
XCPU3
Workload Distribution and Aggregation

Pravin Shinde
Vrije Universiteit, Amsterdam

pse220@few.vu.nl

Eric Van Hensbergen
IBM Research Austin

bergevan@us.ibm.com

The mainstream adoption of cluster, grid, and most re-
cently cloud computing models have broadened the applica-
bility of parallel programming from scientific communities to
the business domain. Despite the popularity of these emerg-
ing models, deploying parallel applications to these loosely
coupled environments still requires substantial expertise in
part due to the complexity of interactions between existing
distributed middleware and runtime packages. We feel it
is past time to re-evaluate a more tightly integrated model
where distributed execution, process control, and communi-
cation are provided by the underlying operating system in a
programming language and runtime independent fashion.

The concept of tightly integrating the facilities of par-
allel processing within the operating system is not new.
Shortly after the availability of low-cost networks in the
70’s and 80’s, a number of distributed operating systems
such as Ameoba [7], V [1], and others appeared from vari-
ous academic research groups. In addition to implementing
distributed file systems, authentication, and other services
which remain popular today, they also provided tightly inte-
grated mechanisms for remote process execution and control,
allowing the resources of the entire network to be utilized as
if it were a single system.

A slightly different approach was taken by the Plan 9 [8]
operating system which provided a cohesive model for ad-
dressing and organizing a wide range of distributed resources
through the use of synthetic file systems and explicit user
manipulation of dynamic private namespaces. The explicit
nature of the sharing and organization allowed the user to
adjust the balance of the local versus remote resource uti-
lization based on a particular workload, available network
bandwidth, or resource availability. The downfall of these
research systems was their inability to keep up in the appli-
cation space as compared to mainstream UNIX.

The XCPU project [6] applied the Plan 9 mechanisms of
distributed computing to high-performance computing ap-
plications running on mainstream operating environments
such as Linux. It augmented Plan 9’s remote execution
model with a mechanism allowing the fanning out of many
copies of a particular application to a set of compute nodes.
XCPU would automatically determine an application’s de-
pendencies and push the application and associated shared
libraries to a cache on the remote compute nodes. It used
a novel tree-spawn mechanism to delegate control and dis-
tribution of application binaries, data, and dependencies to

Copyright is held by the author/owner(s).
Eurosys April 14–16, 2010, Paris, France.
ACM X-XXXXX-XX-X/XX/XX.

a subset of the compute nodes effectively instantiating an
aggregation hierarchy allowing the mechanism to scale to
thousands of nodes. It also used this hierarchy to broad-
cast input from the headnode to all participating nodes, and
collesced resulting output back to the headnode.

A follow on project, XCPU2 [5], provided mechanisms
giving users great control over the environment of the com-
pute nodes. It allowed a file system view to be constructed
per job which could pull resources from both the local node
as well as a variety of network nodes and compose them
into a private namespace. This combined the benefits of the
XCPU distributed caching and tree-spawn mechanisms with
the isolation properties of containers to provide multiple pro-
tected namespaces on compute nodes which could simulta-
neously run workloads from different distributions without
concerns about cross-contamination.

XCPU2 ’s execution model was top-down with a single
controller node and no ability of compute nodes to initiate
subsequent computation. While XCPU2 utilized a synthetic
file system interface to initiate and coordinate execution on
the compute nodes, it used a traditional application on the
client side to initiate provisioning and execution. Because of
this, I/O aggregation was limited to a simple one-to-many
input and many-to-one output aggregation model. As such,
XCPU2 worked very well for most high-performance appli-
cations, but was quite limiting for commercial or data-flow
workloads.

XCPU3 incorporates the scalable design elements of its
predecessors while seeking to broaden the applicability of
its approach to a larger set of high-performance as well as
commercial application environments. It integrates the in-
terface for job initiation into the synthetic file system, so
that every node can act as server and client. XCPU3 also
augments the aggregated I/O and control mechanisms with
granular I/O and control interfaces allowing end-user and
applications to leverage the most appropriate model. Fi-
nally, it adds an interface allowing the creation and connec-
tion of communication channels between threads regardless
of their location within the network. The remainder of this
abstract describes these mechanisms in more detail.

The XCPU3 interface is based around the Plan 9 model
of providing synthetic file systems to define interfaces to de-
vices and system services. Similar to the previous instances
of XCPU, every node presents a set of top level files which
provide information about the underlying architecture and
system status. There is also a provisioning file, which can be
used to instantiate a new task on the node. Active tasks are
represented as subdirectories, each with interfaces for con-



trol, standard I/O, and querying various elements of status.
All the XCPU versions use the 9P distributed resource

protocol to provide the synthetic file system, allowing it
to be accessed by remote nodes as well as mounted locally
via v9fs [4] on Linux or FUSE on other platforms. Once
mounted, any user application can interact with it directly.
So, even though XCPU3 is essentially middleware, it pro-
vides a system-level interface via the file system. This makes
it extremely easy to construct a language binding for the
mechanism, or even just interact with it directly from a va-
riety of shell script environments.

XCPU3 extends the use of the synthetic file hierarchy in-
terface to allow initiation of execution on a set of remote
nodes. This is accomplished through a new set of con-
trol messages which facilitate the reservation of remote re-
sources. When using the reservation operations, the local
task directory becomes the aggregation control point for the
group of tasks replacing the need for the specialized client
application or control node from XCPU and XCPU2 .

This also allows any node within the cluster to initiate new
sets of tasks elsewhere, turning the top-down hierarchy of
XCPU into a peer-driven acyclic graph. This graph is auto-
matically created and maintained in a decentralized fashion
where each node makes decisions based on its knoweldge of
neighboring nodes. Localizing the scheduling decision also
allows XCPU3 to use smarter algorithms which base deci-
sions on this local knowledge. Any link or node failure can
be dealt with at a local level without requiring reconstruc-
tion of the entire tree or restart of the workload. In typical
large scale machines and data centers, certains nodes form
natural aggregation points which can be utilized to make
monitoring as well as workload reservation and deployment
more scalable.

Previous version of XCPU only allowed a simple one to
many control and I/O aggregation mechanism. This pre-
vented granular control of any individual node. XCPU3

adds flexibility by creating subdirectories within each task
group representing each remote task. Interfaces within these
subdirectories can be used to individually control a remote
task or interact with only it’s I/O. The parent’s directory
interfaces can still be used to interact with the set of tasks
as a group, allowing the use of either interface or switching
between the two as appropriate. This change also has the
property of separating resource reservation from task execu-
tion, enabling the construction of complex dataflow pipelines
of multiple component applications.

Within large scale deployments, such a mechanism could
quickly get out of hand, with potentially hundreds of thou-
sands of subdirectories for a large-scale, high-performance
computing task. To prevent such problems, we build aggre-
gation into our resource reservation and scheduling policy,
forcing larger tasks to aggregate themselves by using the
task interface recursively. As the processing for I/O aggre-
gation is done at internal nodes and not only at a root node,
it naturally increases the scalability by reducing the load on
root nodes.

Many parallel applications require that compute nodes
communicate with each other in order to directly share in-
formation for solving the problem. The traditional approach
to this has involved enumerating the tasks participating in a
particular computation and then using MPI or network pro-
gramming to communicate between the various elements.

We wanted to explore providing communication channels

which would enable emerging web based workloads such as
MapReduce [2] as well as more dataflow oriented workloads
such as DryadLINQ [10] or PUSH [3]. XCPU3 adds inter-
faces to tasks allowing the creation and manipulation of net-
work file descriptors which can be spliced together via con-
trol interfaces to provide one-to-one communication chan-
nels between tasks. These can be used together with helper
tasks to compose more complicated communication pipelines
involving fan-out, reductions, and multicast. Nodes can di-
rectly read and write into these network file descriptors using
common filesystem operations like read and write. This in-
terface simplifies the development of parallel application by
replacing complicated network programming with simple file
handling.

XCPU3 is an attempt to apply distributed operating sys-
tem principles to more conventional environments allowing
easy interoperability with existing applications. It is open
source and currently supports Linux, BSD, MacOSX, as well
as the Plan 9 operating systems. We are currently using it
to deploy a variety of workloads to thousands of cores on a
Blue Gene/P as part of the HARE [9] project supported by
the Department of Energy under Aware Number DE-FG02-
08ER25851. More information on HARE and is various com-
ponents (including this one), can be seen on our webpage1.
A demo will be provided during the poster session, space
permitting.

1. REFERENCES
[1] D. R. Cheriton. The V distributed system.

Communications of the Association of Computing
Machinery, 31(3):314–333, March 1988.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[3] N. Evans and E. Van Hensbergen. Push: a DISC shell.
2009.

[4] E. Van Hensbergen and R. Minnich. Grave robbers
from outer space using 9p2000 under linux. In In
Freenix Annual Conference, pages 83–94, 2005.

[5] L. Ionkov and E. Van Hensbergen. Xcpu2: Distributed
seemless desktop extension. 2009.

[6] R. Minnich and A. Mirtchovski. Xcpu: a new,
9p-based, process management system for clusters and
grids. Cluster Computing, 2006 IEEE International
Conference on, pages 1–10, 2006.

[7] S. J. Mullender, C. van Rossum, A. S. Tanenbaum,
R. van Renesse, and H. van Stavern. Amoeba: a
distributed operating system for the 1990s.
23(5):44–53, May 1990.

[8] R. Pike et al. Plan 9 from Bell Labs. Computing
Systems, 8(3):221–254, Summer 1995.

[9] E. Van Hensbergen, C. Forsyth, J. McKie, and
R. Minnich. Holistic aggregate resource environment.
SIGOPS Oper. Syst. Rev., 42(1):85–91, 2008.

[10] Y. Yu et al. DryadLINQ: A system for
general-purpose distributed data-parallel computing
using a high-level language. In Symposium on
Operating System Design and Implementation
(OSDI), San Diego, CA, December, pages 8–10, 2008.

1http://www.research.ibm.com/hare


