
XCPU3

Workload Distribution & Aggregation
Pravin Shinde & Eric Van Hensbergen

This project is supported in part by the
U.S. Department of Energy under
Award Number DE-FG02- 08ER25851

http://www.research.ibm.com/austin

For More Information: http://www.research.ibm.com/hare

Problem

• Workload distribution hasn’t
evolved much from when we
were batch scheduling tasks to
single machines

• Today’s Cluster Based
Schedulers:
• Not interactive.

• Not resilient to failure.

• Difficult for existing tasks to
dynamically grow or shrink resources
allocated to it.

• Difficult to deploy & administer.

• Based on middleware instead of
integrated with underlying operating
system.

• In many cases tightly bound to the
underlying runtime or language.

• Unlikely to function at exascale.

work node
Related Work

System V UNIX

Provided synthetic file
system access to process
information which was
l a t e r e x t e n d e d t o a
hierarchy in Linux procfs.

Plan 9 from Bell Labs

Extended basic procfs
concepts by also enabling
c o n t r o l a n d d e b u g
interfaces. The nature of
the Plan 9 distributed
namespace also made
these process interfaces
available over the network.

XCPU (LANL)

Built an application-layer
provided file system for
UNIX systems using the
Plan 9 model. XCPU
extended previous work by
allowing process creation
to occur via the file system
and allowed for execution
and coordination of groups
of processes on remote
systems.

 arch

/local

 env
 ns
 fs
 net
 status
 clone
 /0
 /1
 /n

 ctl
 env
 ns
 args
 wait
 status
 stdin
 stdout
 stdio

 /0
 /n

 ctl
 env
 ns
 args
 wait
 status
 stdin
 stdout
 stdio

 - architecture & platform (ie. Linux i386)
 - default environment variables for host
 - default name space for host
 - access to host file system
 - access to host network (i.e. Plan 9 devip)
 - load average, running jobs, available memory
 - open to establish new session

 - session subdirectories

 - reservation and task control
 - environment variables for task
 - name space for task
 - task arguments
 - blocks until all threads complete
 - current task status (reserved, running, etc.)
 - aggregate standard input for task
 - aggregate standard output for task
 - combined standard I/O for task

 - thread control
 - environment variables for thread
 - name space for thread
 - thread arguments
 - blocks until thread completes
 - current thread status (reserved, running, etc.)
 - standard input for thread
 - standard output for thread
 - standard I/O for thread

 - component thread session subdirectories

Environment Syntax

• key=value• OBJTYPE=386• SYSTYPE=Linux• etc.

Name Space File Syntax
• mount [–abcC] servename old [spec]: Mount servename on old.

• bind [–abcC] new old: Bind new on old.

• import [–abc] host [remotepath] mountpoint: Import remotepath from machine
server and attach it to mountpoint.

• cd dir: Change the working directory to dir.

• unmount [new] old: Unmount new from old, or everything mounted on old if new is
missing.

• clear: Clear the name space with rfork(RFCNAMEG).

• . path: Execute the namespace file path. Note that path must be present in the
name space being built.

Control File Syntax
• reserve [n] [os] [arch] - reserve a (number of) resources with os and arch

specification
• dir [wdir] - set the working directory for the task
• exec commands args ... - spawn a host process to run the command with

arguments as given
• kill - kill the host command immediately
• killonclose - set the device to kill the host command when the ctl file is closed
• nice [n] - set the scheduling priority of the host command
• splice [path] - splice standard output to [path] (on executing host)

Our Approach

• Establish hierarchical namespace of cluster services
• Automount remote servers based on reference (ie. cd /csrv/criswell)
• Export local services for use elsewhere within the network

c3

t

L

I1 I2

c1 c2 c4c3

 /local

/csrv

 /L
 /local
 /l1

 /local
 /c1

 /local
 /c2

 /local
 /l2

 /local
 /c3

 /local
 /c4

 /local

 /local

/csrv

 /l2
 /local
 /c4

 /local
 /L

 /local
 /l1

 /local
 /c1

 /local
 /c2

 /local
 /t

 /local

Desktop Extension

!"#$%&

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#$%&'

!"#(#

!"#(#

!"#(#

!"#(#

!"#(#

PUSH Pipeline Model

local service

remote services

local service proxy service aggregate service

Aggregation Via
Dynamic Namespace

and
Distributed Service

Model

Scaling Reliability

