
else if (gen < 100000) then

write(gen1,2906) "gen-0000",gen
else if (gen < 1000000) then

write(gen1,2907) "gen-000",gen
else if (gen < 10000000) then

write(gen1,2913) "gen-00",gen
else if (gen < 100000000) then

write(gen1,2914) "gen-0",gen
else

write(gen1,2915) "gen-",gen
end if

if (age < 10) then
write(gen2,2920) "age-0000",age

else if (age < 100) then
write(gen2,2921) "age-000",age

else if (age < 1000) then
write(gen2,2922) "age-00",age

else if (age < 10000) then
write(gen2,2923) "age-0",age

else
write(gen2,2924) "age-",age

end if

write(gen3,2908)gen1,"-",gen2

if (expmt < 10) then
write(string104,2901)"HED24-",MMDD,runtag,"-E0",expmt,"-o104-genepool-",gen3,".txt"

else
write(string104,2910)"HED24-",MMDD,runtag,"-E",expmt,"-o104-genepool-",gen3,".txt"

end if

to a much shorter and clear like this:

!print new gene pool. First make file name !BSA 18/11/13
string104 = "HED24-" // trim(MMDD) // trim(runtag) // "-E0" // &

TOSTR(expmt,10) // "-o104-genepool-" // &
"gen-" // TOSTR(gen, 10000000) // "-" // &
"age-" // TOSTR(age, 10000) // f_exten

7.2 Subroutines: STDOUT and STDERR

These subroutines output arbitrary text to the terminal, either to the standard output and standard error. While it seems trivial
(standard Fortran print *, or write() can be used), it is still good to have a dedicated standard subroutine for all outputs as we can
then easily modify the code to use Matlab/R API to work with and run models from within these environments, or use a GUI

AHA! Modelling Tools Manual 34 / 96

window (the least necessary feature now, but may be useful if the environment is used for teaching in future). In such cases we will
then implement a specific dedicated output function and just globally swap STDOUT with something like R_MESSAGE_PRINT
or X_TXTGUI_PRINT.

STDOUT/STDERR accept an arbitrary number of string parameters, which just represent messages placed to the output. Each
parameter is printed on a new line. Trivial indeed:)

Important
It is useful to have two separate subroutines for stdout and stderr as they could be easily separated (e.g. redirected to
different files). Redirection could be done under Windows/Linux terminal in such a simple way:
model_command.exe 1>output_file_stdout 2>output_file_stderr
Here STDOUT is redirected to output_file_stdout, STDERR, to output_file_stderr.

Examples

call STDOUT("---",&
ch01 // " = " // ch02 // TOSTR(inumber) // " ***", &
ch10 // "; TEST NR= " // TOSTR(120.345), &
"Pi equals to = " // TOSTR(realPi, "(f4.2)"), &
"---")

The above code just prints a message. Note that TOSTR function is used to append numerical values to the text output (unlike
standard write where values are separated by commas).

7.3 Function: CLEANUP

CLEANUP Removes all spaces, tabs, and any control characters from the input string. It is useful to make sure there are no
trailing spaces in fixed Fortran strings and no spaces in file names.

Example:

print *, ">>", CLEANUP("This is along string blablabla"), "<<"
produces >>Thisisalongstringblablabla<<

7.4 Determining the runtime platform: PLATFORM_IS_WINDOWS

This function determines if the program is currently running on Microsoft Windows. If this is the case, returns TRUE, otherwise
FALSE.

The detection algorithm is very simple, it just checks if the Windows standard environment variable ComSpec is set. ComSpec
appears to be case sensitive on recent versions of Microsoft Windows, but this is not guaranteed.

if (PLATFORM_IS_WINDOWS()) print *, "Running on Windows."

7.5 Linearly spaced array: LINSPACE

This function calculates an array of values that are equally spaced in the linear space. It accepts three parameters: real mini-
mum value, real maximum value and an integer number indicating how many values should be generated. The output array is
allocatable to the size of the number of values.

print *, LINSPACE(1.0, 10.0, 10) ! 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

AHA! Modelling Tools Manual 35 / 96

7.6 Interpolation: LINTERPOL, DDPINTERPOL, INTERP_LINEAR, INTERP_LAGRANGE

LINTERPOL is a simple linear interpolation function. It takes a sorted independent variable (X) vector, a conforming (same
dimensionality) dependent variable (Y) vector that set the grid data as well as a single X argument to get the dependent variable
Y result of the function. An optional integer error code (with the intent out) can be provided to check errors.

Possible error code values are 0 no error; 100 input arrays not conforming; -1 the X argument is below the low limit of the
grid array; 1 the X argument is above the upper grid limit; -101 input arrays not conforming and X is below low limit; 101
input arrays are not conforming and X argument is above the upper grid limit.

The grid vectors and the X argument can be real kind 4 or kind 8 values, all with same type (i.e. no kind mixing within a single
function call).

print *, LINTERPOL([1.,2.,3.,6.,12.], [0.1, 0.5, 0.7, 0.95, 0.99], 0.2, IERR)

The DDPINTERPOL function works similarly to LINTERPOL, but uses the nonlinear Divided Difference Polynomials Inter-
polation algorithm.

INTERP_LINEAR is a subroutine that performs linear piecewise interpolation of a whole array. It takes the following argu-
ments: (1) independent (X) grid data vector, (2) dependent (Y) grid data vector, (3) independent data vector for interpolation, (4)
the dependent vector of the resulting dependent data values.

call INTERP_LINEAR (XDAT, YDAT, [0.002, 0.1, 0.5, 0.9, 0.95, 0.98], OUT_Y)

The INTERP_LAGRANGE subroutine works similarly to INTERP_LINEAR but performs Lagrange polynomial interpolation.

Thare are also two interpolation functions that return a vector: LIN_INTERPOL_VECTOR and LAGR_INTERPOL_VECTOR.
They do, respectively, linear and Lagrange polynomial interpolation.

print *, LIN_INTERPOL_VECTOR([1.,2.,3.,4.,5.], &
[0.1, 0.5, 0.9, 0.95, 0.98], &
[1.25, 1.1, 4.1, 1.9, 1.95, 1.98])

print *, LAGR_INTERPOL_VECTOR([1.,2.,3.,4.,5.], &
[0.1, 0.5, 0.9, 0.95, 0.98], &
[1.25, 1.1, 4.1, 1.9, 1.95, 1.98])

7.7 Subroutines: ARRAY_INDEX and ARRAY_RANK

ARRAY_INDEX calculates an integer sorting index vector for sorting a real (kind 4 or 8) or an integer input vector 3. The first
parameter of the subroutine defines the vector to be sorted, the second is the calculated integer indexing vector. The input vector
can then be easily sorted by the integer sorting indices.

The routines can add the third scalar integer parameter, the maximum order to index the array. In such cases, this will result in
partial indexing ordering, which is much faster if we are not interested in the whole array (e.g. intetested in finding, indexing and
ranking the smallest N elements). See the code example below.

Example:

! Calculate index array for vector X
call ARRAY_INDEX(X, index_array)

! To get the vector X sorted, just use this index array by vector indexing:
print *, X(index_array)

ARRAY_RANK calculates the ranking order scores for the original vector using the integer sorting index vector that is calculated
by ARRAY_INDEX.

Example:
3 This routine is based on the high performance algorithm from Michel Olagnon’s ORDERPACK. It is also analogous to the indexx subroutine from the

Numerical recipes (very restrictive license disallowing source code distribution).

http://www.fortran-2000.com/rank/

AHA! Modelling Tools Manual 36 / 96

! Calculate ranks for the input array X from the previous example.
call ARRAY_RANK(index_array, ranks_for_X)

This shows how to use ARRAY_INDEX and ARRAY_RANK together.

program TESTRANKS
use BASE_UTILS
integer :: i ! Original vector X to sort and rank:
real(4), dimension(10) :: X=[13.,12.,14.,11.,15.,99.,16.,18.,17.,19.]
integer, dimension(10) :: Id = 0, Ranks

call ARRAY_INDEX(X, Id) ! Calculate index vector for X:
! 4 2 1 3 5 7 9 8 10 6

call ARRAY_RANK(Id, Ranks) ! Calculate rank scores for the original vector X:
! 3 2 4 1 5 10 6 8 7 9

end program TESTRANKS

The code below shows partial indexing:

program TESTRANKS
use BASE_UTILS
integer :: i
real(4), dimension(10) :: X=[13.,12.,14.,11.,15.,99.,16.,18.,17.,19.]

integer, dimension(10) :: Id = 0, Ranks

integer :: order

order=7 ! Set the order, indexing is done up to this.
if (order>size(X)) order=size(X) ! Order must be smaller than the vector, the

! indexing procedure does NOT auto-check it.

Id=-9999; Ranks=-9999 ! Note that we need to initialise the index
! vector before use to avoid errors, depends
! on how compiler treats uninitialised arrays.

call ARRAY_INDEX(X, Id, order) ! Calculate index vector for X:
! 4 2 1 3 5 7 9 -9999 -9999 -9999

call ARRAY_RANK(Id, Ranks) ! Calculate rank scores for the original X:
! 3 2 4 1 5 -9999 6 -9999 7 -9999

print *, Id
print *, Ranks

end program TESTRANKS

7.8 Subroutine: RANDOM_SEED_INIT_SIMPLE

RANDOM_SEED_INIT_SIMPLE is called without parameters and just initialises the random seed for the Fortran random
number generator. But note that the module BASE_RANDOM contains a much better subroutine RANDOM_SEED_INIT that is
also suitable for parallel processing systems (RANDOM_SEED_INIT_SIMPLE cannot be used in parallel calculations).

Example

call RANDOM_SEED_INIT

AHA! Modelling Tools Manual 37 / 96

8 Module: CSV_IO

8.1 Overview

This module contains subroutines and functions for outputting numerical data to the CSV (Comma Separated Values) format
(RFC4180, CSV format). There are many procedures for data output to CSV, and only CSV_MATRIX_READ for input (we don’t
input much data).

CSV is especially useful because it is human-readable but can still be easily imported into spreadsheets and stats packages (e.g.
R reads CSV natively). It also has relatively small file size overhead compared to formatted text or XML, which is good if huge
amounts of data are generated by the model.

CSV record is a whole line (row) of numbers/strings (as in Excel), a single file can have quite many records (rows).

Record 1

Record 2

Record 3

New value is
appended to the
record 3

For example, records (rows) can represent consecutive generations during the evolution or individuals for within-generation
data.

In a typical workflow, within-column variables (i.e those that belong to the same row of data file) are appended to the same
record. When the record is full (i.e. the number of values appended is equal to the number of columns in the CSV file), the record
is written physically to the disk file and we can go to writing the next record (row) of the data.

Such a workflow can be like this:

http://en.wikipedia.org/wiki/Comma-separated_values
http://tools.ietf.org/html/rfc4180/
http://www.creativyst.com/Doc/Articles/CSV/CSV01.htm

AHA! Modelling Tools Manual 38 / 96

Record 1

Record 2

Record 3

CSV_OPEN_WRITE - physically open CSV file for writing;

Descriptive string header (first row of the CSV file) Header line

CSV_HEADER_WRITE - physically write optional descriptive header

do ... - start loop_1 cycle over rows / records

do ... - start loop_2 cycle within the record over column values

CSV_RECORD_APPEND – append data values to the
current record / row of the data file

CSV_RECORD_WRITE - physically write record to disk, go to next record

end do ... - end loop 2

end do ... - end loop 2

CSV_CLOSE - physically closes the CSV data file.

Thus, subs ending with _WRITE and _CLOSE do physical write.

This module is most suited at this moment for CSV file output rather than input.

This module widely uses optional arguments. They may or may not be present in the function/subroutine call. If not all
parameters are passed, so called named parameters are used. That is, the name of the parameter(s) within the function is
explicitly stated when the function/subroutine is called.

For example, GET_FREE_FUNIT has its both parameters optional (max_funit and file_status), it can be called in the
standard way as below:

intNextunit = GET_FREE_FUNIT(200, logicalFlag)

It can lack any parameter:

intNextunit = GET_FREE_FUNIT()

If the first optional parameter is absent, GET_FREE_FUNIT is called as here:

intNextunit = GET_FREE_FUNIT(file_status=logicalFlag)

If both parameters present but swapped in order, it should be

intNextunit = GET_FREE_FUNIT(file_status=logicalFlag, max_funit=200)

of course, it can also be used this way:

intNextunit = GET_FREE_FUNIT(max_funit=200, file_status=logicalFlag)

AHA! Modelling Tools Manual 39 / 96

Important
The standard way of using subroutine parameters (without explicitly setting their names) when calling subroutine works
only when their are not missing and their order remains the same as in the subroutine declaration. When a function /
subroutine has many parameters and optional are interspersed with mandatory, it is probably just safer to use named
parameters anyway.

Files can be referred either by unit or by name, but unit has precedence (if both a provided, unit is used). There is also a derived
type csv_file that can be used as a single file handle. If csv_file object is defined, the file name, unit and the latest operation
success status can be accessed as %name, %unit, %status (e.g. some_file%name, some_file%unit).

The physical file operation error flag, csv_file_status is of logical type. It is always an optional parameter.

Here is an example of the data saving workflow:

use CSV_IO ! invoke this module first
........
........
! 1. Generate file name for CSV output
csv_file_append_data_name="data_genomeNR_" // TOSTR(i) // "_" // TOSTR(j) // &

"_" // TOSTR(k) // ".csv"
........
! 2. open CSV file for writing
call CSV_OPEN_WRITE (csv_file_append_data_name, csv_file_append_data_unit, &

csv_written_ok)
if (.not. csv_written_ok) goto 1000 ! handle possible CSV error
! 3. Write optional descriptive header for the file
call CSV_HEADER_WRITE(csv_file_name = csv_file_append_data_name, &

header = header_is_from_this_string, &
csv_file_status = csv_written_ok)

........

........
! 4. Generate a whole record of variable (column) names
record_csv="" ! but first, prepare empty record string
call CSV_RECORD_APPEND(record_csv,["VAR_001", ("VAR_" // TOSTR(i,100),i=2,Cdip)])
! 5. physically write this variable header record to the file
call CSV_RECORD_WRITE (record=record_csv, &

csv_file_name=csv_file_append_data_name,&
csv_file_status=csv_written_ok)

if (.not. csv_written_ok) goto 1000 ! handle possible CSV error
........
........
! 6. Now we can write records containing actual data values, we do this
! in two do-loops
CYCLE_OVER_RECORDS: do l=1, Cdip

! 7. Prepare an empty string for the current CSV record
record_csv=""
CYCLE_WITHIN_RECORD: do m=1, CNRcomp
....
! do some calculations...
.....
.....
! 8. append the next value (single number: genomeNR) to the current record
call CSV_RECORD_APPEND (record_csv, genomeNR(l,m))
.....

end do CYCLE_WITHIN_RECORD
! 9. physically write the current record
call CSV_RECORD_WRITE (record=record_csv, &

csv_file_name=csv_file_append_data_name,&
csv_file_status=csv_written_ok)

if (.not. csv_written_ok) goto 1000 ! handle possible CSV error
.......

AHA! Modelling Tools Manual 40 / 96

end do CYCLE_OVER_RECORDS
! 10. close the CSV file when done
call CSV_CLOSE(csv_file_name=csv_file_append_data_name, &

csv_file_status=csv_written_ok)
if (.not. csv_written_ok) goto 1000 ! handle possible CSV error

Although, there is a wrapper for saving the whole chunk of the data at once. A whole array or matrix (2-dimensional table) can
be exported to CSV in a single command:

! save the whole matrix/array d_matrix to some_file.csv
call CSV_MATRIX_WRITE(d_matrix, "some_file.csv", fstat_csv)
if (.not. fstat_csv) goto 1000

An extended example code sthat illustrates how to write diverse data to a single CSV file is found in the Extended example
section.

8.2 Subroutine: CSV_OPEN_WRITE

Open CSV file for writing. May have two forms:

(1) either get three parameters:

character (len=*) :: csv_file_name ! file name
integer :: csv_file_unit ! file unit
logical :: csv_file_status ! optional status flag, TRUE if operation

! successful

(2) get the (single) file handle object of the derived type csv_file

type(csv_file), intent(inout) :: csv_file_handle ! file handle object

Example

type(csv_file) :: file_occ ! declare file handle object
........
call CSV_OPEN_WRITE(file_occ) ! use file handle object
........
call CSV_OPEN_WRITE(file_name_data1, file_unit_data1, fstat_csv) ! old style
if (.not. fstat_csv) goto 1000

8.3 Subroutine: CSV_CLOSE

Closes a CSV file for reading or writing. May have two forms:

(1) either get three optional parameters:

character (len=*) :: csv_file_name ! file name
integer :: csv_file_unit ! file unit
logical :: csv_file_status ! optional status flag, TRUE if operation

! successful

Important
At least file name or unit should be present in the subroutine call.

(2) get one file handle object of the derived type csv_file

AHA! Modelling Tools Manual 41 / 96

type(csv_file), intent(inout) :: csv_file_handle ! file handle object

Example

type(csv_file) :: file_occ ! declare file handle object
........
call CSV_CLOSE(file_occ) ! use file handle object
........
call CSV_CLOSE(csv_file_name=file_name_data1, & ! old style

csv_file_status=fstat_csv)
if (.not. fstat_csv) goto 1000

8.4 Subroutine: CSV_HEADER_WRITE

Writes an optional descriptive header to a CSV file. The header should normally be the first line of the file.

May have two forms:

(1) either get four parameters, only the header is mandatory, but the file must be identified by name or unit:

character (len=*) :: csv_file_name ! file name
integer :: csv_file_unit ! file unit
character (len=*) :: header ! header string
logical :: csv_file_status ! status flag, TRUE if operation successful

Important
At least file name or unit should be present in the subroutine call.

(2) get two parameters including the header string and the file handle object of the type csv_file

character (len=*) :: header ! mandatory CSV file header
type(csv_file) :: csv_file_handle ! file handle object

Example

call CSV_HEADER_WRITE(csv_file_name=FILE_NAME_CSV1, &
header="Example header. Total " // TOSTR(CSV_RECORD_SIZE(record_csv)) // &
" columns of data.", csv_file_status=fstat_csv)

if (.not. fstat_csv) goto 1000

Here CSV file header is generated from several components, including the CSV_RECORD_SIZE function to count the record
size.

8.5 Function: GET_FILE_UNIT

Returns file unit associated with an existing open file name, if no file unit is associated with this name (file is not opened), return
unit=-1 and error status

Input parameters:

character (len=*) :: csv_file_name ! mandatory file name
logical :: csv_file_status ! optional status flag, TRUE if operation

! successful

AHA! Modelling Tools Manual 42 / 96

Output parameter (function value):

integer :: csv_file_unit ! unit associated with open file name

Example

file_unit = GET_FILE_UNIT(file_name)

8.6 Function: GET_FREE_FUNIT

Returns the next free/available Fortran file unit number. Can optionally search until a specific maximum unit number.

Input parameters, optional:

logical :: file_status ! operation success status
integer :: max_funit ! maximum unit to search

Output parameter (function value):

integer :: file_unit ! the first free/available file unit

Important
When optional input parameters are absent, the function uses a hardwired maximum unit number, possibly depending
on the computer platform and compiler used.

Example

restart_file_unit_27 = GET_FREE_FUNIT()

8.7 Function: CHECK_UNIT_VALID

Checks if file unit is valid, that is within the allowed range and doesn’t include standard input/output/stderr units. The unit should
not necessarily be linked to any file or be an open file.

Input parameter:

integer :: file_unit ! Fortran file unit to check

Output parameter (function value):

logical :: file_status ! gets TRUE if the unit is valid

Example

if (.not. CHECK_UNIT_VALID(csv_file_unit)) then
csv_file_unit=GET_FREE_FUNIT(csv_file_status, MAX_UNIT)

.........

In this example, we check if the user provided unit is valid, if not, get the first available one.

AHA! Modelling Tools Manual 43 / 96

8.8 Function: CHECK_FILE_OPEN

Checks if a file is currently open, can optionally determine the Fortran unit associated with an open file (returns -1 if it is not open).
Input parameters can be either raw form (file name or unit) or csv_file object. Optional csv_file_status can determine if
the check proceeded without error (=TRUE) there was an error when trying to access the file (=FALSE). Input parameters must
be either file name or unit.

Standard (verbose) form:

! Calling parameters
character (len=*), optional, intent(in) :: csv_file_name ! file name to check
integer, optional, intent(in) :: csv_file_unit ! or unit to check
logical, optional, intent(out) :: csv_file_status ! error status
integer, optional, intent(out) :: get_csv_file_unit ! obtain file unit of

! an open file

File object form:

type(csv_file) :: csv_file_handle

Output of the function is logical type, returns TRUE if the file is currently opened, FALSE otherwise.

Examples:

if (.not. CHECK_FILE_OPEN("file_out.csv")) call OPEN_OUTPUT
...
if (CHECK_FILE_OPEN(csv_file_unit=12)) goto 100
...
file_is_open = CHECK_FILE_OPEN(csv_file_name="data_out.csv", &

get_csv_file_unit=fileunit, &
csv_file_status=error_flag)

type (csv_file) :: output_handle
...
if (CHECK_FILE_OPEN(output_handle)) then
...

8.9 Subroutine: CSV_RECORD_APPEND

Appends one of the possible data objects to the current CSV record. Data objects could be either a single value (integer, real with
single or double precision, character string) or a one-dimensional array of the above types or still an arbitrary length list of the
same data types from the above list.

8.9.1 Overview

The first parameter of the subroutine is always character string record:

character (len=*) :: record ! character string record to append data

The other parameters may be of any of thee following types: integer (kind=4), real(kind=4), real(kind=8),
character string.

Important
The record keeping variable can be either fixed length string or an allocatable string. But it should fit the whole record.
This might be a little bit tricky if record is allocatable as record_string="" allocates it to an empty string. A
good tip is to use the repeat function in Fortran to allocate the record string to the necessary value, e.g. record=
repeat(" ", MAX_RECORD) will produce a string consisting of MAX_RECORD blank characters. record should
not necessarily be an empty string initially, it could be just a whole blank string.

AHA! Modelling Tools Manual 44 / 96

8.9.2 Examples

Append a single string to the current record:

call CSV_RECORD_APPEND(record_csv, "ROW_NAMES")

Append a single value (any of the supported types) to the current record:

call CSV_RECORD_APPEND(record_csv, value) ! some variable of supported type
call CSV_RECORD_APPEND(record_csv, 123.5_8) ! double precision literal value

Append a list of values (any one of the supported types) to the current record:

call CSV_RECORD_APPEND(record_csv, fish, age, stat4, fecund)

Append an array slice (any of the supported types) to the current record:

call CSV_RECORD_APPEND(record_csv, RARR(1:4))

Append an array using old-style array constructor with implied do (any of the supported types) to the current record:

call CSV_RECORD_APPEND(record_csv,(/(RARR(i), i=1,6)/))

Append an array using new-style array constructor (square brackets) with implied do plus two other values (all values can have
any of the supported types but should have the same type) to the current record:

call CSV_RECORD_APPEND(record_csv, [(RARR(i), i=1,4), measur1, age(fish)])

Append integers from 1 to 10 to the current record (using implied do):

call CSV_RECORD_APPEND(record_csv, [(i,i=1,10)])

Append a string, an array of strings with implied do and finally another string to the record. This example shows how variable
(column) names could be generated:

call CSV_RECORD_APPEND(record_csv,["ROW_NAME",("VAR_" // TOSTR(i,1000),i=1,1000),"STATUS"])

Important
On some compilers (e.g. Oracle Solaris Studio f95 v.12 but not GNU gfortran version >5), all strings within the array
constructor must explicitly have the same length, otherwise the compiler issues an error. In gfortran (v>5, the first
occurrence of the string (e.g. the first iteration of the implied do loop) defines the default length and all extra characters
are just silently dropped. The behaviour of other compilers and their versions may differ.

8.10 Function: CSV_GUESS_RECORD_LENGTH

Guesses the maximum size for the string variable keeping the record being appended for CSV_RECORD_APPEND.

It gets two parameters: integer record size (the number of separate numerical values in the record) and the maximum target value
(integer, real, or double precision real (kind=8)) and returns an integer value for a guess for the record size. The target value is used
to estimate the number of characters and should have the same type as the values being appended with CSV_RECORD_APPEND.

! suppose we have a real matrix and like to save it to a CSV file
real, dimension(1000,20) :: MATRX_A
...
! we declare the CSV record as allocatable string
character(len=:), allocatable :: record_for_csv
...

AHA! Modelling Tools Manual 45 / 96

! As explained in the Important note to CSV_RECORD_APPEND above, we have to
! allocate the string record such that it fits the complete record;
! This can be achieved as follows. Here 20 is the record size (number of cols,
! can be determined as ubound(MATRX_A,2)), and the target value is the
! maximum numeric value of the matrix MATRX_A:
record_for_csv = repeat(" ", CSV_GUESS_RECORD_LENGTH(20, maxval(MATRX_A)))

Important
Use this function with caution, especially if long strings are also added to the CSV file. In such a case, make additional
allowance for the added string(s).

8.11 Function: CSV_RECORD_SIZE

Counts the number of values in a CSV record.

Input parameters:

character (len=*) :: record ! mandatory CSV record

Function value: an integer

integer :: csv_record_size

Example

print *, "This record is: ", CSV_RECORD_SIZE(record_csv), " columns."

8.12 Function: CSV_FILE_LINES_COUNT

Counts the number of lines in an existing CSV file. If file cannot be opened or file error occurred, then issues the value -1

Input parameters:

character (len=*) :: csv_file_name ! The name of the existing file.
logical :: numeric_only ! Optional flag to include only numeric rows.
logical :: csv_file_status ! Optional file operation status, TRUE if

! file operations were successful.

Function value: an integer

integer :: csv_file_lines_count ! number of lines in file, -1 if file error

Can actually calculate the number of lines in any text file. Does not distinguish header or variable names lines in the CSV file
and does not recognize CSV format.

Example

print *, "File ", CSV_FILE_LINES_COUNT("test_file.csv", .TRUE., succ_flag), "lines."

AHA! Modelling Tools Manual 46 / 96

8.13 Subroutine: CSV_RECORD_WRITE

Physically writes a complete record of data to a CSV file. A record is a single row of data in the file.

This subroutine has two forms:

(1) it can either accept three parameters:

character (len=*) :: csv_file_name ! file name
integer :: csv_file_unit ! file unit
character (len=*) :: record ! current CSV record (mandatory)
logical :: csv_file_status ! optional operation status, TRUE if

! success

Important
The file to write the current record can be referred either by name or unit. So one of them must be present in the
subroutine call.

(2) get the CSV record and the (single) file handle object of the derived type csv_file

character (len=*) :: record ! current CSV record (mandatory)
type(csv_file) :: csv_file_handle ! file handle object

Example

call CSV_RECORD_WRITE(csv_record, file_cop) ! write current record
call LOG_MSG("Physically wrote record " // TOSTR(a) // & ! report this in some

" to the file " // file_cop%name // & ! logging subroutine.
", write status =" // TOSTR(file_cop%status))

Note, that file handle object is used in the above example.

8.14 Subroutine: CSV_MATRIX_WRITE

Writes a matrix of real (kind 4 or 8), integer or string values to a CSV data file. This is a shortcut allowing to write data in a single
code instruction. This subroutine works either with a two-dimensional matrix or one-dimensional array (vector). The behaviour
is a little different in these cases.

Important
CSV matrix subroutines use the "standard" arrangement for the matrix: the first index is for rows, the second, for
columns. A reverse can be produced using the intrinsic transpose function.

8.14.1 Two-dimensional matrix

It gets the following parameters: (1) two-dimensional data matrix (of any supported type), (2) mandatory name of the output
file; (3) optional vector of column names. If the column name vector is shorter than the "column" dimension of the data matrix,
the remaining columns get "COL_XXX" names, where XXX is the consecutive column number (so they are unique). and (4)
optional logical file operation success status.

[any supported], dimension(:,:) :: matrix ! data object, array or 2-d matrix
character (len=*) :: csv_file_name ! file name for output
character, dimension(:) :: colnames ! optional array of column names
logical :: csv_file_status ! operation status, TRUE if success

AHA! Modelling Tools Manual 47 / 96

Example

real, dimension(1:100,1:30) :: MATRIX
character (len=8), dimension(1:10) :: NAMES = ["MEAS_001","MEAS_002","MEAS_003",&

"MEAS_004","MEAS_005","MEAS_006","MEAS_007","MEAS_008","MEAS_009","MEAS_010"]
....
! save data with column names, the first ten names are taken from the NAMES
! string array, the remaining ones are autogenerated
call CSV_MATRIX_WRITE(matrix=MATRIX, colnames=NAMES,

csv_file_name="data_file.csv", csv_file_status=fstat_csv)
if (.not. fstat_csv) goto 1000

! save data without column names
call CSV_MATRIX_WRITE(matrix=MATRIX, csv_file_name="data_file.csv",

csv_file_status=fstat_csv)
if (.not. fstat_csv) goto 1000

Column names can be easily generated inline using array constructor:

call CSV_MATRIX_WRITE(matrix=Matr, csv_file_name=filename, &
csv_file_status=errorflag, &
colnames=[("VAR_" // TOSTR(i,10),i=1,6)])

! Note: below is a more portable code:
call CSV_MATRIX_WRITE(matrix=Matr, csv_file_name=filename, &

csv_file_status=errorflag, &
colnames=["VAR_01", ("VAR_" // TOSTR(i,10),i=2,6)])

Note that in the second more portable code, the first variable name "VAR_01" is set in full manually whereas the remaining are
generated by the array constructor. This is because some compilers (notably Oracle Fortran f95) require setting fixed and equal
variable length in all string elements (set by the first string).

Higher-rank arrays (with more than two dimensions)4 can be saved into CSV files using array slices, for example:

real, dimension(100,300,99) :: M3 ! Declare a 3D matrix M3
....
do i=lbound(M3,3), ubound(M3,3) ! Cycle over the third index, min - max

! Save separate slices of M3 to individual files file_001.csv .. file_999.csv
! note that the second parameter to TOSTR, ubound.., is the maximum size
! of the first dimension, it is uded here to set the number of leading zeros
call CSV_MATRIX_WRITE(matrix=M3(:,:,i), &

colnames=NAMES, &
csv_file_name="file_" // TOSTR(i,ubound(M3,3)) // ".csv",&
csv_file_status=flag)

end do

8.14.2 One-dimensional arrays

With one-dimensional array (vector), the subroutine gets (1) the array, (2) output file name, (3) logical parameter pointing if
the array is saved "vertically" (as a single column, if TRUE) or "horizontally" (as a single row, if FALSE). If the vertical
parameter is absent, the default TRUE (i.e. "vertical" data output) is used. There is also an alias to this subroutine, CSV_ARRAY
_WRITE.

[any supported], dimension(:) :: array ! data object, array
character (len=*) :: csv_file_name ! file name for output
logical :: vertical ! optional parameter defining how one-

! dimensional array is saved
logical :: csv_file_status ! operation status, TRUE if success

4 CSV_IO code could be modified to save higher-rank arrays if this function is needed

AHA! Modelling Tools Manual 48 / 96

Example

! Here the data will be written into a single row of values
call CSV_MATRIX_WRITE (ARRAY, "data_file.csv", .FALSE., fstat_csv)
if (.not. fstat_csv) goto 1000

Tip

In the simplest cases, with only the data object and the file name, CSV_MATRIX_WRITE can be used with a two-dimensional
matrix or one-dimensional array in the same way (it’s convenient during debugging):

real, dimension(1:100,1:20) :: MatrixX ! Matrix, two dimensional
real, dimension(1:100) :: Array_Y ! Array, one-dimensional
.......
.......
call CSV_MATRIX_WRITE(MatrixX, "file_matrixx.csv") ! write 2-d matrix
call CSV_MATRIX_WRITE(Array_Y, "file_array_y.csv") ! write 1-d array

8.14.3 Combining multiple arrays with RESHAPE

RESHAPE is a powerful Fortran function that allows combining several arrays in various ways. This could be very useful for
saving multiple vectors (or arrays) of the same type into a single CSV file using a single line of code.

Suppose we have two integer object vectors generation_one%individual%fitness and generation_one%indiv
idual%person_number each having POPSIZE elements (these are just two one-dimensional vector components of a single
object). Each of these vectors can be saved using the standard CSV_MATRIX_WRITE call:

call CSV_MATRIX_WRITE (generation_one%individual%fitness, "ZZZ1_F.csv")
call CSV_MATRIX_WRITE (generation_one%individual%person_number, "ZZZ1_N.csv")

The code below reshapes these two vectors into a single two-column matrix (by columns, array constructors are in square brackets
[]), so in the final CSV file they represent two separate variables. Note that there is also an array constructor for two descriptive
column names of the same string length.

! Here we save two huge integer vectors reshaping them into a single matrix
! by columns, see help on Fortran reshape function and array constructors.
! It also creates a vector of two column names for the output file.
call CSV_MATRIX_WRITE (reshape(&

[generation_one%individual%fitness, &
generation_one%individual%person_number], &

[POPSIZE, 2]), &
"ZZZ1_all.csv", &

AHA! Modelling Tools Manual 49 / 96

["FITNESS ","ID_NUMBER"] &
)

So the resulting data CSV file is like this:

If the arrays to be combined have different types, it is possible to use whole-array type conversions to get some common type for
all of the arrays. For example, if we combine an integer array A and a real array B (both having POPSIZE elements as above), it
is wise to convert integer to real to avoid losing data precision:

! Here integer array A is converted to real so both A and B have the same type.
call CSV_MATRIX_WRITE (reshape(&

[real(A), B], &
[POPSIZE, 2]), &
"ZZZ1_all.csv", &
["FITNESS ","ID_NUMBER"] &

)

We do not combine multiple loops manually, and automatic reshaping of the arrays is (usually) very fast.

8.15 Function: CSV_MATRIX_READ

This function reads a two-dimensional data matrix from a CSV or tab-separated data file. It has a single mandatory input
parameter: the name of the file. The other optional parameters are: (1) output file read logical status (if TRUE then the file
was successfully read); (2) input logical flag to include truncated records (default FALSE); (3) input real type missing code for
substituting data in truncated records.

Input parameters:

character (len=*) :: csv_file_name ! File name to read.
logical :: csv_file_status ! Logical read success status.
logical :: include_incomplete_records ! Flag to include truncated

! rows, default FALSE.
real :: missing_code ! Code that substitutes data in

! truncated records, if unset
! = -9999.0

Function value: an allocatable 2-dimensional real array.

real, dimension(:,:), allocatable :: matrix_out

AHA! Modelling Tools Manual 50 / 96

Important
CSV matrix subroutines use the "standard" arrangement for the matrix: the first index is for rows, the second, for
columns. A reverse can be produced using the intrinsic transpose function.

When reading the CSV file, the procedure excludes any lines that contain any non-numeric characters, therefore header line and
text variable names are automatically excluded, only numeric values are read.

The function automatically allocates the output matrix, if file read operation was not successful (csv_file_status is
FALSE), the output matrix dimensionality is (0,0). The number of rows (first dimension of the array) is determined as the total
number of lines with all numeric characters, the number of columns is set from the first numeric line.

8.15.1 Truncated rows

If the read procedure encounters a row that contains a smaller number of numeric values than the first numeric row, it can
substitute the missing data with specific missing data code (missing_code parameter, default -9999.0). To enable missing
data substitution, the include_incomplete_records parameter should be TRUE.

"VAR1", "VAR2", "VAR3"
1.1, 1.2, 1.3
2.1, 2.2, 2.3
3.1, 3.2, 3.3
4.1, 4.2 ! <- truncated row
5.1, 5.2, 5.3
6.1 ! <- truncated row

Default read mode:

Matr = CSV_MATRIX_READ(filename, errorflag)

The truncated rows (4.1, 4.2 and 6.1) are ignored in the output data:

1.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3
5.1 5.2 5.3

Setting include_incomplete_records flag to TRUE

Matr = CSV_MATRIX_READ(filename, errorflag, .TRUE.)

makes the function read these truncated rows and append the missing data values with the missing data code:

1.1 1.2 1.3
2.1 2.2 2.3
3.1 3.2 3.3
4.1 4.2 -9999.0
5.1 5.2 5.3
6.1 -9999.0 -9999.0

A user provided missing data code would then result in such data:

Matr = CSV_MATRIX_READ(filename, errorflag, .TRUE., 100.0)

1.1 1.2 1.3

AHA! Modelling Tools Manual 51 / 96

2.1 2.2 2.3
3.1 3.2 3.3
4.1 4.2 100.0
5.1 5.2 5.3
6.1 100.0 100.0

8.15.2 Real kind=8 data

It is possible to get a real kind=8 data matrix (double precision). To do this, the missing data code parameter should just
have real(kind=8) type. The include_incomplete_data flag can be set to .FALSE., .TRUE. or absent (defaults to
.FALSE.).

real (kind=8), dimension(:,:), allocatable :: Matr
....
Matr = CSV_MATRIX_READ(filename, errorflag, .FALSE., -9999.0_8)
....
Matr = CSV_MATRIX_READ(filename, errorflag, -9999.0_8)
....
Matr = CSV_MATRIX_READ(filename, errorflag, missing_code=100.0_8)

8.16 Derived type: csv_file

This type is used as a unitary file handle object. It has the following structure:

type, public :: csv_file
character (len=MAX_FILENAME) :: name ! The name of the file
integer :: unit = -1 ! Fortran unit associated with the file
logical :: status = .TRUE. ! success flag for the latest operation

end type csv_file

If csv_file object is defined, the file name, unit and the latest operation success flag can be accessed as %name, %unit,
%status (e.g. some_file%name, some_file%unit).

8.16.1 Basic Example

type(csv_file) :: file_occ ! define the file handle object
....
file_occ%name="some_name.txt" ! set file name value
....
call CSV_OPEN_WRITE(file_occ) ! Open file for writing
....
call CSV_CLOSE(file_occ) ! Close file

8.16.2 Arrays of structures

This derived type can be also used as an array. An example below shows how can this be done.

type(csv_file), dimension(:), allocatable :: file_ABM ! Define allocatable array
........ ! of file handle objects
allocate(file_ABM(modulators)) ! Allocate this array
........
! now, use the array to handle many files of the same type
do j=1, modulators

file_ABM(j)%name = "file_no_" // TOSTR(j,10) // ".csv" ! Set file handle (j)
call CSV_OPEN_WRITE(file_ABM(j)) ! and use it

end do

AHA! Modelling Tools Manual 52 / 96

Important
The file name is set as a standard non-allocatable fixed string because allocatable strings may not be supported on
all compiler types and versions. Notably, older GNU gfortran (prior to v.5) does not allow allocatable strings in derived
types. Currently, MAX_FILENAME=255 (can be changed in the code). There is one consequence of using fixed
strings: you may have to use the Fortran trim() function to cut off trailing blanks if strings are concatenated. E.g. do
file_name=trim(String1) //trim(String2) instead of file_name=String1 //String2 or use
file_name=CLEANUP(String1 //String2) to remove all blank and control characters.

8.17 Extended example

Below is an extended example subroutine showing how to save diverse data to a CSV file. The example data variables come from
an object oriented code, although the whole procedure does not use object orientation.

!> Save data for all agents within the population into a csv file.
subroutine population_save_data_all_agents_csv(this, output_data_file, &

save_header, is_logging)
use CSV_IO
class(POPULATION), intent(in) :: this
!> @param[in] output_data_file is the name of the CSV output file.
character(len=*), intent(in) :: output_data_file
!> @param[in] save_header turn ON/OFF of the descriptive file header.
!! Header is saved into the first row of the CSV output file
!! If not present, default is FALSE.
logical, optional, intent(in) :: save_header
!> @param[in] is_logging turn ON/OFF writing the file name and data into
!! the logger. If not present, default is TRUE.
logical, optional, intent(in) :: is_logging

! Local copies of optionals.
logical :: logging_enabled

! Counter
integer :: ind

!> ### Implementation notes ###
!> #### Local variables for CSV backend ####
!> - ‘N_COLUMNS‘ is the total number of columns in the spreadsheet data
!! file: it is equal to the number of variables that are saved for each
!! agent.
integer, parameter :: N_COLUMNS = 21 ! equal to the number of columns
!> - ‘handle_csv‘ is the CSV file handle object defining the file name,
!! Fortran unit and error descriptor, see HEDTOOLS manual for details.
type(CSV_FILE) :: handle_csv
!> - ‘csv_record_tmp‘ is the temporary character string that keeps the
!! whole record of the file, i.e. the whole row of the spreadsheet table.
character(len=:), allocatable :: csv_record_tmp
!> - ‘COLUMNS‘ is a parameter array that keeps all column headers; its
!! size is equal to the total number of variables (columns) in the data
!! spreadsheet file, which ic defined by the ‘N_COLUMNS‘ parameter here.
!! .
character(len=LABEL_LENGTH), dimension(N_COLUMNS), &
parameter :: COLUMNS = ["ID_NUM ", "PERS_NAME", "ALIVE ", &

"SEX_MALE ", "BODY_LEN ", "CTRL_RND ", &
"BODY_MASS", "ENERGY ", "STOMACH ", &
"MAXSTOMCP", "SMR ", "HORM_GROW", &
"HORM_THYR", "HORM_ADRE", "HORM_CORT", &
"HORM_TEST", "HORM_ESTR", "N_REPROD ", &
"N_OFFSPNG", "AGE ", "FITNESS "]

AHA! Modelling Tools Manual 53 / 96

! PROCNAME is the procedure name for logging and debugging
character(len=*), parameter :: &

PROCNAME = "(population_save_data_all_agents_csv)"

if (present(is_logging)) then
logging_enabled = is_logging

else
logging_enabled = .TRUE.

end if

if (logging_enabled) &
call LOG_MSG (LTAG_INFO // "Saving all individuals in population # " // &

TOSTR(this%pop_number) // "(name ’" // trim(this%pop_name) // &
"’), " // &
"generation # " // TOSTR(Global_Generation_Number_Current) // &
", time step " // TOSTR(Global_Time_Step_Model_Current) // &
" to file :" // output_data_file)

!> #### Save data in CSV file ####
!> - Define the file name \%name component of the CSV file handle. This
!! file handle object is now used as the sole file identifier.
handle_csv%name = output_data_file
!> - Open the output file defined by the ‘handle_csv‘ handle object for
!! writing.
call CSV_OPEN_WRITE(handle_csv)

!> - Possible error status of the latest file operation is obtained by the
!! \%status component of the file handle. Check if there were any errors
!! opening the file and report in the logger with the error tag.
if (.not. handle_csv%status) then

call LOG_MSG(LTAG_ERROR // "Opening output CSV file FAILED: " // &
output_data_file // ", in " // PROCNAME)

call LOG_MSG(LTAG_ERROR // "Data file " // output_data_file // &
" is not written in " // PROCNAME)

return
end if

!> - If the ‘save_header‘ flag is set to TRUE, save the CSV file header.
if (present(save_header)) then
if (save_header) call &

CSV_HEADER_WRITE("Population: " // this%pop_name, handle_csv)
end if

!> - Prepare the character string variable ‘csv_record_tmp‘ that keeps the
!! whole record (row) of data in the output CSV data file. The length of
!! this string should be enough to fit all the record data, otherwise
!! the record is truncated.
csv_record_tmp = repeat(" ", N_COLUMNS * len(COLUMNS(1)))

!> - Produce the first record containing the column headers (variable
!! names). Note that ‘CSV_RECORD_APPEND()‘ accepts both arrays and scalar
!! values for appending. Also, write the first record physically to
!! the file.
call CSV_RECORD_APPEND(csv_record_tmp, COLUMNS)
call CSV_RECORD_WRITE (csv_record_tmp, handle_csv)

!> - The actual data are written to the CSV file in a loop over all the
!! individual members of the population. One record (row) of the data
!! file then represents a single individual.
do ind = 1, size(this%individual)
!> - the ‘csv_record_tmp‘ character string variable is produced such
!! that it can fit the whole record;

AHA! Modelling Tools Manual 54 / 96

csv_record_tmp = repeat(" ", &
max(CSV_GUESS_RECORD_LENGTH(N_COLUMNS+1,0.0_SRP), &

len(this%individual(ind)%genome_label)))

!> - the actual data for the individual is appended to the current
!! record one by one. Note that logical values are converted to
!! integers using commondata::conv_l2r() function.
associate (AGENT => this%individual(ind))

call CSV_RECORD_APPEND(csv_record_tmp,AGENT%person_number) ! 1
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%genome_label) ! 2
call CSV_RECORD_APPEND(csv_record_tmp,conv_l2r(AGENT%alive)) ! 3*
call CSV_RECORD_APPEND(csv_record_tmp,conv_l2r(AGENT%sex_is_male)) ! 4*
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%body_length) ! 5
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%control_unselected) ! 6
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%body_mass) ! 7
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%energy_current) ! 8
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%stomach_content_mass) ! 9
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%maxstomcap) ! 10
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%smr) ! 11
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%growhorm_level) ! 12
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%thyroid_level) ! 13
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%adrenaline_level) ! 14
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%cortisol_level) ! 15
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%testosterone_level) ! 16
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%estrogen_level) ! 17
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%n_reproductions) ! 18
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%n_offspring) ! 19
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%age) ! 20
call CSV_RECORD_APPEND(csv_record_tmp,AGENT%fitness) ! 21

end associate

!> - after all data are appended to the record, this record is
!! physically written to the disk using ‘CSV_RECORD_WRITE()‘.
!! .
call CSV_RECORD_WRITE(csv_record_tmp, handle_csv)

end do

!> - When all the records are saved, the CSV file is closed
!! with ‘CSV_CLOSE()‘.
call CSV_CLOSE(handle_csv)

!> - This is finally sent to the logger (if ‘logging_enabled‘ is TRUE).
!! .
if (logging_enabled) &
call LOG_MSG (LTAG_INFO // "Individual data saved, population size " // &

TOSTR(this%population_size) // &
", number of columns " // TOSTR(N_COLUMNS))

end subroutine population_save_data_all_agents_csv

8.18 Procedures to manipulate the filesystem

There are several procedures for simple manipulations of the filesystem that are implemented as Fortran bindings to the standard
POSIX C functions via Fortran interfaces.

The procedures have an optional parameter iostat for reporting the status of the operation. It retrns 0 in case of success and
-1 if there was an error.

AHA! Modelling Tools Manual 55 / 96

Important
These subroutines might not work on all systems. However, tested and work on gfortran and ifort on both Linux and
Windows and f95 (Oracle) on Linux.

8.18.1 Subroutine: FS_MKDIR

Make a directory indicated by the first character string parameter (dirname). The second optional integer parameter iostat
returns the error status of the operation, 0 in case of success, -1 if there was an error creating the directory.

Note that iostat error -1 is returned also if there is already a directory with the same name, so it might not be very informative
practically.

The third, logical, optional parameter is_writeable can be used to check if the directory that has to be created is actually
writeable. This parameter is useful, for example, in case when one needs to create a directory, but the directory happened to exist
already (so iostat returns -1), although this is not a problem because the directory is still writeable (is_writeable returns
TRUE).

dirname = "./model_output"
...
call FS_MKDIR(dirname, ierr) ! This checks the status if the mkdir itself.
....
call FS_MKDIR(dirname, is_writeable=success_write) ! This checks if the

! directory is writeable.

8.18.2 Subroutine FS_RENAME

Rename a file.

call FS_RENAME("old_name", "new_name", i)

8.18.3 Subroutine FS_UNLINK

Deletes a file from the filesystem. Note that this subroutine does not delete directories for safety. Use FS_REMOVE subroutine
for this.

call FS_UNLINK("obsolete_file", i)

8.18.4 Subroutine FS_REMOVE

Deletes a file or a directory from the filesystem.

call FS_REMOVE("delete_me", i)

9 Module: BASE_RANDOM

This module contains subroutines for generating random numbers (pseudo-random number generator, PRNG). However, the
code of this module depends on the platform and compiler used. The build system (make) generates the appropriate header file
automatically.

AHA! Modelling Tools Manual 56 / 96

9.1 Subroutine: RANDOM_SEED_INIT

Initialise the random seed for random number generation. This module uses an improved random seed generation algorithm that
uses the system entropy pool on Unix systems and XOR of the current time and PID on Windows. Therefore, it is safe for use
on parallel processing systems. Normally has no parameters.

call RANDOM_SEED_INIT()

RANDOM_SEED_INIT can optionally return the current (calculated) seed as two parameters: integer dimension of the seed array
n_here and the array itself seed_here. This, however, is useful only for debugging.

integer :: dbg_seed_size ! depends on compiler/platform
integer, dimension (12) :: dbg_seed_array ! ... can be 12 or 2 on x86
...
call RANDOM_SEED_INIT(dbg_seed_size, dbg_seed_array)
print *, "Seed: ", dbg_seed_size, ", array: ", dbg_seed_array(:dbg_seed_size)

The seed array size can be different: on GNU gfortran x86 it is 12, on Intel and Oracle Fortran (both x86) it is 2.

9.2 Function: RAND_I

Generates a random integer (uniform distribution) within the range A to B (the two parameters of the function).

ipos = RAND_I(1, len(ga_target))

9.3 Functions: RAND_R4 (RAND) and RAND_R8

Generates a random real (kind 4 or 8) number with the uniform distribution. If the function has no parameters, it calculates a
uniform random number ranging from 0 to 1. May have two real or integer parameters defining the desired range (minimum,
maximum) of the random numbers. RAND is an alias for RAND_R4.

if (RAND() < ga_mutationrate) then
call mutate(fish(i))

end if
.....
rate = RAND_R4(10,100) ! this generates a random number within 10..100

Important
These functions are just wrappers to the standard Fortran subroutine random_number. Note that such intrinsic
Fortran functions as RAN are provided for backwards compatibility with the old Fortran 77 standard. They are usually
implemented as a simple modulo generator (as in f77). The new standard random_number implements a superior
algorithm and should be used for all new codes.

9.4 Functions: RNORM_R4, RNORM_R8, RNORM

In absence of any parameters, RNORM generates a normally distributed real (kind 4) random number with zero mean and
standard deviation = 1.0. May also have two real parameters defining the desired mean and variance. RNORM_R4 forces 32 bit
real (kind 4) while RNORM_R8 does 64 bit (kind 8).

Based on algorithm 712, Transactions on Mathematical Software, 18, 4, 434-435 (1992); (Kinderman & Monahan, augmented
with quadratic bounding curves).

ga_mut = RNORM() ! generate Gaussian variate with mean 0 and variance 1
ga_len = RNORM(100.,10.) ! generate Gaussian variate with mean 100 and variance 10
ga_len8 = RNORM(100._8,10._8) ! same as previous but kind 8 (double precision)

AHA! Modelling Tools Manual 57 / 96

9.5 Function: RAND_STRING

Generates a string composed of random characters. It has a single mandatory integer parameter, the string length. There are also
two optional integer parameters defining the range of the ASCII character codes for this string.

Some useful ranges: numbers 48:122, Latin alphanumeric characters 65:122, uppercase Latin letters 65:90, lowercase Latin
letters: 97:122.

LABEL = RAND_STRING(24,97,122) ! Set a random label of 24 lowercase letters

9.6 Arrays of random numbers: RAND_ARRAY and RNORM_ARRAY

The subroutines RAND_ARRAY and RNORM_ARRAY generate arrays (up to 6-dimensions) of uniform and normal (Gaussian)
random numbers, respectively. RAND_ARRAY can generate real (kind=4 or 8) and integer arrays. In absence of additional
parameters, RAND_ARRAY produces values ranging within 0.0 and 1.0, RNORM_ARRAY, normal (Gaussian) values with zero
mean and unity standard deviation.

Additional parameters for arbitrary random numbers. As with the above single-value functions, additional parameters
enable the generation of random numbers with arbitrary parameters. For example, two additional parameters of RAND_ARRAY
define the range (minimum, maximum) of uniformly distributed numbers whereas two additional parameters of RNORM_ARRAY
determines the mean and variance of the Gaussian random numbers generated.

The subroutine RAND_ARRAY can be also used with an integer array as a parameter. In this case, the subroutine requires two
additional mandatory integer parameters that set the range of the integers generated.

There are aliases RAND_MATRIX and RNORM_MATRIX for two- to six-dimensional matrices.

Here are a few examples:

real, dimension(200,500) :: ARRAY_X, ARRAY_Y, ARRAY_Z
integer, dimension(20,20) :: ARRAY_I
....
call RAND_ARRAY(ARRAY_X) ! produce 2D array of uniform random numbers
...
call RAND_ARRAY(ARRAY_X,10.,20.) ! produce 2D array of uniform random numbers

! ranging from 10.0 to 20.0
...
call RNORM_ARRAY(ARRAY_Y) ! produce 2D array of random normal variates

! (mean=0, std.dev.=1)
...
call RNORM_MATRIX(ARRAY_Z,1.,.2) ! produce 2D array of Gaussian numbers with

! mean=1.0 and variance=0.2
...
call RAND_ARRAY(ARRAY_I,1,10) ! produce 2D array of integers ranging 1 to 10

9.7 Random permutation: PERMUTE_RANDOM function

PERMUTE_RANDOM produces a random permutation index array, i.e. an array of integers from 1 to N in a randomised order. It
takes a single integer argument, the size of the random permutation index array (N).

print *, PERMUTE_RANDOM(10) ! Produces: 7, 4, 5, 10, 3, 9, 2, 1, 8, 6
print *, X(PERMUTE_RANDOM(size(X))) ! Elements of the array X in random order

9.8 Usage Notes

If the parameter type is ambiguous while calling the PRNG function, "single precision" (kind 4) is used by default. For example,
the following involves type conversion from kind 4 to kind 8:

AHA! Modelling Tools Manual 58 / 96

real(8) :: ga_mut ! kind 8 type real
...
ga_mut = RNORM() ! RNORM returns a kind 4 value, assigned to kind 8 variable

Be careful when using literal constants as parameters. They should normally have the same type as the main argument. For
example, numerical parameters in the example below should be explicitly kind 8, otherwise this error will be issued: "There is
no specific subroutine for the generic rnorm_array."

real(8), dimension(ROWS) :: C ! declarations use kid 8
real(8), dimension(ROWS,COLS) :: D
....
call RAND_ARRAY(C, 10._8,25._8) ! correct call as all arguments are kind 8
call RNORM_ARRAY(D, 10._8, 25._8)
....
call RAND_ARRAY(C, 10, 25) ! compiler error, type mismatch, not kind 8
call RNORM_ARRAY(D, 10., 25.)

(This limitation might change in future if mixed type functions are implemented.)

9.9 Build details

When not using the automatic build system based on GNU make, the module subroutine RANDOM_SEED_INIT should be
tweaked according to the compiler and platform as follows:

GNU fortran:

!***
! *** NON-PORTABLE CODE BEGIN ***

use ISO_FORTRAN_ENV, only: int64 ! GNU and Intel

implicit none

integer, allocatable :: seed(:)
integer :: i, n, un, istat, dt(8), pid
integer(int64) :: t

! *** NON-PORTABLE CODE END ***
!***

Intel Fortran

!***
! *** NON-PORTABLE CODE BEGIN ***

use ISO_FORTRAN_ENV, only: int64 ! GNU and Intel

use IFPORT, only : getpid ! getpid is an extension defined in IFPORT

implicit none

integer, allocatable :: seed(:)
integer :: i, n, un, istat, dt(8), pid
integer(int64) :: t

! *** NON-PORTABLE CODE END ***
!***

Oracle Fortran

AHA! Modelling Tools Manual 59 / 96

!***
! *** NON-PORTABLE CODE BEGIN ***

! External Modules not used on Oracle f95, but an include header must be placed

implicit none

integer, allocatable :: seed(:)
integer :: i, n, un, istat, dt(8), pid
integer, parameter :: int64 = selected_int_kind(18) ! define int64
integer(int64) :: t

include "system.inc" ! Include non-intrinsic library headers for the Oracle f95

! *** NON-PORTABLE CODE END ***
!***

The build system based on GNU make does this automatically.

10 Module: LOGGER

10.1 Overview

This module controls logging arbitrary messages during the execution of the program. The format and destination of the messages
is configurable during the run time. Thus, a trace of the execution can be read by the user during and after the execution. The
module includes subroutines to connect a file to the logger, configure the logging process, for example enable or disable the
terminal (stdout) messages, issue actual log messages. There are four log levels (volume, chapter, section and subsection) that
can differ a little in the visual representation, it can be useful for marking specific parts of the log. Logging is especially useful
for simulation models that run for quite a long time like AHA. The user can then check the log from time to time to make sure
everything is in order and get an idea about where it is running now.

Here is an example of a log file with timestamps (date and time printed on the left of the log strings) being displayed using the
Follow program.

AHA! Modelling Tools Manual 60 / 96

10.2 Subroutine: LOG_STARTUP

The logger must be started up with the subroutine LOG_STARTUP that has the log file name as a parameter, for example call
LOG_STARTUP("logfile-01.log"). The second optional argument defines if the existing log file with the same name
should be appended (.TRUE., default) or overwritten (.FALSE.). The code below shows how to start logging and build the
log file from parts:

!> Set log file name from string parts and start logging, *overwrite* old log
call LOG_STARTUP("output_" // MODEL_NAME // "_" // TAG_MMDD() // &

"_MAIN.log", .FALSE.)

10.3 Subroutine: LOG_CONFIGURE

There are also several configuration options for the LOGGER which are called using the LOG_CONFIGURE subroutine.

LOG_CONFIGURE accepts two parameters:

• character string parameter name

• parameter value (character string, integer or logical type)

These are the possible configuration options and their explanations:

Option Value Explanation
timestamp logical TRUE/FALSE if timestamp is issued in the log
writeonstdout logical TRUE/FALSE if the log should also go to terminal (stdout)
writeonlogfile logical TRUE/FALSE if the log should also go to the disk file
stoponerror logical TRUE/FALSE defines if execution should stop on error
logfileunit integer value Set specific unit for log (use with caution!)

AHA! Modelling Tools Manual 61 / 96

Option Value Explanation
level_string_volume string delimiter Set the string for volume
level_string_chapter string delimiter Set the string for chapter
level_string_section string delimiter Set the string for section
level_string_subsection string delimiter Set the string for subsection

The following code shows an example of LOGGER configuration. Here it turns on printing timestamps in the log and chooses
whether log messages should also go to the screen terminal (stdout).

call LOG_CONFIGURE("timestamp", .TRUE.) ! do timestamps in the log

if (IS_DEBUG) then
call LOG_CONFIGURE("writeonstdout" , .TRUE.) ! output also to screen if DEBUG

else
call LOG_CONFIGURE("writeonstdout" , .FALSE.) ! NO screen log output normally

end if

10.4 Function: LOG_ISINITIALIZED

The logical function LOG_ISINITIALIZED returns TRUE if the logger is already initialised.

if (LOG_ISINITIALIZED) then

10.5 Subroutine: LOG_CGET

The subroutine LOG_CGET is used to query a LOGGER configuration option value. It has two parameters, character string
option and logical, integer or character string value. Its use is similar to LOG_CONFIGURE.

call LOG_CGET("writeonstdout", is_stdout) ! check if log is going to screen

10.6 Subroutine: LOG_DELIMITER

LOG_DELIMITER issues a string delimiter to the log, it has an optional integer argument setting the kind of the delimiter, default
is "volume" (1). This is useful to mark the log with visually different parts. The maximum string length of the delimiter is 80
characters (set as a public integer parameter LOG_LEVEL_DELIMITER_LENGTH).

The four levels of logging volume, chapter, section and subsection are defined in the module LOGGER as constants, so these
constant can be used instead of the integer number. There are also the default delimiter strings.

integer , parameter , public :: LOG_LEVEL_VOLUME = 1 ! "==============="
integer , parameter , public :: LOG_LEVEL_CHAPTER = 2 ! "---------------"
integer , parameter , public :: LOG_LEVEL_SECTION = 3 ! "***************"
integer , parameter , public :: LOG_LEVEL_SUBSECTION = 4 ! "+++++++++++++++"

Below is a code example of issuing log delimiters:

call LOG_DELIMITER(1) ! issues volume "---------------"
.....
call LOG_DELIMITER(LOG_LEVEL_SUBSECTION) ! issues subsection "+++++++++++++++"

Using a user-defined delimiter string is illustrated below.

! Set delimiter as a 60-characters long line of "======..." for volume delimiter
call LOG_CONFIGURE("level_string_volume", repeat("=",60))
.......
call LOG_DELIMITER(LOG_LEVEL_VOLUME) ! issues this long delimiter line

AHA! Modelling Tools Manual 62 / 96

10.7 Subroutine: LOG_SHUTDOWN

LOG_SHUTDOWN: The last thing to do is to shut down logging with the LOG_SHUTDOWN subroutine:

call LOG_SHUTDOWN () ! close logger

11 Module: BASE_STRINGS

This module containing some useful string manipulation functions is borrowed from http://www.gbenthien.net/strings/index.html.
The description below is just repeating the official doc file included with the module. Note that there are a couple of utils
(READLINE, WRITEQ) in this module that work with files. These use the standard Fortran unit to refer for the file and unlike
the other modules here are not adjusted (yet) to use the file handle object (csv_file).

Important
These utilities are currently provided "as is," not well tested, contain unsafe code and probably some bugs.

One issue is that they do not work with strings declared as parameters 5 For example, this code does work as expected:

character(len=40) :: st_inp = "AAA BBB CCC*DDD" ! normal string
character(len=6), dimension(6) :: st_out
call parse(st_inp, " *", st_out, i)

Whereas this (st_inp is a parameter) results in invalid memory reference:

character(len=*), parameter :: st_inp = "AAA BBB CCC*DDD" ! fixed parameter
character(len=6), dimension(6) :: st_out
call parse(st_inp, " *", st_out, i)

SB: I shall recode and fix them if and when I have time, but the priority is low.

Fortran Character String Utilities. A collection of string manipulation routines is contained in the module ‘strings’ found in
the file stringmod.f90. To obtain this module as well as some other string utilities, go to the website http://www.gbenthien.net/-
strings/index.html. To use the routines in the module ‘strings’ the user needs to add the statement use strings to the top of
the program. These routines were developed primarily to aid in the reading and manipulation of input data from an ASCII text
file. The routines are described below.

11.1 Subroutine: PARSE

SUBROUTINE PARSE(str, delims, args, nargs)

This routine was originally designed to separate the arguments in a command line where the arguments are separated by certain
delimiters (commas, spaces, etc.). However, this routine can be used to separate other types of strings into their component parts.
The first input is a string str (e.g., a command line). The second argument is a string delims containing the allowed delimiters.
For example, delims might be the string " ," consisting of a comma and a space. The third argument is a character array
args that contains on output the substrings (arguments) separated by the delimiters. Initial spaces in the substrings (arguments)
are deleted. The final argument is an integer nargs that gives the number of separated parts (arguments). To treat a delimiter
in str as an ordinary character precede it by a backslash (\). If a backslash character is desired in str, precede it by another
backslash (\\). In addition, spaces that immediately precede or follow another delimiter are not considered delimiters. Multiple
spaces or tabs are considered as a single space, i.e., "a b" is treated the same as "a b". Backslashes can be removed from an
argument by calling the routine REMOVEBKSL, i.e.,

call REMOVEBKSL(<string>)

5 They do not explicitly use intent.

http://www.gbenthien.net/strings/index.html
http://www.gbenthien.net/strings/index.html
http://www.gbenthien.net/strings/index.html

AHA! Modelling Tools Manual 63 / 96

This routine converts double backslashes (\\) to single backslashes (\).

Example: If the delimiters are a comma and a space (delims =" ,"), then the subroutine PARSE applied to the string "cmd
arg1 arg\2 arg3" produces the output:

args(1) = cmd
args(2) = arg1
args(3) = arg 2
args(4) = arg3
nargs = 4

11.2 Subroutine: COMPACT

SUBROUTINE COMPACT(str)

This routine converts multiple spaces and tabs to single spaces and deletes control characters.

11.3 Subroutine: REMOVESP

SUBROUTINE REMOVESP(str)

This routine removes spaces, tabs, and control characters in string str.

11.4 Subroutine: VALUE

SUBROUTINE VALUE(str, number, ios)

This subroutine converts a number string to a number. The argument str is a string representing a number. The argument
number is the resulting real number or integer (single or double precision). The argument ios is an error flag. If ios is nonzero,
then there was an error in the conversion.

11.5 Subroutine: SHIFTSTR

SUBROUTINE SHIFTSTR(str, n)

This routine shifts characters in the string str by n positions (positive values denote a right shift and negative values denote a
left shift). Characters that are shifted off the end are lost. Positions opened up by the shift are replaced by spaces.

11.6 Subroutine: INSERTSTR

SUBROUTINE INSERTSTR(str, strins, loc)

This routine inserts the string strins into the string str at position loc. Characters in str starting at position loc are shifted
right to make room for the inserted string.

11.7 Subroutine: DELSUBSTR

SUBROUTINE DELSUBSTR(str, substr)

This subroutine deletes the first occurrence of substring substr from string str and shifts characters left to fill hole.

11.8 Subroutine: DELALL

SUBROUTINE DELALL(str, substr)

This routine deletes all occurrences of substring substr from string str and shifts characters left to fill holes.

AHA! Modelling Tools Manual 64 / 96

11.9 Function: UPPERCASE

FUNCTION UPPERCASE(str)

This function returns a string that is like the string str with all characters that are not between a pair of quotes (" " or ’ ’)
converted to uppercase.

11.10 Function: LOWERCASE

FUNCTION LOWERCASE(str)

This function returns a string that is like the string str with all characters that are not between a pair of quotes (" " or ’ ’)
converted to lowercase.

11.11 Subroutine: READLINE

SUBROUTINE READLINE(nunitr, line, ios)

This routine reads a line from unit nunitr, ignoring blank lines and deleting comments beginning with an exclamation point(!).
The line is placed in the string line. The argument ios is an error flag. If ios is not equal to zero, then there has been an error
in the read operation. A negative value for ios denotes an end of file.

11.12 Subroutine: MATCH

SUBROUTINE MATCH(str, ipos, imatch)

This routine finds the delimiter in string str that matches the delimiter in position ipos of str. The argument imatch
contains the position of the matching delimiter. Allowable delimiters are (), [], {}, <>.

11.13 Subroutine: WRITENUM

SUBROUTINE WRITENUM(number, string, fmt)

This routine writes a number to a string. The argument number is a real number or an integer (single or double precision). The
number number is written to the character string string with format fmt (e.g., "e15.6" or "i5").

11.14 Subroutine: TRIMZERO

SUBROUTINE TRIMZERO(str)

This subroutine deletes nonsignificant trailing zeroes in a number string str. A single zero following a decimal point is allowed.
For example, "1.50000" is converted to "1.5" and "5." is converted to "5.0".

11.15 Subroutine: WRITEQ

SUBROUTINE WRITEQ(unit, name, value, fmt)

This routine writes a string of the form "name=value" to the unit unit. Here name is the input string name and value is the
input number value converted to a string with the format fmt. The number value can be a real number or an integer (single or
double precision).

11.16 Function: IS_LETTER

FUNCTION IS_LETTER(ch)

This function returns the logical value .TRUE. if the input character ch is a letter (a–z or A–Z). It returns the value .FALSE.
otherwise.

AHA! Modelling Tools Manual 65 / 96

11.17 Subroutine: IS_DIGIT

FUNCTION IS_DIGIT(ch)

This function returns the logical value .TRUE. if the input character ch is a digit (0–9). It returns the value .FALSE. otherwise.

11.18 Subroutine: SPLIT

SUBROUTINE SPLIT(str, delims, before, sep)

This routine uses the first occurrence of a character from the string delims in the string str to split the string into two parts.
The portion of str before the found delimiter is output in before; the portion of str after the found delimiter is output in
str (str is left justified). The output character sep (optional) contains the found delimiter. To treat a delimiter in str as an
ordinary character precede it by a backslash (\). If a backslash is desired in str, precede it by another backslash (\\). Repeated
applications of SPLIT can be used to parse a string into its component parts. Backslashes can be removed by calling the routine
REMOVEBKSL, i.e., call REMOVEBKSL(string)

12 IEEE Arithmetics

12.1 Overview

The model can now use the IEEE arithmetic modules. They allow exact control of the CPU math features and exceptions caused
by invalid calculations, such as dividion by zero, overflow, underflow etc. A potential issue is that they have an optional status in
the Fortran standard, so compilers do not have to implement them, although many do.

Important
IEEE arithmetic and exceptions are fully described in chapter 14 of this book: Adams, et al., 2009 The Fortran 2003
Handbook. Springer.

For example, Intel Fortran implements intrinsic IEEE arithmetics modules. GNU Fortran does not implement them untile version
5.6 However, there are external (non-intrinsic) IEEE modules for gfortran on the x86 (support both 32 and 64 bit) that are included
into the HEDTOOLS bundle.

Important
the fimm HPC cluster, where calculations are normally performed, has GNU Fortran 4.8.1 and will require non-intrinsic
IEEE modules. It also has the Intel Fortran which has built-in (intrinsic) IEEE modules though.

12.2 IEEE Exceptions

There are several exception conditions:

• IEEE_DIVIDE_BY_ZERO

• IEEE_INEXACT

• IEEE_INVALID

• IEEE_OVERFLOW

6 It was because GNU compiler collection is made for portability and supports many different processor architectures in addition to the most common x86
and implementation of IEEE modules is highly dependent on the CPU type and features.

http://docs.hpc.uib.no/wiki/Available_resources#Linux_cluster_fimm.hpc.uib.no

AHA! Modelling Tools Manual 66 / 96

• IEEE_UNDERFLOW

• IEEE_USUAL (An array of three exceptions IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID)

• IEEE_ALL (An array of five exceptions IEEE_OVERFLOW,IEEE_DIVIDE_BY_ZERO, IEEE_INVALID, IEEE_UNDER
FLOW, IEEE_INEXACT)

Normally, if the program encounters invalid arithmetic calculations, then it should crash or at least report the problem. Otherwise,
correctness of calculations is not guaranteed. By default, many compilers just ignore invalid calculations (even many cases of
division by zero, NaN7 generation etc.).

In most cases NaNs and other invalid arithmetics strongly point to a bug. If a NaN value is just left ignored during the calculations,
it will likely propagate further into some other calculations making them invalid. It is therefore wise to turn halting ON by default
in model calculations (unlike normal utility software that should never crash).

Turning arithmetic exception halting ON during the compile time requires specific compiler options.

Compiler option example
GNU GCC -ffpe-trap -ffpe-trap=zero,invalid,overflow,underflow
Intel Fortran -fpe (/fpe) -fpe0 (/fpe:0 on Windows)
Solaris Studio --ftrap --ftrap=invalid,overflow,division

The IEEE module IEEE_EXCEPTIONS allows to control halting during the run time. For example, it is cool to switch halting
ON in specific troublesome parts of the code that can normally result in invalid calculations (division by zero, invalid, inexact
etc.) and control each such occurrence specifically (e.g. provide a subroutine handling and fixing the calculations).

Halting the program that encounters specific condition is controlled via IEEE_GET_HALTING_MODE subroutine (returns logi-
cal parameter IEEE_DEF_MODE). For example, for IEEE_INVALID it is:

call IEEE_GET_HALTING_MODE(IEEE_INVALID, IEEE_DEF_MODE)

It is also possible to set specific halting mode for specific condition. For example, to set halting ON (execution termination) on
invalid arithmetic do this:

call IEEE_SET_HALTING_MODE(IEEE_INVALID, .TRUE.) ! Will halt on IEEE_INVALID

Here is an example:

...
! Invoke IEEE Arithmetics:
! use, non_intrinsic :: IEEE_EXCEPTIONS ! if gfortran v<5

! We normally use included auto-generated wrapper for the module
include "IEEE_wrap.inc"

IMPLICIT NONE

REAL r,c,C0,Ap,Vc,Ke,Eb
REAL FR1,FR2,F1,FDER

....

logical :: IEEE_MATH_FLAG, IEEE_DEF_MODE ! values for IEEE math modules

call IEEE_GET_HALTING_MODE(IEEE_INVALID, IEEE_DEF_MODE) ! Get default halting
call IEEE_SET_HALTING_MODE(IEEE_INVALID, .FALSE.) ! NO halting from here!

...

FR2=LOG(ABS(C0)*Ap*Vc)

7 "Not a Number," a wrong arithmetic value that is not equal to itself, can result from many math errors

AHA! Modelling Tools Manual 67 / 96

FR1=LOG(((Ke+Eb)/Eb)*r*r*EXP(c*r))
F1 = FR1-FR2
FDER = c + 2./r

call IEEE_GET_FLAG(IEEE_INVALID, IEEE_MATH_FLAG) ! Get the error flag
if(IEEE_MATH_FLAG) then

! if IEEE exception is signalled, we cannot relay on the calculations
! Report the error: remember there is no halting now, the program won’t stop
write(10,*) "IEEE exception in DERIV ", r,F1,FDER,c,C0,Ap,Vc,Ke,Eb
! We also have to fix the calculations, e.g. equate some values to zero
r=0.; F1=0.; FDER=0.
call IEEE_SET_FLAG(IEEE_INVALID, .FALSE.) ! Set the error flag back to FALSE

end if

...

call IEEE_SET_HALTING_MODE(IEEE_INVALID, IEEE_DEF_MODE) ! Set default halting

END SUBROUTINE DERIV

12.3 Implementation details

We use an automatic build system (see below) which normally keeps track of the compiler and its version and IEEE modules
support, there is no need to include use, intrinsic (or non_intrinsic) ::IEEE_EXCEPTIONS and tweak it
manually depending on the compiler support. The build system automatically generates the correct include file IEEE_wrap.
inc which should be inserted into the code in place of use ... statement:

SUBROUTINE DERIV(r,F1,FDER,c,C0,Ap,Vc,Ke,Eb)
!Derivation of equation for visual range of a predator

! Invoke IEEE Arithmetics:
! use, non_intrinsic :: IEEE_EXCEPTIONS ! if gfortran v<5

! We normally use included auto-generated wrapper for the module
include "IEEE_wrap.inc"

REAL r,c,C0,Ap,Vc,Ke,Eb
....

Without the GNU make-based build system, the rule is simple. Use non-intrinsic modules with GNU gfortran version <5.0 8

and build the modules beforehand:

!***
! *** NON-PORTABLE CODE BEGIN ***
use, non_intrinsic :: IEEE_FEATURES
use, non_intrinsic :: IEEE_ARITHMETIC
use, non_intrinsic :: IEEE_EXCEPTIONS
! *** NON-PORTABLE CODE END ***
!***

and intrinsic modules on GNU gfortran v>5, Intel Fortran or Oracle Fortran:

!***
! *** NON-PORTABLE CODE BEGIN ***
use, intrinsic :: IEEE_FEATURES
use, intrinsic :: IEEE_ARITHMETIC
use, intrinsic :: IEEE_EXCEPTIONS
! *** NON-PORTABLE CODE END ***
!***

8 e.g. gfortran on the fimm cluster

AHA! Modelling Tools Manual 68 / 96

13 Build system: GNU make

13.1 Overview

The model currently uses a build system based on GNU make (Makefile). GNU make is an automated system for building source
code (in fact, any digital project that requires keeping track of dependencies between multiple components.)

The make program is intended to automate the mundane aspects of transforming source code into an executable. The
advantages of make over scripts is that you can specify the relationships between the elements of your program to
make, and it knows through these relationships and timestamps exactly what steps need to be redone to produce the
desired program each time. Using this information, make can also optimize the build process avoiding unnecessary
steps.

— Mecklenburg R. Managing Projects with GNU Make

All the build rules for building the model executable are collected in the Makefile. If the model requires external components
(e.g. non-intrinsic IEEE math modules), they will be automatically inserted.

GNU make is good because it works on diverse combinations of platforms and OSs (e.g. Linux and Windows). Some proprietary
Unix platforms could supply the vendor’s make utility that may not be compatible with the GNU make (e.g. Oracle Solaris
includes its own make clone). There might be an option turning on GNU compatibility. But it is better to use the GNU make
(gmake on Solaris) anyway.

Important
A good manual on the GNU Make is this book: Mecklenburg, R, 2005, Managing Projects with GNU Make, Third edition.
O’Reilly. There is also the official GNU Make Manual.

13.2 Using make

Most basic things with the standard Makefile are simple. The commands are issued on the terminal console.

Important
There is a separate Makefile in the HEDTOOLS bundle. It is used for building the modelling tools as a static library.
Separate building of HEDTOOLS is normally not necessary. Just tweak and run the Makefile that is supplied in the
current model directory. It will build HEDTOOLS and, if necessary, IEEE modules automatically.

The make system keeps track of all the code components. For example, if only one has been changed, it will recompile only this.
It also keeps track of whether IEEE math modules are really necessary and if the intrinsic or non-intrinsic modules are used.

For example, you may have built the model executable (make) and then edited the code of a module a little. Then just issue
command to run batch (make run) on fimm. The make system will then automatically determine that the model executable is
now out of date and recompile the changed module and build an updated executable, and only after this will start the batch job.

Another example: you just checked-out or updated (e.g. svn up) the model source that is tested and known to be bug-free on
the fimm cluster. Now you should compile components of the program, (e.g. tweak IEEE math modules), build the executable,
and finally start the executable in the cluster’s batch job system. All this is done using a single command: make run.

$ svn update
$... some output...
$ make run

The system should work the same way on Windows, Mac and Linux including the fimm HPC cluster. By editing the Makefile
provided, one can easily tweak the behaviour of the build process, e.g. add other modules, change names, compilation options
and details etc.

Microsoft Studio, Oracle Solaris Studio and other similar IDEs actually provide their own make systems (e.g. nmake, make or
dmake) that work behind the scenes even if the IDE GUI is used.

https://www.gnu.org/software/make/
http://www.oreilly.com/openbook/make3/book/index.csp
http://www.oreilly.com/openbook/make3/book/index.csp
https://www.gnu.org/software/make/manual/

AHA! Modelling Tools Manual 69 / 96

Important
The HEDTOOLS bundle has a subdirectory called template that contains a template Makefile for new modelling
projects. In many cases only the source code file name(s) have to be tweaked there.

13.2.1 Building and running the model

• Get a short help on the options: make help

• Autogenerate model documentation with Doxygen: make docs

• Build the model executable using default compiler: make

• Force rebuild the model executable with Intel compiler: make intel

• Force rebuild the model executable with GNU compiler: make gnu

• Run the current model: make run (on the fimm HPC cluster, this will automatically start a new batch job)

Important
On some systems, running the AHA Model compiled with the Intel Fortran compiler crashes with "stack overflow"" or
"segmentation fault". This is because of the model can have large number of concurrent threads working with large
data arrays. To fix it on Linux, issue this command: ulimit -s unlimited on the terminal. The same error on
Windows is corrected by increasing stack size with the /F100000000 ifort compiler option (this is normally already
fixed in the Makefile). Increasing stack size on Mac OS X is described here.

13.2.2 Cleanup

There are also a few options for deteting the files and data generated by the build process.

• Remove all the data generated by the model make cleandata

• Remove all the data files generated by the model run as well as the model executable: make clean

• Remove everything generated by the build system and all the data, retain the default state: make distclean

Important
If there are weird build errors, like cannot find logger.mod while the module is in fact there, use make
distclean for a complete cleanup first and then issue normal make again.

13.2.3 Debugging

The environment variable DEBUG controls whether the build system produces the debug symbols (-g) or, if NOT defined, speed-
optimised machine code (-O3, automatic loop parallelization etc.). To build with debug support just define DEBUG in the manner
standard for the platform/OS. For example, on Linux use:

$ DEBUG=1 make

or (DEBUG is now persistent)

$ export DEBUG=1
$ make

https://developer.apple.com/library/content/qa/qa1419/_index.html

AHA! Modelling Tools Manual 70 / 96

on Windows:

O:\WORK\MODEL\HED18>set DEBUG=1
O:\WORK\MODEL\HED18>make

or use DEBUG as a parameter to make, this works on all platforms:

$ make intel DEBUG=1

13.2.4 Profiling

Building the model code for profiling using the GNU toolset is similar to debugging. Here the variable PROFILE is used the
same way.

$ PROFILE=1 make

Running the program that has been built with profiling enabled will generate a profiling report: gmon.out that contains various
execution timing statistics. This report can be read and analysed with the gprof utility, for example:

$ gprof MODEL.exe

Important
Profiling currently works only with the GNU toolset (GNU gfortran and GNU profiler).

13.2.5 Compiling documentation

Doxygen documentation for the model (extracted from the source code comments) is produced using this command:

make docs

Additionally, this document can be compiled in the HEDTOOLS directory with:

make doc

Important
Note doc not docs as in the model Doxygen documentation.

The default output format for this manual is PDF. Any other format supported by asciidoc can be produced by setting the
DOCFMT variable. For example, Epub is compiled using:

make doc DOCFMT=epub

Important
Compiling this document in PDF and other supported output formats requires the asciidoc markup processor. Asciidoc
is not required for anything else.

AHA! Modelling Tools Manual 71 / 96

13.2.6 Using Intel Parallel Studio on Windows (command line)

Using Makefile with the Intel Parallel Studio XE 2013 Fortran compiler (ifort.exe) (and probably other versions of Intel
Fortran on Windows) requires setting up the Microsoft Studio environment. This is normally done by calling the Command
Prompt from the menu:

Or if you right click on the shortcut, copy the commend line set in the menu and run it in the terminal. Such a command may
look like this:

C:\Windows\SysWOW64\cmd.exe /E:ON /V:ON /K ""C:\Program Files (x86)\Intel\Composer XE 2013\ ←↩
bin\ipsxe-comp-vars.bat" intel64 vs2010"

Then running this command will result in this:

AHA! Modelling Tools Manual 72 / 96

Once the Intel command prompt environment is set, we can use the make command as normal with the Intel Fortran compiler,
e.g. build using the Intel ifort on Windows:

make intel

Important
It is crucial to set up the Intel Fortran command prompt build environment on the Windows platform, otherwise make
would not find all the necessary Intel Parallel Studio and Microsoft Studio compiler and linker components. This is not
necessary on the Linux Intel Fortran compiler.

If you use the ConEmu terminal, the command to set up the Intel Parallel Studio environment can be inserted in the ConEmu
startup command line or script.

In the simplest case, the Startup command line or startup script might contain something like this (note that it is a single line
with commands separated by ampersands &):

cmd.exe /C call "C:\Program Files (x86)\Intel\Composer XE 2013\bin\ipsxe-comp-vars.bat" ←↩
intel64 vs2010 & "C:\Program Files\Far Manager\far.exe"

The exact path to the ipsxe-comp-vars.bat should be taken from the menu shortcut. In the above case, ConEmu will
call the command prompt setup batch script ipsxe-comp-vars.bat (with full path and platform parameters intel64
vs2010) and then run the Far Manager (also full path is here).

If you like to use different tasks in ConEmu, such initialisation command, tweaked for particular task can be also inserted the
Startup→ Tasks→ Commands menu; here is an almost identical example calling Far Manager:

AHA! Modelling Tools Manual 73 / 96

Then, all the Intel build environment commands will be run automatically every time the ConEmu terminal is started (or the task
is started), so you would not need to runt it manually.

13.3 Tweaking Makefile

Important
In most cases only the model source code file(s) may need tweaking. This is defined in the variable SRC of the
Makefile. Also, path to the Modelling tools, HEDTOOLSDIR, may need an update. Everything else should work out
of the box.

13.3.1 Concepts

The two most important concepts for writing Makefile are variables, macros, rules and targets. In essence, Makefile just
defines rules that build targets from their prerequisites using variables and macros.

Everything that starts from # is considered a comment.

Variables are defined as in shell scripts, for example:

This variable defines the compiler command
GF_FC = gfortran

Variable can be expanded. The simplest kind of it is just assignment of a value from another variable:

FC now gets value from GF_FC
FC = $(GF_FC)

A variable can get value from the output of the a shell script, then it should start from shell keyword, e.g.

Check GCC version, it just calls: gfortran -dumpversion
gfortran is obtained from the variable GF_FC
GFORTVERSION = $(shell $(GF_FC) -dumpversion)

AHA! Modelling Tools Manual 74 / 96

There are also automatic variables, such as:

$@ The filename representing the target, $< The filename of the first prerequisite, $? The names of all prerequisites that are
newer than the target, separated by spaces, $ˆ The filenames of all the prerequisites, separated by spaces, $* The filename of
the target without suffix.

Macros are like multi-row variables that define a sequence of actions, a kind of "subroutine." For example, the following macro
has the name AUTOGEN_COMMENT, it uses the standard echo shell command and file redirection > to write (autogenerate) a
piece of source code, the file name is defined by $(AUTOGEN_HEADER):

Autogenerated include file.
define AUTOGEN_COMMENT

$(shell echo "!> @file $(AUTOGEN_HEADER)" > $(AUTOGEN_HEADER))
$(shell echo "!! Autogenerated header for module RANDOM" >> $(AUTOGEN_HEADER))
$(shell echo "!! Sets compiler-specific code for PRNG" >> $(AUTOGEN_HEADER))
$(shell echo "!+---------------------------------------+" >> $(AUTOGEN_HEADER))
$(shell echo "!| WARNING: auto-generated, do NOT edit |" >> $(AUTOGEN_HEADER))
$(shell echo "!+---------------------------------------+" >> $(AUTOGEN_HEADER))

endef

This sequence of actions can be called just like a variable:

$(AUTOGEN_COMMENT)

Targets define the file (e.g. executable program name) or other thing (e.g. some other target) that we are going to build. The
line may also include prerequisites we need for compiling/building and finally the command(s) that actually do the build. In the
simplest form a target with the name target_0 can be written like this:

target_0: prerequisite_1 prerequisite_2
commands

Then the make system checks that prerequisite_1 and prerequisite_2 do exist and are newer than the target (by the
file modification time), and then rebuilds the target_0 using commands. The system may go to other targets that are difened
by the prerequisites to update them.

Important
The commands that are defined to build a target in the Makefile (i.e. below the colon : part) must start from the
TAB symbol.

For example, the part below has the target BASE_UTILS.o (compiled object file), the prerequisite for compiling this file
is Fortran source code BASE_UTILS.f90, The system builds the target BASE_UTILS.o using the compiler defined with
$(FC) with compiler flags $(FFLAGS) -c, also here $< is the first prerequisite, in this case the source code file (BASE_UT
ILS.f90).

BASE_UTILS.o: BASE_UTILS.f90
$(FC) $(FFLAGS) -c $<

If the system does not find the target file, it is compiled using the provided rule commands. Furthermore, if it finds out that we
have already got the target file BASE_UTILS.o but it is older than the source code BASE_UTILS.f90 (the prerequisite), then
this means that the target is "outdated" and should be re-compiled from the source.

A target may also be defined by a variable, e.g.

Produce tweaked include file for PRNG
$(AUTOGEN_HEADER): $(BASE_RANDOM.f90) $(THIS_FILE)

$(AUTOGEN_COMMENT)
$(AUTOGEN_CODE)

The above code defines the rule to write the source include header file with the name defined by $(AUTOGEN_HEADER) with
the prerequisites $(BASE_RANDOM.f90) and $(THIS_FILE) using the actions defined by the two macros (or variables):
$(AUTOGEN_COMMENT) and $(AUTOGEN_CODE).

AHA! Modelling Tools Manual 75 / 96

13.3.2 Basic parameters

There are only few parameters in the Makefile that may need manual tweaking. The two variables that always need tweaking
are, understandably, the file name(s) for the model code: SRC and the name of the executable OUT (although the latter may
always be MODEL.exe).

The variable SRC defines the main source code file(s) for the model (HEDTOOLS are separate).

These names should be set for particular project,
Most probably they should be edited manually for each specific project
SRC is the name of the main source code (can be several files). Note that
Intel fortran doesn’t like f95 file extension, use f90
OUT is the executable file

SRC = HEDG2_03.f90

OUT = MODEL_00.exe

Several files of the model source code can be defined, e.g.

SRC = HEDG2_03.f90 HEDG2_03U1.f90 HEDG2_03U2.f90 HEDG2_03U3.f90

or wildcards for files in the current directory (or several wildcards) can be used:

SRC = HEDG2*.f90

The variable HEDTOOLSDIR defines the location of the source code for the modelling tools/modules. In most cases the file
hierarchy is simple, model code and the HEDTOOLS code are in separate subdirectories.

Workdir
|
|-- Model1 # Directory for Model 1
|-- Model2 # Directory for Model 2
|
‘-- HEDTOOLS # Directory for modelling tools

‘--IEEE

In such a case, HEDTOOLSDIR is defined in the Makefile as follows:

Path to HEDTOOLS and IEEE non-intrinsic libs
HEDTOOLSDIR = ../HEDTOOLS
IEEEPATH = $(HEDTOOLSDIR)/IEEE

Here are some of the variables that might need re-definition:

• FC is the default compiler,

• SRC is the source file name(s) for the model (almost always needed!),

• OUT is the executable name to be built,

• HOST_HPC_ROOT host name of the HPC cluster where the model is run by submitting the cluster job (normally fimm),

• HEDTOOLSDIR path to the modelling tools (HEDTOOLS),

• IEEEPATH path to the non-intrinsic IEEE modules (normally $(HEDTOOLSDIR)/IEEE),

• GF_STATIC GNU compiler options for static build,

• GF_TRAPS GNU compiler options for IEEE arithmetic traps,

• GF_RCHECKS GNU compiler options defining runtime code checks,

AHA! Modelling Tools Manual 76 / 96

• GF_FFLAGS GNU compiler flags, optimisations etc.,

• IF_ - Intel compiler options with the same purposes as the above GF_-flags.

The definition of the supported compilers and the the default compiler (that is used if make is called without parameters) is like
this:

Supported Fortran compiler types
GF_FC = gfortran
IF_FC = ifort
SF_FC = f95

Choose the default compiler type
FC = $(GF_FC)

So, to tweak the Makefile to use the Intel compiler as default, just change this:

FC = $(IF_FC)

Important
The Makefile code is documented, just read the comments and explanations for the different variables and macros.

14 Using Microsoft Visual Studio

14.1 Working with the source code of the Modelling Tools

This is a difficult but flexible method.

Developing and debugging the code that uses the source code of the HEDTOOLS modelling tools with Microsoft Visual Studio
on the Windows platform should follow such a workflow.

1. Create the model project in Microsoft Visual Studio as usual.

2. Include the source .f90 files from HEDTOOLS that are used in the project into the current Microsoft Studio project.
Source files can be just copied into the model source code directory for convenience.

3. Manually tweak the source code for these non-portable modules, that make use of auto-generated include files in the make
system. Currently, there are two such modules: BASE_RANDOM and IEEE Modules

4. Compile/Build/Debug and work with the model code(s) as normal from within the Misrosoft Studio

5. The model code can be (re)built using the command line tools and the make-based system. Just do not forget to point
to the location of the original unedited HEADTOOLS code within the Makefile. The Modelling tools code tweaked
manually as a part of the Visual Studio Project cannot be used by the make system.

14.2 Building the Modelling Tools as a static library

This is the easiest method not requiring any manual tweaks.

An easier and more convenient way to include the HEDTOOLS modelling tools to a Microsoft Visual Studio / Intel Parallel Studio
Project is to build the tools as a static library that is then included into the current model coding project. This method does not
require manual tweaking of the modelling tools source code and takes full advantage of the automatic make system 9. Also,
the same library file can be included into many different Visual Studio projects. However, the tools library must be built using
exactly the same platform and compiler.

9 Although, if IEEE Modules are used in the code, the code should be tweaked manually

AHA! Modelling Tools Manual 77 / 96

Important
Never mix static library produced with GNU fortran into Intel Parallel Studio projects or vice versa, or even different
versions of Intel Parallel Studio Fortran—the library and the project code must be built using the same compiler.

First, build the HEDTOOLS modelling tools as a static library using the make system with FC=ifort, this is the default make
target. Do not forget to make sure the Intel Parallel Studio Command Prompt Environment has been correctly prepared prior
to the build process.

make FC=ifort

On the Windows platform with Intel Fortran compiler, this will produce a static library file with this name: lib_hedutils.lib as
well as many .mod header files. For convenience, the make system also produces a zip archive containing all the re-distributable
tool files.

Important
The Makefile producing the library requires two command line GNU utilities: uname and zip. Windows versions
are available from GnuWin32 and other distributions. If these utilities are not available, the static library is still produced
although the handy zip file distribution is not generated.

First, copy .mod files to the current Visual Studio Project folder containing the source code .f90 files. The library itself should
be also placed there. It is convenient to just unzip the whole content of the redistributable zip file created by the make system.

Then, insert the lib_hedutils.lib static library file into the project, use the menu Add→ Existing Item menu.

It is also possible to add the library into the project directly from the HEDTOOLS directory, in such case, also add all the .mod
from HEDTOOLS to the project. Then, the library and .mod files are accessed directly from the Modelling Tools folder and
should not be copied to the current project folder and can be included from their own directory to several Visual Studio projects.

http://gnuwin32.sourceforge.net/

AHA! Modelling Tools Manual 78 / 96

Now the code should build successfully (calling the modelling tools code from the library) as normal (e.g. Build → Build
Solution). There may be problem with the LIBCMTD.lib library in the Debug solution (I have not encountered the same issue
in the Release solution though):

If there is such a problem, go to Properties→ Linker→ Input and insert the problem library LIBCMTD.lib to the Ignore
Specific Library field:

AHA! Modelling Tools Manual 79 / 96

From now, it should (hopefully) build without further issues. The modelling tools are now automatically inserted by the compiler
into the executable code from the static library provided as if the subroutines and functions were intrinsic.

Using the static library tools for command line building

Finally, if you like to build code with the static library from the command prompt rather than Visual Studio IDE, it is also easy:

ifort file.f90 lib_hedutils.lib

This command compiles and links the code in file.f90 with the library.

The static library can be built on any of the supported platforms (Windows, Linux, Mac) and compilers (e.g. GNU gfortra
and Intel Fortran). But note that on Unix systems and GNU gfortran on Windows the library has an .a rather than .lib file
extension. The redistributable zip file that is produced when building the library contains a small Readme.txt file.

15 Using Code::Blocks IDE

15.1 Building the Modelling Tools as a static library

Working with the Code::Blocks IDE is similar to that with Microsoft Studio. The simplest way to get it running is to (1) build
HEDTOOLS as a static library using the make system, (2) copy the library file lib_hedutils.a (or lib_hedutils.lib)
and all the .mod files produced by the make build system into the working project directory, add the library file to the project
file using the Project→ Add Files menu. After this it should build within the IDE.

AHA! Modelling Tools Manual 80 / 96

When building, a link order issue may appear, but this does not affect anything, so in most cases just ignore it.

Alternatively, the library can be inserted using the Project→ Build Options→ Linker settings. Using this method, you might
get an issue with the compiler not being able to find the library (as it is not in the LIBPATH). Not keeping relative path to the
library will solve the problem.

AHA! Modelling Tools Manual 81 / 96

15.2 Using the custom Makefile

Another method to use the HEDTOOLS bundle in Code::Blocks IDE is to set up the program build directly from the custom
Makefile: Project→ Properties

and setting target paths as in the Makefile, i.e. in the "." directory (rather than the default \bin). Also, the Makefile
commands for Debug (Project → Build options) should include the DEBUG=1 flag (see the GNU Makefile command line
options for debugging).

This is the most universal and flexible method that uses the same Makefile for building both on the command line and from
the IDE.

AHA! Modelling Tools Manual 82 / 96

Important
A Code::Blocks project template for the AHA Model is available in the ˆ/trunk/scripts folder on the Subversion
repository: Project.cbp. This file should be copied to the project folder. the svn command for this is:
svn export https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.
cbp

16 Manual builds of HEDTOOLS

16.1 Editing source codes

If the model is built without using the automatic GNU make utility and the supplied Makefile, you should take care about the
dependencies and header files yourself. These are the modules that require manual source tweaking in such cases:

• BASE_RANDOM

• IEEE Modules

These pieces of code should be edited manually depending on the compiler and its version used. Please check your documen-
tation. Make sure all source code files for the model as well as for the HEDTOOLS are included in the project. Many IDEs
allow generating (importing) project from a supplied Makefile and recognize GNU make format. This could make work a
little easier.

16.2 Using static library

Another option is (1) to build the modelling tools as a static library using the make system. (2) Compile the model and link the
tools in from the library. Then, no manual edits may be required. Refer to the Readme.txt file that is produced with the static
library. When using the Intel Fortran compiler on Windows, make sure the command prompt environment is correstly set up.

(1) in the modelling tools directory
HEDTOOLS]$ make # make the static library of the Modelling Tools
...
(2) in the model code directory (make sure .mod and library files are placed there)
compile model code link with the library producing the executable
test_library]$ gfortran test_lib.f90 lib_hedutils.a

This is a small test program code producing two random matrices and saving them to CSV:

! test_lib.f90 :: Small test of the HEDTOOLS
program test_library

use CSV_IO ! we use these modules
use BASE_UTILS ! from HEDTOOLS
use BASE_RANDOM

implicit none
integer, parameter :: ROWS=1000, COLS=20
integer :: i
real, dimension(ROWS,COLS) :: A
integer, dimension(ROWS,COLS) :: B

call RANDOM_SEED_INIT() ! This subroutine is safe on parallel systems

call RNORM_ARRAY(A) ! Generate a matrix of random normal variates

call CSV_MATRIX_WRITE(A, "file_matrix_a.csv",& ! Save the matrix to CSV file
[("VAR_" // TOSTR(i,COLS),i=1,COLS)]) ! Column names are generated

https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp
https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp
https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp

AHA! Modelling Tools Manual 83 / 96

! in this implicit-loop array

call RAND_ARRAY(B,10,100) ! Generate a random integer matrix with range

call CSV_MATRIX_WRITE(B, "file_matrix_b.csv",& ! Save the matrix to CSV file
[("VAR_" // TOSTR(i,COLS),i=1,COLS)]) ! Column names are generated

! in this implicit-loop array
end program test_library

17 Plotting tools

There are a few plotting tools in the HEDTOOLS/tools directory. They are non-essential and implemented separately from the
main HEDTOOLS code, although do use HEDTOOLS code procedures. This is done to keep the dependencies to the absolute
minimum.

Currently they make use the PGPLOT Fortran plotting library, but the plotting part is quite small and simple, so they can be
easily recoded to use a different toolbox for plotting (e.g. PlPlot or distlin). PGPLOT is chosen because it is very small, simple
to use and can be built for Linux (and various Unix clones) and Windows. PGPLOT in included in the standard Ubuntu Linux
repositories. For Windows, PGPLOT is a part of the GrWin library.

Plotting tools should be built separately from HEDTOOLS and the model code and then placed to some directory in the PATH so
the system is able to find the executables. They should be called from the main model code using the standard intrinsic Fortran
procedures to run the system (shell) commands: execute_command_line or (older system).

To build the plotting tools using the default parameters issue this command in the main HEDTOOLS directory:

make tools

On the Microsoft Windows platform, depending on the directory location of the GrWin library (it is different on 32 and 64
bit versions of Windows), one may need to change the GRWIN_ROOT value in the tools own Makefile that is located in
HEDTOOLS/tools:

Root directory of the GrWin installation on Windows.
NOTE: can differ in 32 and 64 bit distributions!
GRWIN_ROOT = C:/GrWin/MinGW_gfortra

Here is an example of calling the scatterplot utility using a wrapper (call_external) to the intrinsic execute_command
_line subroutine.

!> The name of the **scatterplot** program (htscatter.f90 from HEDTOOLS)
!! executable.
character(len=*), parameter, public :: EXEC_SCATTERPLOT = "htscatter.exe"
...
...
!> Call external command to plot the data scatterplot.
call call_external(&

command = EXEC_SCATTERPLOT // " " // csv_file_here // " " // &
csv_file_here // PS, &

suppress_output = .TRUE., suppress_error = .TRUE., &
is_background_task = do_background)

17.1 List of utilities

• hthist.f90— histogram of data saved in a CSV file, any column can be plotted.

hthist 2 data_file_csv plot_file.png

http://www.astro.caltech.edu/~tjp/pgplot/
http://spdg1.sci.shizuoka.ac.jp/grwinlib/english/

AHA! Modelling Tools Manual 84 / 96

• htintrpl.f90— linear and non-linear interpolation of data provided on the command line. Example:

htintrpl.exe [1 2 3 4] [10., 45., 14., 10.] [2.5 1.9] [linear] [file.ps]

• htscatter.f90— scatterplot of data saved in a CSV file. Example:

htscatter data_file_csv plot_file.png

17.2 Notes on PGPLOT Windows (GrWin)

It is possible to build the Microsoft Windows executables of the plotting utilities on a machine with the GrWin library installed
and run on another machine without these libraries. However, the GrWin graphics server will be unavailable on the later machine
and the interactive graphics display window could not be opened. Therefore, only saving the plot to a PostScript output file will
work 10.

There is an additional possible caveat: (a) there should be the PGPLOT main font file grfont.dat installed somewhere on
the system 11 and (b) the PGPLOT_FONT environment variable 12 must indicate the path where it is located. A quick and dirty
method to make the graphics working is just to to copy the font file into the current directory.

18 Using IaaS workstation: AHA_Workshop

18.1 Linux-based Workstation

The University of Bergen provides a cloud-based Infrastructure as a Service (IaaS) system based on OpenStack. There is a
virtual workstation for developing the AHA Model based on this cloud infrastructure. The "virtual developer ’s computer" has
the Debian Linux OS and has all the essential software pre-installed and ready for use out of the box.

Important
The current system is based on GNU gfortran and Code::Blocks IDE. This is open source software under the GNU
license. Intel Fortran and any other proprietary software can be installed individually provided there is valid license.

10 This is what is needed as we do not (normally) display plots on the screen.
11 If the font file is not found the system will issue this error: PGPLOT, Unable to read font file:grfont.dat
12 It can be set in the Windows Control Panel.

http://docs.uh-iaas.no/en/latest/
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Debian

AHA! Modelling Tools Manual 85 / 96

18.1.1 Connecting the cloud workstation

To connect the cloud-based AHA Workshop you need the X2Go client software installed on the local physical computer that
is used to access the cloud workstation. Once connected, it works just like a physical Linux computer preloaded with all the
required software:

There is even less difference from the look and feel of a physical system if the remote access X2Go client is working in the full
screen mode.

X2Go Client can be downloaded for Windows from the official website: http://wiki.x2go.org/doku.php/start .

On the Ubuntu Linux installation is trivial from the command line:

sudo apt-get install x2goclient

The access is based on ssh key file. You can supply your own ssh public key or get a private secret ssh key (xxx.pem) from the
administrator.

Important
If you have got an ssh key file (.pem), it should be kept secret in a secure place not accessible for anyone else.
This key file is the only method to get access to the cloud AHA Workshop workstation (there is no password). The
graphical connection session is tunnelled via ssh and is secure.

The user name at the AHA Workshop workstation is debian. To connect, you will also be given an unique ip address. The
session type for the Linux machine is always XFCE. Xfce is a simple and lightweight desktop environment. Check out its official
web site: https://www.xfce.org/ and the Getting Started guide.

A typical configuration of the AHA Workshop connection is like this:

https://en.wikipedia.org/wiki/X2Go
http://wiki.x2go.org/doku.php/start
https://www.xfce.org/
http://docs.xfce.org/xfce/getting-started

AHA! Modelling Tools Manual 86 / 96

You may also like to set up the screen resolution in the Settings tab. There is also a useful tab for setting the Shared folders:
you can automatically mount your local folder into the remote system. It is then easy to transfer data to and from the local to
the cloud machine. Do not forget to tick "automatically mount" here. The mounted remote folders are under /home/debian/
media/disk/:

If the local system has a high resolution display, the AHA Workshop virtual PC may have huge fonts (that looks as if everything
just in zoom-in). In such a case one has to adjust the screen DPI: Go to Settings tab and set Set display DPI to 100 or a higher
value if your display is in HD mode (default DPI is 96).

It also makes sense to disable the remote sound support in the Settings tab as it could reduce CPU load on the local machine and
avoid any sound errors. There is no sound on the AHA Workshop cloud PC anyway.

In addition to the full graphical connection mode, it is also possible to connect the remote system via plain ssh (using the
Terminal):

ssh debian@ip_address

AHA! Modelling Tools Manual 87 / 96

It is then recommended to use the screen (pre-installed) or tmux utilities for terminal session management.

18.1.2 Initial setup: Subversion and IDE Project

Subversion command line client is installed here. To get your Subversion files in the Documents folder double-click Home to
open the file manager, then Documents, right click and select Open Terminal here. When the Terminal window opens issue this
command:

svn --username user_name checkout https://subversion.uib.no/repos/aha-fortran/ ←↩
_your_svn_path

It will also ask your svn password on the first run, use option to save it. Good to save to avoid retyping the password on any svn
operation.

This can also be done using the SVN client integrated into the default Thunar file manager: go to Documents, right-click and
select Create Folder, enter the name of this new folder 13, it will then contain the code. Second, go into the new folder,
right-click, select SVN then Checkout:

and finally put the SVN branch URL into the opening window.

Code:Blocks. It is also easy to get an initial Code::Blocks IDE Project file template linked with the Makefile. Go to the
working copy containing the code, open Terminal and issue:

svn export https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp

Important
Configuring the project template file is only necessary if the Makefile is used for building the project. The Project.
cbp file is configured to use the existing Makefile in the current directory. If the existing Makefile is not used,
Code:Blocks project should be configured from scratch, as needed.

The same using the file manager: go to the working directory containing the model code, right-click and select SVN then Export,
and then put the Code:Blocks Project file path (https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp).

13 Caveat: the built-in svn client does checkout into an existing folder.

https://www.gnu.org/software/screen/manual/screen.html
https://tmux.github.io/
https://subversion.uib.no/repos/aha-fortran/trunk/scripts/Project.cbp

AHA! Modelling Tools Manual 88 / 96

Then you can open this project file from the Code:Blocks IDE. The first thing to do here is (1) delete the fake Fortran file
some_file.f90 from the Workspace pane and (2) Open valid Fortran source code files (can be easily done by drag and drop),
right click the file tab and select Add to active project:

To complete the Code:Blocks project configuration, set the correct executable name that is generated into the build options.
The executable name should coincide with that in the Makefile: variable $(OUT) 14. Go to the menu Project, then Project
options and switch to the Build targets tab:

14 It is defined as OUT=executable_name.exe in the Makefile.

AHA! Modelling Tools Manual 89 / 96

18.1.3 Notes on the tools

The Code::Blocks installation on the AHA Workshop machines has a simple Subversion menu integrated into the tools menu.
This allows to run basic elementary commands like update, diff, commit and revert.

For example, commit calls an entry field for the commit message:

The Xfce Thunar file manager has a useful feature allowing to configure custom commands and actions on files and folders. For
this click Edit, then Configure custom actions. For example, it is easy to make a right-click menu entry to check the differences
between the working file and the SVN server version (i.e. do svn diff using a graphical program, e.g. meld).

AHA! Modelling Tools Manual 90 / 96

Then right clicking on a file will also bring a menu entry to check the difference between the local and SVN versions:

Similarly, one can configure menu items for performing other actions, for example the make and make distclean:

AHA! Modelling Tools Manual 91 / 96

Note that a better command for pasting into the Make is this long:

xfce4-terminal -x bash -c "time make ; echo BUILD DONE, ENTER to CLOSE ; read"

It does not close the terminal upon completion and also shows how long it took to do the build (the time command is used for
this).

AHA! Modelling Tools Manual 92 / 96

18.1.4 System maintenance

The cloud PC should be kept in secure condition by regular software updates. This is done easily from the terminal using this
command:

sudo apt-get update && sudo apt-get upgrade

The Linux package system might sometimes keep downloaded updates and dependency components that no longer required. To
clean these dependencies issue this command in the terminal:

sudo apt-get clean && sudo apt-get autoremove

Installing additional software can be done using the synaptic GUI system:

sudo synaptic

Or on the command line from the terminal. For example, to install the R base package issue this:

sudo apt-get install r-base

For more details check the Debian Linux documentation site: https://www.debian.org/doc/user-manuals

https://www.debian.org/doc/user-manuals

AHA! Modelling Tools Manual 93 / 96

19 Index

A
AHA repository, 13, 14
AHA Workshop, 87, 89

cloud-based workstation, 84
allocatable string, 43

portability
compiler limitation, 52

array
direct assignment, 8
high-rank, 47
loop-free functions, 8
multidimensional, 47
nested loops, 8

indices order, 7
one dimensional, 47

write horizontal, 47
write vertical, 47

two dimensional, 46
whole-array functions, 8

array constructor, 32, 44
column names, 47
portability

compiler limitation, 44
reshape, 48

array of derived type, 23, 51
array slice, 32, 44, 47
ARRAY_INDEX, 35
ARRAY_RANK, 35
arrays

combine
CSV_MATRIX_WRITE, 48

reshape, 48
arrays of derived types, 26
asciidoc, 2, 70
assumed length, 10
autogeneration

Doxygen, 10

B
BASE_RANDOM, 55
BASE_STRINGS, 62
BASE_UTILS, 31
branch, 14, 18, 19

copy branch, 18
merge branch, 19
move branch, 18
reintegrate branch, 19

build
manual build, 58, 67, 82

C
change repository address

relocate, 21
ChangeLog, 18

CHECK_FILE_OPEN, 43
CHECK_UNIT_VALID, 42
checkout, 15
class diagram, 26
CLEANUP, 34
cloud-based workstation, 84
Code::Blocks, 2, 79
column names, 44, 46, 47, 82
combine

CSV_MATRIX_WRITE, 48
commit, 18
COMPACT, 63
compiler, 76

exception trapping, 66
implementation, 67

GNU
gfortran, 1, 30, 31, 44, 52, 58, 65, 67

Intel Fortran, 1, 30, 58, 65, 67
stack size, 69

limitation, 44, 52, 55, 58, 65
Oracle Fortran, 1, 30, 44, 58, 67

compiler limitation, 5, 30, 44, 52
ComSpec, 34
ConEmu terminal, 1, 72
copy, 18, 19
copy branch, 18
cp

copy, 18
CSV, 37, 43–46
CSV record, 37
CSV_ARRAY_WRITE, 47
CSV_CLOSE, 40
csv_file, 39–41, 46, 51
CSV_FILE_LINES_COUNT, 45
CSV_GUESS_RECORD_LENGTH, 44
CSV_HEADER_WRITE, 41
CSV_IO, 37

example code, 52
CSV_MATRIX_READ, 49, 50
CSV_MATRIX_WRITE, 46, 48
CSV_OPEN_WRITE, 40
CSV_RECORD_APPEND, 43
CSV_RECORD_SIZE, 45
CSV_RECORD_WRITE, 46
Cygwin, 1, 2

D
DDPINTERPOL, 35
DEBUG, 69
DELALL, 63
delete file, 55
delete file or directory, 55
DELSUBSTR, 63

AHA! Modelling Tools Manual 94 / 96

derived type, 51
array of derived type, 23, 51
object, 23
type-bound procedures, 23

diff, 18
direct assignment, 8
documentation

autogeneration
Doxygen, 10

Doxygen, 10, 13
LaTeX, 12
Markdown, 11

dummy parameters, 10

E
example code, 52
exception trapping, 66

implementation, 67
exceptions, 66

implementation, 67
execution speed, 7

F
FC, 76
file handle

file handle object, 39–41, 46, 51
file handle object, 39–41, 46, 51
fimm, 65
FORALL, 8
formulas, 12
Fortran Best Practices, 3, 5
FS_MKDIR

Make directory, 55
FS_REMOVE

delete file or directory, 55
FS_RENAME

rename file, 55
FS_UNLINK

delete file, 55

G
GET_FILE_UNIT, 41
GET_FREE_FUNIT, 42
gfortran, 1, 30, 31, 44, 52, 58, 65, 67
Ghostscript, 2, 13
gmake, 68
GNU

Cygwin, 1, 2
gfortran, 1, 30, 31, 44, 52, 58, 65, 67

GNU make
make

gmake, 68
GrWin, 83
GUI tools

TortoiseSVN, 16, 22

H

HEDTOOLSDIR, 75
high-rank, 47

I
IaaS, 84
IEEE arithmetic, 65–67

exceptions, 66
implementation, 67

IEEE_EXCEPTIONS
module, 66

IEEE_wrap.inc
include, 67

IEEEPATH, 75
implementation, 67
implied do, 32, 44
implied loop, 32, 44
include, 67
indices order, 7
INSERTSTR, 63
instance, 26
Intel Fortran, 1, 30, 58, 65, 67

stack size, 69
Intel Fortran on Windows, 71, 76
Intel Parallel Studio, 71, 76

LIBCMTD.lib, 78
INTERP_LAGRANGE, 35
INTERP_LINEAR, 35
interpolation

linear, 35
polynomial, 35

IS_DIGIT, 65
IS_LETTER, 64

K
key, 85
keywords, 21

L
LAGR_INTERPOL_VECTOR, 35
LaTeX, 2, 12, 13

formulas, 12
LIBCMTD.lib, 78
limitation, 44, 52, 55, 58, 65
LIN_INTERPOL_VECTOR, 35
line length, 5
linear, 35
LINSPACE, 34
LINTERPOL, 35
log message, 14, 18
log stdout, 60
log timestamps, 59
LOG_CGET, 61
LOG_CONFIGURE, 60
LOG_DELIMITER, 61
LOG_ISINITIALIZED, 61
LOG_SHUTDOWN, 62
LOG_STARTUP, 60

AHA! Modelling Tools Manual 95 / 96

LOGGER module, 59
loop-free functions, 8
LOWERCASE, 64

M
macros, 74
make, 68

gmake, 68
not using, 58, 67, 82

Make directory, 55
Makefile, 68

compiler, 76
FC, 76
HEDTOOLSDIR, 75
IEEEPATH, 75
Intel Fortran on Windows, 71
macros, 74
make, 68
OUT, 75
rules, 74
SRC, 75
targets, 74
variables, 73

manual build, 58, 67, 82
Markdown, 11
MATCH, 64
matrix, 46

column names, 46
two dimensional, 46

merge, 19
merge branch, 19
Microsoft Visual Studio, 76

LIBCMTD.lib, 78
Microsoft Windows, 34
mkdir, 18
module, 26, 30, 66
move, 18
move branch, 18
multidimensional, 47
mv

move, 18

N
named arguments, 38
nested loops, 7, 8

indices order, 7
not using, 58, 67, 82
NUMTOSTR, 31

O
object, 23
object instance, 26
object-oriented programming, 22, 23, 30

object instance, 26
one dimensional, 47

write horizontal, 47
write vertical, 47

optional arguments, 38, 39
Oracle Fortran, 1, 30, 44, 58, 67
OUT, 75
overloading, 24

P
parallel computations, 7–9, 56
PARSE, 62
partial, 36
permutation, 57
PERMUTE_RANDOM, 57
PGPLOT, 83
physical disk write, 40, 41, 46
PLATFORM_IS_WINDOWS, 34
plotting

GrWin, 83
PGPLOT, 83

polynomial, 35
portability

compiler limitation, 5, 44, 52
PRNG, 55
properties, 21
propset, 21

R
RAND, 56
RAND_I, 56
RAND_R4, 56
RAND_R8, 56
RAND_STRING, 57
random number, 55
random permutation, 57
RANDOM_SEED_INIT, 56
RANDOM_SEED_INIT_SIMPLE, 36
READLINE, 64
record

CSV, 37, 43–46
reintegrate branch, 19
relocate, 21
REMOVESP, 63
rename file, 55
repeat, 43
RESHAPE, 48
reshape, 48
RNORM, 56
RNORM_R4, 56
RNORM_R8, 56
rules, 74
Runtime platform

Microsoft Windows, 34

S
SHIFTSTR, 63
sorting index, 35

partial, 36
speed

execution speed, 7

AHA! Modelling Tools Manual 96 / 96

SPLIT, 65
SRC, 75
ssh key

key, 85
stack size, 69
static library, 76, 79, 82
STDERR, 34
STDOUT, 34
STR, 31
string manipulation, 62
strings, 62

assumed length, 10
dummy parameters, 10

Subversion, 14
AHA Workshop, 87
branch, 14, 18, 19

copy branch, 18
merge branch, 19
move branch, 18
reintegrate branch, 19

change repository address
relocate, 21

checkout, 15
commit, 18
copy, 19
cp

copy, 18
diff, 18
GUI tools

TortoiseSVN, 16, 22
keywords, 21
log message, 14, 18
merge, 19
mkdir, 18
mv

move, 18
properties, 21
propset, 21
tags, 21
TortoiseSVN, 16, 22
trunk, 14
update, 18
WebDAV, 21

svn, 14
Subversion

AHA Workshop, 87

T
tags, 21
targets, 74
TortoiseSVN, 16, 22
TOSTR, 31
TRIMZERO, 64
truncated data

CSV_MATRIX_READ, 50
trunk, 14
two dimensional, 46

type-bound procedures, 23
overloading, 24

U
update, 18
UPPERCASE, 64

V
VALUE, 63
variables, 73
vector

sorting index, 35
partial, 36

W
WebDAV, 21
whole-array functions, 8
workflow, 37, 39
write horizontal, 47
write vertical, 47
WRITENUM, 64
WRITEQ, 64

X
Xfce

AHA Workshop, 89

	Software tools and requirements
	Coding style: General guidelines and tips
	Code formatting rules
	Efficient Fortran programming
	Using strings

	Document code as you write it with Doxygen
	Version control: Subversion (SVN)
	Overview
	First time setup of the working copy
	Command line tool
	TortoiseSVN on Windows

	Standard workflow
	Log of changes
	Using branches
	Make a branch copying old code
	Merge changes between branches
	Reintegrate final revision from branch back to the trunk

	Other features
	GUI Tools

	Object-oriented programming and modelling
	General principles
	Simple basics
	Type-bound procedures
	Module structure
	Class diagram
	Arrays of objects
	Implementation of objects
	A trivial example: Stopwatch object
	More information

	Introduction to the AHA Fortran modules
	Overview of AHA modules
	Modules in Fortran

	Module: BASE_UTILS
	Function: TOSTR
	Examples:

	Subroutines: STDOUT and STDERR
	Function: CLEANUP
	Determining the runtime platform: PLATFORM_IS_WINDOWS
	Linearly spaced array: LINSPACE
	Interpolation: LINTERPOL, DDPINTERPOL, INTERP_LINEAR, INTERP_LAGRANGE
	Subroutines: ARRAY_INDEX and ARRAY_RANK
	Subroutine: RANDOM_SEED_INIT_SIMPLE

	Module: CSV_IO
	Overview
	Subroutine: CSV_OPEN_WRITE
	Subroutine: CSV_CLOSE
	Subroutine: CSV_HEADER_WRITE
	Function: GET_FILE_UNIT
	Function: GET_FREE_FUNIT
	Function: CHECK_UNIT_VALID
	Function: CHECK_FILE_OPEN
	Subroutine: CSV_RECORD_APPEND
	Overview
	Examples

	Function: CSV_GUESS_RECORD_LENGTH
	Function: CSV_RECORD_SIZE
	Function: CSV_FILE_LINES_COUNT
	Subroutine: CSV_RECORD_WRITE
	Subroutine: CSV_MATRIX_WRITE
	Two-dimensional matrix
	One-dimensional arrays
	Combining multiple arrays with RESHAPE

	Function: CSV_MATRIX_READ
	Truncated rows
	Real kind=8 data

	Derived type: csv_file
	Basic Example
	Arrays of structures

	Extended example
	Procedures to manipulate the filesystem
	Subroutine: FS_MKDIR
	Subroutine FS_RENAME
	Subroutine FS_UNLINK
	Subroutine FS_REMOVE

	Module: BASE_RANDOM
	Subroutine: RANDOM_SEED_INIT
	Function: RAND_I
	Functions: RAND_R4 (RAND) and RAND_R8
	Functions: RNORM_R4, RNORM_R8, RNORM
	Function: RAND_STRING
	Arrays of random numbers: RAND_ARRAY and RNORM_ARRAY
	Random permutation: PERMUTE_RANDOM function
	Usage Notes
	Build details

	Module: LOGGER
	Overview
	Subroutine: LOG_STARTUP
	Subroutine: LOG_CONFIGURE
	Function: LOG_ISINITIALIZED
	Subroutine: LOG_CGET
	Subroutine: LOG_DELIMITER
	Subroutine: LOG_SHUTDOWN

	Module: BASE_STRINGS
	Subroutine: PARSE
	Subroutine: COMPACT
	Subroutine: REMOVESP
	Subroutine: VALUE
	Subroutine: SHIFTSTR
	Subroutine: INSERTSTR
	Subroutine: DELSUBSTR
	Subroutine: DELALL
	Function: UPPERCASE
	Function: LOWERCASE
	Subroutine: READLINE
	Subroutine: MATCH
	Subroutine: WRITENUM
	Subroutine: TRIMZERO
	Subroutine: WRITEQ
	Function: IS_LETTER
	Subroutine: IS_DIGIT
	Subroutine: SPLIT

	IEEE Arithmetics
	Overview
	IEEE Exceptions
	Implementation details

	Build system: GNU make
	Overview
	Using make
	Building and running the model
	Cleanup
	Debugging
	Profiling
	Compiling documentation
	Using Intel Parallel Studio on Windows (command line)

	Tweaking Makefile
	Concepts
	Basic parameters

	Using Microsoft Visual Studio
	Working with the source code of the Modelling Tools
	Building the Modelling Tools as a static library

	Using Code::Blocks IDE
	Building the Modelling Tools as a static library
	Using the custom Makefile

	Manual builds of HEDTOOLS
	Editing source codes
	Using static library

	Plotting tools
	List of utilities
	Notes on PGPLOT Windows (GrWin)

	Using IaaS workstation: AHA_Workshop
	Linux-based Workstation
	Connecting the cloud workstation
	Initial setup: Subversion and IDE Project
	Notes on the tools
	System maintenance

	Index

