chk answers to common problems

JSF 2.0
Cookbook

Over 100 simple but incredibly effective recipes for taking control
of your JSF applications

Anghel Leonard

PUBLISHING

JSF 2.0
Cookbook

Over 100 simple but incredibly effective recipes for
taking control of your JSF applications

Anghel Leonard

PUBLISHING
BIRMINGHAM - MUMBALI

JSF 2.0
Cookbook

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, Packt Publishing, nor its dealers
or distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2010

Production Reference: 1310610

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847199-52-2
www . packtpub.com

Cover Image by Prasad Hamine (hamine pe@hotmail.com)

Credits

Author
Anghel Leonard

Reviewer
Edem Morny

Acquisition Editor
Sarah Cullington

Development Editor
Rakesh Shejwal

Technical Editor
Arani Roy

Indexer
Hemangini Bari

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Lata Basantani

Project Coordinator
Poorvi Nair

Proofreader
Chris Smith

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Anghel Leonard is a senior Java developer with more than 12 years of experience

in Java SE, Java EE, and the related frameworks. He has written and published more
than 20 articles and 100 tips and tricks about Java technology. Also, he has written two
books about XML and Java (one for beginners and one for advanced users) and another
book for Packt Publishing, named JBoss Tools 3 Developer Guide. In this time, he has
developed web applications using the latest technologies out in the market. In the past
two years, he has focused on developing RIA projects for GIS fields. He is interested in
bringing as much desktop to the Web as possible; as a result GIS applications present

a real challenge to him.

I would like to thank my family, especially, my wife!

About the Reviewer

Edem Morny has been involved in enterprise Java technologies since he got introduced
to Java in 2005, using tools and technologies encompassing both the standard JavaEE
stack and non-standard ones such as JBoss Seam, Hibernate, and Spring. His experience
with JSF includes working with plain JSF, RichFaces, JBoss Seam, and Spring Web Flow's
SpringFaces.

He has been an active promoter of Java EE, speaking at workshops and seminars of a
national scale in Ghana.

He is a Senior Developer at the Application Development Center in Accra, Ghana, for an
international biometric security solutions company, which is leading the development of
Biocryptic Identity Management Systems for the global market.

Edem was a technical reviewer for JBoss Tools 3 Developer Guide and JBoss AS 5
Development both published by Packt Publishing. You'll find him blogging at

http://edemmorny.wordpress.com.

Table of Contents

Preface 1
Chapter 1: Using Standard and Custom Converters in JSF 7
Introduction 8
Working with implicit and explicit conversions 10
Standard converters for numbers 12
Standard converters for date and time 15
Converters and NULL values 19
Creating and using a custom converter 22
Using custom converters for h:selectOneMenu 25
Binding converters to backing bean properties 30
RichFaces and standard converters 32
RichFaces and custom converters 34
Instance variables in converters 36
Client-side converters with MyFaces Trinidad 40
Chapter 2: Using Standard and Custom Validators in JSF 51
Introduction 52
Using a standard validator 53
Customizing error messages for validators 55
Creating a custom validator 58
Binding validators to backing bean properties 61
Validating forms with RichFaces rich:beanValidator 63
Validating forms with RichFaces rich:ajaxValidator 65
Apache MyFaces Commons validators 67
Bean validation with f:validateBean 68
Enforcing a value's presence with f:validateRequired 76

Using regular expressions with f:validateRegex 78

Table of Contents

Chapter 3: File Management 81
Introduction 81
Downloading files using Mojarra Scales 81
Multi-file upload using Mojarra Scales 85
File upload with Apache MyFaces Tomahawk 88
AJAX multi-file upload with RichFaces 93
Downloading with PrimeFaces 2.0 97
PPR multi-file upload with PrimeFaces 2.0 100
Extracting data from an uploaded CSV file 104
Exporting data to Excel, PDF, CVS, and XML 109

Chapter 4: Security 113
Introduction 113
Working with the JSF Security project 113
Using the JSF Security project without JAAS Roles 116
Using secured managed beans with JSF Security 121
Using Acegi/Spring security in JSF applications 123

Chapter 5: Custom Components 129
Introduction 129
Building a "HelloWorld" JSF custom component 131
Renderers/validators for custom components 138
Adding AJAX support to JSF custom components 144
Using Proxy Id library for dynamic IDs 161
Using JSF ID Generator 163
Accessing resources from custom components 167
Custom components with Archetypes for Maven 169
RichFaces CDK and custom components 173
Composite custom components with zero Java 187
Creating a login composite component in JSF 2.0 190
Building a spinner composite component in JSF 2.0 193
Mixing JSF and Dojo widget for custom components 195

Chapter 6: AJAX in JSF 201
Introduction 201
A first JSF 2.0-AJAX example 201
Using the f:ajax tag 204
Installing and using Dynamic Faces in NetBeans 6.8 205
Using the inputSuggestAjax component 208
ajax4djsf—more than 100 AJAX components 211
Writing reusable AJAX components in JSF 2.0 221
PrimeFaces, CommandLink, and CommandButton 223

Table of Contents

Chapter 7: Internationalization and Localization 229
Introduction 229
Loading message resource bundles in JSF 230
Using locales and message resource bundles 231
Message resource bundles without f:loadBundle 233
Working with parameterized messages 234
Accessing message resource keys from a class 236
Providing a theme to a Visual Web JSF Project 240
Displaying Arabic, Chinese, Russian, and so on 241
Selecting a time zone in JSF 2.0 242

Chapter 8: JSF, Images, CSS, and JS 243
Introduction 244
Injecting CSS in JSF 244
JSF, CSS, and tables 246
JSF and dynamic CSS 248
Integrating JavaScript and JSF 251
Getting a JSF inputText value from JavaScript 253
Working with JSF hidden fields from JavaScript 254
Passing parameters from JS to JSF (client to server) 256
Passing parameters from JSF to JS (server to client) 257
Opening a pop-up window using JSF and JS 258
Passing parameters with HTTP GET within the URL 260
Communication between parent pop-up windows 262
Populating a JS load function with JSF values 267
Dynamic images with PrimeFaces 269
Cropping images with PrimeFaces 270
Working with rss4jsf project 273
Using resource handlers 275

Chapter 9: JSF—Managing and Testing 279
Introduction 279
Managing JSF with Faces Console 279
Testing JSF applications with JSFUnit 283
JSFUnit and Ant 289
JSFUnit API 292
A JSF and JMeter issue 295
Working with JSF Chart Creator 297

Chapter 10: Facelets 301
Introduction 301
Installing Facelets under JSF 1.2 (or JSF 1.1) 302
Facelets aliasing components 303

Table of Contents

Facelets templating 304
Creating composition components in JSF 2.0 308
Passing sub-elements to composition components 317
Passing actions to composition components 319
Chapter 11: JSF 2.0 Features 321
Introduction 321
JSF 2.0 annotations 322
The JSF 2.0 exception handling mechanism 326
Bookmarking JSF pages with PrettyFaces 329
JSF declarative event handling 334
URLs based on specified navigation outcome 336
JSF view parameters 338
JSF 2 and navigation cases 341
Chapter 12: Mixing JSF with Other Technologies 343
Introduction 343
Configuring Seam with JSF 344
An overview of Seam JSF controls 348
Mixing JSF and JSTL 349
Integrating JSF and Hibernate 351
Integrating JSF and Spring 352
Mixing JSF and EJB (JPA) 354
Appendix: Configuring JSF-related Technologies 359
Apache MyFaces Trinidad (supports JSF 2.0) 359
RichFaces (supports JSF 2.0) 364
Apache MyFaces Tomahawk (supports JSF 1.2) 365
Apache MyFaces Tomahawk Sandbox (supports JSF 1.2) 367
Mojarra Scales (supports JSF 1.2) 369
j4j (supports JSF 2.0) 369
rssdjsf (supports JSF 2.0) 369
Index 371

Preface

This book will cover all the important aspects involved in developing JSF applications. It
provides clear instructions for getting the most out of JSF and offers many exercises to build
impressive desktop-style interfaces for your web applications. You will learn to develop JSF
applications starting with simple recipes and gradually moving on to complex recipes.

We start off with the simple concepts of converters, validators, and file management. We then
work our way through various resources such as CSS, JavaScript, and images to improve your
web applications. You will learn to build simple and complex custom components to suit your
needs. Next, you get to exploit AJAX as well as implement internationalization and localization
for your JSF applications. We then look into ensuring security for your applications and
performing testing of your applications. You also get to learn all about Facelets and explore
the newest JSF 2.0 features. Finally, you get to learn a few integrations such as JSTL with

JSF, Spring with JSF, and Hibernate with JSF. All these concepts are presented in the form

of easy-to-follow recipes.

Each chapter discusses separate types of recipes and they are presented with an
increasing level of complexity from simple to advanced. All of these recipes can be
used with JSF 1.2 as well as JSF 2.0.

What this book covers

Chapter 1, Using Standard and Custom Converters in JSF covers the standard and custom
converters in JSF. We start with implicit and explicit conversion examples, then move on
to creating and using custom converters, and we end up with client-side converters using
MyFaces Trinidad.

Chapter 2, Using Standard and Custom Validators in JSF continues with standard and custom
validators. We see how to use a standard validator, how to create and use custom validators,
and how to use RichFaces and Apache MyFaces validators. We also present the new JSF 2.0
validators, such as £ :validateRegex and f:validateRequired.

Preface

Chapter 3, File Management discusses file management issues. You will see different
methods for downloading and uploading files, learn how to use JSF Core, RichFaces,
PrimeFaces, and Apache Tomahawk. In addition, you will see how to export data to PDF
and Excel, and how to extract data from an uploaded CSV file.

Chapter 4, Security covers some security issues. You will see how to use the JSF Security
project without JAAS Roles, use secured managed beans with JSF Security, and use
Acegi/Spring security in JSF applications.

Chapter 5, Custom Components discusses custom components in JSF. You will see how to
build different kinds of custom components in JSF 2.0, Archetypes for Maven, JSF and Dojo
and more.

Chapter 6, AJAX in JSF starts with the £ :ajax tag, continues with Dynamic Faces, RichFaces,
ajax4jsf, and ends up with PrimeFaces and learning to write reusable AJAX components.

Chapter 7, Internationalization and Localization covers internationalization and localization.
We will see how to load message resource bundles on JSF pages and how to use locales and
message resource bundles. We then move on to parameterized messages, learning how to
display Arabic, Chinese, Russian, and so on and how to select time zones in JSF 2.0.

Chapter 8, JSF, Images, CSS, and JS discusses JSF with images, CSS, JS, and RSS. We will
integrate JS with JSF, pass values between JS and JSF, crop images, work with dynamic
images, work with pop-up windows, RSS support, and so on.

Chapter 9, JSF—Managing and Testing starts with Faces Console, and moves on to JSFUnit
and JMeter.

Chapter 10, Facelets covers Facelets recipes. You will see how to work with aliasing
components, templates, composition components, passing actions, and sub-elements to
composition components.

Chapter 11, JSF 2.0 Features presents some of the most relevant JSF 2.0 features, such
as annotations, exception handling mechanism, declarative event handling, URLs based on
specified navigation outcome, JSF view parameters, JSF 2.0, and navigation cases.

Chapter 12, Mixing JSF with Other Technologies discusses mixing JSF with other important
technologies, such as Spring, Seam, JSTL, Hibernate, and EJB (JPA).

Appendix, Configuring JSF-related Technologies talks about the issues when a JSF-related
technology gets into the equation. You need to add some specific configuration, you have
to create a "bridge" between JSF and the technology used. This appendix contains the
configurations for a few technologies.

What you need for this book

For performing the recipes from this book you will need the following technologies:

>

>

>

Also, depending on the recipe, you may also need one of the following technologies:

Who this book is for

This book is for two types of audience:

>

>

JSF 2.0 (or 1.2)
NetBeans 6.8
GlassFish v3

Acegi Spring

Apache Maven

Apache MyFaces Commons
Apache Tomahawk

Apache Tomahawk Sandbox
Apache Trinidad

Dojo

Dynamic Faces

4

JSF ID Generator

JSF Security

JSFUnit

Mojarra Scales

Pretty Faces

PrimeFaces

RichFaces

rss4jsf

Preface

Newcomers who know the basics of JSF but are yet to develop real JSF applications

JSF developers who have previous experience but are lacking best practices and a

standard way of implementing functionality

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Validation can be performed only on UL Input
components or components whose classes extend UI Input."

A block of code is set as follows:

</h:inputText>
<h:message showSummary="true" showDetail="false" for="userNameID"
style="color: red; text-decoration:overline"/>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<h:inputText id="userNameID" required="true"
value="#{userBean.firstName}">
<f:validateLength minimum="5" maximum="25" />
</h:inputText>

Any command-line input or output is written as follows:
SET PATH = "C:\Packt\JSFKit\apache-maven-2.2.1\bin"

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "When you get the BUILD
SUCCESSFUL message, you should find a JAR file".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

—a1

Preface

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

M Downloading the example code for the book

Visit https://www.packtpub.com//sites/default/files/
downloads/9522_ Code. zip to directly download the example code.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we
would be grateful if you would report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http: //www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

(s |-

Using Standard and
Custom Converters
in JSF

In this chapter, we will cover:

Working with implicit and explicit conversions
Standard converters for numbers

Standard converters for date and time
Converters and NULL values

Creating and using a custom converter

Using converters for h: selectOneMenu
Binding converters to backing bean properties
RichFaces and standard converters
RichFaces and custom converters

Instance variables in converters

Client-side converters with MyFaces Trinidad

Using Standard and Custom Converters in JSF

Introduction

Data conversion is the process of converting/transforming one data type into another. Before
going further and analyzing some aspects of JSF converters, let's see what they actually are
and what they are good for.

For this, let's take an example of a web application in which the user has to fill up a simple
form with some information, such as name, age, and date of birth. The server component

of our application will receive this information as strings, even if we know that they are a
string (the name), an integer (the age), and a date (the date of birth). This is the phase when
JSF converters enter into the scene and convert the user input according to application
requirements. If the submitted information is not successfully converted then the form is
redisplayed (this time an attention message is also displayed) and the user can refill the form.
The case repeats until the submitted information is successfully converted to the correct type.

In addition, you should know that JSF provides a set of standard converters (used for the
most common conversions) and the possibility to define your own converters, known as
custom converters (this kind of converters are very useful when the standard converters can't
accomplish the desired conversions). Speaking of standard converters, the following are the
most used converters:

Converter IDs Converter class

javax.faces.Byte javax.faces.convert.ByteConverter
javax.faces.Float javax.faces.convert.FloatConverter
javax.faces.BigInteger javax.faces.convert.BigIntegerConverter
javax.faces.BigDecimal javax.faces.convert.BigDecimalConverter
javax.faces.Character javax.faces.convert.CharacterConverter
javax.faces.DateTime javax.faces.convert.DateTimeConverter
javax.faces.Boolean javax.faces.convert.BooleanConverter
javax.faces.Double javax.faces.convert.DoubleConverter
javax.faces.Long javax.faces.convert.LongConverter
javax.faces.Short javax.faces.convert.ShortConverter
javax.faces.Integer javax.faces.convert.IntegerConverter

Some JSF tags that support converters are as follows:

» <h:outputTexts>

» <h:outputLinks>

» <h:selectManyListbox>
» <h:selectMaynyMenus>

» <h:inputTextarea>

Chapter 1

» <h:inputHidden>

» <h:outputLabel>

» <h:inputText>

» <h:inputSecret>

» <h:selectBooleanCheckbox>
» <h:selectOneRadio>

» <h:selectOneListbox>

» <h:outputFormat>

» <h:selectOneMenu>

Speaking about a converter lifecycle, you should focus on two main phases named: Apply
Request Values Phase and Render Response Phase. For example, if we assume a form
that is submitted with a set of values, a converter for those values, a corresponding backing
bean, and a render page, then the application lifecycle will be like this (notice when and where
the converter is involved!):

» Restore View Phase: The backing bean is created and the components are stored
into the UIViewRoot.

» Apply Request Values Phase: The submitted values are decoded and set in the
corresponding components in UIViewRoot.

» Process Validations Phase: The converter getAsObject method receives the
submitted values (eventually a potential validator is also called).

» Update Model Values Phase: The converted (validated) values are set in the
backing bean.

» Invoke Application Phase: The phase responsible for form processing.

» Render Response Phase: The values that should be displayed are extracted from
a backing bean. The getAsString method of the converter receives these values
before rendering. The conversion results are redirected to the result page.

Using the proper converter is the developer's choice. The developer is also responsible for
customizing the error messages displayed when the conversion fails. When the standard
converters don't satisfy the application needs, the developer can write a custom converter
as you will see in our recipes.

Notice that our recipes make use of JSF 2.0 features, such as annotation, new
navigation style, and no faces-config.xml file. Especially you must notice the new
@FacesConverter annotation for indicating to a normal class that it is a JSF 2.0 converter.

Let's start with a simple recipe about working with implicit and explicit conversions.

Using Standard and Custom Converters in JSF

Working with implicit and explicit

conversions

By implicit conversions, we understand all the conversions that JSF will accomplish
automatically, without the presence of an explicit converter (in other words, if you don't specify
a converter, JSF will pick one for you). Actually, JSF uses implicit conversion when you map a
component's value to a managed bean property of a Java primitive type or of BigInteger
and BigDecimal objects.

In this recipe, we will see an example of an implicit and an explicit conversion. Anyway, don't
forget that explicit conversion provides greater control over the conversion.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Our recipe is based on an imaginary situation where the user should insert their age into

a simple JSF form consisting of a text field and a submit button. The submitted age will be
implicitly converted and displayed on another simple JSF page. The following is the JSF form
(the highlighted code maps the text field's value to the userAge managed bean property of a
Java integer type):

<h:form id="AgeForm">
<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}">
</h:inputText>
<h:message showSummary="true"
showDetail="false" for="userAgeID"
style="color: red; text-decoration:overline"/>

<h:commandButton id="submit" action="response?faces-
redirect=true" value="Submit Age"/>
</h:form>

. The preceding code snippet makes uses of the new JSF 2 implicit
% navigation style. The {page name}?faces-redirect=true request
s parameter indicates to JSF to navigate to the {page name}. There is
more about JSF 2 navigation in Chapter 11, JSF 2.0 Features.

Chapter 1
The userage is mapped into a managed bean as shown next:

package users;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
@ManagedBean
@SessionScoped
public class UserBean
private int userAge;
public int getUserAge () {
return this.userAge;
}
public void setUserAge (int userAge) {
this.userAge=userAge;

}

As the userAge is a Java integer, JSF will automatically convert the inserted age to this type
(notice that we did not indicate any conversion in the previous code). This is called an implicit
conversion. In the case that the inserted age is not an integer, this will be reflected by an error
message exposed by the h: message component.

Now, speaking of explicit conversion we can enforce the previous situation by using the
UIComponent converter attribute or £ : converter tag nested within a UIComponent.
The modifications are reflected in the next two lines:

<!-- explicit conversion using the UIComponent converter attribute -->

<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}"
converter="javax.faces.Integer">

</h:inputText>

<!-- converter tag nested within a UIComponent -->

<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}">

<f:converter converterId="javax.faces.Integer"/>
</h:inputText>

There is no trick here! In the case of implicit conversion, JSF tries to identify which is the
appropriate converter to be applied. Obviously, for explicit conversion, JSF tries to apply the
indicated converter. When conversion fails, the form is redisplayed and an exception message
is fired. Otherwise, the application follows its normal flow.

Using Standard and Custom Converters in JSF

There's more...

You can mix explicit and implicit conversion over the same managed bean property, but, in this
case, you should keep in mind the Java cast rules. For example, if you try to explicitly force an
integer to a Byte type you will get an error, as java.lang. Integer type can't be cast to
java.lang.Byte type, while a java.lang. Integer can be castto java.lang.Double.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Working with implicit and explicit
conversion.

Standard converters for numbers

Numbers are a generic notion used to quantify many things, such as age, salary, percent,
currency, custom pattern, and so on. Also, we know that numbers can be integers, floats,
doubles, and so on. Depending on what we represent, we know what kind of number to use
and how to write it in the correct format and with the correct symbols attached. In this recipe
you will see how to accomplish this task using JSF standard capabilities. For this we will take a
generic double number and we will output it to represent different things.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Converting numbers and applying basic formats to them are tasks that can be accomplished
by the f : convertNumber JSF converter. This converter can be customized using a set of
attributes, listed next:

Attribute name Description

type Represents the type of number. By default this type is set to
number, but you can set it to currency or percent.

pattern Represents the decimal format pattern used to convert this number.

locale Represents the locale to be used for displaying this number. The

user's current locale is overridden.
maxIntegerDigits Represents the maximum number of integer digits to display.
minIntegerDigits Represents the minimum number of integer digits to display.

Sk

Chapter 1

Attribute name

Description

maxFractionDigits
minFractionDigits

currencyCode

currenySymbol

integerOnly

groupingUsed

Represents the maximum number of fractional digits to display.
Represents the minimum number of fractional digits to display.

Represents a three-digit international currency code when the
attribute type is currency

Represents a symbol, like $, to be used when the attribute type is
currency.

Set the value of this attribute to true, if you want to ignore the
fractional part of a number. By default it is set to false.

Set the value of this attribute to true, if you want to use a grouping
symbol like comma or space. By default it is set to true.

Now, let's suppose that we have the number 12345.12345 (five integer digits and five fraction
digits). The following code will output this number using the £ : convertNumber converter
and the previously listed attributes:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">

<h:head>

<titles>Standard converters for numbers - format numbers</titles>

</h:head>
<h:body>

<h:outputText value="-Formatting the double

value 12345.12345-"/>

<!-- Format as 00000.00000 -->
<h:outputText value="Format as 00000.00000: "/>
<h:outputText value="#{numbersBean.doubleNumber}">

<f:convertNumber type="number" maxIntegerDigits="5"

maxFractionDigits="5"
groupingUsed="false"/>

</h:outputText>

<!-- Format as 00000 -->

<h:outputText value="Format as 00000: "/>

<h:outputText value="#{numbersBean.doubleNumber}">

<f:convertNumber type="number" maxIntegerDigits="5"

maxFractionDigits="0"/>

</h:outputText>

[}

Using Standard and Custom Converters in JSF

<!-- Format as currency -->
<h:outputText value="Format as currency: "/>
<h:outputText value="#{numbersBean.doubleNumber}">
<f:convertNumber type="currency" currencySymbol="3"
maxIntegerDigits="5"
maxFractionDigits="2"/>
</h:outputText>

<!-- Format as percent -->
<h:outputText value="Format as percent: "/>

<h:outputText value="#{numbersBean.doubleNumber}">

<f:convertNumber type="percent" maxIntegerDigits="5"
maxFractionDigits="5"/>

</h:outputText>

<!-- Format as pattern #####,00% -->

<h:outputText value="Format as pattern #####,00%: "/>

<h:outputText value="#{numbersBean.doubleNumber}">
<f:convertNumber pattern="#####,00%"/>

</h:outputText>

</h:body>

</html>

The NumbersBean is the managed bean, as shown next:

package

numbers;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean

@SessionScoped

public class NumbersBean {
private double doubleNumber = 12345.12345;
public double getDoubleNumber () {

}

return this.doubleNumber;

public void setDoubleNumber (double doubleNumber) {

this.doubleNumber=doubleNumber;

Chapter 1

The output will be as follows:

-Formatting the double value 12345.12345-
Format as 00000.00000: 12345.12345
Format as 00000: 12,345

Format as currency: $12,345.12

Format as percent: 34,512.345%

Format as pattern #####,00%: 1,23,45,12%

The number is displayed corresponding to the formatting attributes. The parts of the
number that don't correspond to the conversion's restrictions are ignored or an error
message is generated.

Notice that we have used the £ : convertNumber with the h: outputText component,
but you can follow the same logic to use with the h: inputText component. These two
components are the most used in conjunction with the f : convertNumber converter.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Standard converters_ for numbers.

Standard converters for date and time

Measuring, representing, formatting, and localizing date and time was always an important
issue for developers. In this recipe, you will see how to get different formats for date and
time using JSF standard converters. We will display a date/time in different formats and for
different locales.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

Using Standard and Custom Converters in JSF

How to do it...

JSF provides a dedicated converter to accomplish tasks related to date and time, named
converterDateTime. This converter can be customized through a set of attributes listed
in the following table:

Attribute name Description
type Specifies whether to display the date, time, or both.
dateStyle Specifies the formatting style for the date portion of the string. Supported

values are medium (this is the default), short, long, and full. Only
valid if attribute type is set.

timeStyle Specifies the formatting style for the time portion of the string. Valid
options are medium (this is the default), short, long, and full. Only
valid if attribute type is set.

timeZone Specifies the time zone for the date (For example, EST). By default GMT
will be used.
locale Specifies the locale to use for displaying the date (For example,

Romania - "ro", Germany - "de", England - "en". Overrides the
user's current locale.

pattern Represents a date format pattern used to convert a number.

Now, let's suppose that we have the current date (provided by a java.util.Date instance).
The next code will output this date using the f : converterDateTime converter and the
previously listed attributes:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Standard converters for date and time</titles>
</h:head>
<h:body>
<h:outputText value="-Formatting the current date
and time-"/>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime type="date" dateStyle="medium"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime type="date" dateStyle="full"/>

Chapter 1

</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime type="time" timeStyle="full"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime type="date" pattern="dd/mm/yyyy"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime dateStyle="full" pattern="yyyy-mm-dd"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime dateStyle="full"
pattern="yyyy.MM.dd 'at' HH:mm:ss z"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime dateStyle="full" pattern="h:mm a"/>
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime dateStyle="long"
timeZone="EST" type="both" />
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime locale="ro"
timeStyle="long" type="both"
dateStyle="full" />
</h:outputText>

<h:outputText value="#{datetimeBean.currentdate}">
<f:convertDateTime locale="de"
timeStyle="short" type="both"
dateStyle="full" />
</h:outputText>
</h:body>
</html>

[}

Using Standard and Custom Converters in JSF
The datetimeBean is listed next:

package datetime;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import java.util.Date;
@ManagedBean
@SessionScoped
public class DatetimeBean
private Date currentdate = new Date();
public Date getCurrentdate () {
return this.currentdate;
}
public void setCurrentdate (Date currentdate)
this.currentdate=currentdate;

}
The output will be as follows:

-Formatting the current date and time-
Jun 15, 2009

Monday, June 15, 2009
11:14:53 AM GMT

15/14/2009

2009-14-15

2009.06.15 at 11:14:53 GMT
11:14 AM

June 15, 2009 6:14:53 AM

15 iunie 2009 11:14:53 GMT
Montag, 15. Juni 2009 11:14

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and is named: Standard_converters for date
and_time.

Chapter 1

Converters and NULL values

The idea of this recipe originates in the following JSF concept: a converter with NULL values
is bypassed.

The problem occurs when we want to render a special message for a NULL property, instead
of returning an empty String or a NULL value. At first view, a custom converter should fix
the problem in an elegant manner, but at second view we notice that the NULL values never
get called in the converter, which means that we can't control it before the render phase. This
recipe proposes a solution to this problem.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The idea is to have a placebo object—an object that it is not NULL and which is passed to

the converter instead of every NULL object. The converter can identify this object by a fixed
property, for example its hash code, and every time it gets this object, it will return a custom
message to be rendered. For example, if our objects are instances of java.util.Date, then
we can write a placebo class like the following one:

//placebo class for java.util.Date
class Placebo extends java.util.Date ({
@Override
public int hashCode() {
return 0011001100;

}

@Override
public boolean equals (Object obj)
if (obj == null) {

return false;

}

if (getClass() != obj.getClass()) {
return false;

}

final Placebo other = (Placebo) obj;
return true;

[}

Using Standard and Custom Converters in JSF

Notice that we have arbitrarily chosen a fixed hash code as 0011001100. This hash code
will mark the NULL values in the converter's getAsString method. However before that, we
need to modify the getter method for our property as shown next (this is the entire bean, but
we are focused on the getCurrentdate method):

package nullconv;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import java.util.Date;
@ManagedBean
@SessionScoped
public class NullBean
//valid date
//private Date currentdate = new Date () ;
//null date
private Date currentdate = null;
//placebo date
private Date nulldate = new Placebo();
public Date getCurrentdate()
if (currentdate == null) ({
return nulldate;

}

return this.currentdate;
public void setCurrentdate (Date currentdate)
this.currentdate = currentdate;

}

Now, the converter gets a real date, when the currentdate property is not NULL, and it gets
the placebo nulldate, when the currentdate property is NULL. Now, we know that the
converter gets all the values, including the NULL ones. Next, the converter (getAsString
method) will check the hash code of the objects, to see which one is NULL and which one is
not. The following is the source code for this converter:

package nullconv;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.convert.ConverterException;

import javax.faces.convert.DateTimeConverter;

import javax.faces.convert.FacesConverter;

@FacesConverter (value = "nullConverter")

public class NullConverter extends DateTimeConverter {
@Override
public String getAsString(FacesContext argo0,

=]

Chapter 1

UIComponent argl, Object arg2) {

if (arg0 == null)
{throw new NullPointerException ("context") ;}
if (argl == null)
{throw new NullPointerException ("component") ;}
if (arg2 != null && ! (arg2 instanceof java.util.Date)) ({

throw new ConverterException("Not valid date") ;

if (arg2.hashCode() == 0011001100) {
return ("Not available!");

}

return super.getAsString(arg0, argl, arg2);
}
@Override
public Object getAsObject (FacesContext argo0,
UIComponent argl, String arg2) {

if (arg0 == null)

{throw new NullPointerException ("context") ;}
if (argl == null)

{throw new NullPointerException ("component") ;}

return super.getAsObject (arg0, argl, arg2);

}

Now, the NULL values will be rendered with a "Not available!" message!

Every time a NULL date is loaded into the bean it is replaced by the placebo date. This
date has the particularity of having a well known hash code. When the placebo object
gets into the converter, the get AsString method checks for this hash code. When it
finds a match it returns a custom message instead of the String representation of the
date, because it knows that the received value is actually a NULL one, which should not
be rendered verbatim.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Converters and NULL values.

s

Using Standard and Custom Converters in JSF

Creating and using a custom converter

JSF custom converters run on the server/client side and can accomplish many specific
business needs. Basically, JSF custom converters are created by extending the javax.
faces.convert.Converter interface or by extending a standard converter class.

In this recipe, you will see both cases.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

First, let's talk about the converters that implement the Converters interface. In this case, a
converter should implement two methods, as follows:

The getAsObject method takes the FacesContext instance, the Ul component, and
the String to be converted to a specified object. According to the official documentation,
this method:

Converts the specified string value, which is associated with the specified
UIComponent, into a model data object that is appropriate for being stored
during the 2pply Request Values phase of the request processing lifecycle.

public Object getAsObject (FacesContext context,
UIComponent component,
java.lang.String value) {

}
The getAsString method takes the FacesContext instance, the Ul component, and the
object to be converted to a String. According to the official documentation, this method:

Converts the specified model object value, which is associated with the specified
UIComponent, into a String that is suitable for being included in the response
generated during the Render Response phase of the request processing lifecycle.

public String getAsString(FacesContext context,
UIComponent component,
Object value) {

=

Chapter 1

This converter logic should use javax.faces.converter.ConverterException to
throw the appropriate exceptions and javax.faces.application.FacesMessage to
generate the corresponding error messages.

For example, the following custom converter will convert a java.util.Date into a format of
type yyyy-MM-dd. This implementation will extend the Converter interface, as shown next:

package datetime;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;
import javax.faces.convert.FacesConverter;
@FacesConverter (value = "customDateConverterImpl")
public class CustomDateConverterImpl implements Converter {
public String getAsString(FacesContext arg0, UIComponent argl,
Object arg2) {
if (arg0 == null) {
throw new NullPointerException ("context") ;
}
if (argl == null) {
throw new NullPointerException ("component") ;
}
final Date date = (Date) arg2;
String DATE FORMAT = "yyyy-MM-dd";
SimpleDateFormat sdf =
new SimpleDateFormat (DATE FORMAT) ;
Calendar ¢l = Calendar.getInstance(); // today
cl.setTime (date) ;
return sdf.format (cl.getTime()) ;
}
public Object getAsObject (FacesContext arg0, UIComponent argl,
String arg2)
if (arg0 == null) {
throw new NullPointerException ("context") ;
}
if (argl == null) {
throw new NullPointerException ("component") ;

s

Using Standard and Custom Converters in JSF

DateFormat df = new SimpleDateFormat ("yyyy-MM-dd") ;
try {
Date today = df.parse(arg2) ;
return today;
} catch (ParseException e) ({
FacesMessage message = new FacesMessage (FacesMessage.

SEVERITY ERROR,
"Parser error!", "Cannot parse this date!");

throw new ConverterException (message) ;

}

The previous converter can be called from an XHTML page as shown next (notice that we
pass to the converter attribute the value from the @FacesConverter annotation; this
annotation defines a name for a converter and it is specific to JSF 2.0):

<h:form id="customDateTimeID">
<h:inputText id="dateID" value="#{datetimeBean.currentdate}"
converter="customDateConverterImpl">
</h:inputText>
<h:message showSummary="true" showDetail="false" for="dateID"
style="color: red; text-decoration:overline"/>

<h:commandButton value="Submit"
action="selected?faces-redirect=true"/>

</h:form>

Now, let's discuss converters that extend existing converters. In this case, we override the
getAsString and getAsObject methods (mark them with the @0override annotation)
or we can call setter methods from the extended converter. For example, we can extend
the DateTimeConverter and call the setPattern to obtain the same effect as the
previous converter.

package datetime;
import java.util.TimeZone;
import javax.faces.convert.DateTimeConverter;
import javax.faces.convert.FacesConverter;
@FacesConverter (value = "customDateConverterExtend")
public class CustomDateConverterExtend extends DateTimeConverter
public CustomDateConverterExtend()
super () ;
setTimeZone (TimeZone.getDefault ()) ;
setPattern ("yyyy-MM-dd") ;

=

Chapter 1

A JSF converter is called from two directions. It is called once during the Apply Request
Values Phase and once during the Render Response Phase. In Apply Request Values
Phase the converter is called through get AsObject method, which is responsible to for
converting the user inputs, while in the Render Response the converter is called through
the getAsString method, which is responsible to for converting outputs before rendering.

There's more...

Keep in mind that in JSF 2.0 we don't need a faces-config.xml descriptor, and converters
need not be declared in any XML file. If you are using JSF 1.2 then you have to register
converters in the faces-config.xml document following the syntax listed next:

<converter>
<converter-id>CONVERTER ID</converter-ids>
<converter-class>CONVERTER CLASS NAME</converter-class>
</converters

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Creating and using a_ custom
converter

Using custom converters for

h:selectOneMenu

A common issue regarding JSF converters and the h: selectOneMenu component can be
recreated in a simple scenario. Let's suppose that we are in the following situation: we have

a database table that contains a number of rows that define cars. Each row has an Integer
value representing the car number and a st ring value representing the car name. Obviously
this table is wrapped into a managed bean, as shown next:

package cars;
import javax.faces.bean.ManagedBean;
@ManagedBean
public class CarBean {
private Integer carNumber;
private String carName;
public CarBean() {}
public CarBean(Integer carNumber, String carName) {
this.carNumber=carNumber;

Using Standard and Custom Converters in JSF

this.carName=carName;

public Integer getCarNumber () {
return this.carNumber;

public void setCarNumber (Integer carNumber) {
this.carNumber=carNumber;

public String getCarName () {
return this.carName;

public void setCarName (String carName)
this.carName=carName;

}

Going further, let's have another managed bean that contains a collection of cars (we simulate
the table database with a few manual instances), as shown next:

package cars;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

import javax.faces.model.SelectItem;

@ManagedBean (name = "carsBean")

@SessionScoped

public class CarsBean

private HashMap<Integer, CarBean> myCars =
new HashMap<Integer, CarBeans () ;

private List<SelectItem> carlItems = new LinkedList<SelectItems() ;
private CarBean selectedCar;

public CarsBean()
CarBean car 1 = new CarBean(l, "Ferrari");
CarBean car 2 = new CarBean (2, "Logan") ;
CarBean car 3 = new CarBean (3, "Fiat");
CarBean car 4 = new CarBean (4, "Kia");
CarBean car 5 = new CarBean (5, "Skoda");

carItems.add (new SelectItem(car 1, car l.getCarName()));
myCars.put (car_1.getCarNumber (), car 1);
carItems.add (new SelectItem(car 2, car 2.getCarName()));
myCars.put (car_ 2.getCarNumber (), car 2);
carItems.add (new SelectItem(car 3, car 3.getCarName()));
myCars.put (car_ 3.getCarNumber (), car 3);

=]

Chapter 1

carItems.add (new SelectItem(car 4, car 4.getCarName()));
myCars.put (car_4.getCarNumber (), car_4);
carItems.add(new SelectItem(car 5, car 5.getCarName()));
myCars.put (car_5.getCarNumber (), car_5);

}

public CarBean getCar (Integer number)
return (CarBean) myCars.get (number) ;

}

public List<SelectItem> getCarItems()
return carlItems;

}

public void setCarItems (List<SelectItem> carItems)
this.carItems = carltems;

}

public CarBean getSelectedCar() {
return this.selectedCar;

}

public void setSelectedCar (CarBean selectedCar)
this.selectedCar = selectedCar;

}

Now, we can render our car collection using an h: selectOneMenu component,
as shown next:

<h:form id="selectCarFormID">
<h:selectOneMenu id="carsID" value="#{carsBean.selectedCar}">
<f:selectItems value="#{carsBean.carItems}"/>
</h:selectOneMenu>
<h:commandButton value="Submit" action="selected?faces-
redirect=true"/>
</h:form>

Well, the car list is rendered OK, as you can see the list and make a selection. However, the
problem occurs when we choose a car and we try to populate the selectedCar property
with it. As you see, the selectedCar is a CarBean instance, while the submitted information
represents an integer (the car number). Therefore, we need to convert this integer to a
CarBean, before it gets rendered, as shown next:

<h:outputText value="Selected car number:"/>

<h:outputText value="#{carsBean.selectedCar.carNumber}"/>

<h:outputText value="Selected car name:"/>

<h:outputText value="#{carsBean.selectedCar.carName}"/>

e

Using Standard and Custom Converters in JSF

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The solution came from a custom converter. In the getAsString object, we extract and
return the car number, and in the getAsObject method, the submitted car number is
converted into a CarBean instance, as shown in the following code:

packag
import
import
import
import
import
import
import
@Faces
public

e cars;
javax.el.ValueExpression;
javax.faces.application.FacesMessage;
javax.faces.component . UIComponent ;
javax.faces.context.FacesContext;
javax.faces.convert.Converter;
javax.faces.convert.ConverterException;
javax.faces.convert.FacesConverter;

Converter (value = "carConverter")
class CarConverter implements Converter {

public String getAsString(

}

FacesContext arg0, UIComponent argl, Object arg2) {
if (arg0 == null) {throw new NullPointerException ("context") ;}
if (argl == null) {throw new NullPointerException ("component") ;}
return ((CarBean)arg2) .getCarNumber () .toString() ;

public Object getAsObject (

FacesContext arg0, UIComponent argl, String arg2) {
if (arg0 == null) {throw new NullPointerException ("context") ;}
if (argl == null) {throw new NullPointerException ("component") ;}
FacesContext ctx = FacesContext.getCurrentInstance() ;
ValueExpression vex =
ctx.getApplication() .getExpressionFactory ()
.createValueExpression (ctx.getELContext (),
"#{carsBean}", CarsBean.class) ;

CarsBean cars = (CarsBean)vex.getValue (ctx.getELContext()) ;
CarBean car;

try {

car = cars.getCar (new Integer (arg2)) ;

} catch(NumberFormatException e) ({

FacesMessage message =
new FacesMessage (FacesMessage.SEVERITY ERROR,
"Unknown value", "This is not a car number!");
throw new ConverterException(message);

}

if(car == null) {

=]

Chapter 1

FacesMessage message = new FacesMessage (
FacesMessage.SEVERITY ERROR,
"Unknown value", "The car is unknown!");
throw new ConverterException(message) ;

}

return car;

}
}

The mechanism is pretty simple! First, the collection of cars is rendered using a SelectItem
object. Every single car will pass through the converter's getAsString method and is added
to the list. Notice that the getAsString method extracts and returns the car number for
each car.

Second, when a car is selected and submitted, the selected car number arrives into the
getAsObject method. There we search for the corresponding car into our myCars map.
Once the car is found it is returned into the setSelectedCar method.

You can use the same technique for h: selectManyCheckbox Or h: selectManyListbox
For example, in the case of h: selectManyCheckbox, you will render the list in the
following way:

<h:form id="selectCarFormID">

<h:selectManyCheckbox id="carsID"
value="#{carsBean.selectedCar}"
converter="carConverter">

<f:selectItems value="#{carsBean.carItems}"/>
</h:selectManyCheckbox>
<h:commandButton value="Submit"
action="selected?faces-redirect=true"/>
</h:form>

And the selections can be rendered, as shown next:

<h:dataTable value="#{carsBean.selectedCar}" var="item">
<h:column>
<f:facet name="header">
<h:outputText value="Car Name:"/>
</f:facet>
<h:outputText value="#{item.carName}"/>
</h:column>
</h:dataTable>

s

Using Standard and Custom Converters in JSF

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and is named: Using custom converters for
selectOneMenu 1 and Using custom converters for selectOneMenu 2.

Binding converters to backing bean

properties

JSF standard converter tags allow binding attributes (this is also true for listener and validator
tags). This means that developers can bind converter implementations to backing bean
properties. The main advantages of using the binding facility are:

» The developer can allow the backing bean to instantiate the implementation
» The backing bean can programmatically access the implementation's attributes

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

To successfully accomplish a binding task, you can follow the three simple steps listed next
(these steps are true for converter, listener, and validator tags):

1. Nest the converter (listener, validator) tag in the component tag.

2. Putin the backing bean a property that takes and returns the converter (listener,
validator) implementation class.

3. Reference the backing bean property using a value expression from the binding
attribute of the converter (listener, validator) tag.

For example, let's bind the standard convertNumber converter to a backing bean property.
The idea is to let the backing bean set the formatting pattern of the user's input. First, you
have to register the converter onto the component by nesting the convertNumber tag within
the component tag. Then, you have to reference the property with the binding attribute of
the convertNumber tag, as shown next:

<h:form id="numberFormID">
<h:inputText id="numberID" value="#{numbersBean.numbery}">
<f:convertNumber binding="#{numbersBean.number}" />
</h:inputText>

NED

Chapter 1

<h:message showSummary="true" showDetail="false" for="numberID"
style="color: red; text-decoration:overline"/>

<h:commandButton value="Submit"
action="selected?faces-redirect=true"/>
</h:form>

The number property would be similar to the following code:

package numbers;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.convert.NumberConverter;
@ManagedBean
@SessionScoped
public class NumbersBean {
private NumberConverter number;
private float numbery;
public float getNumbery () {
return this.numbery;
}
public void setNumbery (float numbery) {
this.numbery=numbery;
}
public NumberConverter getNumber () {
return this.number;
}
public void setNumber (NumberConverter number) {
number.setType ("currency") ;
number . setCurrencySymbol ("$") ;
this.number=number;
}
}

In our example, the backing bean sets the formatting pattern within the convertNumber
tag, which means that the user's input will be constrained to this pattern. This time

the numbers are formatted as currencies, without using specific attributes in the
convertNumber tag. Instead of this we use the binding attribute to reference the
number property, which is a NumberConverter instance, offering us access to this
class's methods.

Es

Using Standard and Custom Converters in JSF

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Bind_converters to backing bean
properties.

RichFaces and standard converters

This recipe will show you how to use one of the standard converters defined in RichFaces.
First you have to know that RichFaces 3.3.3 comes with a set of converters that can be found
in the following packages:

» org.richfaces.convert
» org.richfaces.convert.rowkey
» org.richfaces.convert.seamtext
» org.richfaces.convert.seamtext.tags
» org.richfaces.convert.selection
» org.richfaces.converter
In this recipe, we will use the org.richfaces.convert.IntegerColorConverter

for converting an RGB color from a RichFaces ColorPicker component into an integer
and vice versa.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used RichFaces
3.3.3.BETA1, which provides support for JSF 2.0. You can download this distribution from
http://www.jboss.org/richfaces. The RichFaces libraries (including necessary
dependencies) are in the book code bundle, under the |JSF_libs|RichFaces - JSF 2.0
folder.

How to do it...

In RichFaces, we can use the converter attribute or £ : converter tag nested within

a UIComponent. This is pretty similar to the JSF standard utilization of converters. For
example, in the following code we have a colorPicker component and we apply the
IntegerColorConverter converter to the selected color using the converter attribute.
The result of conversion is an integer representation of the color and it is rendered into an
outputText component:

=

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 1

<adj:form>
<h:outputText value="The integer version of
the selected color:"/>
<h:outputText id="RGBvalue" value="#{colorPickerBean.color}"/>
<rich:panel header="RichFaces Color Picker"
style="width: 315px">
<rich:colorPicker value="#{colorPickerBean.color}"
colorMode="rgb" converter="org.richfaces.IntegerColor">
<adj:support event="onchange" reRender="RGBvalue"/>
</rich:colorPickers>
</rich:panels>
</a4j:form>

Notice that the IntegerColorConverter ID is org.richfaces.IntegerColor. You can
find the converters' IDs in the Javadoc of RichFaces.

The ColorPickerBean can be written in the following way:

package colorpicker;
public class ColorPickerBean {
private Integer color;
/**
* @return ColorPickerBean color
*/
public Integer getColor() {
return color;
}
/**
* @param ColorPickerBean color
*/
public void setColor (Integer color) {
this.color = color;

}

It works exactly like a JSF standard converter. If the value passes the conversion phase, then
the backing bean receives the converted value, otherwise the user gets an error message and
the option to try again.

s

Using Standard and Custom Converters in JSF

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: RichFaces standard and custom
converters

RichFaces and custom converters

In this recipe, we will develop and use a custom converter in RichFaces. This will
convert an RGB color, extracted from a colorPicker, into an integer similar to the
result of the java.awt .Color.getRGB method and vice versa. The result is rendered
with an outputText component.

Notice that an RGB color from a colorPicker is a String formatted as
rgb (red, green, blue).

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used RichFaces 3.3.3.BETA1, which provides support for JSF 2.0. You can download this
distribution from http://www.jboss.org/richfaces. The RichFaces libraries (including
necessary dependencies) are in the book code bundle, under the | JSF_1libs|RichFaces
- JSF 2.0 folder.

How to do it...

A RichFaces custom converter follows the same principles as a JSF custom converter.

We can implement the Converter interface or extend an existing converter class. For
example, in this case we will implement the Converter interface and we will implement the
getAsString and getAsObject methods. As the code is self-explanatory there is no need
for more details:

package colorpicker;

import java.awt.Color;

import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.convert.Converter;

import java.util.StringTokenizer;

public class RGBConverter implements Converter (

public static final String CONVERTER ID = "rgbConverter";

public Object getAsObject (FacesContext context, UIComponent component,
String value) {

S E

Chapter 1

if (context == null) {
throw new NullPointerException ("context") ;
}
if (component == null)
throw new NullPointerException ("component") ;
}
String getRGBfromString = value.substring (4, value.length() - 1);
StringTokenizer rgbComponents = new StringTokenizer (getRGBfromString,

lllll);

int r = Integer.valueOf (rgbComponents.nextToken () .trim()) ;
int g = Integer.valueOf (rgbComponents.nextToken () .trim()) ;
int b = Integer.valueOf (rgbComponents.nextToken () .trim()) ;

Color rgbColor = new Color(r, g, b);

int rgbValue = rgbColor.getRGB() ;

Integer rgbValueInt = new Integer (rgbValue) ;
return rgbValuelnt;

}

public String getAsString(FacesContext context, UIComponent component,
Object value) {

if (context == null) {
throw new NullPointerException ("context") ;
}
if (component == null) ({
throw new NullPointerException ("component") ;
}
Color rgbColor = new Color ((Integer) value);
String stringRGB = "rgb(" + rgbColor.getRed() + ",6"
+ rgbColor.getGreen() + "," + rgbColor.getBlue() + ")";
return stringRGB;
}
}

Calling this converter is a simple task that we have accomplished as shown next:

<adj:form>
<h:outputText value="The integer version of the
selected color:"/>
<h:outputText id="RGBvalue" value="#{colorPickerBean.color}"/>
<rich:panel header="RichFaces Color Picker" style="width: 315px">
<rich:colorPicker value="#{colorPickerBean.color}"
colorMode="rgb" converter="rgbConverter"s
<a4j:support event="onchange" reRender="RGBvalue"/>
</rich:colorPickers
</rich:panel>
</a4j:form>

s

Using Standard and Custom Converters in JSF
The ColorPickerBean can be written in the following way:

package colorpicker;
public class ColorPickerBean ({
private Integer color;
/**
* @return ColorPickerBean color
*/
public Integer getColor() {
return color;
}
/**
* @param ColorPickerBean color
*/
public void setColor (Integer color)
this.color = color;

}
}

It works exactly like a JSF custom converter. See the How it works... section, in the Creating
and using a custom converter recipe.

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and is named: RichFaces standard and custom
converters

Instance variables in converters

If you are making a simple attempt to declare an instance variable in a converter, you will
notice that you can't store the variable state over time. This may look like a strange behavior,
but the truth is that the getAsObject and getAsString are called on different instances.
This is the simple explanation of why the instance variable doesn't have persistence over
these methods calls.

We can fix this using UIComponent set/getAttribute or using a session variable
instead. In this recipe, we will use a session variable to simulate an instance variable of a
converter. For this, let's suppose that we have two numbers, one inserted by the user and one
is selected by the user from a selectOneMenu component. The inserted value is multiplied
with the selected value, inside of a custom converter, in the getAsObject method. In the
backing bean we keep the multiplied result. Before the result is rendered, its value is divided

NEQ

Chapter 1

by the same value in the getAsString method. If everything works fine, then we will not
notice these operations over the inserted value.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Storing the selected value in the session is a simple task. First, the backing bean associated
to this value is marked with the annotation @SessionScoped, indicating that the instance of
this bean should be stored in session. Second, we pass the selected value in the traditional
way (this code is from the multiply.xhtml page of the application), as shown next:

<h:form id="MultiplyForm">
<h:outputText value="Select the multiply factor:" />
<h:selectOneMenu id="factorID"
value="#{factorBean.selectedFactor}">
<f:selectItems value="#{factorBean.factors}"/>
</h:selectOneMenu>

<h:commandButton id="submit" action=
"number?faces-redirect=true" value="Submit"/>

</h:form>
The selectedFactor property belongs to the next backing bean:

package multiply;

import java.util.LinkedList;

import java.util.List;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.model.SelectItem;
@ManagedBean

@SessionScoped

public class FactorBean

private List<SelectItem> factors =
private double selectedFactor;
public FactorBean () {

new LinkedList<SelectItem> () ;

factors.add (new SelectItem("1.0", "1.0"));
factors.add (new SelectItem("2.0", "2.0"));
factors.add (new SelectItem("3.0", "3.0"));
factors.add (new SelectItem("4.0", "4.0"));
factors.add (new SelectItem("5.0", "5.0"));

Using Standard and Custom Converters in JSF

public List<SelectItem> getFactors() {
return factors;
}
public void setFactors(List<SelectItem> factors) {
this.factors = factors;
}
public double getSelectedFactor()
return this.selectedFactor;
}
public void setSelectedFactor (double selectedFactor) {
this.selectedFactor = selectedFactor;

}

Now, the multiplication factor is on session and we can request the user to insert a value to
be multiplied by this factor (number .xhtml), as shown next:

<h:form id="NumberForm">
<h:outputText value="Insert the value to be multiplied:"/>
<h:inputText id="valueID" required="true"
value="#{multiplyBean.value}"
converter="multiplyConverter" />
<h:message showSummary="true" showDetail="false" for="valueID"
style="color: red; text-decoration:overline"/>

<h:commandButton id="submit" action="number?faces-
redirect=true" value="Submit"/>
</h:form>

The value is stored in the MultiplyBean, as shown next:

package multiply;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
@ManagedBean
@SessionScoped
public class MultiplyBean
private double value = 0.0d;
public double getValue() {
return this.value;
}
public void setValue (double value) {
this.value = value;

NED

Chapter 1

As you can see the operations are taking place in a converter. Now, the converter has access
to the multiplication factor in a very easy approach, as shown next:

public String getAsString(FacesContext arg0, UIComponent argl,
Object arg2) {
if (arg0 == null) {
throw new NullPointerException ("context") ;
}
if (argl == null) {
throw new NullPointerException ("component") ;
}
FacesContext ctx = FacesContext.getCurrentInstance() ;
ValueExpression vex =
ctx.getApplication () .getExpressionFactory () .
createValueExpression (ctx.getELContext (),

"#{factorBean}", FactorBean.class);
FactorBean c = (FactorBean) vex.getValue (ctx.getELContext ()) ;
try {
Double dividedvVal = (Double) arg2 / c.getSelectedFactor () ;

return dividedval.toString() ;
} catch (Exception e) {
FacesMessage message = new
FacesMessage (FacesMessage.SEVERITY ERROR,
"Error!", "Cannot accomplish this operation (DIVIDE) !");
throw new ConverterException(message) ;

}
}

public Object getAsObject (FacesContext arg0, UIComponent argl, String

arg2) {
if (arg0 == null) {
throw new NullPointerException ("context") ;
}
if (argl == null) {

throw new NullPointerException ("component") ;
}
FacesContext ctx = FacesContext.getCurrentInstance() ;
ValueExpression vex =
ctx.getApplication() .getExpressionFactory () .
createValueExpression (ctx.getELContext (),
"#{factorBean}", FactorBean.class);

FactorBean ¢ = (FactorBean) vex.getValue (ctx.getELContext ()) ;
try {

Double val = new Double (arg2) ;

Double multiplyVal = val * c.getSelectedFactor() ;

return multiplyVval;

s

Using Standard and Custom Converters in JSF

} catch (NumberFormatException e) {

FacesMessage message = new

FacesMessage (FacesMessage.SEVERITY ERROR,
"Error!","Connot accomplish this operation (MULTIPLY)!");
throw new ConverterException (message) ;

}
}

First, we store in the session the value that we need to have access to in the converter's
methods. Second, we call this session value from the getAsString and getAsObject
methods. Using this technique we have replaced the instance variable of the converter with
a session variable.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Instance variables in converters.

Client-side converters with MyFaces

Trinidad

A great facility of Apache MyFaces Trinidad is that it supports client-side versions of JSF
converters and validators. This means that errors are detected on the client machine, and the
server is not involved. In this recipe, we will create such a converter for converting a number
into an IP address. Our restrictions will be as follows:

» The IP address should have exactly 12 digits
» The IP will always have a pattern of 000.000.000.000
» The IP can be supplied like 000000000000 or 000.000.000.000

The idea of Apache Trinidad client conversion is that it works on the client in a very similar way
to how it works on the server, but in this case the language on the client is JavaScript instead
of Java. By convention, JavaScript objects are prefixed in Trindad with the tr prefix, in order

to avoid name collisions. There are JavaScript converter objects that support the methods
getAsString and getAsObject. A TrConverter can throw a TrConverterException.

Let's see what are the steps that should be accomplished to create such a converter.

Chapter 1

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used Apache
Trinidad 2.0.0, which provides support for JSF 2.0. You can download this distribution

from http://myfaces.apache.org/trinidad/index.html. The Apache Trinidad
libraries (including necessary dependencies) are in the book code bundle, under the

| JSF_1libs|Apache Trinidad - JSF 2.0 folder.

How to do it...

We will develop a complete application, including the client-side converter by following the four
listed steps:

1.

Develop a JavaScript version of the converter. Before doing this you have to be aware
of the Trindad API, which is listed next (this can also be found on the Trinidad website
http://myfaces.apache.org/trinidad/index.html):

/**

* Converter "interface" similar to javax.faces.convert.Converter,
* except that all relevant information must be passed to the
constructor

* as the context and component are not passed to the getAsString
or getAsObject method

*
*/
function TrConverter ()
{
}
/**
* Convert the specified model object value, into a String for
display
*
* @param value Model object value to be converted

* @param label label to identify the editableValueHolder to the
user

*

* @return the value as a string or undefined in case of no
converter mechanism is

* available (see TrNumberConverter) .

*/
TrConverter.prototype.getAsString = function(value, label) {}

/**

@l

Using Standard and Custom Converters in JSF

* Convert the specified string value into a model data object
* which can be passed to validators

*

* @param value String value to be converted

* @param label label to identify the editableValueHolder to the
user

*

* @return the converted value or undefined in case of no
converter mechanism is

* available (see TrNumberConverter) .

*/
TrConverter.prototype.getAsObject = function(value, label) {}

TrConverters can throw a TrConverterException, which
should contain a TrFacesMessage. Here is the signature for
TrFacesMessage:

/**

* Message similar to javax.faces.application.FacesMessage
*

* @param summary - Localized summary message text

* @param detail - Localized detail message text

* @param severity - An optional severity for this message. Use
constants

* SEVERITY INFO, SEVERITY WARN, SEVERITY ERROR, and
* SEVERITY FATAL from the FacesMessage class. Default is
* SEVERITY INFO
*/
function TrFacesMessage (
summary,
detail,
severity

)
The signature for the TrConverterException is as follows:
/**

* TrConverterException is an exception thrown by the
getAsObject () or getAsString/()

* method of a Converter, to indicate that the requested
conversion cannot be performed.

*
* @param facesMessage the TrFacesMessage associated with this
exception

* @param summary Localized summary message text, used to create
only if facesMessage is null

=

Chapter 1

* @param detail Localized detail message text, used only if
facesMessage is null

*/
function TrConverterException (
facesMessage,
summary,
detail
)

Another useful API that can be used to format messages is shown next:
/**

* TrFastMessageFormatUtils is a greatly reduced version
* of the java.text.MessageFormat class, but delivered as a
utility.
* <p>
* The only syntax supported by this class is simple index-based
* replacement, namely:
* <pre>
* some{1l}text{0}here{2}andthere
* </pre>
* as well as escaping using single quotes. Like MessageFormat,
* a single quote must be represented using two consecutive single
* quotes, but the contents of any text between single quotes
* will not be interpreted. So, the following pattern could
* be used to include a left bracket:
* <pre>
* some' {'text{0}
* </pres>
*/
function TrFastMessageFormatUtils ()
/**
* Formats the given array of strings based on the initial
* pattern.
* @param {String} String to format

* @param {any...:undefined} Varargs objects to substitute for
positional parameters.

* BEach parameter will be converted to a String and substituted
into the format.

*/
TrFastMessageFormatUtils.format = function(

formatString, // error format string with embedded indexes to be
replaced

&1

Using Standard and Custom Converters in JSF

parameters // {any...:undefined} Varargs objects to
substitute for positional parameters.

)

Based on this API, we have developed the JavaScript version of our IP converter as
follows (IPConverter. js):

function ipGetAsString(value, label)

{

return value.substring(0,3) + '.' + value.substring(3,6) + '.'
value.substring(6,9) + '.' + value.substring(9,12);

}
function ipGetAsObject (value, label)
{
if (!value)return null;
var len=value.length;
var messageKey = IPConverter.NOT;
if (len < 12)
messageKey = IPConverter.SHORT;
else if (len > 15)
messageKey = IPConverter.LONG;
else if ((len == 12) || (len == 15))
{

return value;

}

if (messageKey!=null && this. messages!=null)

{

// format the detail error string

var detail = this. messages|[messageKey] ;
if (detail != null)
{
detail = TrFastMessageFormatUtils.format (detail,

label, wvalue) ;

}
var facesMessage = new TrFacesMessage (
this. messages[IPConverter.SUMMARY],
detail,
TrFacesMessage.SEVERITY ERROR)
throw new TrConverterException (facesMessage) ;

}

return null;

}

=

Chapter 1

function IPConverter (messages) {
this. messages = messages;
IPConverter.prototype = new TrConverter() ;

IPConverter.prototype.getAsString = ipGetAsString;

IPConverter.prototype.getAsObject = ipGetAsObject;
IPConverter.SUMMARY = 'SUM';

IPConverter.SHORT = 'S';

IPConverter.LONG = 'L';

IPConverter.NOT = 'N';

Next we bind the JavaScript converter with the Java converter. For this we
have to implement the org.apache.myfaces.trinidad.converter.
ClientConverter interface. The methods of this interface are:

o getClientLibrarySource ():returns a library that includes an
implementation of the JavaScript Converter object.

0 getClientConversion ():returns a JavaScript constructor, which
will be used to instantiate an instance of the converter.

o getClientScript ():can be used to write out inline JavaScript.

0 getClientImportNames ():is used to import the built-in scripts
provided by Apache MyFaces Trinidad.

Now, the Java version of our IPConverter looks like this (notice the constructor
used to instantiate the JavaScript version):

package converterJSF;

import java.util.Collection;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent ;

import javax.faces.context.FacesContext;

import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;

import org.apache.myfaces.trinidad.convert.ClientConverter;
import org.apache.myfaces.trinidad.util.LabeledFacesMessage;

public class IPConverter implements Converter, ClientConverter

{

private static final String SHORT ERROR _TEXT = "The value is to
short for an IP of type 000.000.000.000!";

private static final String LONG_ERROR TEXT = "The value is to
long for an IP of type 000.000.000.000!";

private static final String INVALID ERROR_TEXT = "The value is

not a valid IP number";

=]

Using Standard and Custom Converters in JSF

public static final String CONVERTER ID = "converterJSF.IP";
//getAsObject

public Object getAsObject (FacesContext context, UIComponent
component, String value)

{
if (value == null || value.trim().length() == 0)
return null;
String ipValue = value.trim() ;
int length = ipValue.length() ;
if (length < 12)
{

throw new ConverterException(getMessage (
component, _SHORT ERROR TEXT)) ;

}

if (length > 15)

{

throw new ConverterException(getMessage (
component, LONG ERROR TEXT)) ;

}
//12
if (length == 12)
{
try
{
return Long.valueOf (ipValue) ;

} catch (NumberFormatException e)

{

throw new ConverterException(getMessage (
component, INVALID ERROR_TEXT)) ;

}
//15

if (length == 15)

{

try
{
String extractIP = ipValue.substring(0,3) +
ipValue.substring(4,7) + ipValue.substring(8,11) +
ipValue.substring(12,15) ;
return Long.valueOf (extractIP) ;

} catch (NumberFormatException e)

Chapter 1

throw new ConverterException(getMessage (
component, INVALID ERROR_TEXT)) ;

}

throw new ConverterException(_ getMessage (component, INVALID
ERROR_TEXT)) ;

}
//getAsString

public String getAsString(FacesContext context, UIComponent
component, Object wvalue)

{

if (value == null || ! (value instanceof Long))
return null;

Long longValue= (Long)value;

String valueString = longValue.toString() ;

String ip="000.000.000.000";

if (valueString.length() == 12)
{
ip = valueString.substring(0,3) + '.' +
valueString.substring(3,6) + '.' +
valueString.substring(6,9) + '.' +
2

valueString.substring(9,12) ;

}

return ip;

}

//implement the ClientConverter's getClientImportNames
public Collection<Strings> getClientImportNames ()

{

return null;
}

//implement the ClientConverter's getClientLibrarySource
public String getClientLibrarySource (

FacesContext context)

{

return context.getExternalContext () .getRequestContextPath() +

"/jsLibs/IPConverter.js";

}

//implement the ClientConverter's getClientConversion
public String getClientConversion (FacesContext context,

UIComponent component)

@1

Using Standard and Custom Converters in JSF

{

return ("new IPConverter ({"
+ "SUM: 'Invalid IP.',6"
+ "S:'Value \"{1}\" is too short for an 000.000.000.000 IP.',"
+ "L:'Value \"{1}\" is too long for an 000.000.000.000 IP.',"
+ "N:'Value \"{1}\" is not a valid IP of type 000.000.000.000

NESK

)

}

//implement the ClientConverter's getClientScript

public String getClientScript (FacesContext context,

UIComponent component)

return null;

}

private LabeledFacesMessage _getMessage (UIComponent component,
String text)

{

// Using the LabeledFacesMessage allows the <tr:messages>
component to

// properly prepend the label as a link.
LabeledFacesMessage 1lfm =
new LabeledFacesMessage (FacesMessage.SEVERITY ERROR,
"Conversion Error", text);
if (component != null)
{
Object label = null;
label = component.getAttributes () .get("label");
if (label == null)
label = component.getValueExpression ("label");
if (label != null)
1fm.setLabel (label) ;

}

return 1lfm;

Chapter 1

Next we need to create a tag for this converter. For example, let's name this tag
converterIP
<tag>
<names>convertIP</names>
<tag-class>converterJSF.IPConverterTag</tag-class>
<body-content>empty</body-content>
<description>
The convertIP tag converts a number to/from an IP address.
</description>

</tag>
The IPConverterTag is as follows:

package converterJSF;
import javax.faces.application.Application;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.webapp.ConverterELTag;
import javax.servlet.jsp.JspException;
public class IPConverterTag extends ConverterELTag
{

public IPConverterTag()

{

}

@Override
protected Converter createConverter() throws JspException

{

Application app = FacesContext.getCurrentInstance() .
getApplication() ;

IPConverter converter = (IPConverter)app.createConverter (IPCon
verter.CONVERTER_ID) ;

return converter;

}

Call the converter from a JSP page, as shown next:

<tr:inputText value="#{ipBean.ip}"
label="Insert a number of type 000000000000/000.000.000.000:">
<trip:convertIP />

</tr:inputText>

@]

Using Standard and Custom Converters in JSF

The submitted values are first evaluated by the JavaScript converter. As this converter runs
on the client side, it can return potential errors almost immediately. If the submitted values
successfully pass the JavaScript converter, then they arrive into the Java converter (on the
server side) and after that in the backing bean. Reversing the process, the result values pass
first through the Java converter and after that, through the JavaScript converter.

There's more...

Speaking about another release of Apache MyFaces you should know that Apache MyFaces
Tomahawk project contains several custom objects that do not implement UIComponent.
Some of these include objects that implement the Converter interface.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Client side converters with Apache
Trinidad.

SNED

Using Standard and
Custom Validators
in JSF

In this chapter, we will cover:

» Using a standard validator

» Customizing error messages for validators

» Creating a custom validator

» Binding validators to backing bean properties

» Validating forms with RichFaces rich:beanvValidator
» Validating forms with RichFaces rich:ajaxValidator
» Apache MyFaces Commons validators

» Bean validation with £ : validateBean

» Enforcing a value's presence with £ :validateRequired

» Using regular expressions with f : validateRegex

Using Standard and Custom Validators in JSF.

Introduction

Validation ensures the application data contains the expected content. For example, we can
validate the ranges of numbers or upper/lower limits, string lengths, date formats, and so

on. Every time we need restrictions on a UI Input component or component whose classes
extends UIInput we can use the validation mechanism. JSF provides four types of validation,
as follows:

» Standard validation components

» Application-level validation

» Custom validation components

» Validation methods in backing beans
Validators are invoked during the Process Validations Phase of the JSF lifecycle. For
example, if we assume a form that is submitted with a set of values, a validator for those

values, a corresponding backing bean, and a render page, then the application lifecycle
will be like this (notice when and where the validator is involved!):

» Restore View Phase: The backing bean is created and the components are stored
into the UIViewRoot

» Apply Request Values Phase: The submitted values are decoded and set in the
corresponding components in UIViewRoot

» DProcess Validations Phase: The validator is called and the submitted values are
checked for the desired restrictions

» Update Model Values Phase: The validated values are set in the backing bean

» Invoke Application Phase: This phase is responsible for form processing

» Render Response Phase: The values that should be displayed are extracted from
backing beans

Using the proper validator is the developer's choice. The developer is also responsible for
customizing the error messages displayed when the validation fails. When the standard
validators don't satisfy the application needs, the developer can write custom validators as
you will see in our recipes.

Notice that our recipes make use of JSF 2.0 features, annotation, new navigation style,
and no faces-config.xml file. Especially, you must notice the new JSF 2.0 validators
described here.

But before that, let's start with a simple recipe about working with standard validators.

=

Chapter 2

Using a standard validator

Using the standard JSF validators can be a simple task if you keep in mind two
simple observations:

» They can be specified using a component's validator attribute or by nesting
JSF-provided tags

» Validation can be performed only on UI Input components or components whose
classes extend UIInput
In this recipe, you will see how to use the JSF standard validators listed next:
» LengthvValidator: Counts the number of characters of a value and checks if it fits
in a given range. The range boundaries are given by two attributes, as follows:
0 minimum: The minimum acceptable number of characters
o maximum: The maximum acceptable number of characters

» LongRangeValidator: Attempts to convert the value to a number of Java 1long
primitive type and checks to see if that number fits in a given range. The range
boundaries are given by two attributes, as follows:

0 minimum: The minimum acceptable number
o maximum: The maximum acceptable number
If these attributes are skipped, then the validator only checks if the value is numeric.
» DoubleRangeValidator: Attempts to convert the value to a number of Java

double primitive type and checks to see if that number fits in a given range. The
range boundaries are given by two attributes, as follows:

0 minimum: The minimum acceptable number

o maximum: The maximum acceptable number
If these attributes are skipped, then the validator will only check if the value is numeric.

In this recipe, you will see how to use the first two previous validators.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

-

Using Standard and Custom Validators in JSF.

How to do it...

Let's suppose that we have a form with two fields representing a user's age and name. The
age should be between 18 and 50 (we will apply the LongRangeValidator) and the name
length will be between 5 and 25 characters (we will use the Lengthvalidator). Now, the
corresponding form will look like this:

<h:form id="UserForm">
<h:outputText value="Insert your age:"/>

<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}">
<f:validateLongRange minimum="18" maximum="50"/>
</h:inputText>
<h:message showSummary="true" showDetail="false" for="userAgeID"
style="color: red; text-decoration:overline"/>

<h:outputText value="Insert your first name:"/>

<h:inputText id="userNameID" required="true"
value="#{userBean.firstName}">
<f:validatelLength minimum="5" maximum="25" />
</h:inputText>
<h:message showSummary="true" showDetail="false" for="userNameID"
style="color: red; text-decoration:overline"/>

<h:commandButton id="submit" action="response?faces-redirect=true"
value="Submit"/>
</h:form>

The mechanism is simple! Before populating the managed bean, the values are validated by
the specified validators. If an error occurs while validating the values then the process returns
an error message and displays the form again.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Using a standard validator.

=

Chapter 2

Customizing error messages for validators

The error messages that are shown for each type of validation error are controlled by the
Message .properties file, which is located in the javax. faces package of jsf-api.jar.
You can customize/replace these error messages with your own or you can add new messages.
Also, you can provide messages in different languages, not just in English. In this recipe, we will
customize error messages using three scenarios, as follows:

» Customizing the default messages from Message .properties

» Creating our own error messages

» Generating error messages from custom converters

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Customizing the default messages from Message . propert ies—to accomplish this task

we follow two simple steps. We start by creating our own properties file and copy into it the
desired entries from Messages . properties. After that, we modify the entries accordingly to
our needs (actually, we leave the property names as default and we modify their values). For
example, we have created a properties file named MyMessages . properties as shown next:

javax.faces.component.UIInput .REQUIRED={0}: Value is required - custom

message.

javax.faces.validator.LongRangeValidator .NOT IN RANGE={2}: Specified
attribute is not between the expected values of {0} and {1} - custom
message.

javax.faces.validator.LengthValidator.MAXIMUM={1}: Value is greater
than allowable maximum of ''{0}''- custom message
javax.faces.validator.LengthValidator.MINIMUM={1}: Value is less than
allowable minimum of ''{0}''- custom message

Even if we are in JSF 2.0, we need to configure this properties file in faces-config.xml.
This can be done as follows:

<applications>
<locale-config>
<default-localesen</default-locale>
</locale-config>
<message-bundles>users.MyMessages</message-bundle>
</application>

s

Using Standard and Custom Validators in JSF.

Going further, we create our own error message—in this case we can create our own property
names in the properties file. For example, we have created the MyMessages.properties
next (notice that this time we have a new set of entries—new property names and new values):

NOT IN RANGE=ERROR! - The inserted age is not between the accepted
interval, [18,50]!

NOT IN LENGTH=ERROR! - The inserted name must have a length between
5 and 25 characters!

AGE_REQUIRED=ERROR! - The age value is required!

NAME REQUIRED=ERROR! - The name value is required!

Next we have to configure this properties file by following these steps:

1. Inthe corresponding page use the f : loadBundle tag to indicate the desired
properties file (place this tag before the <body> tag of the page). For example:

<f:loadBundle basename="users.MyMessages" var="msg"/>

2. Use the requiredMessage and validatorMessage attributes (notice that, in
the same manner, for converters there is converterMessage) to indicate the
corresponding error property name for each Ul component. The requiredMessage
attribute is used to indicate the error messages that should be displayed when no
value was provided for the corresponding Ul component (it can be a String or an
EL expression and it has meaning when for the same Ul component the required
attribute is used and set to true). The validatorMessage attribute is used for
indicating the error messages that should be displayed when the provided value
can't be successfully validated (it can be a String or an EL expression). As per
the example, let's suppose that we have a form with two fields representing a
user's age and name. The age should be between 18 and 50 (we will apply the
LongRangeValidator) and the name length will be between 5 and 25 characters
(we will use the LengthVvalidator). The error messages will be provided by our
MyMessages.properties. For this we have the following code:

<h:heads>

<title>Customize messages for validators</title>
</h:head>
<f:loadBundle basename="users.MyMessages" var="msg"/>
<h:body>

<h:form id="UserForm">
<h:outputText value="Insert your age:"/>

<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}"
requiredMessage="#{msg.AGE REQUIRED}"
validatorMessage="#{msg.NOT IN RANGE}">
<f:validateLongRange minimum="18" maximum="50"/>

</h:inputText>

5]

Chapter 2

<h:message showSummary="true" showDetail="false" for="userAgeID"
style="color: red; text-decoration:overline"/>

<h:outputText value="Insert your first name:"/>

<h:inputText id="userNameID" required="true"
value="#{userBean.firstName}"
requiredMessage="#{msg.NAME REQUIRED}"
validatorMessage="#{msg.NOT_ IN LENGTH}">
<f:validateLength minimum="5" maximum="25" />
</h:inputText>
<h:message showSummary="true" showDetail="false"
for="userNameID"
style="color: red; text-decoration:overline"/>

<h:commandButton id="submit"
action="response?faces-redirect=true"
value="Submit"/>
</h:form>
</h:body>

Configure this properties file in the faces-config.xml. This can be done
as shown next:

<application>
<locale-config>
<default-localesen</default-locale>
</locale-config>
<message-bundle>users.MyMessages</message-bundle>

</application>

Notice that even if we are using JSF 2.0, we still need the faces-
config.xml file. Annotations and the implicit navigation allow us
* to write an application without needing a faces-config.xml
% fille. but there are still cases where the configuration file is needed.
Localization information, advanced features such as ELResolvers,
PhaseListeners, or artifacts that rely on the decorator pattern
still require a faces-config.xml file.

Using Standard and Custom Validators in JSF.

The main key resides in the configuration made in faces-config.xml. It indicates to JSF
that the corresponding error messages should be found in the specified properties file instead
of the default one. When the custom properties' names override the default ones, JSF will
automatically detect them. When the properties' names are totally new, you can use the
requiredMessage and validatorMessage to fit them accordingly to the Ul components
Finally, note that the message aspect is customizable through the h: message tag. This tag

is related to its Ul component through the for attribute, which has the same value as the id
attribute of the Ul component.

There's more...

In the case of custom converters you can programmatically generate custom errors like this:

FacesMessage message = new FacesMessage() ;
message.setDetail ("error details");
message.setSummary ("error summary") ;
message.setSeverity (FacesMessage.SEVERITY ERROR) ;
throw new ValidatorException (message) ;

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named:
» Customize error messages_ for validators 1

» Customize error messages_for validators 2

Creating a custom validator

When standard validators don't satisfy your application needs, you need to write a custom
validator. As per example, in this recipe you will see how to validate an IP address, an e-mail
address, and a zip code. Following this strategy, you can write custom validators for phone
numbers, credit card numbers, fax numbers, and so on.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

NED

Chapter 2

How to do it...

Writing custom validators is a straightforward process that starts with the task of creating
a class that implements the javax.faces.validator.Validator interface and the
validate method.

For JSF 1.2, register your custom validator in the faces-confix.xml file. For JSF 2.0 use
the javax.faces.validator.FacesValidator annotation.

After we have written the validator class, we call it from JSF pages through the
<f:validator/> tag.

As per example, we have developed a custom validator to validate an IP address as shown next:

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent ;

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator (value = "ipValidator™")
public class IpValidator implements Validator

private static final String IP_REGEX = ""([1-9]]|[1-9][0-9]|1[0O-
91 [0-91|2[0-4]1[0-91]25[0-51) (\\.([0-9]|[1-9]1[0-9]1|1[0-9]1[0-9]1|2[0-
4] [0-91]25[0-51)){3}s";

public void validate (FacesContext context, UIComponent component,
Object value) throws ValidatorException

String ipAddress = (String) value;
Pattern mask = null;

mask = Pattern.compile (IP_REGEX) ;
Matcher matcher = mask.matcher (ipAddress) ;

if (!matcher.matches()) {

s

Using Standard and Custom Validators in JSF.

FacesMessage message = new FacesMessage() ;
message.setDetail ("IP not wvalid");
message.setSummary ("IP not valid");
message.setSeverity (FacesMessage.SEVERITY ERROR) ;
throw new ValidatorException (message) ;

!
And we have called this custom validator like this:

<h:inputText id="ipID" required="true" value="#{ipBean.ipValue}">
<f:validator validatorId="ipValidator"/>
</h:inputText>

It works exactly like a standard validator, but this time the called validator is a custom one.
Before populating the managed bean, the values are validated by the custom validator.

If an error occurs while validating the values then the process returns an error message
and re-displays the form.

There's more...

Since regular expressions are often used in validators, here it is a short list of the most used:

» E-mail: * IN\wAN-T (NN A\\wD) + D\N\wl+@ ([IN\w\\-T+\\.) +[A-Z]1 {2,4}$
» City abbreviation: .*, [A-2] [A-Z]

» Social security number, such as ###-##-###4: [0-91\{3\}-[0-91\{2\}- [0-
91\ {4\}

» Date, in numeric format, such as 2003-08-06: [0-9]1\{4\}-[0-91\{2\}-[0-
91\ {2\}

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Creating a custom validator.

&)

Chapter 2

Binding validators to backing bean

properties

JSF standard validator tags allow the binding attribute (this is also true for listener and
converter tags). This means that developers can bind validator implementations to backing
bean properties. The main advantages of using the binding facility are:

» The developer can allow to the backing bean to instantiate the implementation
» The backing bean can programmatically access the implementation's attributes

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

To successfully accomplish a binding task, you can follow three simple steps (these steps are
true for converter, listener, and validator tags):

1. Nest the validator (listener, converter) tag in the component tag.

2. Putin the backing bean a property that takes and return the validator (listener,
converter) implementation class.

3. Reference the backing bean property using a value expression from the binding
attribute of the validator (listener, converter) tag.

As per the example, let's bind the standard £ : validateLongRange validator to a backing
bean property. The idea is to let the backing bean set the values for the minimum and
maximum attributes. First, you have to register the validator onto the component by nesting
the £ :validateLongRange tag within the component tag. Then, you have to reference the
property with the binding attribute of the £:validateLongRange tag.

<h:form id="IpForm">
<h:outputText value="Insert your age:"/>

<h:inputText id="ageID" required="true"
value="#{userBean.userAge}">
<f:validateLongRange binding="#{userBean.longAge}"/>
</h:inputText>
<h:message showSummary="true" showDetail="false" for="ageID"
style="color: red; text-decoration:overline"/>

<h:commandButton id="submit" action="response?faces-redirect=true"
value="Submit"/>
</h:form>

[ei-

Using Standard and Custom Validators in JSF.

The 1ongage property is defined in the following managed bean:

package users;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.validator.LongRangeValidator;

@ManagedBean
@SessionScoped
public class UserBean

private int userAge;
private LongRangeValidator longAge;

public int getUserAge () {
return this.userAge;

}

public void setUserAge (int userAge) {
this.userAge=userAge;

}

public LongRangeValidator getLong2ge ()
return this.longAge;

}

public void setLongAge (LongRangeValidator longAge)
longAge.setMinimum(18) ;
longAge.setMaximum(90) ;
this.longAge=1longAge;

}
}

In our example, the backing bean sets the minimum and maximum values within the
f:validateLongRange tag, which means that the user's input will be constrained by these
boundaries. This time the number's range is indicated without using specific attributes in
f:validateLongRange tag. Instead of this, we use the binding attribute to reference the

longAge property, which is a LongRangeValidator instance, offering us access to this
class's methods.

&

Chapter 2

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Bind validators to backing bean
properties.

Validating forms with RichFaces

rich:beanValidator

The rich:beanvValidator is a component designed to provide validation using Hibernate
Validator model-based constraints (details about Hibernate Validator can be found at
https://www.hibernate.org/412.html). In this recipe, we will validate a simple

form made up of two fields representing the e-mail address and age of a user.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used RichFaces 3.3.3.BETA1, which provides support for JSF 2.0. You can download this
distribution from http://www.jboss.org/richfaces. The RichFaces libraries (including
necessary dependencies) are in the book code bundle, under the /JSF_libs/RichFaces
- JSF 2.0 folder.

How to do it...

The rich:beanValidator tag is usually nested in a Ul Component, like h: input Text.
Next, you can see an example (notice that the summary attribute will contain details
displayed about the validation error):

<h:form id="form">
<h:panelGrid columns="3">
<h:outputLabel for="email" value="Email Address:" />
<h:inputText id="email" value="#{bean.email}" label="Email">
<rich:beanvValidator summary="Invalid Email address"/>
</h:inputText>
<rich:message for="email"/>
<h:outputLabel for="age" value="Age:" />
<h:inputText id="age" value="#{bean.age}" label="Age">
<rich:beanvValidator
summary="Invalid age, must be between 18 and 90"/>
</h:inputText>

Using Standard and Custom Validators in JSF.

<rich:message for="age"/>

</h:panelGrid>

<h:commandButton value="Submit"></h:commandButtons>
<rich:messages/>

</h:form>

The validator restrictions are specified in Hibernate style using the corresponding annotations
in a bean. In our example, the Bean bean can be seen next:

package bean;

import
import
import

public

org.hibernate.validator.Email;
org.hibernate.validator.Range;
org.hibernate.validator.NotEmpty;

class Bean f{

private String email;

private Integer age;

@Range (min=18, max=90)
public Integer getAge()

return age;

public void setAge (Integer age)
this.age = age;

@NotEmpty

@Email

public String getEmail() {
return email;

public void setEmail (String email) {
this.email = email;

}

For more Hibernate validators check the org.hibernate.validator package. In our
example, we have used the @Email, @NotEmpty, and @Range validators.

=

Chapter 2

It works like a common validator, but this time the validator restrictions are taken directly from
the bean, instead of using dedicated attributes inside the validator tag.

There's more...

Another important validator from RichFaces is the rich:graphvalidator. The
rich:graphvValidator component is much like rich:beanvalidator. The
difference between these two components is that in order to validate some input data
with a rich:beanvValidator component, it should be a nested element of an input
component, whereas rich:graphValidator wraps multiple input components and
validates the data received from them.

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Validate forms with RichFaces
BeanValidator.

Validating forms with RichFaces

rich:ajaxValidator

The rich:ajaxValidator is a component designed to provide validation using Hibernate
model-based constraints and AJAX mechanism (details about Hibernate Validator can be
found at https://www.hibernate.org/412.html). In this recipe, we will validate a
simple form made of two fields representing the e-mail address and age of a user.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
RichFaces 3.3.3.BETA1, which provide support for JSF 2.0. You can download this distribution
from http://www.jboss.org/richfaces. The RichFaces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF_1ibs/RichFaces - JSF 2.0
folder.

Using Standard and Custom Validators in JSF.

How to do it...

The rich:ajaxValidator tag is usually nested in a Ul Component, such as h: inputText.
The most important attribute of this tag is the event attribute. Its value indicates

the event that should happen before the validation takes place. As per the example,

the onkeyup event will validate the corresponding input every time a key is pressed

and released (this is possible thanks to the AJAX mechanism). Here is an example:

<h:form id="form">
<h:panelGrid columns="3">
<h:outputLabel for="email" value="Email Address:" />
<h:inputText id="email" value="#{bean.email}" label="Email">
<rich:ajaxValidator event="onkeyup"
summary="Invalid Email address"/>
</h:inputText>
<rich:message for="email"/>
<h:outputLabel for="age" value="Age:" />
<h:inputText id="age" value="#{bean.age}" label="Age">
<rich:ajaxValidator event="onkeyup"
summary="Invalid age, must be between 18 and 90"/>
</h:inputText>
<rich:message for="age"/>
</h:panelGrid>
<h:commandButton value="Submit"></h:commandButtons>
<rich:messages/>
</h:form>

The validator restrictions are specified in Hibernate validator style using the corresponding
annotations in a bean. In our example, the Bean bean is the one from listing Bean. java, in
the previous recipe.

This time the validator restrictions are taken directly from the bean, instead of using
dedicated attributes inside the validator tag. In addition, the AJAX mechanism allows
JSF to accomplish the validation tasks without submitting the form.

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Validate forms with RichFaces
ajaxValidator

(&)

Chapter 2

Apache MyFaces Commons validators

The Apache MyFaces Commons project contains a set of validators (myfaces-validators),
converters (myfaces-converters), and utils (nyfaces-commons-utils). These are JARs
that can be used with any JSF framework.

In this recipe, we are using validators. The most widely used validators are:

» <mcv:validateCSVvs

» <mcv:validateCompareTo>

» <mcv:validateCreditCards>

» <mcv:validateDateRestrictions>
» <mcv:validateEmails>

» <mcv:validateISBN>

» <mcv:validateRegExprs>

» <mcv:validateUrls

In this recipe you will see how to use the mcv:validateEmail validator. Based on this
example, it will be simple to work with the rest of the validators.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used Apache
MyFaces Commons 1.2, which is designed for JSF 1.2, but it seems that it supports JSF 2.0
also (as far as we have tested it, no problems occurred). You can download this distribution
from http://myfaces.apache.org/commons/download.html. The Apache MyFaces
Commons libraries (including necessary dependencies) are in the book code bundle, under
the /JSF_libs/Apache MyFaces Commons - JSF 2.0 folder.

How to do it...

First you have to provide access to the Apache MyFaces Commons library. Knowing that this
library has the namespace http://myfaces.apache.org/commons/validators and
the most used prefix is mcv, you can accomplish this task as shown next:

<%@taglib prefix="mcv" uri="http://myfaces.apache.org/commons/
validators"%>

&7}

Using Standard and Custom Validators in JSF.

Next you can nest the corresponding validator inside an input tag, as shown next:

<h:inputText id="emaill" value="#{user.email}" required="true">
<mcv:validateEmail/>

</h:inputText>

<h:message for="emaill"/>

Apache MyFaces Commons validators follow the same pattern as an standard JSF converters.
In practice, they are an extension of JSF validators, which means that you can do with them
exactly what you can do with a JSF Core validator.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Apache MyFaces Commons Validators.

More details are available at:

http://myfaces.apache.org/commonsl2/myfaces-validatorsl2/index.html

http://myfaces.apache.org/commons/index.html

Bean validation with f:validateBean

Probably the most important validation tag provided by JSF 2.0 is the £ : validateBean tag.
For a start, you have to know that this tag is part of a mechanism whose aim is to integrate
Bean Validation with JSF 2.0. Bean Validation—known as JSR 303 (http://jcp.org/en/
jsr/detail?id=303); officially part of the new Java EE 6 this defines a metadata model
and API for JavaBean validation. The default "metadata source is annotations, with the ability
to override and extend the meta-data through the use of XML validation descriptors". In this
recipe, you will see how to exploit the Bean Validation.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

&)

Chapter 2

How to do it...

Instead of placing validation rules in different layers of the application and keeping them
synchronized, we can take use of Bean Validation and use its constraint annotations in the
managed beans—JSF 2 provides built-in integration with JSR-303 constraints—as in the
following example:

public class userBean

@NotEmpty (message = "The name cannot be empty!")

@Size(min = 5, max = 20, message="You must provide a name between 5
and 20 characters!")

private String name;

@Digits (integer = 2, fraction = 0, message = "You must provide a

valid age!™")
@Range (min=18, max=99, message="You must be over 18 years old!")
private int age;

@NotEmpty (message = "The email cannot be empty!")
//instead of @Pattern you can use @Email
@Pattern (regexp =
"[a-zA-Z0-9 1*[@]{1}[a-2zA-20-9 1*[.1{1}[a-2zA-Z]{2,3}"
message="You must provide at least
an well-formed e-mail address!™")
private String email;

In the following table you can see a summary of the Bean Validation annotation with a
short description:

Annotation BVS * Applyon Use

@AssertFalse Yes Field/property Check that the annotated
elementis false.

@AssertTrue Yes Field/property Check that the annotated
elementis true.

@DecimalMax Yes Field/property Check that the annotated
element is a number

. . ‘ whose value is lower than
BigDecimal, BigInteger, o gqualto the specified
String, byte, short, int, maximum.

and long.

Supported types are:

[}

Using Standard and Custom Validators in JSF.

Supported types are
java.util.Date and
java.util.Calendar.

Annotation BVS * Applyon Use

@DecimalMin Yes Field/property Check that the annotated
Supported types are: elementis a P“"?ber

. . _ whose value is higher
BigDecimal, BigInteger, than or equal to the
String, byte, short, int, specified minmum.
long.

@Digits (integer=, Yes Field/property Check that the annotated

fraction=) Supported types are: element is a rl1umber

. . ‘ having up to integer
BigDecimal, BigInteger, digits and fraction
String, byte, short, int, fractional digits.
long.

@Future Yes Field/property Check that the annotated
Supported types are java. date is in the future.
util.Dateand java.
util.Calendar.

@Max Yes Field/property Check that the annotated
Supported types are: value is less than'gr

equal to the specified
BigDecimal, BigInteger, maximum.
String, byte, short, int,
long.

@Min Yes Field/property Check that the annotated

Supported types are: value is higher thg_n or
equal to the specified

BigDecimal, BigInteger, minimum.

String, byte, short, int,

long.

@NotNull Yes Field/property Check that the annotated
value is not null.

@Null Yes Field/property Check that the annotated
value is null.

@vValid Yes Field/property Perform validation
recursively on the
associated object.

@Past Yes Field/property Check that the annotated

date is in the past.

[

Chapter 2

Annotation BVS * Applyon Use
@Size (min=, max=) Yes field/property Check if the annotated
Supported types are String, elfament size 'S_ betwgen
Collection, Map, and min and max (inclusive).
arrays.
@Length (min=, No Field/property Check that the annotated
maxs=) string is between min
and max included.
@NotEmpty No Field/property Check that the annotated
string is not null or empty.
@Email No Field/property Check that the annotated
string is a valid email
address.
@Range (min=, No Field/property Check that the annotated
max=) Supported types are: valug !les bgtyveen the
. . _ specified minimum and
BigDecimal, BigInteger, maximum (inclusive).
String, byte,\ short, int,
and long.

* BVS - Bean Validation Specification

The annotations marked as "yes" belong to BVS and they can be found

constraints package.

inthe javax.validation.constraints package, while the ones
marked with "no" can be found in the org.hibernate.validator.

After we set our annotation, we can control (fine tune) the validation from the JSF pages with
the f:validateBean tag. The f:validateBean supports the following optional attributes:

>

binding: A ValueExpression that evaluates to an object that implements
javax.faces.validate.BeanValidator.

disabled: A boolean value enabling page-level determination of whether or not this
validator is enabled on the enclosing component.

validationGroups: A comma-delimited string of type-safe validation groups that
are passed to the Bean Validation APl when validating the value.

7}

Using Standard and Custom Validators in JSF.

» By default, the Bean Validator is enabled, therefore our JSF pages may not contain
any code fragments that reveal the presence of the Bean Validator. For example, the
following JSF page makes use of Bean Validator without our explicit specification:

<h:form>

<h:panelGrid columns="2">
<h:outputText value="Name:"/>
<h:inputText value="#{userBean.name}"/>
<h:outputText value="Age:"/>
<h:inputText value="#{userBean.age}"/>
<h:outputText value="E-mail:"/>
<h:inputText value="#{userBean.email}"/>
</h:panelGrid>

<h:commandButton value="Submit" action="index?faces-

redirect=true"/>

</h:form>

A possible output is in the following screenshot:

Marne:
Ager |0
E-mail:

® The name cannot be emptyl

* Voumust provide aname between 5 and 20 characters!
® Toumust be over 18 years oldl

* The email cannot be empty!

® Toumust provide at least an well-formed e-mail address|

Now, if we want to disable the Bean Validator for a specific field, then we must get involved
and set the disabled attribute to false, as in the following code, where we disable
validation for the user age:

<h:outputText value="Age:"/>
<h:inputText value="#{userBean.age}">

<f:validateBean disabled="true" />
</h:inputText>

=

Chapter 2

Add a context-paramto your web.xml, javax.faces.VALIDATE
EMPTY FIELDS, by default it is set to auto. If it is true, all submitted fields
will be validated. This is necessary to delegate validation of whether a field
% can be null/empty to the model validator. If it is false, empty values will not
’ be passed to the validators. If it is auto, the default will be true only if Bean
Validation is in the environment, £alse otherwise (which keeps backward
compatibility).

There's more...

You also may want to save the validation groups—allowing you to restrict the set of constraints
applied during validation—in an attribute on the parent to be used as defaults inherited by any
Bean Validator in that context (an empty String is not allowed). If no validation groups are
inherited, assume the Default validation group, javax.validation.groups.Default

The property validationGroups on BeanValidator is used to allow the view designer to
specify a comma-separated list of groups that should be validated. A group is represented by
the fully qualified class name of its interface. If the validationGroups attribute is omitted,
the Default (javax.validation.groups.Default) group will be used. If the model
validator is set as the default validator, this tag can be used to specify validation groups for
this input.

In practice, groups are just simple Java interfaces. Using interfaces makes the usage of groups
type safe and allows for easy refactoring. In addition, groups can inherit from each other via
class inheritance. As per the example, we can use two different groups as shown next:

//the usersIdsGroup
public interface usersIdsGroup

}

//the usersCredentialsGroup
public interface usersCredentialsGroup

}

Next, we can bind managed beans' properties to groups as shown next:

@NotEmpty (message = "The name cannot be empty!",

groups = beans.usersIdsGroup.class)
@Size(min = 5, max = 20, message = "You must provide a name between 5
and 20 characters!", groups = beans.usersIdsGroup.class)

private String name;

@Digits (integer = 2, fraction = 0,
message = "You must provide a valid agel!",

Using Standard and Custom Validators in JSF.

groups = beans.usersIdsGroup.class)
@Range (min = 18, max = 99,
message = "You must be over 18 years old!",
groups = beans.usersIdsGroup.class)
private int age;

@NotEmpty (message = "The email cannot be empty!",
groups = beans.usersIdsGroup.class)
//instead of @Pattern you can use @Email

@Pattern (
regexp = "[a-2zA-Z0-9]1*[@]{1}[a-zA-20-9]*[.]1{1}[a-2A-2Z]{2,3}",
message = "You must provide at least an well-formed e-mail

address!",
groups = beans.usersIdsGroup.class)
private String email;

@NotEmpty (message = "The ID cannot be empty!",
groups = beans.usersCredentialsGroup.class)
@Size(min = 5, max = 20,
message = "You must provide an ID between 5 and 20
characters!",
groups = beans.usersCredentialsGroup.class)
private String nickname;

@NotEmpty (message = "The password cannot be empty!",
groups = beans.usersCredentialsGroup.class)
@Size(min = 5, max = 20,
message = "You must provide a password between 5 and 20
characters!",
groups = beans.usersCredentialsGroup.class)
private String password;

As you can see, the name, age, and email properties belong to the usersIdsGroup group,
while the nickname and password properties belongs to the usersCredentialsGroup
group. Next, in a JSF page, we can validate both groups like this:

<f:validateBean validationGroups="beans.usersIdsGroup,usersCredential
sGroup" >

<h:outputText value="Name:"/>
<h:inputText value="#{userBean.name}"/>
<h:outputText value="Age:"/>
<h:inputText value="#{userBean.age}"/>

7

Chapter 2
<h:outputText value="E-mail:"/>

<h:inputText value="#{userBean.email}"/>

<h:outputText value="ID:"/>

<h:inputText value="#{userBean.nickname}"/>

<h:outputText value="Password"/>

<h:inputSecret value="#{userBean.password}"/>
</f:validateBean>

If we want to validate only the usersIdsGroup group, then we remove this group from the
value of the validationGroups attribute:

<f:validateBean validationGroups="beans.usersIdsGroup">

</f:validateBean>

You also may call a Bean validator programatically. The following code snippet shows you how
to accomplish this:

public class UserValidator {
public boolean validateUser (userBean user) {

ValidatorFactory factory =
Validation.buildDefaultValidatorFactory () ;
Validator validator = factory.getValidator() ;

Set<ConstraintViolation<userBean>> constraintViolations =
validator.validate (user, Default.class) ;

if (!constraintViolations.isEmpty())
return false;

constraintViolations = validator.validate (user,

beans.usersIdsGroup.class) ;

return constraintViolations.isEmpty () ;

}

(7]

Using Standard and Custom Validators in JSF.

As you just saw, Bean Validation centralized constraint declarations and is based on a
several standard constraint annotations (for example @Size, @Min, @Max, @AssertTrue,
@AssertFalse, and so on) and also allows custom constraints to be defined. In addition we
can use groups that allow us to restrict the set of constraints applied during validation. This
time the validator restrictions are taken directly from the bean, instead of using dedicated
attributes inside the validator tag.

The complete reference for Bean Validation is JSR-303 available at http://jcp.org/en/
jsr/detail?id=303.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Bean validation with validateBean
1and Bean validation with validateBean 2.

More details about the f : validateBean tag specification can be found at:

https://javaserverfaces.dev.java.net/nonav/docs/2.0/pdldocs/facelets/
f/validateBean.html

Enforcing a value's presence with

f:validateRequired

Starting with JSF 2.0, a new set of validators is available. One of these is the £ :
validateRequired, which is a validator used to enforce the presence of a value. In
practice, its effect is the same as the required attribute set to true on a UIInput
component. In this recipe, you will see an example of using this new validator.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

7@

Chapter 2

How to do it...

The following example will make things clear in a few seconds. We assume a UIInput
component used for grabbing an e-mail address from the user. Since we want to enforce
the necessity of this e-mail address we can use f :validateRequired, as shown next:

<h:form>
<h:outputText value="E-mail:"/>
<h:inputText value="#{emailBean.email}"
validatorMessage="You must provide an e-mail of type
myemail@domain.com!">
<f:validateRequired/>
</h:inputText>
<h:commandButton value="Submit"
action="index?faces-redirect=true"/>
</h:form>

As we said earlier, it works like the required attribute set it to true on a UIInput
component. As per the example, the following code does the same thing, without using
the f:validateRequired:

<h:form>
<h:outputText value="E-mail:"/>
<h:inputText value="#{emailBean.email}" required="true"
requiredMessage="You must provide an e-mail of type
myemail@domain.com!" />
<h:commandButton value="Submit"
action="index?faces-redirect=true"/>
</h:form>

The code bundled with this book contains a complete example of this recipe. The
project can be opened with NetBeans 6.8 and it is named: validateRequired and
validateRegex_ tags

More details about the f : validateRequired tag specification can be found at
https://javaserverfaces.dev.java.net/nonav/docs/2.0/pdldocs/facelets/
f/validateRequired.html

(77}

Using Standard and Custom Validators in JSF.

Using regular expressions with

f:validateRegex

Another validator available starting with JSF 2.0 is £ : validateRegex. This validator uses
the pattern attribute to validate the wrapping component. The value of pattern is provided
as a Java regular expression. In this recipe, you will see how to use this validator to validate an
e-mail address against the proper regular expression.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The following code snippet validates the value provided into a UI Input component as an e-
mail address value:

<h:form>
<h:outputText value="E-mail:"/>
<h:inputText value="#{emailBean.email}"
validatorMessage="You must provide an e-mail of type
myemail@domain.com!">
<f:validateRegex pattern=
"la-zA-Z0-9_]1*[@] {1} [a-2zA-20-9]1*[.]1{1}[a-2zA-2]{2,3}" />

</h:inputText>

<h:commandButton value="Submit" action=
"index?faces-redirect=true"/>
</h:form>

The f :validateRegex works exactly as expected—the entire pattern is matched against the
provided String value of the component. If it matches, it's valid, otherwise a validation error
message is returned.

@

Chapter 2

See also

The code bundled with this book contains a complete example of this recipe. The

project can be opened with NetBeans 6.8 and it is named: validateRequired and
validateRegex_ tags

More details about the f : validateRegex tag specification can be found at

https://javaserverfaces.dev.java.net/nonav/docs/2.0/pdldocs/facelets/
f/validateRegex.html.

File Management

In this chapter, you will learn about:

» Downloading files using Mojarra Scales

» Multi-file upload using Mojarra Scales

» File upload with Apache MyFaces Tomahawk
» AJAX multi-file upload with RichFaces

» Downloading with PrimeFaces 2.0

» PPR multi-file upload with PrimeFaces 2.0

» Extracting data from an uploaded CSV file

» Exporting data to Excel, PDF, CVS, and XML

Introduction

In this chapter, you will see a series of recipes for manipulating different kinds of files into
a JSF application. You will see solutions to common problems in a web application, such as
uploading and downloading files, extracting data from a CSV file, and exporting a data table
to Excel, PDF, CSV, or XML formats.

Downloading files using Mojarra Scales

In this recipe you will see how to implement a JSF application for downloading files. To
accomplish this task we will use a dedicated component developed under the Mojarra
Scales project. Since, we haven't used it before in this book let's say that this project "is a JSF
component library that started out in the JSF RI Sandbox. Currently, Scales offers a number
of components which, primarily, wrap some of the excellent Yahoo! User Interface (YUI)
JavaScript widgets. Scales goes beyond those widgets, though, and offers a number of

other useful components such as a multi-file upload component and a dynamic content
‘download' component."

File Management

Getting ready

We developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2 classes
were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used Mojarra
Scales 1.3.2, which provides support for JSF 1.2. You can download this distribution from
http://kenai.com/projects/scales. The Mojarra Scales libraries (including necessary
dependencies) are in the book code bundle, under the /JSF_libs/Mojarra Scales - JSF
1.2 folder.

How to do it...

As we said earlier, we will download files using a dedicated component of Mojarra Scales. This
component is mapped by the download tag, which supports a set of attributes that provide
us with fine control over download configuration. The following table is an overview of these
attributes (you can check a detailed list of attributes in the official documentation (http://
kenai.com/projects/scales)—the following table is a snapshot of the original javadoc):

Name Required Description

id No The component unique identifier.

binding No A VvalueExpression linking this component to a property in a
backing bean.

data Yes The current value of this component.

method No The method for displaying the object: inline or download.

mimeType No The MIME type of the object.

fileName No The filename of the object; used only for method="download".

width No The width of the object to be displayed; used only for

method="inline".

height No The height of the object to be displayed; used only for
method="inline".

iframe No A Boolean value indicating whether or not to use an iframe for
displaying the object (the default is false). This is used only for
when method="inline".

urlvVar No If set, this property will cause an EL variable by the name of urlvar
to be added to the ELContext for the duration of the component
rendering (that is, it will only be available to child components).

rendered No A flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any
subsequent form submit. The default value for this property is true.

disabled No A flag indicating that this element must never receive focus or be
included in a subsequent submit. A value of false causes no
attribute to be rendered, while a value of true causes the attribute
to be rendered as disabled="disabled".

Chapter 3

Now, based on the attribute's description, we have configured two download tags, one for
downloading a JPG image and one for downloading a PDF document:

<!-- For an image use: -->

<h:outputText value="Download RafaNadal.jpg image:" />

<sc:download method="download" mimeType="image/jpg"
fileName="RafaNadal.jpg" data="#{downloadBean.image}">

<h:graphicImage alt="Download" url="/download.jpg" />

</sc:download>

<!-- For a pdf document use: -->

<h:outputText value="Download RafaNadal.pdf document:" />

<sc:download method="download" mimeType="application/pdf"
fileName="RafaNadal.pdf" data="#{downloadBean.pdf}">
<h:graphicImage alt="Download" url="/download.jpg" />
</sc:download>

Now, let's focus on the data attribute. This attribute is an EL expression that resolves to the
content of the file to be downloaded. This data can be returned as a byte []1, InputStream,
or a ByteArrayOutputStream. Based on this information and on TestBean provided in
the Mojarra Scales examples, we can easily develop our DownloadBean as follows:

package downloadbeanpkg;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

import java.io.InputStream;

import javax.faces.context.FacesContext;

public class DownloadBean {

public byte[] getPdf () ({
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
InputStream is = null;
try {
//is = Thread.currentThread () .getContextClassLoader () .
//getResourceAsStream("/RafaNadal.pdf") ;

FacesContext.getCurrentInstance () .getExternalContext () .
getResourceAsStream (" /RafaNadal.pdf") ;

int count = 0;

File Management

byte[] buffer = new byte[4096];

while ((count = is.read(buffer)) != -1) {
if (count > 0) {
baos.write (buffer, 0, count);

}

} catch (IOException e) {
System.err.println(e.getMessage()) ;
} finally {
if (is != null) {
try {
is.close() ;
} catch (Exception e) {
// Jjust make sure it's closed

}

return baos.toByteArray () ;

}

public byte[] getImage() {
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;
InputStream is = null;

try {
//is = Thread.currentThread () .getContextClassLoader () .

//getResourceAsStream (" /RafaNadal.png") ;

FacesContext.getCurrentInstance () .getExternalContext () .
getResourceAsStream (" /RafaNadal.jpg") ;

int count = 0;
byte[] buffer = new byte[4096];
while ((count = is.read(buffer)) != -1) {

if (count > 0) {
baos.write (buffer, 0, count);

}

} catch (IOException e) {
System.err.println(e.getMessage()) ;
} finally {
if (is != null) {

try {
is.close() ;

=

Chapter 3

} catch (Exception e) {
// Jjust make sure it's closed

}

return baos.toByteArray () ;

}

This component is really rather simple. The download tag encapsulates the

download parameters, while a simple bean provides the requested file through a
ByteArrayOutputStream object. The filename is indicated in the £ileName attribute,
while the corresponding bean name and method are indicated in the data attribute.

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Download files using Mojarra
Scales.

Multi-file upload using Mojarra Scales

In this recipe, you will see how to implement a JSF application for uploading multiple files.
To accomplish this task we will use a dedicated component developed under the Mojarra
Scales project.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2 classes
were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used Mojarra
Scales 1.3.2, which provides support for JSF 1.2. You can download this distribution from
http://kenai.com/projects/scales. The Mojarra Scales libraries (including
necessary dependencies) are in the book code bundle, under the /JSF_1libs/Mojarra
Scales - JSF 1.2 folder.

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

File Management

How to do it...

As we said earlier, we will upload multiple files using a dedicated component of Mojarra
Scales. This component is mapped by the multiFileUpload tag, which supports a set
of attributes that provide us with fine control over upload configuration. The following table
is an overview of these attributes (you can check a detailed list of attributes in the official
documentation—the following table is a snapshot of the original javadoc):

Name

Required

Description

id
type

binding

fileHolder

destinationUrl

fileFilter

maxFileSize

startDir

buttonText
height
width

rendered

disabled

No
No

No

Yes

Yes

No

No

No

No
No
No
No

No

The component unique identifier.

The manner in which to render the applet: ' full' or
'"button'.In "full' mode, the applet will be rendered
height pixels tall, by width pixels wide. In 'button'
mode, the applet will be rendered as a button height
pixels tall, by width pixels wide on the web page.

The ValueExpression linking this component to a
property in a backing bean.

The £ileHolder object is an object provided by a
backing bean that will hold the files uploaded. The
component will get the reference to the file holder and add
each file uploaded to the object. The storage mechanism
can be the default Map of InputStream instances,
keyed by file name, or more sophisticated, user-defined
mechanisms, such as database or filesystem storage.

Tells the component the page to which to navigate after
an upload.

A string listing the extensions to allow, as well as a filter
description (such as, Image Files | jpg,png, gif).
The maximum size per file in bytes.

The directory in which to start looking for files. Work
carefully with this attribute, since file system paths are far
from portable.

The text on the button if type issetto 'button’.
The height of the rendered applet.
The width of the rendered applet.

A flag indicating whether or not this component should
be rendered.

A flag indicating that this element must never receive
focus or be included in a subsequent submit. A value
of false causes no attribute to be rendered, while a
value of true causes the attribute to be rendered as
disabled="disabled".

~[ee]

Chapter 3

Now, based on the description of the attributes, we have configured the multiFileUpload
tag next:

<sc:multiFileUpload maxFileSize="10240"
fileHolder="#{uploadBean.fileHolder}"
destinationUrl="#{uploadBean.destination}"
width="500px" height="250px" type="full"/>

Now, let's focus on the fileHolder attribute. This attribute represents the object into which
uploaded files will be placed. Based on this information and on TestBean provided in the
Mojarra Scales examples, we can easily develop our UploadBean as follows:

package uploadbeanpkg;
import com.sun.mojarra.scales.model.FileHolder;
public class UploadBean

protected FileHolder fileHolder = new FileHolder() ;
protected String[] fileNames;

public FileHolder getFileHolder () {
return fileHolder;

public String getDestination()
//g0 to success.xhtml
return "success.xhtml";

public String[] getFileNames ()
this.fileNames = fileHolder.getFileNames () .toArray (new Stringl]{});
//fileHolder.clearFiles () ;

return fileNames;

}
}

The fileNames array holds up the names of uploaded files. Exploring this array we can
display a list of uploaded files like the following (this snipped is from the success.xhtml
page, which is specified by the destinationUrl attribute of multiFileUpload tag):

<h:dataTable value="#{uploadBean.fileNames}" var="item">
<h:column><h:outputText value="#{item}"/></h:column>
</h:dataTable>

7}

File Management

First, you have to keep in mind that behind this component stands a Java Applet. Second, the
fileHolder object implements the FileHolder interface, which takes the InputStream
for the file, and puts it into a Map indexed by filename (custom implementations of this
interface may write files in databases, JCR, another stream, and so on). After files have

been processed the component gets the dest inat ionUr1 value. In the case of a
ValueExpression, the backing bean can analyze the set of uploaded files and choose

an appropriate destination URL.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Upload files using Mojarra Scales.

File upload with Apache MyFaces

Tomahawk

In this recipe, you will see how to implement a JSF application for uploading files using a
dedicated component developed under the Apache MyFaces Tomahawk project.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2 classes
were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used Apache
MyFaces Tomahawk 1.1.9, which provides support for JSF 1.2. You can download this
distribution from http://myfaces.apache.org/tomahawk/index.html. The Apache
MyFaces Tomahawk libraries (including necessary dependencies) are in the book code
bundle, under the /JSF_1ibs/Apache Tomahawk - JSF 1.2 folder.

How to do it...

As we said earlier, this time we will implement an upload application using Apache MyFaces
Tomahawk. To be more exactly, we will use a dedicated tag, named inputFileUpload. The
tag class of this component is HtmlInputFileUploadTag and it creates a file-selection
widget in the rendered page, which allows a user to select a file for uploading to the server.
The following table—extracted from the official javadoc—describes the most used attributes
of this tag:

Chapter 3

Name Required Description

storage No This setting was intended to allow control over how the
contents of the file get temporarily stored during processing.

It allows three options:

"default": The file is handled in memory while the file
size is below uploadThresholdSize value, otherwise
it is handled on disk or file storage when decode occur (set
submitted value).

"memoxry": The file is loaded to memory when decode occur
(set submitted value). In other words, before setting the
uploaded file a submitted value it is loaded to memory.
Use with caution, because it could cause OutOfMemory
exceptions when the uploaded files are too big. "file": The
file is handled on disk or file storage.

value No An EL expression to which an UploadedFile object
will be assigned on postback if the user specified a file
to upload to the server.

required No A Boolean value that indicates whether an input value
is required.
binding No Identifies a backing bean property (of type UIComponent

or appropriate subclass) to bind to this component
instance. This value must be an EL expression.

Now, based on the description of the attributes, we have configured the following
inputFileUpload tag:

<h:panelGrid columns="3">
<h:outputLabel for="fileID" value="Choose a file to upload:" />
<t:inputFileUpload id="fileID"
value="#{uploadBean.uploadedFile}"
storage="file"
required="true" />
<h:message showSummary="true" showDetail="false" for="fileID"
style="color: red; text-decoration:overline"/>
<h:panelGroup />
<h:commandButton value="Submit" action="#{uploadBean.submit}" />
<h:message for="uploadForm" infoStyle="color: blue;"
errorStyle="color: red;" />
</h:panelGrid>

File Management

Now, let's focus on the value attribute. This attribute indicates a bean that is responsible for
the upload process (take a closer look on the UploadedFile object, since this is the "brain"

of our bean—it is pretty intuitive what is going on). We have implemented this bean as
shown next:

package uploadpkg;

import org.apache.myfaces.custom.fileupload.UploadedFile;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

public class UploadBean

private UploadedFile uploadedFile;
private String fileName;

public UploadedFile getUploadedFile() {
return uploadedFile;

public String getFileName () {
return fileName;

public void setUploadedFile (UploadedFile uploadedFile)
this.uploadedFile = uploadedFile;

public void submit () {

// Get information you from the uploaded file
System.out.println("Uploaded file name: "

+ uploadedFile.getName()) ;
System.out.println("Uploaded file type: "

+ uploadedFile.getContentType()) ;
System.out.println("Uploaded file size: "

+ uploadedFile.getSize() + " bytes");

try {
//Upload success
FacesContext.getCurrentInstance () .addMessage
("uploadForm", new FacesMessage
(FacesMessage .SEVERITY INFO,
"File upload was a total success!", null));

Chapter 3

} catch (Exception e) {

//Upload failed

FacesContext.getCurrentInstance () .addMessage
("uploadForm", new FacesMessage (
FacesMessage.SEVERITY ERROR,

"File upload was a failed.", null));
e.printStackTrace () ;

}

Note that this bean doesn't actually write the uploaded file on server. When the submit
method is called, it contains information about the uploaded file (name, type, size, and so on)
and access 1o its InputStream through the uploadedFile.getInputStream() method
(another example of exploiting this method can be seen in the recipe Extracting data from an
uploaded CVS file). Having the Input Stream and the uploaded filename, you can develop a
method as shown next:

public static void write(File file, InputStream input,
boolean append) throws IOException {
mkdirs (file) ;
BufferedOutputStream output = null;

try {
output = new BufferedOutputStream

new FileOutputStream(file, append)) ;
int data = -1;
while ((data = input.read()) != -1) {
output.write (data) ;
}
} finally {
close (input, file);
close (output, file);

}

The append argument of the write method indicates if the uploaded content will be
appended to the £ile file or if it should overwrite the existing one (if there is one).

i

File Management

There are no secrets behind the scenes. It looks like a classic upload component that creates
a file-selection widget in the rendered page, which allows a user to select a file for uploading
to the server. The upload process is controlled from a bean through an instance of the
org.apache.myfaces.custom.fileupload.UploadedFile class. This object
provides us enough information for controlling the uploaded file.

It is not required, but you can configure the Tomahawk ExtensionsFilter with one or more
of the following useful init-param settings, which you can put in the <filter> tag (this
should appear in the web . xm1 file):

<init-params>
<descriptions>
Set the size limit for uploaded files.
Format: 10 - 10 bytes
10k - 10 KB
l10m - 10 MB
g - 1 GB
</description>
<param-name>uploadMaxFileSize</param-name>
<param-value>100m</param-value>
</init-param>
<init-params>
<descriptions>
Set the threshold size - files below this limit are stored
in memory, files above this limit are stored on disk.
Format: 10 - 10 bytes
10k - 10 KB
l10m - 10 MB
1g - 1 GB
</descriptions>
<param-name>uploadThresholdSize</param-name>
<param-value>100k</param-value>
</init-param>
<init-params>
<descriptions>
Set the path where the intermediary files will be stored.
</descriptions>
<param-name>uploadRepositoryPath</param-name>
<param-value>/temp</param-values>
</init-param>

[

Chapter 3

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Files upload with Apache MyFaces
Tomahawk.

AJAX multi-file upload with RichFaces

In this recipe, you will see how to implement a JSF application for uploading multiple files with
AJAX support. To accomplish this task we will use a dedicated component developed under
the RichFaces project.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used RichFaces 3.3.3.BETA1, which provides support for JSF 2.0. You can download this
distribution from http://www.jboss.org/richfaces. The RichFaces libraries (including
necessary dependencies) are in the book code bundle, under the /JSF_libs/RichFaces
- JSF 2.0 folder.

How to do it...

As you know, RichFaces provides us with a set of amazing JSF-AJAX-based components.
Since the upload is an important aspect in a web application, RichFaces reserves a special
component for it named £ileUpload. This component is designed to perform Ajax-ed file
upload to the server. The main features of this component are:

» Progress bar shows the status of uploads

» Restriction on file type, file size, and number of files to be uploaded

» Multiple file upload support

» Embedded Flash module

» Possible to cancel the request

» One request for every upload

» Automatic uploads

» Supports standard JSF internationalization

» Highly customizable look and feel

» Disablement support

File Management

Now, let's see what the main attributes of this component are (this is cut from the official
javadoc of the rich: fileUpload component):

Name Required Description
acceptedTypes No Files type allowed to uploaded
allowFlash No Attribute that allows the component to use the

flash module that provides file upload functionality
[false, true, auto]. Default value is "false".

fileUploadListener No MethodExpression representing an action
listener method that will be notified after a file is
uploaded.

maxFilesQuantity No Defines max file count allowed for upload

(optional). Default value is "1".

immediateUpload No If this attribute is true files will be immediately
uploaded after they have been added to the list.
Default value is "false".

maxRequestSize No Defines max size in bytes of the uploaded files.

createTempFiles No Indicates whether the uploaded files are stored in
temporary files or available in the listener just as
byte[] data. It can be true or false.

Now, based on the description of the attributes, we have configured the £ileUpload tag next:

<rich:fileUpload fileUploadListener="#{fileUploadBean.listener}"
maxFilesQuantity="5"
immediateUpload="false"
acceptedTypes="png, bmp, jpg"
allowFlash="false">

</rich:fileUploads>

Next let's focus on the fileUploadListener attribute. This attribute indicates a bean
responsible for the upload process. The fileUploadedListener is called at the server side
after every file uploaded and used to save files from the temporary folder or RAM. We have
implemented this bean as shown next:

package uploadpkg;

import java.io.File;

import org.richfaces.event.UploadEvent;
import org.richfaces.model.UploadItem;

public class FileUploadBean {

public void listener (UploadEvent event){
UploadItem item = event.getUploadItem() ;

=

System.out.println("File : '" + item.getFileName ()
+ "' was uploaded") ;
if (item.isTempFile())
File file = item.getFile();
System.out.println ("Absolute Path : '" +
file.getAbsolutePath() + "'!");
//file.delete() ;
}else {
try {
byte[] bytes = item.getDatal() ;
int numberOfBytes = 256;

if (bytes.length > numberOfBytes) {
System.out.println("First " + numberOfBytes + "
bytes of uploaded file:");
System.out.println(new String(bytes, 0,
numberOfBytes)) ;
} else {
System.out.println("Uploaded file contents:");
System.out.println(new String(bytes, 0,
bytes.length)) ;
}
} catch (Exception e) {
// TODO: handle exception

}
}

There are three methods that access the uploaded files, as follows:

» getUploadItems: Returns a list of the uploaded files.

» getUploadItem: Returns the first element of the uploaded files list.
» isMultiUpload: Returns true if several files have been uploaded.

Chapter 3

[55]-

File Management

The collection of files uploaded is defined by the uploadData attribute, as shown next:
<rich:fileUpload uploadData="#{bean.data}"/>

The following screenshot is a potential output:

sk Add... |l Stop X Clear Al
~
9522 _chapters_2 PHG
Clear
Done
9522 _chapters_9 PHNG
Stop
uploading
9522 chapters_3 PNG Cancel
9522 chapters_10 PMNG Cancel v

The files to be uploaded are specified using the Add button. You can add files until
maxFilesQuantity is reached and only the acceptedTypes will be added to the upload
list. When the list is ready to be submitted, you should press the Upload button, and you will
see how each upload is monitored by a progress bar. After upload, the list can be cleared by
pressing the Clear link, next to each file in the list, or by pressing the Clear All button. The
uploaded files can be found later in a temporary folder or in RAM.

The uploaded files can be stored in a temporary folder or in RAM:

» in the temporary folder (depends on operating system)—if the value of the
createTempFile parameter in Ajax47jsf filter (in web.xml) section is true
(by default):
<init-params>
<param-name>createTempFiles</param-name>
<param-value>true</param-value>
</init-param>

Chapter 3

» in the RAM—if the value of the createTempFile parameter in Ajax4jsf filter
section is false. This is a better way for storing small-sized files.

On file size, use the maxRequestSize parameter (value in bytes) inside the Ajax4jst filter
section in web . xml:

<init-param>
<param-name>maxRequestSize</param-name>
<param-value>1000000</param-value>
</init-param>

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: AJAX multi file upload with
RichFaces.

Downloading with PrimeFaces 2.0

Since this is our first recipe based on PrimeFaces, let's say that the definition of PrimeFaces is:

Its an open source component suite for Java Server Faces featuring 70+ Ajax
powered rich set of JSF components. Additional TouchFaces module features a Ul
kit for developing mobile web applications.

The main features of PrimeFaces are as follows (more details at the PrimeFaces home page
http://www.primefaces.org/ and show case page—http://www.primefaces.

org:8080/prime-showcase/ui/home.jsf)

» Rich set of components (HtmlEditor, Dialog, AutoComplete, Charts, and many more)
» Built-in AJAX with Lightweight Partial Page Rendering
» Native AJAX Push/Comet support

» Mobile Ul kit to create mobile web applications for handheld devices with
webkit-based browsers (iPhone, Palm, Android Phones, Nokia S60, and more)

» Compatible with other component libraries
» Unobstrusive JavaScript
» Extensive documentation

Now, in this recipe you will see how to use the £ileDownload component of
PrimeFaces 2.0.

o7}

File Management

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used PrimeFaces 2.0, which provide support for JSF 2.0. You can download this distribution
from http://www.primefaces.org/. The PrimeFaces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF_libs/PrimeFaces - JSF 2.0
folder.

How to do it...

The PrimeFaces £ileDownload component is very easy to use. Practically, we need to
write a JSF page and a managed bean to obtain the desired result. The JSF page exploit
the £fileDownload component as shown next:

<h:form>
<h:outputText value="Download our file:"/>
<p:commandButton value="Download" async="false">
<p:fileDownload value="#{downloadBean.file}" />
</p:commandButtons>
</h:form>

The p: commandButton component is a PrimeFaces component that
extends the standard h: commandButton with AJAX, partial processing, and
. confirmation features. In older versions of PrimeFaces the async attribute of
% this component is known as ajax. Its value is still a Boolean, and it tells JSF
s whether the action is AJAX-ified or not. You can use an h: commandButton
instead of the p : commandBut ton with no problem. The complete
PrimeFaces tags reference can be found at http://primefaces.prime.
com.tr/docs/tag/.

Next, the DownloadBean (see the reference to it in the value attribute of the
p:fileDownload component), provides access to the downloadable resources through
a StreamedContent, which is a PrimeFaces class used to stream dynamic contents like
inputstream to the client. The source of our bean is listed next:

public class DownloadBean {
private StreamedContent file;

public DownloadBean ()

5]

Chapter 3

ExternalContext extContext =
FacesContext.getCurrentInstance () .getExternalContext () ;

try {
file = new DefaultStreamedContent (new FileInputStream(

extContext.getRealPath("/download/primefaces.pdf")),
"application/pdf", "primefaces.pdf") ;
} catch (IOException e) {
e.printStackTrace () ;

}

public StreamedContent getFile() {
return file;

public void setFile(StreamedContent file) {
this.file = file;

}

The PrimeFaces page dedicated to this component can be accessed at
http://www.primefaces.org:8080/prime-showcase/ui/fileDownload. jst.

When the user initiates the download action (by pressing a button, a link, and so on) the
PrimeFaces streamedContent class accesses the resource to be downloaded. Actually, the
StreamedContent is an interface implemented by the DefaultStreamedContent class,
which is obviously the default implementation of this interface. More details about this class
are available at http://primefaces.prime.com.tr/docs/api/.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Download with PrimeFaces 2 0.

Personally, | recommend you to check the PrimeFaces Show Case page at
http://www.primefaces.org:8080/prime-showcase/ui/home. jsft,
if you want to see some great components ready to be used with JSF 2.0.

File Management

PPR multi-file upload with PrimeFaces 2.0

In this recipe you will see how to use a great PrimeFaces 2.0 component for multi-file upload
with PPR support. Notice that PrimeFaces offers four types of upload as follows:

» Single Upload

» Multiple File Upload

» Auto Upload

» PPR Integration (presented in this recipe)

PPR stands for Partial Page Rendering, which means that after a file is
uploaded you can update any JSF component. Our example will update a
g growl notifier, which is another great PrimeFaces component.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0

classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
PrimeFaces 2.0, which provides support for JSF 2.0. You can download this distribution

from http://www.primefaces.org/. The PrimeFaces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF _1ibs/PrimeFaces - JSF 2.0
folder.

How to do it...

PrimeFaces offers these four upload types through a single component named
p:fileUpload, and configured through its attributes as follows:

» Forasingle upload the multiple attribute is set to false.

» For multiple uploads the multiple attribute is set to true.

» For auto upload the auto attribute is set to true.

» For PPR integration effect, the update attribute should indicate the id of the JSF
component to be updated after a file has been uploaded successfully or not.

100

Chapter 3

Now, we wrote a JSF form that integrates the £ileUpload component with the following
characteristics:

» Multiple file-upload - multiple attribute set to true

» Limit upload size - sizeLimit attribute set to the desired limit in bytes

» Upload only pictures - extensions listed in the allowTypes attribute

» Update a growl component - the id was specified in the update attribute

Now, the p: fileUpload complete tag reference is available at http://primefaces.
prime.com.tr/docs/tag/. You will be pleased to find out that you can customize this
component exactly as you want.

Now, let's see code of JSF page for our upload:

<h:form enctype="multipart/form-data" prependId="false">
<p:growl id="messages" showSummary="true" showDetail="true" />
<p:fileUpload fileUploadListener="#{uploadBean.handleFileUpload}"
update="messages" sizeLimit="1073741824"
multiple="true" label="choose"
allowTypes="*.jpg;*.png;*.gif;"
description="Images"/>
</h:form>

The PrimeFaces p:growl component "brings the Mac's growl widget to JSF

with the ability of displaying FacesMessages. Growl simply replaces h:
T~ messages component.”

Now, the UploadBean implements the hadleFileUpload method like this:
public class UploadBean

private static final int BUFFER SIZE = 6124;

/** Creates a new instance of UploadBean */
public UploadBean()

}

public void handleFileUpload (FileUploadEvent event) {

ExternalContext extContext = FacesContext.getCurrentInstance() .
getExternalContext () ;

File result = new File (extContext.getRealPath

("//WEB-INF//upload") + "//" + event.getFile().getFileName()) ;

File Management

try {
FileOutputStream fileOutputStream = new

FileOutputStream(result) ;
byte[] buffer = new byte[BUFFER SIZE];

int bulk;
InputStream inputStream = event.getFile () .getInputstream() ;
while (true) {

bulk = inputStream.read (buffer) ;

if (bulk < 0) {

break;

}

fileOutputStream.write (buffer, 0, bulk);

fileOutputStream.flush() ;

fileOutputStream.close() ;
inputStream.close() ;

FacesMessage msg = new FacesMessage ("Succesful",
event .getFile() .getFileName() + " is uploaded.");
FacesContext.getCurrentInstance () .addMessage (null, msg) ;

} catch (IOException e) {
e.printStackTrace () ;

FacesMessage error = new FacesMessage ("The files were
not uploaded!") ;
FacesContext.getCurrentInstance () .addMessage (null, error) ;

}

The upload example is ready, but we still need to add some configuration in the web . xm1
descriptor (these configurations do not alter the PrimeFaces default configurations).
These are specific to upload process and they are listed next:

» Setthe javax.faces.STATE SAVING METHOD context param to server:
<context-param>

<param-name>Jjavax.faces.STATE SAVING METHOD</param-names
<param—va1ue>server</param—va1ue>

</context-param>

102

Chapter 3

» Optionally, you may specify a temporary folder for storing the uploaded files, like this:
<init-params>

<param-name>uploadDirectory</param-name>
<param-value>/tmp/fileUpload</param-value>
</init-param>

» Addthe PrimeFaces FileUpload Filter as a filter for the Faces Servlet (keep in

mind that this should be the first filter in web . xm1, if you have more):
<filters>

<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>
org.primefaces.webapp.filter.FileUploadFilter
</filter-class>
<init-params>
<param-name>thresholdSize</param-name>
<param-value>51200</param-values>
</init-param>
</filter>
<filter-mappings>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<servlet-names>Faces Servlet</servlet-names>

</filter-mapping>

Now, if you test our upload you will see something like in the following screenshot:

=elect the files to upload:

Succesful
choose
s IJ|:|||:|.E||:|E|:|.
9522_chapter5_3.PNG (18.29KB) - Completed B8
9522 chapterS_4.PNG (66.06KB) x| is uploaded.

File Management

As you can see the PrimeFaces upload is based on a filter and on a listener. The filter
intercepts requests in front of the Faces Servlet and detects the upload requests, while the
listener requires an FileUploadEvent object, which extends the javax.faces.event.
FacesEvent. The upload process is configured in the JSF page through the p:uploadFile
component, and it is controlled by the developer in the listener implemented in a managed
bean, like you just saw.

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: PPR_multi file upload with
PrimeFaces 2 0.

Extracting data from an uploaded CSV file

As you probably know, CSV (Comma-Separated Value) files are text files that stores values
separated by commas. Usually a CSV file has a header and sets of values that are written
one set per line. Each line in the CSV file corresponds to a row in the table. For example let's
consider the following CSV content, example. csv:

Name, Age,E-mail

Mike, 27, mike@yahoo.com
Susan, 29, susan@gmail .com
Tom, 20, tom@yahoo.com
Elly,32,elly@gmail.com

In this recipe, we will upload this file to the server and we will extract the data into
an ArrayList.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2 classes
were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used Apache
MyFaces Tomahawk 1.1.9, which provides support for JSF 1.2. You can download this
distribution from http://myfaces.apache.org/tomahawk/index.html. The Apache
MyFaces Tomahawk libraries (including necessary dependencies) are in the book code
bundle, under the /JSF_1ibs/Apache Tomahawk - JSF 1.2 folder.

104

Chapter 3

How to do it...

First, you must know that for uploading the CSV file you can use any of the previous recipes
presented. We decide to use the upload solution from recipe File upload with Apache
MyFaces Tomahawk. The snipped code is shown next:

<h:panelGrid columns="3">
<h:outputLabel for="fileID" value="Choose a file to upload:" />
<t:inputFileUpload id="fileID"
value="#{uploadBean.uploadedFile}"
storage="file"
required="true" />
<h:message showSummary="true" showDetail="false" for="fileID"
style="color: red; text-decoration:overline"/>
<h:panelGroup />
<h:commandButton value="Submit" action="#{uploadBean.submit}" />
<h:message for="uploadForm" infoStyle="color: blue;"
errorStyle="color: red;" />
</h:panelGrid>

Using this solution, you must have access to the uploaded file stream by calling the
uploadedFile.getInputStream() method in the UploadBean bean. Before
processing this stream, we define a POJO class that maps the name, age, and email
fields as shown next:

package uploadpkg;
public class csvObject {

private String name;
private byte age;
private String email;

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

public byte getAge() {
return age;

}

public void setAge (byte age) {
this.age = age;

File Management

}

public String getEmail() {
return email;

}

public void setEmail (String email) {
this.email = email;

}
Next, we write the UploadBean bean as shown next:

package uploadpkg;

import org.apache.myfaces.custom.fileupload.UploadedFile;
import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import java.io.InputStream;

import java.io.ByteArrayOutputStream;

import java.util.StringTokenizer;

import java.util.List;

import java.util.ArrayList;

public class UploadBean
private UploadedFile uploadedFile;
private String fileName;
private List<csvObject> csvs = new ArrayList<csvObjects>();
public List<csvObject> getCsvs() {

return csvs;

public void setCsvs(List<csvObject> csvs)
this.csvs = csvs;

public UploadedFile getUploadedFile()
return uploadedFile;

public String getFileName () {
return fileName;

106

Chapter 3

public void setUploadedFile (UploadedFile uploadedFile) {
this.uploadedFile = uploadedFile;

public void submit ()

// Get information you from the uploaded file
System.out.println("Uploaded file name: "

+ uploadedFile.getName()) ;
System.out.println("Uploaded file type: "

+ uploadedFile.getContentType()) ;
System.out.println("Uploaded file size: "

+ uploadedFile.getSize() + " bytes");

try {
//get the uploaded file
InputStream inputStream = uploadedFile.getInputStream() ;
ByteArrayOutputStream byteArrayOutputStream = new
ByteArrayOutputStream() ;

//define the byte size

byte bufferZone[] = new byte[1024];

int read = 0;

//read CSV

while((read = inputStream.read(bufferZone, 0,
(int)uploadedFile.getSize())) != -1)

byteArrayOutputStream.write (bufferZone, 0, read);

}

//assign it to string

String cvs = new String(byteArrayOutputStream.toByteArray()) ;

StringTokenizer stringTokenizer 1 = new
StringTokenizer (cvs, "\r") ;

stringTokenizer 1.nextToken() ;

while (stringTokenizer 1.hasMoreTokens ()) {
StringTokenizer stringTokenizer 2 = new
StringTokenizer (stringTokenizer 1.nextToken(),",");
csvObject csvobj = new csvObject () ;

csvobj.setName (stringTokenizer 2.nextToken());
csvobj.setAge (Byte.valueOf (stringTokenizer 2.nextToken())) ;

File Management

csvobj.setEmail (stringTokenizer 2.nextToken()) ;

csvs.add (csvobj) ;

this.setCsvs (csvs) ;

//Upload success

FacesContext.getCurrentInstance () .addMessage ("uploadForm", new FacesMe
ssage (FacesMessage.SEVERITY INFO, "File upload was a total success!",
null)) ;

} catch (Exception e) {

//Upload failed
FacesContext.getCurrentInstance () .addMessage ("uploadForm", new
FacesMessage (FacesMessage.SEVERITY ERROR, "File upload was a
failed.", null));

e.printStackTrace () ;

}

The uploaded file InputStream, passes through these steps:
1. First, we assign an InputStream object to the
uploadedFile.getInputStream() method
2. The stream content is transferred into a ByteArrayOutputStream object.
We convert the ByteArrayOutputStream into a String.

4. We use a StringTokenizer, to get each row from this String. For this we use the
"\r" as separator.

5. We apply another StringTokenizer to get values from each row returned by the
previous StringTokenizer. Now, the separatoris ", ".

We populate an instance of the csvObject POJO with the extracted values.
7. We add each instance into an ArrayList<csvObjects.

108

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Extract data from an uploaded CSV_

file.

Chapter 3

Exporting data to Excel, PDF, CVS, and XML

In this recipe, we will use the Apache MyFaces Tomahawk Sandbox to export dataTable
content to an Excel or PDF document. Also, will provide a short introduction to exporting
dataTable content to Excel, PDF, XML, and CSV with PrimeFaces 2.0.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2 classes
were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used Apache
MyFaces Tomahawk Sandbox 1.1.9, which provides support for JSF 1.2. You can download
this distribution from http://myfaces.apache.org/sandbox/index.html. The Apache
MyFaces Tomahawk Sandbox libraries (including necessary dependencies) are in the book

code bundle, under the /JSF_1ibs/Apache Tomahawk Sandbox — JSF 1.2 folder.

How to do it...

For exporting the dataTable content to an Excel/PDF document we will use a
dedicated component of Tomahawk Sandbox. This component is mapped by the

exporterActionListener tag, which supports a set of attributes that provide us
with fine control over export configuration. The following table is an overview of these

attributes (you can check a detailed list of attributes in the Sandbox documentation—the
following table is a snapshot of original javadoc):

Name Required Description

filename No Indicates the name of the Excel/PDF file to which the
dataTable content will be exported.

fileType No Can be XLS or PDF. Indicates the type of export.

for No Indicates the id value of the dataTable to be exported.

File Management

Now, based on the description of the attributes, we have configured next
exporterActionListener tag

<h:form>
<t:dataTable id="my cars" var="car" value="#{carsBean.carItems}"
preserveDataModel="false">
<h:column>
<f:facet name="header">
<h:outputText value="Car Number" />
</f:facet>
<h:outputText value="#{car.carNumber}" />
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Car Name" />
</f:facet>
<h:outputText value="#{car.carName}" />
</h:column>
</t:dataTable>

<h:commandButton value="Export Excel">
<s:exporterActionListener filename="output"
fileType="XLS" for="my cars">
</s:exporterActionlListeners>
</h:commandButtons>
<h:commandButton value="Export PDF">
<s:exporterActionListener filename="output"
fileType="PDF" for="my cars">
</s:exporterActionlListeners>
</h:commandButtons>
</h:form>

The CarBean and CarsBean beans are not really relevant here. Anyway, they can be seen in
the complete code of this recipe.

In case something goes wrong, it is good to know that setting HTTP response header
parameters can be the solution. Try to set them like this: Pragma to public,
Cache-Control to max-age=0.

Chapter 3

There's more...

Even if we don't present it here, is important to make you aware of the PrimeFaces 2.0
p:dataExporter component. If you want a great JSF 2.0 component for exporting your
data to Excel, PDF, CSV, and XML then I'm sure that this link will be very useful to you:
http://www.primefaces.org:8080/prime-showcase/ui/exporter.jsf.

Notice that you can configure p: dataExporter for three different type of type of export:

» Excel, PDF, CSV, and XML
» Excluding Columns

» Customized Documents

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Extport data_to Excel and PDF.

Security

In this chapter, we will cover:

» Working with the JSF Security project
» Using the JSF Security project without JAAS Roles
» Using secured managed beans with JSF Security

» Using Acegi/Spring security in JSF applications

Introduction

Security—there is only one reason to use it and many other reasons to not. In other words,
protect your websites against malicious attacks, but get a bigger, slower, and more expensive
final product.

In this chapter, you will see a series of four recipes for increasing the security of your JSF
applications. You will see how to use the JSF Security project, how to manage JAAS roles and
the JSF Security layer, and how to use Acegi/Spring security for writing a login application.

Working with the JSF Security project

JSF Security is a set of security extensions for JavaServer Faces to solve common access
control problems. JSF Security acts like a security layer by extending the JSF EL (Expression
Language). Basically, it works in a separate scope, named securityScope, and accesses
the security artifacts through EL language. In this recipe, you will see how to use the EL
extensions provided by the JSF Security project.

Security

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
JSF Security 1.0, which provides support for JSF 2.0. You can download this distribution from
http://sourceforge.net/projects/jsf-security/files/jsf-security/. The
jsf-security libraries (including necessary dependencies) are in the book code bundle, under
the /JSF libs/jsf-security - JSF 2.0 folder. The JSF Security project is available in ZIP
format. All you have to do is to add the jsf-security.jar archive to your JSF projects.

How to do it...

Before developing an effective application let's see the available EL expressions:

Expression Effect

#{securityScope.authType} The authentication type being used; with
container security this will be BASIC,
FORM, DIGEST, or JAAS may return
custom strings.

#{securityScope.remoteUser} The user name of the authenticated user.

#{securityScope.securityEnabled} If security is currently enabled this EL
returns true. It returns false if no
security is installed or the user is not yet
authenticated.

#{securityScope.userInRole['role_ Thisreturns true if the useris in at least

1, role 2, .. role n'l} one of the roles. It returns false if the
user is not in any of the roles or if the user
is not currently authenticated.

#{securityScope. This returns true if the user is in all of
userInAllRoles['role_1, role_ 2, .. theroles. It returns false if the useris
role n'l} not in all of the roles, or if the user is not

currently authenticated.

Next, we will write a JSF page that will put the previous expressions in a single example.
Assuming that we already have a role named, JSP-ROLE, our page looks as shown next:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<f:view>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<title>JSF-SECURITY</title>
</heads>
<body>
<h:form>
<h:panelGroup rendered="#{!securityScope.securityEnabled}">
<h:outputText value="Security is not enabled..."/>
</h:panelGroup>
<h:panelGrid columns="2"
rendered="#{securityScope.securityEnabled}">
<h:outputText value="Remote User"/>
<h:outputText value="#{securityScope.remoteUser}"/>
<h:outputText value="Auth Type"/>
<h:outputText value="#{securityScope.authType}"/>
<h:outputText value="User in JSP-ROLE "/>
<h:outputText value="#{securityScope.userInRole['JSP-ROLE'
<h:outputText value="User in all of JSP-ROLE "/>
<h:outputText value="#{securityScope.userInAllRoles['JSP
-ROLE
</h:panelGrid>
</h:form>
</body>
</html>
</f:view>

The jsf _security.jar contains a faces-config.xml file in its META- INF

Chapter 4

1}v/>

l]}ll/>

directory. This defines custom <variable-resolvers> and <property-resolvers>

values, as shown next:

<applications>

<property-resolvers
com.groundside.jsf.securityresolver.SecurityPropertyResolver
</property-resolvers>
<variable-resolvers
com.groundside.jsf.securityresolver.SecurityVariableResolver

</variable-resolvers

</application>

Security

The JSP-ROLE was configured under Sun GlassFish Enterprise Server V3 Prelude container,
but you can set it on any other container using the right knowledge. For more details of how
to configure the JSP-ROLE under GlassFish you can try http: //www. informit.com/
authors/bio.aspx?a=3064cf95-43af-48f6-9303-8d2fdd7£3706.

The output of this example is in the following screenshot (we set the BASIC authentication
type in the web . xm1 descriptor):

=

) JSF-SECURITY - Mozilla Firefox

Figier ~Editare Wizuglizare Istoric Semne decarte Unele

Autentificarea este necesara EJ

Ajutor
g http:filocalhost:3080 cere un utilizator si o parold, Saitul spune file®

T c {m? [,J http:filocalhost:s080)
Mume utilizator: | Timmy Tom
Parcls: | esssses Remote Usger TirntmyTom
Auth Type BASIC

User in JSP-RCLE true
Tserin all of TSP-ROLE true

JSP-ROLE

The JSF Security layer interacts with the default security layers and provides EL extensions for
managing common access control problems. The extensions are completely pluggable and
can adapt to more or less any mechanism that is used for authentication and authorization
that the programmer can reach from the FacesContext/Request/Session.

Notice that, by default JSF Security hooks into J2EE container-managed security using the
J2EEContainerSecurityAttributeResolver. It is possible to plug in an alternative
implementation here by a simple configuration change.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Working with jsf security project.

Using the JSF Security project without

JAAS Roles

In the default implementation of the JSF Security project (see the recipe Working with

the JSF Security project), the application uses a JAAS implementation for the authentication
and authorization. In this recipe, we will modify the JSF Security project to use roles stored in a
database, and also those that are added to the Ht tpSession context depending on choices
made by the user in our application.

Chapter 4

Getting ready

Refer to the previous recipe.

How to do it...

After you have downloaded the JSF Security project, follow the given steps:

1.

Open the workspace in the directory $ {HOME }\jsf-security\ide\jdeveloper
(use your favorite IDE).

Copy the com.groundside.jsf.securityresolver.adapter.
J2EEContainerSecurityAttributeResolver class in the project core.
Rename this copy as DatabaseSecurityAttributeResolver.

Modify the code as you see next:

package com.groundside.jsf.securityresolver.adapter;

import java.util.Iterator;
import java.util.List;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;

* Implementation of the security resolver that hooks into
* J2EE Container Managed Security

* @author Duncan Mills

* $Id: J2EEContainerSecurityAttributeResolver.java,v 1.4
* 2005/10/04 00:49:09 drmills Exp $

*/

/** This modified version provide roles stored in the database,
* and the roles are added to the HttpSession context based on
*user decision.

*/
public class DatabaseSecurityAttributeResolver extends
AbstractAttributeResolver

public DatabaseSecurityAttributeResolver () ({

}

/**

* Indicate the list of supported functions

Security

* @param function to check for support as defined by a
* constant in the <code>AttributeResolver</code>
* @return true if this implementation supports this function
*/
public boolean isSupported(int function) {
boolean supported = false;

switch (function)
case SECURED: ({
supported = true;
}
case AUTH TYPE: ({
supported = true;
}
break;

case PRINCIPAL NAME: {
supported = true;
}
break;
case USER_IN ROLE: {
supported = true;
}
break;
case USER_IN ALL ROLES: {
supported = true;
}
break;
default: {
supported=£false;

}

break;

}

return supported;

/**
* Return a flag indicating if security is currently switched
* on @param ctx FacesContext
*/
public boolean isSecurityEnabled(FacesContext ctx)
return (ctx.getExternalContext ().getRemoteUser () !=null) ;

Chapter 4

/**
* Get the remote user from the Faces External Context
* @param ctx FacesContext
* @return user name string
*/
public String getPrincipalName (FacesContext ctx)
return ctx.getExternalContext () .getRemoteUser () ;

/**
* Return the authorization type
* @param ctx FacesContext
*/
public String getAuthenticationType (FacesContext ctx) {
return ctx.getExternalContext () .getAuthType () ;

public boolean isUserInAllRoles (FacesContext ctx, List
roleDefinitions) ({

return matchUserRoles (ctx,roleDefinitions, true) ;

public boolean isUserInRole (FacesContext ctx, List
roleDefinitions) {

return matchUserRoles (ctx,roleDefinitions, false) ;

/*
* Internal function to check if the current user is in one
* or all roles listed
*/
private boolean matchUserRoles (FacesContext fctx, List
roleDefinitions, boolean inclusive) {
boolean authOk = false;
ExternalContext ctx = fctx.getExternalContext () ;

Iterator iter = roleDefinitions.iterator () ;

List myRoles = (List) ctx.getSessionMap () .get ("myRoles") ;

Security

while (iter.hasNext())

{

String role = (String) iter.next();
authOk = myRoles.contains (role) ;
if ((inclusive && !authOk) || (!inclusive && authOk))

{

break;

}
}

return authOk;

}

4. Open com.groundside.jsf.securityresolver.Constants source code and
modify the DEFAULT SECURITY RESOLVER constant as following:
/**
* The default resolver class
*/
public static final String DEFAULT SECURITY RESOLVER

= "com.groundside.jsf.securityresolver.adapter.
DatabaseSecurityAttributeResolver";

5. Next, repackage the project to get a new jsf-security. jar archive. Now
the roles are added as an attribute to the Ht tpSession context (attribute is
named myRoles).

This time, roles are stored in a database, and they are added to the HttpSession context
depending on choices made by the user in our application.

Security constraints should be placed in your web . xm1.

120

Chapter 4

Using secured managed beans with

JSF Security

As you know, J2EE allows you to protect web pages and other web resources such as files,
directories, and servlets through declarative security. This approach won't provide protection
to local beans. In this recipe, you will see how to extend JSF security configuration beyond web
pages using managed bean methods. For this we will use the classes provided by Vinicius
Sengeron http://blogs.sun.com/enterprisetechtips/entry/improving jsf
security configuration with.

Getting ready

Vinicius Senger has provided a sample application at http://java.sun.com/mailers/
techtips/enterprise/2007/download/ttsept2007FacesSec. zip. This application
contains all the classes necessary to secure local beans. Download this ZIP file and extract it
to your favored location. You can try it with JSF 1.2 and 2.0.

How to do it...

Next, we will analyze Vinicius's solution and see how to use it. The two most important classes
are the following (the sources of these classes are in the /src folder):

br.com.globalcode.jsf.security.SecureActionListener: This intercepts calls to
managed bean methods and checks for annotated method permissions.

br.com.globalcode.jsf.security.SecureNavigationHandler: This forwards the
user to a requested view if the user has the required credentials and roles.

These classes should be activated in your JSF descriptor, faces-config.xml, as shown:

<applications>
<action-listeners
br.com.globalcode.jsf.security.SecureActionListener
</action-listeners
<navigation-handlers
br.com.globalcode.jsf.security.SecureNavigationHandler
</navigation-handlers>
</application>

Security

In addition, we can set up user object providers. You can choose between
ContainerUserProvider and SessionUserProvider.

e (ContainerUserProvider

The following is the context parameter to set up the default container user provider
(since containers already provide declarative security, this configuration is all that you need):

<context-param>
<param-name>jsf-security-user-provider</param-name>
<param-value>
br.com.globalcode.jsf.security.usersession.ContainerUserProvider
</param-value>
</context-param>

ContainerUserProvider references the ContainerUser class. This class is available in
the \src\java\br\com\globalcode\jsf\security\container folder.

e SessionUserProvider

In the case of a custom security authentication and authorization process, you can provide a
user class adapter that implements the given user interface and bind a user object instance
into the HTTP session with the key name user.

To begin with you have to create a User interface implementation. This interface provides
two methods, named getLoginName and isUserInRole (in the package model there is a
class MyUser representing a User implementation). Next you have to provide page login with
a navigation case called 1ogin (this can be seen in the 1ogin. jsp page in the /web folder).
And you must write a login managed bean that checks the user credentials and puts (or not)
the user object into the HTTP session (in the \src\java\controller folder you can find
the LoginMB example). Finally, you have to add a context parameter to the web . xm1 file to
set up the user provider to look up the HTTP session for the user object:

<context-param>
<param-name>Jjsf-security-user-provider</param-name>
<param-value>
br.com.globalcode.jsf.security.usersession.SessionUserProvider
</param-value>
</context-param>

Vinicius has built an example of a JSF page that contains a view button and a Delete button
(see the index . jsp page in the /web folder) and when the user press the Delete button
then the CustomerCRUD. delete method called. This method includes an annotation that
declares a required role for the method:

@SecurityRoles ("customer-admin-adv, root")
public String delete() ({
System.out.println("I'm a protected method!") ;
return "delete-customer";

122

Chapter 4

The complete source code of CustomerCRUD is available in the
\src\java\controller folder.

You can test the sample application using the NetBeans IDE, since the
s application is packaged as a NetBeans project.

See also

The official page of thistipisat http://blogs.sun.com/enterprisetechtips/entry/
improving jsf security configuration with. Thanks to Vinicius Senger for sharing
this tip with us.

Using Acegi/Spring security in JSF

applications

In this recipe, we will use Spring security support to develop a JSF login application.
The big surprise is that we will not use the classical approach, which is very complicated
and problematic.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
Acegi/Spring libraries, which provide support for JSF 2.0. The necessary libraries are in the
book code bundle, under the /JSF 1ibs/Acegi-Spring - JSF 2.0 folder.

How to do it...

The key of this recipe consists in using an Ht t pRequestDispatcher to provide support for
JSF and Spring Security to function properly (JSF first, Spring after it). The bean that will map
login credentials and apply the Ht tpRequestDispatcher is listed next:

package packt.spring.login;
import java.io.IOException;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;

Security

import javax.servlet.ServletResponse;

import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;

@Component
@Scope ("request")
public class SpringLoginBean

{

124

private String user;

private String password;

private boolean storeUser = false;
private boolean logIn = false;

public String getUser()

{
}

return this.user;

public void setUser (final String user)

{
}

this.user = user;

public String getPassword ()

{
}

return this.password;

public void setPassword(final String password)

{
}

this.password = password;

public boolean isStoreUser ()

{
}

return this.storeUser;

public void setStoreUser (final boolean storeUser)

{
}
public boolean isLogIn()

{
}

this.storeUser = storeUser;

return this.logIn;

public void setLogIn(final boolean logIn)

{

Chapter 4

this.logIn = logIn;

}

public String loginAction() throws IOException, ServletException
{
ExternalContext context =
FacesContext.getCurrentInstance () .getExternalContext () ;
RequestDispatcher dispatcher = ((ServletRequest)
context.getRequest ()) .getRequestDispatcher (
"/j_spring security check") ;
dispatcher.forward((ServletRequest) context.getRequest (),
(ServletResponse) context.getResponse()) ;
FacesContext.getCurrentInstance () .responseComplete () ;

return null;

s

If you want you can also add a method to deal with bad credentials.

Next, configure the Spring Security Filter Chain in web . xm1 to process Servliet FORWARD as
well as REQUEST.

<!-- Filter Config -->
<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

<!-- Filter Mappings -->

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-patterns
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatchers>

</filter-mapping>

Security

The Spring Security configuration is accomplished in the application security-
config.xml file, listed next (the login-processing-url valueis /j spring
security check, which is the location where the Ht tpRequestDispatcher will
make the forward):

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans

xmlns="http://www.springframework.org/schema/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/
spring-security-2.0.1.xsd">
<global-method-security

secured-annotations="enabled">
</global-method-securitys>

<http auto-config="true"
access-denied-page="/forbidden.jsp">

<intercept-url
pattern="/faces/secured**"
access="ROLE_ADMIN,ROLE GUEST" />
<intercept-url
pattern="/**"
access="IS AUTHENTICATED ANONYMOUSLY" />

<form-login
login-processing-url="/j spring security check"
login-page="/faces/login.jsp"
default-target-url="/"
authentication-failure-url="/faces/login.jsp" />
<logout
logout-url="/logout*"
logout-success-url="/" />

</http>

<!--

126

User:admin Password:admin
User:guest Password:guest

Chapter 4

<authentication-providers
<password-encoder hash="md5"/>
<user-services>
<user name="admin"
password="21232f297a57a5a743894a0e4a801fc3"
authorities="ROLE ADMIN,ROLE GUEST" />
<user name="guest"
password="084e0343a0486££f05530df6c705c8bb4"
authorities="ROLE_GUEST" />
</user-services>
</authentication-provider>

</beans:beanss>

Finally, the 1ogin. jsp page is in accordance with Spring Security's parameter naming
specification. The submitted info is passed to the Spring Security Filter Chain (do not modify
the j_username, j password, spring security remember me IDs).

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<f:views
<h:form id="loginForm" prependId="false">
<h:panelGrid columns="4" footerClass="subtitle"
headerClass="subtitlebig" styleClass="medium"
columnClasses="subtitle, medium">
<f:facet name="header">
<h:outputText value="Login page:"/>
</f:facet>
<label for="j username">
<h:outputText value="User:" />
</label>
<h:inputText id="j username" required="true" />

<label for="j password">
<h:outputText value="Password:" />
</label>
<h:inputSecret id="j password" required="true" />

Security

<label for=" spring security remember me">
<h:outputText value="Remember me" />
</labels>
<h:selectBooleanCheckbox
id="_ spring security remember me" />
<h:outputText value=" " />

<h:commandButton type="submit" id="login" action="#{spring
LoginBean.loginAction}" value="Login" />
</h:panelGrid>
</h:form>

<h:messages />
</f:view>

The login page will look like the following screenshot (when the secured page is forbidden you
will be forwarded to this page):

Login page:
User: | |

Fassword: | |

Eemember me []

Well, as you can see the idea is pretty simple. Instead of the hard work that is imposed by
the classical approach, you can use a simple forward to a servlet. You don't even need a
JSF backing bean, because the values only need to be intercepted by Spring Security on
FORWARD. This is not a problem if you still want to take advantage of JSF converters

and validations.

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Acegi_Spring security in JSF
applications

128

Custom Components

In this chapter, we will cover:

» Building a "HelloWorld" JSF custom component

» Renderers/validators for custom components

» Adding AJAX support to JSF custom components
» Using Proxy ID library for dynamic IPs

» Using JSF ID Generator

» Accessing resources from custom components

» Custom components with Archetypes for Maven
» RichFaces CDK and custom components

» Composite custom components with zero Java

» Creating a login composite component in JSF 2.0
» Building a spinner composite component in JSF 2.0

» Mixing JSF and Dojo widget for custom components

Introduction

By default, JSF comes with a set of components divided into different categories. Depending
on their usage, we have input components, output components, controls, buttons, menus, and
so on. Every time we write a JSF page, we are using these components, such as HTML tags
and so on. This happens because, in a JSF model, components are shipped with JSF and they
have JSP bindings and generate HTML renderings.

Custom Components

As you will see over the course of the chapter, a JSF component is based on two major
actions, known as decoding and encoding. These two notions are very important for you to
understand how a JSF component works or how to write a new one, therefore, here are
their definitions:

» Decoding: This is the action that converts the incoming request parameters to the
values of the component

» Encoding: This is the action that converts the current values of the component into
the corresponding markup (HTML)

These actions are available through two approaches:

» Direct Implementation: In this approach the component must implement the
decoding and encoding actions.

» Delegated Implementation: In this approach the component delegates the job to a
renderer that will do the encoding and decoding actions.

Now, let's take a high-level view over the JSF components lifecycle. For this we present you
with the following figure, which should make things clear:

Restore Yiew Phase

Encoding— Apply Request

¥alues Phase

N

Process Yalidations Phase

¥Yalues Phase

Invoke Application Phase

P T

]
]
]
Update Model]
]
]

Decoding —
Render Response Phase

As you can see, the encoding action happens in Apply Request Values Phase, while the
decoding happens in the Render Response Phase.

130

Chapter 5

Now, let's make a step forward and let's talk about the implementation of JSF custom
components. Let's overview the classes that we should write for creating a JSF
custom component:

» Ul Component: This is the component itself (the component logic). It extends the
UIComponentBase or an existing JSF UIComponent. Optionally it can contain
the logic to render the component, or rendering logic can be separated into
another class.

» Renderer: This class renders a component on different devices, such as PDAs,
mobile browsers, and so on.

» Ul Component Tag: This class represents a JSP tag handler class. It allows the Ul
Component to be used in a JSP. Optionally, it can provide a renderer class for the Ul
Component class.

» TLD document: This is a JSP tag library descriptor document, which associates the
tag handler class with a tag in a JSP page.

» Other classes: Other custom helper classes such as converters, validators, listeners,
and so on.

In this chapter, you will see a series of recipes that will show you how to implement JSF
custom components, and obviously, the previous classes.

Before deciding to implement a JSF custom component, don't forget to
p perform a detailed search on Google (or on your favourite search engine)
to see if your component is already available under some project, such as
’ PrimeFaces, MyFaces, RichFaces, IceFaces, ADF Faces, and so on. It may
spare you the trouble.

Building a "HelloWorld"” JSF custom

component

Now that we are done with the basics of what a JSF component is, let's see the simplest
example of a JSF custom component, the HelloWorld component. The idea of this recipe
is to get you familiar with the skeletons of the JSF custom component classes.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

Custom Components

How to do it...

We will proceed step by step, and implement each class described earlier in the introduction
of the chapter. To begin with, we will write the Ul Component class, and for this we keep in
mind that the effect of our component is to render a simple message on the client. Knowing
that, we can extend the concrete UIOutput class or, as we did, the UIComponentBase
class (we prefer this class, because we don't need the value attribute, which is specific

for UToutput components). Therefore, our component may look as shown next:

package custom.component;

import javax.faces.component.UIComponentBase;

import javax.faces.context.FacesContext;

import java.io.IOException;

import javax.faces.context.ResponseWriter;

public class HelloWorldComponent extends UIComponentBase

}

public String getFamily () {

return "HELLO_ WORLD FAMILY";

@Override

public void encodeBegin (FacesContext ctx) throws IOException

ResponseWriter responseWriter = ctx.getResponseWriter();
String helloworld = (String) getAttributes() .get ("helloworld") ;

responseWriter.startElement ("b", this);
if (helloworld != null) {
responseWriter.writeText (helloworld, "helloworld") ;
} else {
responseWriter.writeText ("This is a simple
Hello World JSF custom component!", null);

}

responseWriter.endElement ("b") ;

As you can see, we have two methods in HelloWorldComponent. The getFamily method,
associates a string, representing the component family, with this component. This family is
significant, because this value is used to look up the renderer when it is time to make an
HTML document.

132

Chapter 5

Since our component only displays a message, and the tag doesn't contain any children,
we only need to override the encodeBegin method, which renders the tag. For advanced
components, which have a body, we should have three overridden methods:

» encodeBegin: This starts the element for the root component
» encodeChildren: This would cause all of the children to be encoded

» encodeEnd: This closes the element

Next, we will build the tag handler. This class is responsible for creating the component,
attaching the renderer to the component, and setting the fields on the component based
on the values supplied in JSP. In this case, the tag handler is:

package custom.component ;

import javax.el.ValueExpression;

import javax.faces.component.UIComponent;

import javax.faces.webapp.UIComponentELTag;

public class HelloWorldComponentTag extends UIComponentELTag {
// Mapping helloworld attribute to a bean property

public ValueExpression helloworld = null;

public String getComponentType () {
return "HELLO_WORLD";

}

public String getRendererType () {
return null;

public ValueExpression getHelloworld() {
return helloworld;

public void setHelloworld(ValueExpression helloworld) {
this.helloworld = helloworld;

@Override protected void setProperties(UIComponent ui_comp) {
super.setProperties (ui_comp) ;

if (!(ui_comp instanceof HelloWorldComponent)) {

Custom Components

throw new IllegalStateException ("Component " +
ul comp.toString() + " is of wrong type!!!");

HelloWorldComponent helloWorldComponent =
HelloWorldComponent)ui comp;

if (helloworld != null) {
helloWorldComponent .setValueExpression ("helloworld",
helloworld) ;

}

Notice that since we don't have a separate renderer class (we don't need one), we return a
null value. The setProperties method sets the incoming values from the JSP tag by first
calling the same method of the parent class along with the custom code to set the value from
the helloworld tag attribute.

Next, we build the TLD document. This file allows us to use our custom JSP tag handler class.
The helloworld.t1d file is stored in the WEB- INF folder of the application (standard J2EE
architecture) and it is responsible for associating the tag name to its attributes:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary 1 2.dtd">
<taglibs>

<tlib-version>0.03</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>Hello World Component Tag Library</short-names>
<uris>http://packt.net/cookbook/components</uri>
<descriptions>

Custom components tag library.
</description>

<tag>
<name>helloWorldUI</name>
<tag-class>custom.component .HelloWorldComponentTag</tag-class>
<body-content>empty</body-content>
<descriptions>

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 5

This custom component says hello.
</description>

<attributes>
<name>helloworld</name>
<required>false</requireds>
<deferred-value>
<type>java.lang.Object</type>
</deferred-value>
<descriptions>
The attribute that will contain the hello message.
</description>
</attributes>

<attributes>
<name>id</name>
<required>false</requireds>
<rtexprvalue>false</rtexprvalue>
<descriptions>

The component identifier for this component.

</description>

</attributes>

<attribute>
<name>immediate</name>
<required>false</requireds>
<rtexprvalue>false</rtexprvalues>
<descriptions>

Immediate conversion and validation.

</description>

</attributes>

<attribute>
<name>rendered</name>
<required>false</requireds>
<rtexprvalue>false</rtexprvalue>
<descriptions>
Indicates if the component should be
rendered or processed on any subsequent form submit.
</description>
</attributes>

<attribute>
<name>required</name>

Custom Components

<required>false</requireds>
<rtexprvalue>false</rtexprvalues>
<descriptions>
Flag indicating that the user is required to
provide a submitted value for this input component.
</description>
</attributes>

<attribute>
<names>validator</names>
<required>false</requireds>
<rtexprvalue>false</rtexprvalue>
<descriptions>
A validator method that will be called
to perform validation.
</description>
</attributes>

<attribute>
<name>binding</name>
<required>false</requireds>
<rtexprvalue>false</rtexprvalues>
<descriptions>

A value binding that points to a bean property.

</description>

</attributes>

</tag>

</taglib>

Now, the HelloWorld custom component is done! The last thing that has to be done is to add
the corresponding lines in the faces-config.xml descriptor (this is necessary even if we
are using JSF 2.0). These lines will configure the component as follows:

<?xml version='1.0' encoding='UTF-8'?>

<faces-config version="1.2"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 1 2.xsd">

<component>
<component -type>HELLO WORLD</component -types>
<component-class>

136

Chapter 5

custom.component .HelloWorldComponent
</component-class>
</component >

</faces-config>

Time to see what we have done! For this you can call our component from a JSP page
as shown next:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib prefix="e" uri="http://packt.net/cookbook/components"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<f:views
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>
<titles>Writing a simple JSF custom component -
an hello world component</titles>
</heads>
<body>
<e:helloWorldUI helloworld="Hello from Packt!"/>
</body>
</html>
</f:view>

Notice that we have added the component taglib element right after the JSF/HTML
taglib element.

The output will be the following message:

Hello from Packt

If you read the introduction of this chapter, then it becomes easier for you to understand how
our custom component works.

Custom Components

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Create_a HelloWorld custom
component

Renderers/validators for custom

components

Based on knowledge from the previous recipe, we will move forward and create a custom
component that will be rendered by a custom renderer and will have attached a custom
validator (as an exercise, try to add a custom converter as well). Our component will
consist of a text field that accepts only valid e-mail addresses; therefore it will extend

the UIInput component.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

To begin with, let's say that the new component will be named emailInput and it looks as
shown next (we have listed the entire JSP page):

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib prefix="e" uri="http://packt.net/cookbook/components"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<f:view>
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>
<titles>Writing a JSF custom component
- an email component</title>
</head>

138

Chapter 5

<body>
<h:form id="emailForm">
<h:outputText value="Insert your e-mail:"/>

<e:emaillnput value="#{myEmailBean.email}" id="emailID" />
<h:message showSummary="true" showDetail="false"
for="emailID" style="color: red;
text-decoration:overline"/>
<h:commandButton id="submit"
action="response?faces-redirect=true" value="Submit"/>
</h:form>
</body>
</html>
</f:view>

As usual, we start by developing the component class (the component class controls the
server-side behavior of a JSF component). This class is listed next:

package custom.component;
import javax.faces.component.UIInput;
public class UIEmailInput extends UIInput

public UIEmaillInput ()
super () ;
EmailValidator emailValidator=new EmailValidator () ;
addvalidator (emailValidator) ;

@Override
public String getFamily () {
return "EMAIL FAMILY";

}
}

As you can see, we have used the component constructor for setting the custom validator,
EmailValidator, which is listed next (for more details about writing validators refer to
Chapter 2, Using Standard and Custom Validators in JSF):

package custom.component;

import java.util.regex.Matcher;

import java.util.regex.Pattern;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent ;

Custom Components

import javax.faces.context.FacesContext;

import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

@FacesValidator (value = "emailValidator")
public class EmailValidator implements Validator {

private static final String IP_REGEX = ".+@.+\\.[a-z]+";

public void validate (FacesContext context,

UIComponent component, Object value) throws ValidatorException {

String emailAddress = (String) value;
Pattern mask = null;

mask = Pattern.compile (IP_REGEX) ;
Matcher matcher = mask.matcher (emailAddress) ;

if (!matcher.matches()) {

FacesMessage message = new FacesMessage() ;
message.setDetail ("E-mail not wvalid");
message.setSummary ("E-mail not valid");
message.setSeverity (FacesMessage.SEVERITY ERROR) ;
throw new ValidatorException (message) ;

}

The next task is to write a custom renderer. This class will be responsible for transforming the
component into HTML and taking any form posts and passing the values from the post back

to the component. We will first list the code, and then look into the details:

package custom.component;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent ;
import javax.faces.component.UIInput;
import javax.faces.component.ValueHolder;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.render.Renderer;

140

Chapter 5

public class UIEmailInputRenderer extends Renderer(

@Override
public void decode (FacesContext ctx, UIComponent ui_ comp) {

if (ctx == null) {
throw new NullPointerException ("NULL CONTEXT NOT ALLOWED!") ;
} else if (ui_comp == null) {

throw new NullPointerException ("NULL COMPONENT NOT ALLOWED!") ;

if (ui_comp instanceof UIInput)
UIInput uiInput = (UIInput)ui comp;
String clientId = uiInput.getClientId(ctx) ;

Map requestMap = ctx.getExternalContext ().
getRequestParameterMap () ;
String new value = (String)requestMap.get (clientId) ;
if (null != new value) {
uilInput.setSubmittedvValue (new_value) ;

}

@Override
public void encodeEnd(FacesContext ctx, UIComponent ui comp) throws
IOException {

if (ctx == null) {
throw new NullPointerException ("NULL CONTEXT NOT ALLOWED!") ;
} else if (ui_comp == null) {

throw new NullPointerException ("NULL COMPONENT NOT ALLOWED!") ;

ResponseWriter responseWriter = ctx.getResponseWriter();

responseWriter.startElement ("input", ui_ comp) ;
responseWriter.writeAttribute ("type", "text", "text");
String id = (String)ui comp.getClientId(ctx) ;
responseWriter.writeAttribute ("id", id, "id");
responseWriter.writeAttribute ("name", id, "id");

Object obj = getValue(ui_ comp) ;

Custom Components

responseWriter.writeAttribute ("value",
formattingvValue (obj), "value");
responseWriter.endElement ("input") ;

}

private String formattingValue (Object format value) {
return format value.toString() ;

}

protected Object getValue (UIComponent ui_comp) {
Object obj = null;
if (ui_comp instanceof UIInput)

obj = ((UIInput) ui_ comp) .getSubmittedvalue() ;

}

if ((null == obj) && (ui_comp instanceof ValueHolder)) {
obj = ((ValueHolder) ui comp) .getValue() ;

}

return obj;

}

The first method, named decode, takes parameters from a form post and sets the values
for the component. After checking the context and component state (they can't be null), we
isolate the UI Input components and we extract values from the request and put them as
submitted values for the component.

The next method is encodeEnd. It generates the HTML code to represent the component
on the browser. For advanced components, which have a body, we should have three
overridden methods (we won't repeat this again, therefore it is considered known in the
following recipes):

» encodeBegin: This starts the element for the root component
» encodeChildren: This would cause all of the children to be encoded
» encodeEnd: This closes the element

Now, the tag handler should indicate that we have a separate renderer class, and for this the
getRendererType method must not return null:

public String getRendererType ()
return "EMAIL RENDERER";

}

142

Chapter 5

The last thing that we must accomplish is to set the renderer in the faces-config.xml
descriptor (we need this even if we are using JSF 2.0). This can be done as shown next:

<render-kits>
<renderer>
<description>
Renderer for the e-mail component.
</description>
<component-family>EMAIL FAMILY</component-familys>
<renderer-type>EMAIL RENDERER</renderer-types>
<renderer-class>
custom. component .UIEmailInputRenderer
</renderer-class>
</renderers
</render-kits>

That's all! Now, we have a custom component that can be used for providing valid e-mail
addresses to our bean, MyEmailBean.

validator attached and a renderer class. Don't think from this that validators
and renderer are somehow related, because they aren't!

If you read the introduction of this chapter it becomes easier to understand how our custom
component works.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Renderers_and validators custom
component

i. This recipe only presents an example of a custom component with a custom

Custom Components

Adding AJAX support to JSF custom

components

In this recipe, we get to the next level and we will create a much complex custom component.
Step by step, we will build an image slide viewer with AJAX functionality.

Remember that we will consider the ideas from the previous two recipes to be already known,
therefore it is mandatory to read them first!

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have
used the Dynamic Faces project, which provides support for JSF 2.0 and extends the JSF
lifecycle to work on AJAX requests. You can download this distribution from https://
jsf-extensions.dev.java.net/. The Dynamic Faces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF libs/Dynamic Faces - JSF
2.0 folder.

How to do it...

Our recipe will have three stages. In the first stage, our component will be a simple image
viewer. In the next stage, it will be an image slide viewer, and in the final stage, it will become
an image slide viewer with AJAX functionality.

Stage 1—creating an image viewer

To begin with we develop the component class. This time we render an image to the client,
therefore our component will extend the UTOutput component, as shown next (the picture
is characterized by three attributes—width (image width), height (image height), and path
(image URL)):

package custom.component ;

import javax.faces.component.UIOutput;

public class UIImageOutput extends UIOutput
private static final String IMAGE FAMILY = "IMAGE FAMILY";
private String width;

private String height;
private String path;

Chapter 5

public String getHeight ()
return height;

public void setHeight (String height) {
this.height = height;

public String getPath()
return path;

public void setPath(String path) {
this.path = path;

public String getWidth() {
return width;

public void setWidth(String width) {
this.width = width;

public UIImageOutput ()
super () ;

@Override
public String getFamily ()
return IMAGE FAMILY;

}
}

Next, we implement the tag handler class. There is nothing special to it, therefore we can write
it right away:

package custom.component;

import javax.faces.component.UIComponent ;
import javax.faces.webapp.UIComponentELTag;

public class UIImageOutputTag extends UIComponentELTag {

Custom Components

146

private
private

private
private
private

static
static

String
String
String

final String IMAGE OUTPUT = "IMAGE OUTPUT";
final String IMAGE RENDERER = "IMAGE RENDERER";
width;

height;

path;

public String getHeight ()

return height;

public void setHeight (String height) {
this.height

height;

public String getPath()
return path;

public void setPath(String path) {
this.path =

path;

public String getWidth() {

return width;

public void setWidth(String width) {
this.width =

width;

public String getComponentType () {
return IMAGE OUTPUT;

}

public String getRendererType ()
return IMAGE RENDERER;

}

@Override

protected void setProperties (UIComponent ui_ comp) {

super.setProperties (ui_ comp) ;

Chapter 5

UIImageOutput uiImageOutput = (UIImageOutput)ui comp;
if (path != null) {

uiImageOutput.setPath (path) ;

if (width != null) {
uiImageOutput.setWidth (width) ;

if (height != null) {
uiImageOutput.setHeight (height) ;

}

Finally, we must create a custom renderer for our component. Obviously, we need only the
encodeBegin method, therefore our job becomes easy:

package custom.component;

import
import
import
import
import
import

public

java.io.IOException;
javax.faces.component . UIComponent ;
javax.faces.context.FacesContext;
javax.faces.context.ResponseWriter;
javax.faces.render.Renderer;
javax.servlet.ServletContext;

class UIImageOutputRenderer extends Renderer{

@Override

public void encodeBegin(FacesContext ctx, UIComponent ui_ comp) throws

IOException {

UIImageOutput uiImageOutput = (UIImageOutput)ui comp;

ResponseWriter responseWriter = ctx.getResponseWriter() ;

responseWriter.startElement ("div",ui comp) ;

String width = uiImageOutput.getWidth() ;

String height = uiImageOutput.getHeight () ;

ServletContext servletContext =

(ServletContext) ctx.getExternalContext ().getContext() ;

String contextPath = servletContext.getContextPath() ;

Custom Components

responseWriter.startElement ("img", uiImageOutput) ;
responseWriter.writeAttribute ("src",
contextPath + uiImageOutput.getPath(), "path");

responseWriter.writeAttribute ("width", width, "width") ;
responseWriter.writeAttribute ("height", height, "height");

responseWriter.endElement ("div") ;

}
}

At the configuration level, we need to add the component and the renderer in the faces-
config.xml file:

<?xml version='1.0' encoding='UTF-8'?>

<faces-config version="1.2"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig 1 2.xsd">

<component>
<component -type>IMAGE OUTPUT</component-types>
<component-class>custom. component .UIImageOutput</component-class>
</component >

<render-kits>
<renderers>
<descriptions>
Renderer for the image component.
</description>
<component-family>IMAGE FAMILY</component-family>
<renderer-type>IMAGE RENDERER</renderer-types
<renderer-class>
custom.component .UIlImageOutputRenderer
</renderer-class>
</renderer>
</render-kits>

</faces-config>
Now, it is time to test our component, and for this we wrote the following view (JSP page):

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib prefix="e" uri="http://packt.net/cookbook/components"%>

148

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<f:views
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>
<title>JSF image viewer custom component</title>
</head>
<body>
<h3><h:outputText value="This image is provided

Chapter 5

by a JSF custom component:"/></h3>

<h:form>
<e:imgOutput path="/img/rafa 1.jpg"
width="340" height="466" />
</h:form>
</body>
</html>
</f:view>

The output is shown next:

This inage is provided by a JSF customn component:

Custom Components

Stage 2—transforming the image viewer into an image slide
viewer

We continue to extend our previous component to become an image slide viewer. In the end,
the component will display one image at a time, and will have two buttons for navigating to
the next/previous image. The images will be specified in the path attribute separated by a
comma, as shown next:

<e:imgOutput path="/img/rafa 1.jpg, /img/rafa 2.jpg, /img/rafa 3.jpg,
g b b g _+-JPg9 g _<-JpPg g _3.JpPg
/img/rafa 4.jpg, /img/rafa 5.jpg" width="340" height="466" />

Now, let's see the modifications that we should accomplish. To begin with, we modify the
component class by adding two more properties, one for holding the image count (we name
it imgIndex) and one for storing image URLs (we name it paths). In addition, in this class,
we will override two more methods—saveState and restoreState. These methods are
responsible for preserving the state of the component. Now, the component class is:

package custom.component ;

import javax.faces.component.UIOutput;
import javax.faces.context.FacesContext;

public class UIImageOutput extends UIOutput
private static final String IMAGE FAMILY = "IMAGE FAMILY";
private String width;
private String height;
private String path;

private String[] paths;
private int imgIndex;

public int getImgIndex() {
return imgIndex;

public void setImgIndex (int imgIndex)
this.imgIndex = imgIndex;

public String[] getPaths() {
return paths;

public void setPaths(String[] paths) {

150

Chapter 5

this.paths = paths;

public String getHeight ()
return height;

public void setHeight (String height) {
this.height = height;

public String getPath()
return path;

public void setPath(String path) {
this.path = path;

public String getWidth() {
return width;

public void setWidth(String width) {
this.width = width;

public UIImageOutput ()
super () ;

@Override
public Object saveState (FacesContext cxt)

Object state[] = new Object[5];

state[0] = super.saveState (cxt) ;
state[l] = paths;
state[2] = new Integer (imgIndex) ;

state[3] = width;
state[4] = height;
return state;

Custom Components

@Override
public void restoreState (FacesContext cxt, Object obj) {

Object state[] = (Object[])obj;

super.restoreState (cxt,state[0]) ;

paths = (Stringl[])statell];
imgIndex = ((Integer)state([2]).intValue();
width = (String)state[3];

height = (String)state[4];

@Override
public String getFamily ()
return IMAGE FAMILY;
}
}

Next, we add a minor but significant modification to the tag handler class. The idea is to split
the path attribute content, using the comma delimiter, to extract the images paths. Here is
the new setProperties method:

@Override
protected void setProperties (UIComponent ui_ comp) {

super.setProperties (ui_ comp) ;
UIImageOutput uiImageOutput = (UIImageOutput)ui comp;

if (path != null) {
String[] imgPaths = path.trim() .split(",");
uiImageOutput.setPath (imgPaths [0]) ;
uiImageOutput.setPaths (imgPaths) ;

}

if (width != null) {
uiImageOutput.setWidth (width) ;

}

if (height != null) {
uiImageOutput.setHeight (height) ;

}

152

Chapter 5

The last modification is also the most consistent one. We adapt the component renderer
for rendering HTML and JavaScript. When the client presses the navigation buttons, the
component should trigger the onC1ick mouse event. The JavaScript associated with the
onClick mouse event submits the form. In addition, we need a hidden field to hold the
information provided by the JavaScript about the clicked button. A JavaScript snippet is
shown next (this is copied from browser's page source):

<script type="text/javascript"s>
var j_id_id28j_id_id30_F = document.forms['j_id_id28'];

function j_id 1id30_PB(element) {
if (j_id_id28j_id id30_F.onsubmit == null ||
j_id id28j id id30_F.onsubmit()) {
j_id id28j id id30_F.j id id28 j id id30_H.value = element.id;
j_id_id28j_id id30_F.submit () ;
}
}

</scripts>
For implementing this we need four methods as follows:

private UIForm getUIForm(UIComponent ui_comp) {
UIComponent uiParent = ui_comp.getParent () ;

if (uiParent == null)
throw new IllegalStateException("Form unavailable!") ;

while (uiParent != null) {
if (uiParent instanceof UIForm) {
break;

}

uiParent = uiParent.getParent () ;

}

return (UIForm) uiParent;

private String previousLink (FacesContext ctx, UIComponent ui_comp) {
String clientId = getUIForm(ui_comp) .getId() ;
String uiClientId = ui_comp.getId() ;
String result = clientId + "_" + uiClientId + "_P";
return result;

Custom Components

private String nextLink (FacesContext ctx, UIComponent ui_comp) {
String clientId = getUIForm(ui_ comp) .getId() ;
String uiClientId = uil comp.getId() ;
String result = clientId + " " + uiClientId + " N";
return result;

private String hiddenField (FacesContext ctx,UIComponent ui_comp) {
String clientId = getUIForm(ui_ comp) .getId() ;
String uiClientId = uil comp.getId() ;
String result = clientId + " " + uiClientId + " H";
return result;

}

Finally, we need to modify the encodeBegin method and implement the decode method, as
shown next (the decode method will take care the index value of paths relative to the hidden
field value and set the path property based on the index value):

package custom.component;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent ;
import javax.faces.component.UIForm;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;
import javax.faces.render.Renderer;

import javax.servlet.ServletContext;

public class UIImageOutputRenderer extends Renderer(
private UIForm getUIForm(UIComponent ui_comp) {
UIComponent uiParent = ui_ comp.getParent () ;
if (uiParent == null) {

throw new IllegalStateException("Form unavailable!™") ;

while (uiParent != null) {
if (uiParent instanceof UIForm) {
break;

}

uiParent = uiParent.getParent () ;

Chapter 5

return (UIForm) uiParent;

private String previousLink (FacesContext ctx,
UIComponent ui_comp) {
String clientId = getUIForm(ui_ comp) .getId() ;
String uiClientId = uil_ comp.getId() ;
String result = clientId + " " + uiClientId + " P";
return result;

private String nextLink (FacesContext ctx, UIComponent ui_comp) {
String clientId = getUIForm(ui_ comp) .getId() ;
String uiClientId = uil comp.getId() ;
String result = clientId + " " + uiClientId + " N";
return result;

private String hiddenField (FacesContext ctx,
UIComponent ui_comp) {
String clientId = getUIForm(ui_ comp) .getId() ;
String uiClientId = ul comp.getId() ;
String result = clientId + " " + uiClientId + " H";
return result;

@Override
public void encodeBegin (FacesContext ctx,
UIComponent ui_comp) throws IOException {

UIImageOutput uiImageOutput = (UIImageOutput)ui comp;

ResponseWriter responseWriter = ctx.getResponseWriter();
responseWriter.startElement ("table", uiImageOutput) ;

// get "id" attribute
String id = (String)uiImageOutput.getClientId (ctx) ;
responseWriter.writeAttribute ("id", id, null);

//Java Script postback code

UIForm uiForm = getUIForm(uiImageOutput) ;

String clientId = uiForm.getClientId(ctx) ;
String postBack = uiImageOutput.getId() + " PB";

Custom Components

String formName = uiForm.getId() + uiImageOutput.getId() + " _F";
responseWriter.startElement ("script", uiImageOutput) ;
responseWriter.writeAttribute ("type", "text/javascript", null);
String script = "\nvar " + formName + " = document.forms['" +
clientId + "'];" + "\nfunction" + " " + postBack + "(element) {\n" +
" if (" + formName + ".onsubmit == null ||
" + formName + ".onsubmit()) {\n" + " " + formName + "." +
hiddenField (ctx, uiImageOutput) +
" . value = element.id; \n" + " " + formName +
".submit () ;" + "\n } \n} \n";
responseWriter.writeText (script, ui comp, null);
responseWriter.endElement ("script") ;
responseWriter.startElement ("input", uiImageOutput) ;
responseWriter.writeAttribute ("type", "hidden", null);
responseWriter.writeAttribute ("name",
hiddenField (ctx, uiImageOutput), null);
responseWriter.writeAttribute ("value", "", null);
responseWriter.endElement ("input") ;
// "tr" element
responseWriter.startElement ("tr", uilmageOutput) ;
// "td" element (image)
responseWriter.startElement ("td", uiImageOutput) ;
// Render the image
ServletContext servletContext = (ServletContext)ctx.

156

String contextP
responseWriter.
responseWriter.

responseWriter.

responseWriter.

responseWriter.

responseWriter.

element

//

N

getExternalContext () .getContext () ;
ath =
startElement ("img",

servletContext.getContextPath() ;
uiImageOutput) ;
writeAttribute ("src",

contextPath + uiImageOutput.getPath(), "url");
writeAttribute ("width",
uiImageOutput.getWidth (), "width");
writeAttribute ("height",
uiImageOutput.getHeight (), "height") ;

endElement ("td") ;
endElement ("tr") ;

Chapter 5

responseWriter.

// negn

responseWriter.

element

startElement ("tr", uiImageOutput) ;
(links)
startElement ("td", uiImageOutput) ;

// Previous image link

responseWriter.
responseWriter.
responseWriter.
responseWriter.

responseWriter.

responseWriter.

startElement ("input", uiImageOutput) ;
"button" , null);

"Previous" null) ;

writeAttribute ("type",
writeAttribute ("value",
writeAttribute ("onClick",
"javascript:" + postBack + " (this)",
writeAttribute ("id",
previousLink (ctx, ui comp), null);

null) ;

endElement ("input") ;

// Next image link

responseWriter.
responseWriter.
responseWriter.
responseWriter.

responseWriter

responseWriter.

responseWriter.
responseWriter.

responseWriter.

@Override

if

((ctx == null)

startElement ("input", uiImageOutput) ;
writeAttribute ("type", "button" , null);
writeAttribute ("value", "Next" , null);

writeAttribute ("onClick",

"javascript:" + postBack + " (this)", null);

.writeAttribute ("id",

nextLink (ctx, ul comp), null);
endElement ("input") ;

endElement ("td") ;
endElement ("tr") ;

endElement ("table") ;

public void decode (FacesContext ctx, UIComponent ui_ comp) {

(ui_comp == null))

{ throw new NullPointerException(); }

UIImageOutput uiImageOutput =

String hidden field =

Map paramsMap

String valH =

String/[]

img paths =

(UIImageOutput)ui comp;

hiddenField (ctx, uiImageOutput) ;
ctx.getExternalContext () .
getRequestParameterMap () ;

(String)paramsMap.get (hidden field) ;

uiImageOutput.getPaths () ;

Custom Components

int img index = uiImageOutput.getImgIndex() ;

if (valH.equals (previousLink (ctx, ui_comp))) {
if (img_index > 0){
img index = img index-1;
uiImageOutput.setImgIndex (img index) ;
}
}else if (valH.equals (nextLink(ctx, ui_comp))) {
if (img_index < img paths.length - 1) {
img index = img index+1;
uiImageOutput.setImgIndex (img index) ;
}
}

uiImageOutput.setPath(img paths[img index]) ;

}
Finally, we modify the JSP page that uses our component as shown next:

<e:imgOutput path="/img/rafa 1.jpg, /img/rafa 2.jpg, /img/rafa 3.jpg,
/img/rafa_4.jpg, /img/rafa 5.jpg" width="340" height="466" />

Now, you can test the application again!

Stage 3—adding AJAX capabilities to the image slide viewer
component

We continue by adding AJAX capabilities to our image slide viewer. For this, we will use the
Dynamic Faces project, which extends the JSF lifecycle to work on AJAX requests. After you
have downloaded Dynamic Faces from https://jsf-extensions.dev.java.net/ and
placed the libraries in your project, you must accomplish a set of modifications to enable AJAX
on this custom component.

We start with a configuration task that should be accomplished in the web . xm1 descriptor.
Add the following lines to the Faces Servlet:

<servlets>
<servlet-names>Faces Servlet</servlet-names>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<!-- For Dynamic Faces -->
<init-params>
<param-name>javax.faces.LIFECYCLE ID</param-names>
<param-value>com.sun.faces.lifecycle.PARTIAL</param-value>
</init-param>
<load-on-startup>1l</load-on-startup>
</servlet>

158

Chapter 5

Next, modify the encodeBegin method of the renderer class, as shown next:

@Override
public void encodeBegin (FacesContext ctx, UIComponent ui comp) throws
IOException {

UIImageOutput uiImageOutput = (UIImageOutput)ui comp;

ResponseWriter responseWriter = ctx.getResponseWriter() ;
responseWriter.startElement ("table", uiImageOutput) ;

// get "id" attribute
String id = (String)uiImageOutput.getClientId(ctx) ;
responseWriter.writeAttribute ("id", id, null);

//Java Script postback code

UIForm uiForm = getUIForm(uiImageOutput) ;

String clientId = uiForm.getClientId(ctx) ;

String postBack = uiImageOutput.getId() + " PB";

String formName = uiForm.getId() + uiImageOutput.getId() + " F";

responseWriter.startElement ("script", uiImageOutput) ;
responseWriter.writeAttribute ("type", "text/javascript", null);

//with AJAX

String script = "\nvar " + formName + " = document.forms['" +
clientId + "'];" + "\nfunction" + " " + postBack + "(element) {\n" +
" if (" + formName + ".onsubmit == null || " +
formName + ".onsubmit()) {\n" + " document.getElementById('" +

hiddenField (ctx, uiImageOutput) +

") .value = element.id; \n" + " DynaFaces.fireAjaxTran
saction(element, {execute:'" + id + "',render:'" + id + "', inputs:'" +

hiddenField(ctx, uilmageOutput) + "'});" + "\n}\n}\n";

responseWriter.writeText (script, ui_comp, null);
responseWriter.endElement ("script") ;

responseWriter.startElement ("input", uiImageOutput) ;
responseWriter.writeAttribute ("type", "hidden", null);

//with AJAX
responseWriter.writeAttribute ("id",
hiddenField (ctx, iImageOutput), null);

responseWriter.writeAttribute ("value", "", null);
responseWriter.endElement ("input") ;

Custom Components

Finally, modify the JSP page to add Dynamic Faces taglib, and add the <jsfExt:
scripts> tag to the <heads>, as shown next:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib prefix="e" uri="http://packt.net/cookbook/components"%>
<%@taglib prefix="jsfxt" uri="http://java.sun.com/jsf/extensions/
dynafaces"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<f:views
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=UTF-8"/>
<title>JSF custom component, AJAX enabled</titles>
<jsfxt:scripts />
</head>
<body>
<h3><h:outputText value="This images are
provided by a JSF custom component AJAX enabled:"/></h3>
<h:form>
<e:imgOutput path="/img/rafa 1.jpg, /img/rafa 2.Jjpg,
/img/rafa 3.jpg, /img/rafa 4.jpg, /img/rafa 5.jpg"
width="340" height="466" />
</h:form>
</body>
</html>

</f:views>

Test the application again, and notice how AJAX is getting into the equation!

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: AJAX support for custom components.

160

Chapter 5

Using Proxy ld library for dynamic IDs

As you probably know, JSF provides dynamic IDs for custom components. This can be an issue
when you need to obtain the provided ID and use it for external tasks, such as accessing

a component from JavaScript code. In this recipe, you will see how to use a dedicated

library that will solve this issue by allowing us to get the dynamic ID for any of the other

JSF components.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0 and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have
used Proxy Id library, which works with JSF 2.0. You can download this distribution from
http://www.jsftutorials.net/download/j43j/0.3/j47.jar. The Proxy ID library
is in the book code bundle, under the /JSF_1ibs/j4j - JSF 2.0 folder.

How to do it...

Working with this library is a quick and simple task (we will demonstrate its use with a piece of
JavaScript code). As a start add the corresponding taglib to your JSP page:

<%@taglib prefix="j4j" uri="http://javascript4jsf.dev.java.net/"%>

Continue by adding the j47 : idProxy component as a child of the JSF component that you
want to reach:

<h:inputText id="bookID" value="JSF Cookbook">
<j4j:idProxy id="get book id" />
</h:inputText>

Provide a button that triggers the onC1ick mouse event. When the mouse event occurs, call
a JavaScript function:

<h:commandButton id="submit" value="See book title and value!"
onclick="JSBook () ;"/>

Custom Components

Finally, write the JavaScript function and exploit the getElementById function to get a
reference to the 1dProxy component. Afterwards, use the title attribute to get the
value of the dynamic ID you want.

<script type="text/javascript" language="javascript"s>
function JSBook () {

var js_book title=document.getElementById("get book id") .title;
var Jjs_book value = document.getElementById(js_book title).value;

alert ("JS Book [Title]: " + Js_book title);
alert ("JS Book [Value]: " + Js_book value);
}
</script>

Putting everything together you will get the following code:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@taglib prefix="j4j" uri="http://javascriptd4jsf.dev.java.net/"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/htmld/loose.dtd" >

<f:views
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<title>Use Proxy Id for a JSF Component</titles>

<script type="text/javascript" language="javascript"s>
function JSBook () {
var Jjs_book title =
document .getElementById("get book id") .title;
var js_book_value =
document .getElementById(js_book title) .value;

alert ("JS Book [Title]: " + Jjs_book title);
alert ("JS Book [Value]: " + Js_book value);
}
</scripts>
</head>

162

Chapter 5

<body>
<h:form id="bookForm">
<h:inputText id="bookID" wvalue="JSF Cookbook">
<j4j:idProxy id="get book_ id" />
</h:inputText>
<h:commandButton id="submit"
value="See book title and value!"
onclick="JSBook () ;"/>
</h:form>
</body>
</html>
</f:view>

The secret is that this library contains a custom component that allows you to get the
dynamic ID for any of the other JSF components. This component can be "attached" to any
JSF component by nesting it in the component that you want to reach. When you need the JSF
component ID from JavaScript, you call the getElementById over the id of the nested 47 :
idProxy component, and get the title attribute value.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Using Proxy Id for dynamic_ IDs.

For more details about Proxy Id tags please check http://www.jsftutorials.net/
proxyTag.html address.

Using JSF ID Generator

In this recipe, we will demonstrate how to use JSF ID Generator. This is an Eclipse plug-in that
generates customizable and unique component IDs for JSF tags. It is very useful when you
write large JSF pages, and you are sick and tired of manually specifying the id attribute.

Getting ready

First, you have to download the JSF ID Generator plug-in from the address
http://sourceforge.net/projects/jsfidgenerator/.

Custom Components

We start by installing the new plug-in in Eclipse. For this, follow the given steps:

1.
2.

Create a folder named /links inside the eclipse folder.

Create a new file inside the /1inks folder and name it as say jsf . link (notice that
you can provide any other name, only the extension is mandatory).

Assuming that we have copied the JSF ID Generator into C: \Packt\JSFKit\ID, the
contents of jsf.1link has to be this:

path=C:\Packt\JSFKit\ID

The path should point to a directory that has a /eclipse folder, which in turn has
/features and /plugins as subfolders. For example, in this case the /1D folder
has a subfolder named /eclipse, which has two subfolders, named /features
and /plugins. In the /plugins folder you should paste the JSF ID Generator
JAR file.

Restart Eclipse and now you should be able to read all the plugins and feature
descriptions from the path referred to by the * . 1ink files.

In the libraries bundled with this book you have a /ID folder
underthe /JSF_1ib/JSF ID Generator folder, which is
g all you need for this recipe.

How to do it...

If you don't give an ID to a JSF component, then JSF ID Generator generates one at runtime
with a prefix such as j_id jsp_. You can modify this prefix directly from Eclipse, by following
these steps:

1.
2.
3.

164

Launch the Preferences window from the Window main menu.
In the left tree, locate and select the JSF ID Generator entry.

In the right panel, insert the desired prefix in the ID Prefix text field, as shown in the
following figure.

Click Apply and Ok buttons.

Chapter 5

'% Preferences |Z|E|E| 1

|ty|:ue filker kext | J5F ID Generator bt

General

Agent Controller
ant 1D Prefix: | id
Data Management

Drools

Drools Task,

FreeMarker Editar

Guvnar

Help

HGL editor
Install/Update
Jawa

Javascript

JBoss jBPM
JBoss Tools
JDEC Daka Set
P4

J5F ID Generatar
Plug-in Development

Backup ariginal file while saving

[

[+

eI e R

Now, you can start to create a JSF application under Eclipse to test the JSF ID Generator plug-
in. Assume that you have integrated a JSF form on a JSF page (name it formids. jsp) as
shown next (notice that we have intentionally omitted the id attribute for each component):

<h:form>
<h:outputText value="Enter Your Name:" />
<h:inputText value="Somethging from a bean!" />
<h:commandButton action="some page.jsp" value="OK" />
</h:form>

Custom Components

Next, in the Package View of your project, right-click on the JSF page and select JSF ID
Generator | Generate JSF IDs from the contextual menu, as shown in the following;:

& <JBoss AS> - C:/lavaApplications/eclipse_ganymede/Recipe_5_ CustomComponents/W

File Edit FRefactor Source Mavigate Search Project Runm Window Help

e & @ B0 EEHEG S ®mE
] Package % |.—|’>‘_‘|Pr0jectE = O[3 web,xml || Faces-config. xml | Formids. jsp &9
(=] <)=='D, & <3[page contentType="text html" pagek]

= ::‘,J' Recipe_5_CustornComponents &
[Javasource
B, Web App Libraries
B, JBoss 4.2 Runtime [1Boss 4.
B, JRE Swstem Libraes: [irsd 5.0
L ant Mes
== WebContent

<iftaglib prefix="Ff" uri="http: jara
<izftaglibh prefix="k" uri="kttp:/ javra

< !DOCTYPE HTHL PUBLIC "-//W3C//DTD HTI
» ¥ TR/ html4d/ loose

& Open F3
-
; C_} META-INF Open with b
o PAgE Show In BlE+Shift+ v
=2 WEE-TNF = Copy ChleC Content-Type™ o
&= lib o Generator for =
I == Copy Qualified Mame
faces-col ..
; S TARESER e paste Chrl+y
: ¥ Delete Dielete
<o IBoss Server Wiew £2
Wm0 D
=3 walue="Enter Yo
:1 JBoss 4.2 Server [t Build Path b mluse="Somethgin
[+ . ; .
& JBoss ESE 4.4 Serve) Refactor Ble+Shift+T b lon action="some|

JBoss JEPM 4.2 Servw
- JBoss Portal 4.2 Ser g Tmpart.,.

&% Export...

Qéb Refresh F5
Assign Working Sets...

@ Progress =] Properties X
Validate

JBoss 4,2 Server [JBoss Appli ¢J Make Deployable \jdkl 5. 0bintjavaw, exe
05:00:44,296 INFO ernel) ...

08:00:44,328 INFO | HONAS ¥l 4.2.2.GL (bu
DE:00:44,328 INFo | DEbUdAs \iboss-4.2.2.GL
Profile As

05:00:44,328 INFO JSFEit/ jbos=-4.
08:00:44,328 INFO Tearmn
05:00: 44,328 INFO Compare With
05:00:44,3258 INFO Replace With
< GUVNor

WIBFEith jhoss-4

B

»
3
4
b
]
»
3
3
»

formids.jsp - R

Source

]
1y Start Properties AlE+Enker

166

Chapter 5

When JSF ID Generator has finished its job, you can see a generated document under the
JSF page named formids. jsp.bak (this is just a backup of the initial page) and more
importantly our form now has generated IDs:

<h:form id="ido">
<h:outputText id="idl" value="Enter Your Name:" />
<h:inputText id="id2" value="Somethging from a bean!" />
<h:commandButton id="id3" action="some page.jsp" value="OK" />
</h:form>

Notice that the generated IDs respect the specified ID prefix.

After the page backup is created the JSF ID Generator identifies every component that
supports an id attribute and adds a generated, but unique, id for each one of them. Of
course, the generation is done in accordance with the indicated id prefix.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with Eclipse Ganymede and it can be deployed under JBoss AS with JSF 1.2/2.0
(this is the only Eclipse-based recipe in the book). The project name is: Working with JSF_
ID Generator.

Accessing resources from custom

components

In this recipe, we will talk about an important aspect of custom components—accessing static
and dynamic resources from custom components.

By static resources, we understand JavaScript files, CSS, text files, images, CSV, and so on. By
dynamic resources, we understand dynamic content, such as AJAX calls.

How to do it...

Next, we will analyze four different methods of accessing such resources:

» Accessing resources using the PhaseListener object
» Accessing resources using a renderer
» Direct access

» Accessing resources using third-party libraries

Custom Components

>

168

Accessing resources using the PhaseListener object:

As you already should know, a PhaseListener object can intercept requests in

the Restore View Phase phase of the JSF lifecycle. You can take advantage

of this and access static resources. You may use a custom flag in the request URL
and call the getFacesContext () .getViewRoot () .getViewId () method or
you can take a value from the parameters of Ht tpServletRequest by calling the
getFacesContext () .getExternalContext () .getRequestParameterMap ()
method. We have two problems here, a small problem and a big problem. The small
one consists in writing a PhaselListener object for each component, and the big
one consists in the fact that PhaseListener objects, configured in different faces-
config.xml descriptors, are provided sequentially, with no established order.

Accessing resource using a renderer:

This in not a very common task for a renderer class, but it can be plausible if we

keep in mind that process events are fired up after every phase of the JSF lifecycle,
except Restore View Phase and Renderer Response Phase. Especially, we are
interested in phase 2, or Apply Request Values Phase, when the renderer class
can provide the required static resources or make a dynamic call possible (at the
end, don't forget to call the FacesContext . responseComplete—this will skip the
rendering phase, Render_Response_Phase). The main problem of this approach is
reflected in the performance, since we are dealing with tasks that consume important
time to be accomplished.

Direct access:

This is the most common approach and, at first look, the best one. Direct access is
based on a simple concept: resources are packaged under the web module and are
accessible through URLs or servlets (rarely, since this is time consuming and requires
more configurations in the application's descriptors). At second look, this approach
requires additional configurations and it must avoid repeating resource's names
across components—especially when the components may appear on the

same page.

Accessing resources using third-party libraries:

We kept the best for the end! If we take a look at the Java BluePrints Solution Catalog
and Java BluePrints Pet Store Demo 2.0 (developed by the Java BluePrints team),

we notice that they used Shale Remoting libraries (see http://shale.apache.
org/index.html) to accomplish static/dynamic tasks. Actually, Shale Remoting is
just one feature of the Apache Shale project, which is a web application framework,
fundamentally based on JavaServer Faces. As the Shale Remoting definition states:

Chapter 5

Shale lets you map server-side resources, such as JavaScript or managed bean
methods, to URLs. Shale turns URLSs into resources with processors, which apply a
mapping to a URL and take appropriate action.

Well, it looks like this is the trend and the best solution to use!

There's more...

Shale Remoting javadoc: http://shale.apache.org/shale-remoting/apidocs/
org/apache/shale/remoting/package-summary.html.

Custom components with Archetypes for

Maven

In this recipe, you will see how to generate the stubs for five types of JSF custom components
from scratch:

» The stub for a project that will use MyFaces (including all the dependencies needed)

» The stub for a project that will use MyFaces and Facelets (including all the
dependencies needed)

» The stub for a project that will use MyFaces and Portlets (including all the
dependencies needed)

» The stub for a simple JSF component that will use MyFaces (including all the
dependencies needed)

» The stub for a project that will use MyFaces and Trinidad (including all the
dependencies needed)

For generating these stubs we will use five types of Maven Archetypes from MyFaces. Actually,
we will show you how to use the MyFaces JSF Components Archetype, and it remains your
task to see how to use the other four.

Getting ready

As we will be using Maven as the build tool (an archetype is a thing for Maven),

we should have Maven 2.2.1 or higher installed in our system. This is available at
http://maven.apache.org/download.html or under libraries in the code bundle
for this book, in the /JSF_1ibs/Apache Maven 2.2.1 folder.

Custom Components

After download, you have to put the /bin directory of Maven distribution in CLASSPATH.
For example:

SET PATH = "C:\Packt\JSFKit\apache-maven-2.2.1\bin"

How to do it...

The MyFaces JSF Components Archetype generates a Maven multi-module project prepared
for the development of custom JSF components. For this, follow the given steps:
1. From an MS-DOS Command Prompt, type:

mvn archetype:generate -DarchetypeCatalog=
http://myfaces.apache.org

2. After a few seconds, you should see something like this screenshot:

Choose archetype:

1: http:/smyfaces.apache.org —» muyfaces—archetype—helloworld (Simple Weh applica
tion uwuszing Apache Myfaces)

2: http:/smyfaces.apache.org —» myfaces—archetype—-helloworld—facelets (Simple We
b application using Apache Myfaces and Facelets?

3: http:-smyfaces.apache . org —> myfacesz—archetype—helloworld-portlets (Simnple Ue
b application using Apache Myfaces and Portlets?

4: http:/smyfaces.apache.org —> myfaces—archetype—jsfcomponents (Simple JSF Comp
onent using Apache Muyfaces)

L: http:/smyfaces.apache.org —> myfaces—archetype—trinidad (Simple Weh applicati
on using Apache Myfaces and Trinidad?

Choose a number: (1-2/3-,4/52: _

Command Prompt - m chetype:generate -DarchetypeCatalog=http:ffimyfaces.apach -d ﬂ
-]

3. Asyou can see, you can choose from five types of projects (listed previously in the
recipe description). Since, we don't have enough space here to talk about each
one of them, we decide to choose a Simple JSF Component using Apache MyFaces
(obviously, you can try the remaining ones for yourself). Therefore, type 4, and hit the
Enter key.

4. Now, you must define a set of attributes, as follows (they are pretty intuitive, therefore

you don't need a description):

0 Define value for groupId: type JSFCustomComponent, Or
anything else, and hit Enter key

o Define value for artifactId: type
JSFComponentFolder, or anything else, and hit Enter key

Q0 Define value for version: 1.0-SNAPSHOT: just hit
Enter key

0 Define value for package: JSFCustomComponent:
type js£.custom.component, Or any other package, and hit
Enter key

o Hit"y" and Enter key to confirm the provided settings.

170

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 5

5. If everything worked fine, you should see a BUILD SUCCESSFUL message, and in the
current folder you should find a folder named artifactId (in our case, it should be
named JSFComponentFolder).

This folder should have the folder structure shown in the following screenshot :

Folders

= () org
=) meyorganization
(= |5 component
1) savhella
= I3 resources
[META-INF
=) Hd
) entities
(5 misc
= [test
= 1) java
=[5 org
= [5) myorganization
= |2 compaonent
15 savhello
= [0) examples
=) sre
= 125 main
=) java
= [arg
= [Z) mvorganization
= |5 component
|) example
= I resources
=[5 org
= [5) myorganization
= |2 compaonent
IC5) example
= [5) webapp
() WEB-INF
= 15 sre
= [main

|) resources

Custom Components

Basically, there are three main folders, as follows:

» /core: This contains the source of your components (the components will be
developed here)

» /examples: This contains the source for the examples

» /src: This contains potential resources

Instead of creating new components from scratch, we will take a quick look over the
generated component. This is a simple component called SayHel1o that will print
Hello <firstName> <lastName>!, which is provided to the developer.

The three main classes of SayHel1lo custom component are:
SayHello.class

The source code for this class is in the \core\src\main\java\org\myorganization\
component \sayhello folder, and it defines the component as an extension of the
UIOutput component. It has a getFamily method, and overrides the saveState

and restoreState methods. Also, it contains the attributes for SayHel1lo, which are
firstName and lastName, as well as the getters and setters for these fields.

SayHelloRenderer.class

The source code for this class is in the \core\src\main\java\org\myorganization\
component \sayhello folder. This class extends javax.faces.render.Renderer and
overrides the decode, encodeBegin, encodeChildren, and encodeEnd methods. The
implementation is straightforward regarding the scope of this custom component.

SayHelloTag.class

The source code for this class is in the \core\src\main\java\org\myorganization\
component \sayhello folder. This class extends the UIComponentTag, sets the
component's attributes in the setProperties method and releases the allocated
resources (sets the attributes to null) in the release method.

Going forward, we have the TLD file for this component in the \core\src\main\t1d folder.
This file contains all the tags available in our library.

Now we can build the library! The following command will generate a JAR that can be used in
the JSF applications, by placing it in the application's classpath (notice that the corresponding
faces-config.xml is also generated now). Navigate, from MS-DOS Command Prompt, to
the /core folder and type:

mvn clean install

When you get the BUILD SUCCESSFUL message, you should find a JAR named
JSFComponentFolder-core-1.0-SNAPSHOT under the \core\target folder.

172

Chapter 5

Now, the sayHel1lo custom component is ready to be used! A JSP page example that uses
this component is in the \examples\ src\main\webapp\ folder and it is named sayhello.
jsp (calling mvn clean install from the \root folder (JSFComponentFolder), the
library and the examples WAR will be built). Of course, you are free to test it in any other

JSF project.

As you have seen, the component generated by MyFaces JSF Components Archetype is not
alien. We deal with a normal custom component that respects the main steps of creating a
JSF custom component. Therefore, it should be a piece of cake to go ahead and create your
own components, based on Maven Archetypes from MyFaces.

The code bundled with this book contains the complete code of our custom component under
the recipe: Custom components with Archetypes for Maven.

RichFaces CDK and custom components

In this recipe, we will explore RichFaces CDK for creating JSF custom components. For
those who are not familiar, CDK stands for Component Development Kit—a sub-project of
RichFaces that allows you to easily create rich components with built-in AJAX support.

During this recipe, we will develop a custom component that will render a text field for
inserting a phone number of type xxxx-xxxxx-x. We will render the phone number as a
string, of the form xxxx-xxxxx-x, but we will store it as a string of type xxxxxxxxxx—this
task will be accomplished by a custom converter.

The HTML prototype of our custom component will be:

<div title="Phone field:">
<input name="phoneField" value="0000-00000-0" />

</div>

Getting ready

RichFaces CDK requires Maven, therefore we should have Maven 2.2.1 or higher installed in
our system. This is available at http://maven.apache.org/download.html or under
the libraries in the code bundle for this book in the /JSF_1ibs/Apache Maven 2.2.1
folder.

Custom Components

After download, you have to set the CLASSPATH to that of the /bin directory of the Maven

distribution. For example:

SET PATH = "C:\Packt\JSFKit\apache-maven-2.2.1\bin"

Going forward, you should configure Maven for RichFaces CDK. For this, open the
/conf /settings.xml file for editing and add this code to the profiles section

(after the last <profile> tag):

<profile>

17

<ids>cdk</id>
<repositories>
<repository>

<id>maven2-repository.dev.java.net</id>
<name>Java.net Repository for Maven</name>
<urlshttp://download.java.net/maven/l</url>
<layout>legacy</layout>

</repositorys>
<repository>

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enableds>
<updatePolicy>never</updatePolicy>
</snapshots>
<ids>repository.jboss.com</id>
<name>Jboss Repository for Maven</name>
<urlshttp://repository.jboss.com/maven2/</urls>
<layout>default</layout>

</repositorys>
</repositoriess>
<pluginRepositoriess

<pluginRepository>

<id>maven.jboss.org</id>

<name>JBoss Repository for Maven Snapshots</names

<urls>http://snapshots.jboss.org/maven2/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
</snapshots>

Chapter 5

</pluginRepository>
<pluginRepository>
<releases>
<enabled>true</enableds>
</releases>
<snapshots>
<enabled>false</enableds>
<updatePolicys>never</updatePolicy>
</snapshots>
<ids>repository.jboss.com</id>
<name>Jboss Repository for Maven</name>
<url>http://repository.jboss.com/maven2/ </urls>
<layout>default</layout>
</pluginRepository>
</pluginRepositories>
</profile>

Now activate the new profile by adding the following after the profiles section:

<activeProfiles>
<activeProfile>cdk</activeProfile>
</activeProfiles>

Now, everything is set for using RichFaces CDK. Next, you should manually create a folder
where the components will be stored (we named it, /JSFComponentFolder CDK), and a file
named pom.xml (in this folder) with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>jsf.custom.component</groupIlds>
<artifactId>jsfComponent</artifactIds>
<urls>http://packt.cdk.org</url>
<version>1.0-SNAPSHOT</versions>
<packagings>pom</packaging>
<dependencies>
<dependency>
<groupIds>javax.servlet</groupIld>
<artifactIdsservlet-api</artifactIds>

Custom Components

176

<versions>2.4</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupIds>javax.servlet</groupIld>
<artifactId>jsp-api</artifactIds>
<version>2.0</version>
<scope>provided</scope>

</dependency>

<dependencys>
<groupIds>javax.servlet.jsp</groupIlds>
<artifactId>jsp-api</artifactIds>
<versions>2.l</version>
<scope>provided</scope>

</dependency>

<dependency>

<groupIds>javax.faces</groupId>
<artifactIds>jsf-api</artifactIds>
<version>2.0.0-RC</version>

</dependency>

<dependencys>
<groupIds>javax.faces</groupId>
<artifactId>jsf-impl</artifactIds>
<version>2.0.0-RC</version>

</dependency>

<dependencys>
<groupIld>javax.el</groupIld>
<artifactIds>el-api</artifactIds>
<version>1.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupIds>el-impl</groupId>
<artifactIdsel-impl</artifactIds>
<version>1l.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>javax.annotation</groupIds>
<artifactId>jsr250-api</artifactIds>
<version>1l.0</version>

</dependency>

<dependencys>
<groupldsorg.richfaces.ui</groupId>

Chapter 5

<artifactIdsrichfaces-ui</artifactIds>
<version>3.3.3.BETAl</version>
</dependency>
</dependencies>
</project>

Some of the pom.xml elements are:

» groupld: This is the prefix for the Java package structure of your library
» url: This is the namespace for your library to be used in the TLD file

» version: This is the version of your library

We have developed a JSF application to test our custom component with NetBeans 6.8,

JSF 2.0, and GlassFish v3. The JSF 2.0 classes were obtained from the NetBeans JSF 2.0
bundled library. The custom component JAR can be found with the book code bundle under
the /JSF_1ibs/phoneNumberComponent — JSF 2. 0. In addition, we have used RichFaces
3.3.3.BETA1, which provides support for JSF 2.0. You can download this distribution from
http://www.jboss.org/richfaces. The RichFaces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF_1ibs/RichFaces - JSF 2.0
folder.

How to do it...

OK, at this point zero, we have everything ready to start developing our first JSF custom
component using RichFaces CDK.

First, we need to create a project for the component itself. In the library directory,
/JSFComponentFolder CDK, which you just created, launch the following command
in MS-DOS command prompt (see the following screenshot):

Custom Components

You should get a BUILD SUCCESSFUL message, and a folder named
/phoneNumberComponent with the following structure:

Folders

SR 15FComponentFolder _COK
=) phoneMumberComponent
=) s
=) main
= |_) config
|Z) component
=l 1) java
=1 10 3sf
= |) cuskom
= |) compaonent
|) component
|) resources
|} templates
=l) test
=l) java
=1 1) 3sf
= |) cuskom
= |) compaonent
| component

Next, we have to extend the predefined structure with the following directories:

>

178

\src\main\config\resources: This will contain the resource-config.xml
file for the resources registration

\src\main\java\jsf\custom\component\renderkit: This will contain the
render class

\src\main\resources\jsf\custom\component\renderkit\html\css: This
will store CSS files

\src\main\resources\jsf\custom\component\renderkit\html\images:
This will store images

\src\main\templates\jsf\custom\component: This will contain
JSP templates

-\src\main\java\jsf\custom\component\component\converter: It will
contain the custom converter

Chapter 5

Assuming that you have accomplished this boring task, let's move forward
and add maven-compiler-plugin to the plugins section in the
/phoneNumberComponent /pom.xml file:

<plugin>
<artifactIds>maven-compiler-plugin</artifactIds>
<inheriteds>true</inheriteds>
<configurations>
<source>1l.5</source>
<target>1.5</targets>
</configuration>
</plugin>

Next step consists in generating a skeleton for our component. For this, navigate from the
Command Prompt into the /phoneNumberComponent folder and execute the command
from the screenshot:

C:\Packt“\JEF\JEFComponentFolder_CDK\phoneNumberComponent >mun cdk:create —Dname =pa

thoneNumbe »Component

After the BUILD SUCCESSFUL message, three files will have been generated:

» An XML configuration file for the metadata, named phoneNumberComponent . xml
» A Ulclass, named UIPhoneNumberComponent . java
» A JSP-like template, named html PhoneNumberComponent . jspx

At this point we start the real development stage. We begin with the component class. By

default, this class extends the UIComponentBase class, but we can modify it to extend the
UIInput class, since we have a simple input component:

package jsf.custom.component.component;

import javax.faces.component.UIInput;

public abstract class UIPhoneNumberComponent extends UIInput {

public static final String COMPONENT TYPE =
"jsf.custom.component . PhoneNumberComponent" ;

public static final String COMPONENT FAMILY =
"jsf.custom.component . PhoneNumberComponent" ;

Custom Components

Now, we can modify the template for generating the renderer class. Open the JSP-like
template, generated earlier, and modify it accordingly to our component:

<?xml version="1.0" encoding="UTF-8"?>

<f:root

180

xmlns:f="http://ajax4jsf.org/cdk/template"

xmlns:c=" http://java.sun.com/jsf/core"

xmlns:ui=" http://ajax4jsf.org/cdk/ui"

xmlns:h=" http://ajax4jsf.org/cdk/h"

xmlns:u=" http://ajax4jsf.org/cdk/u"

xmlns:x=" http://ajax4jsf.org/cdk/x"

xmlns:jsp=" http://ajax4jsf.org/cdk/jsp"

class="jsf.custom.component.renderkit.html.

PhoneNumberComponentRenderer"

baseclass="jsf.custom.component.renderkit.
PhoneNumberComponentRendererBase"

component="jsf.custom.component .component .UIPhoneNumberComponent " >

<f:clientid var="clientId"/>

<f:resource
name="/jsf/custom/component/renderkit/html/images/phone.gif"
var="icon" />

<div id="#{clientId}"
x:passThruWithExclusions="value, name, type, id">

<input id="#{clientId}"
name="#{clientId}"
type="text"
value="#{this:getValueAsString (context, component)}"/>

<jsp:scriptlet>

<! [CDATA [if (component .getFacet ("icon") =null &&

component .getFacet ("icon") .isRendered()) {11>

</jsp:scriptlets>
<u:insertFacet name="icon" />
<jsp:scriptlet>

<! [CDATA [

}else{

11>
</jsp:scriptlets>

<jsp:scriptlet>

<! [CDATA [

}
11>
</jsp:scriptlet>

</div>
</f:root>

Chapter 5

Next, we develop the renderer class. This class should be stored in \src\main\java\jsf\

custom\component \renderkit and it looks as shown next:

package jsf.custom.component.renderkit;

import java.io.IOException;

import java.util.Map;

import javax.faces.component.UIComponent ;

import javax.faces.context.ExternalContext;

import javax.faces.context.FacesContext;

import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;

import org.ajax4jsf.renderkit.HeaderResourcesRendererBase;

import jsf.custom.component.component.UIPhoneNumberComponent ;
import jsf.custom.component.component.converter.PhoneConverter;

public abstract class PhoneNumberComponentRendererBase extends

HeaderResourcesRendererBase {

public void decode (FacesContext ctx, UIComponent ui_comp) {

ExternalContext externalContext = ctx.getExternalContext () ;

Map paramsOnRequest = externalContext.getRequestParameterMap () ;

UIPhoneNumberComponent uiPhoneNumberComponent =

(UIPhoneNumberComponent)ui comp;

String clientId = uiPhoneNumberComponent.getClientId (ctx) ;

String submittedValue = (String)paramsOnRequest.get (clientId) ;

if (submittedvalue != null)

uiPhoneNumberComponent . setSubmittedvValue (submittedvValue) ;

public String getValueAsString (FacesContext ctx,

UIComponent ui_comp) throws IOException {

Custom Components

UIPhoneNumberComponent uiPhoneNumberComponent =
(UIPhoneNumberComponent)ui comp;
String valueString =
(String)uiPhoneNumberComponent .getSubmittedvalue () ;

if (valueString == null) {
Object value = uiPhoneNumberComponent.getValue () ;
if (value != null) {

Converter converter = getConverter (ctx,
uiPhoneNumberComponent) ;
valueString = converter.getAsString(ctx, ui comp, value);

}

return valueString;

public Object getConvertedValue (FacesContext ctx, UIComponent
ui_comp, Object submittedValue) throws ConverterException{
UIPhoneNumberComponent uiPhoneNumberComponent =
(UIPhoneNumberComponent)ui comp;

Converter converter = getConverter (ctx, uiPhoneNumberComponent) ;
String valueString = (String)submittedValue;

return converter.getAsObject (ctx, ui comp, valueString);

private Converter getConverter (FacesContext ctx,
UIPhoneNumberComponent uiPhoneNumberComponent) {
Converter converter = uiPhoneNumberComponent.getConverter () ;
if (converter == null)
{
PhoneConverter phoneConverter = new PhoneConverter() ;
converter=phoneConverter;

}

return converter;

182

Chapter 5

This class has several methods that are very important for rendering the component. First, we
have the decode method, which is responsible for reading values from request parameters
and storing the submitted value locally on the component. Next, we have the getConverter
method, responsible for returning an instance of our converter (if none was indicated). The
last two methods, getvValueAsString and getConvertedvalue, are responsible for
rendering the value back to the view, and converting the submitted value.

The final class that we will develop is our custom converter. This is a simple converter that
transforms the string xxxx - xxxxx-x t0 xxxxxxxxxx and vice versa:

package jsf.custom.component.component.converter;

import
import
import
import
import
import

javax.
javax.
javax.

javax.
javax.
javax.

faces.
faces.
faces.
faces.
faces.
faces.

application.FacesMessage;
component . UIComponent ;
context.FacesContext;
convert.Converter;
convert.ConverterException;
convert.FacesConverter;

@FacesConverter (value = "PhoneConverter")
public class PhoneConverter implements Converter {

public String getAsString(FacesContext argo0,

if

}

if

UIComponent argl, Object arg2) {

(arg0 == null) {

throw new NullPointerException ("context") ;

(argl == null) {

String s

if

throw new NullPointerException ("component") ;

= String.valueOf (arg2) ;

(s.length()

return

"0000-

1= 10) {
00000-0";

String phoneNumber = s.substring(0,4) + "-" +

s.substring(4,9) + "-" + s.substring(9,10);

return phoneNumber;

public Object getAsObject (FacesContext argo0,

UIComponent argl, String arg2)

Custom Components

if (arg0 == null) {
throw new NullPointerException ("context") ;
}
if (argl == null) {
throw new NullPointerException ("component") ;

try {
String start = arg2.substring(0,4) ;

String midle = arg2.substring(5,10);
String end = arg2.substring(11l,12);

String phoneNumber = start + midle + end;
return phoneNumber;

} catch (Exception e) {

FacesMessage message = new

FacesMessage (FacesMessage.SEVERITY ERROR,
"Parser error! - Cannot convert this phone number from
XXXX-XXXXX-X LO XXXXXXXXXX!",
"Cannot convert this phone number from
XXXX-XXXXX-X LO XXXXXXXXXX!");

throw new ConverterException (message) ;

}

Now, speaking about resources, we need an image named phone.gif (accordingly in our
component and template). This should be placed in the \src\main\resources\jsf\
custom\component\renderkit\html\images folder, and should be configured in the
resource-config.xml file, as shown next (in this file you should configured many other
resources, such as CSS files):

<resource>
<name>jsf/custom/component/renderkit/html/images/phone.gif</name>
<path>jsf/custom/component/renderkit/html/images/phone.gif</path>
</resource>

184

We must finish one more step before compiling our component. We must specify the

component properties in the phoneNumberComponent . xml file as shown next
(place this in the <component > tag):

<propertys>

<names>value</name>
<classname>java.lang.Object</classname>
<description>Component value</descriptions>
</propertys>
<propertys>

<name>title</name>
<classname>java.lang.String</classname>
<description>Component title</descriptions>
<defaultvalue>" ; Phone numberé"</defaultvalues>
</propertys>

<propertys>

<names>name</name>
<classname>java.lang.String</classname>
<description>Component name</descriptions>
</propertys>

Now is the big moment! From the /phoneNumberComponent folder, execute the

following command:

mvn clean install

Chapter 5

If you get a BUILD SUCCESSFUL message, then a new folder target was created under
the /phoneNumberComponent folder. In this folder, you should find a JAR file named

phoneNumberComponent-1.0-SNAPSHOT. jar. This is our component!

Next, we can develop a simple JSF project and test it (don't forget to add this new component
and RichFaces 3.3.3.BETA1 into the project classpath). Since you should have enough

experience for this, the following snippet is only a variant of the JSF test page:

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="£f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<!-- RichFaces tag library declaration -->

<%@ taglib uri="http://richfaces.org/a4j" prefix="a4j"%>
<%@ taglib uri="http://richfaces.org/rich" prefix="rich"%>
<!-- Custom component tag library declaration -->

<%@ taglib uri="http://packt.cdk.org/phoneNumberComponent"
prefix="e"%>

<html>
<head>

Custom Components

<title>Using the phoneNumberComponent custom component</titles
</head>
<body>
<f:views
<h:form id="phoneFormID">
<e:phoneNumberComponent id="phoneID"
title="Enter phone number as XXXX-XXXXX-X"
value="#{bean.phone}" />
<h:message showSummary="true" showDetail="false"
for="phoneID" style="color: red;
text-decoration:overline" />

<h:commandButton id="btnID" value="Submit Phone" />
</h:form>
</f:view>
</body>
</html>

The following is output screenshot:

Q000-00000-0

Subimit Phone

In addition if you want to add a custom validator (let's name it Phonevalidator.java)you
can follow the given steps:

» Create the folder \src\main\java\jsf\custom\component\component\
validator, and save in it the validator source

» Modify the custom component class as shown next:

package jsf.custom.component.component ;

import javax.faces.component.UIInput;

import jsf.custom.component.component.validator.PhoneValidator;
public abstract class UIPhoneNumberComponent extends UIInput {
public static final String COMPONENT TYPE =

"jsf.custom.component . PhoneNumberComponent" ;
public static final String COMPONENT FAMILY =

"jsf.custom.component . PhoneNumberComponent" ;

186

Chapter 5

public UIPhoneNumberComponent () {
PhoneValidator phoneValidator=new PhoneValidator() ;
addvalidator (phonevValidator) ;

}

It's done!

There's more...

More details about custom components with RichFaces CDK can be found at the address
http://docs.jboss.org/richfaces/latest 3 3 X/en/cdkguide/html/.

See also

The code bundled with this book contains the complete code of our custom component under
the recipe: RichFaces CDK phoneNumberComponent.

In addition, you have the component itself (out of the box from RichFaces CDK), under the
project: JSFComponentFolder CDK.

Composite custom components with zero

Java

In this recipe, we will create a simple composite custom component (a component that's
made up of existing components) using JSF 2.0. As you will see, JSF 2.0 can do that very
quickly and easily, and even without a line of Java code.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Our component will just display a simple text, but the idea of this recipe is to understand the
mechanism of doing it. First we develop an XHTML page, which is the page itself:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"

Custom Components

xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:e="http://java.sun.com/jsf/composite/login" >
<h:head>
<title>Creating a composite component with zero Java code</title>
</h:head>

<h:body>
<h:form>
<div id="compositeComponent" style="border: 2px solid #000;">
<e:login value="LOGIN SPACE">
</e:login>
</div>
<h:commandButton value="Reload" />
</h:form>
</h:body>
</html>

Notice that the composite component library is indicated by the URL http://java.sun.
com/jsf/composite/login. Well, this is not a normal URL, it has a special construction;
the http://java.sun.com/jsf/composite/ part indicates to JSF that we have a
composite component in role, while the /1ogin part indicates the name of the component.

The next step is to develop the custom component. Notice that the component page is
named login.xhtml and must be stored in the same folder with the page itself, under the
/resources/login folder (as an obvious observation we can note the fact that the page
is developed in JSF 2.0 preferred style, using Facelets). The idea is that the folder and the
component page reflect the component name. Now, the 1ogin.xhtml file looks as

shown next:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:composite="http://java.sun.com/jsf/composite">

<h:head>
<title>Creating a composite component with zero Java code
- not rendered on output
</title>
</h:head>

<h:body>

188

Chapter 5

<composite:interfaces
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementations>
<h:outputText value="#{cc.attrs.value}"
style="background-color: green"/>
</composite:implementations>
</h:body>

</html>

In the <composite:interface> tag, we indicate that our composite component accepts
a single optional attribute, named value. In the <composite:implementations> tag, we
implement the component as an outputText with the value attribute set to the value
attribute that's been passed in. The value that has been passed in is captured using the
#{cc.attrs.value} expression.

That's all! Now you can test your composite custom component!

Obviously, this works thanks to JSF 2.0, which is capable of reducing the entire complex
process of creating custom components to just a few lines of code. The behind scene work
makes this process a walk in the park. Based on Facelets and on a few conventions (like tag
library URL, or component page name and location) we can now be more productive with
much clear code produced in a short time.

The code bundled with this book contains the complete code of our custom component under
the recipe: Composite custom component with 0 Java code.

Custom Components

Creating a login composite component in

JSF 2.0

In the previous recipe, you have seen the basic notions of developing a composite component
in JSF 2.0. Our component just displayed a text suggesting that we are talking about a login
operation, but that was all. Well, in this recipe, we will extend this composite component to
make it look like a real login component.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

First we modify the component . xhtml page itself, as shown next:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:e="http://java.sun.com/jsf/composite/login">

<h:head>
<title>Creating a login composite component</titles>
</h:head>

<h:body>
<h:form>
<div id="compositeComponent" style="border: 2px solid #000;">
<e:login>
<f:actionListener for="loginID"
type="listeners.LOGINActionListener" />
</e:login>
</div>
<h:commandButton value="Reload" />
<h:outputText value="#{LOGINActionMessage}" />
</h:form>
</h:body>
</html>

190

Chapter 5

This time we have attached an action listener that will deal with the provided user and
password credentials (it intercepts the login events), and will populate the response with a
message displayed by an outputText component (a value is stored in request scope and
then displayed).

This action listener is shown next:

package listeners;

import javax.faces.component.UIComponent;

import javax.faces.component.ValueHolder;

import javax.faces.context.FacesContext;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;

import javax.faces.event.ActionListener;

public class LOGINActionListener implements ActionListener {
public void processAction(ActionEvent evt) throws
AbortProcessingException {

FacesContext ctx = FacesContext.getCurrentInstance() ;

UIComponent ui_comp = evt.getComponent () ;
ValueHolder user, pwd;

user = (ValueHolder) ui_comp.findComponent ("usernameID") ;

pwd = (ValueHolder) ui_ comp.findComponent ("passwordID") ;

String msg = "Login fired!"™ + " User: " + user.getValue() +
" Password: " + pwd.getValue() ;

ctx.getExternalContext () .getRequestMap () .
put ("LOGINActionMessage", msg) ;

}

Next, let's focus on the component page, 1ogin.xhtml. In the <composite:
implementations tag, we have provided the components that form a login page with
two text fields and a button (these are the sub-components of the composite component):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"

Custom Components

xmlns:composite="http://java.sun.com/jsf/composite">

<h:head>
<title>Creating a login composite component
- not rendered on output
</title>
</h:head>

<h:body>
<composite:interfaces
<composite:actionSource name="loginID" />
<composite:valueHolder name="username" />
<composite:valueHolder name="password" />
</composite:interface>

<composite:implementations>
<table>
<tr>
<td>Username:<h:inputText id="usernameID" /> </td>
</tr>
<tr>
<td>Password:<h:inputSecret id="passwordID" /></td>
</tr>
<tr>
<td><h:commandButton value="Login" id="loginID" /></td>
</tr>
</table>
</composite:implementations>
</h:body>
</html>

The interesting part here is the <composite: interfaces tag body. Here, we indicate
that the composite component has two inner components that implement javax. faces.
component .ValueHolder (any attached objects valid for valueHolder may be attached
to the composite component). The values of the name attribute must be the same as the id
values in the <composite:implementation> tag.

192

Chapter 5

The component is rendered as a composite component made of two text fields and one
submit button. The button event (login action) is captured by the action listener, which is
responsible for extracting the submitted user and password using the findComponent
method and preparing a response that is put in an outputText component. The key of

this mechanism is the fact that in JSF 2.0 every composite component implements javax.
faces.NamingContainer. By is nature, the findComponent method searches for

any child components that match the argument, then searches the ancestor component

that implements NamingContainer and asks it to find the component. In our case, an
ActionListener is passed an ActionEvent whose source property is the component that
fired the event, which means that component will be a child of our composite component.

See also

The code bundled with this book contains the complete code of our custom component under
the recipe: Creating a login composite component

Building a spinner composite component in

JSF 2.0

In this recipe, we will develop a spinner composite component. The special thing in this recipe
is that you will see how to add JavaScript code for controlling a composite component. The
appearance of the component can be seen in the following screenshot:

i EDED
Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

By now, you should already be familiar with the mechanism of creating a composite
component in JSF 2.0; therefore, we will skip the details regarding this aspect. To start
with, the page itself is very simple:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

Custom Components

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:e="http://java.sun.com/jsf/composite/spinner">
<h:head>
<title>
Creating a composite component with zero Java code
</title>
</h:head>

<h:body>
<e:spinner value="10" step="10">
</e:spinner>
</h:body>
</html>

As you see, the component name is spinner, so the component page will be
spinner.xhtml. Let's see it and then discuss it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:composite="http://java.sun.com/jsf/composite">

<h:head>

<title>Creating a spinner composite component</titles
</h:head>

<h:body>
<composite:interfaces
<composite:attribute name="value" required="true" />
<composite:attribute name="step" required="false" />
</composite:interface>
<composite:implementations>

<script type="text/javascript">
function goDirection(s)
var step = Number ("#{cc.attrs.step}");
if ((isNaN(step)) || (step == 0)) {
step = 1; }
var obj = document.getElementById

Chapter 5

("#{cc.clientId}"+":"+"anD");
obj.value = Number (obj.value) + (s * step);
return false;

}

</script>

<h:inputText id="nrID" value="#{cc.attrs.value}"/>

<h:commandButton id="leftID" value="-10"
onclick="return goDirection(-1);"/>

<h:commandButton id="rightID" wvalue="+10"

onclick="return goDirection(1l);"/>
</composite:implementations>
</h:body>
</html>

The big surprise lies in the <composite:implementations> tag. Based on the JavaScript
onClick event, we fire events from two buttons—one button increases the spinner value by
10, while the other one decreases it. When a button is clicked, the mouse event onClick is
fired, and the getDirection JavaScript function is called. Notice how we can use the #{...}
expression to gain access to component attributes. The #{cc.attrs.step} expression

is used to obtain the value of the step attribute, while the #{cc.clientId} expression
returns the auto-generated component ID (if you want to control this ID value, then add an
id attribute to the spinner tag). This ID is then concatenated with ":" and nrID to form
the complete ID.

The code bundled with this book contains the complete code of our custom component under
the recipe: Build a spinner composite component.

Mixing JSF and Dojo widget for custom

components

As you probably know, Dojo Toolkit is an "open-source JavaScript toolkit useful for building
great web applications". In this recipe, you will see how to mix Dojo and JSF to create a
custom component. JSF comes with a custom component that has a text field for entering
e-mail addresses, while Dojo comes with e-mail validation and will add a few styles to

our component.

Custom Components

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

In addition, you have to download Dojo, which is available at the address

www .dojotoolkit.org or in the book code bundle under the /JSF 1ibs/Dojo - JSF
2.0 folder. Dojo can be extracted in a folder named /script, next to the /WEB- INF folder
of your project.

How to do it...

We start with the page itself. This page will import Dojo libraries, and will give an example of
using the custom component:

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<%@ taglib uri="http://packt.net/cookbook/components" prefix="e" %>

<style type="text/css">
@import url ("${pageContext.request.contextPath}
/script/dojo_lib/dijit/themes/nihilo/nihilo.css") ;
@import url ("${pageContext.request.contextPath}
/script/dojo_lib/dojo/resources/dojo.css") ;
</style>
<script type="text/javascript"
src="35{pageContext .request.contextPath}/script/dojo_lib/dojo/dojo.js"
djConfig="parseOnLoad: true, isDebug:false">
</script>

<script type="text/javascript"s>
dojo.require ("dojo.parser") ;
dojo.require("dijit.form.ValidationTextBox") ;
dojo.require("dijit.form.Textarea") ;
</script>

<body class="nihilo">

<f:views
<h2>JSF and Dojo working for great custom components</h2>

196

Chapter 5

<h:form id="emailFormID">

<h:outputText value="Provide your e-mail:" />

<e:input id="emailID" type="text"

promptMessage="Provide your e-maill!"

invalidMessage="Invalid e-mail!"

dojoType="dijit.form.ValidationTextBox"

dojoRequired="true"
regExp="[a-zA-Z0-9. %-1+@[a-2A-Z0-9.-1+\. [a-2zA-Z]{2,4}"
value="#{dojoEmailBean.email}"/>

<h:commandButton id="emailBtnID"

action="response.jsp"
value="Submit"
type="submit">

</h:commandButton>

</h:form>

</f:view>

</body>

As you can see the component is named input and it has a set of attributes specific to Dojo
components (promptMessage, inputMessage, dojoType, dojoRequired, and regExp).

Next, you have to develop two classes that you are already familiar with. The first one is the
tag handler class, listed next:

package custom.component;

import com.sun.faces.taglib.html basic.InputTextTag;

import javax.faces.component.UIComponent ;

public class UIEmailInputTag extends InputTextTag

@Override

public String getComponentType () {

return "javax.faces.HtmlInputText";

@Override

public String getRendererType ()

return "jsf.dojo.render";

}

private
private
private
private
private

String
String
String
String
String

promptMessage;
invalidMessage;
dojoRequired;
regExp;
dojoType;

Custom Components

private String type;
public String getPromptMessage () {

return promptMessage;

public void setPromptMessage (String promptMessage)
this.promptMessage = promptMessage;

public String getInvalidMessage ()
return invalidMessage;

public void setInvalidMessage (String invalidMessage) {
this.invalidMessage = invalidMessage;

public String getDojoRequired()
return dojoRequired;

public void setDojoRequired (String dojoRequired) {
this.dojoRequired = dojoRequired;

public String getType()
return type;

public void setType (String type) {
this.type = type;

public String getRegExp()
return regExp;

public void setRegExp (String regExp) {
this.regExp = regExp;

public String getDojoType() {
return dojoType;

198

public void setDojoType (String dojoType) {

this.dojoType = dojoType;

@Override

protected void setProperties (UIComponent component) {

super.setProperties (component) ;

component
component
component
component
component
component

}

The second is the renderer class. Again, we have a common renderer (nothing special):

.getAttributes (
.getAttributes (
.getAttributes (
.getAttributes (
.getAttributes (

)
)
)
)
)
.getAttributes ()

package custom.component;

import javax.
import javax.
import javax.
import javax.
import javax.

.put ("regExp",

.put ("promptMessage",

.put ("invalidMessage",
.put ("type",
.put ("dojoType",

faces.component .UIComponent ;

faces.component.ValueHolder;

faces.context.FacesContext;

faces.context.ResponseWriter;

faces.component.UIInput;

.put ("dojoRequired", dojoRequired) ;

type) ;

dojoType) ;

regExp) ;

import com.sun.faces.renderkit.html basic.TextRenderer;

import java.io.IOException;

public class UIEmailInputRender extends TextRenderer (

@Override

public void encodeEnd (FacesContext ctx, UIComponent ui comp)

ResponseWriter responseWriter =

Chapter 5

promptMessage) ;

invalidMessage) ;

throws IOException {

ctx.getResponseWriter () ;

responseWriter.startElement ("input", ui_ comp) ;

String id

= (String) uil comp.getClientId(ctx) ;

responseWriter.writeAttribute ("id", id, "id");

responseWriter.writeAttribute ("name", id,

llidll) H

Custom Components

responseWriter.writeAttribute ("value",
getValue (ui comp), "value");

responseWriter.writeAttribute ("type",
(String) uil comp.getAttributes() .get ("type"), null);
responseWriter.writeAttribute ("invalidMessage",
(String)ui comp.getAttributes() .get ("invalidMessage"),null) ;
responseWriter.writeAttribute ("regExp",

(String) uil comp.getAttributes () .get ("regExp"), null);
responseWriter.writeAttribute ("dojoType",
(String) uil comp.getAttributes() .get ("dojoType"), null);
responseWriter.writeAttribute ("required",
(String) uil comp.getAttributes () .get ("dojoRequired"), null);
responseWriter.writeAttribute ("promptMessage",
(String)ui comp.getAttributes() .get ("promptMessage"), null);

responseWriter.endElement ("input") ;
@Override
protected Object getValue (UIComponent ui_comp) {

Object objValue = null;
if (ui_comp instanceof UIInput) {

objValue = ((UIInput)ui comp) .getSubmittedvalue() ;

}

if ((objvalue == null) && (ui_comp instanceof ValueHolder)) ({
objValue = ((ValueHolder) ui comp) .getValue() ;

}

if (objvalue == null) {
objValue = "";

}

return objValue;

}
}

Finally, you need to write the TLD file for the input component (not listed here), configure the
renderer in faces-config.xml, and write the DojoEmailBean, which is a trivial bean. You
can see both these tasks accomplished in the complete example.

The code bundled with this book contains the complete code of our custom component under
the recipe: JSF_and Dojo widget for custom components.

200

AJAX in JSF

In this chapter, we will cover:

» Afirst JSF 2.0-AJAX example

» Usingthe f:ajaxtag

» Installing and using Dynamic Faces in NetBeans 6.8
» Using the inputSuggestAjax component

» ajax4jsf—more than 100 AJAX components

» Writing reusable AJAX components in JSF 2.0

» PrimeFaces, CommandLink, and CommandButton

Introduction

In this chapter, you will see some recipes that demonstrate the JSF support for AJAX. We start
with some core JSF tags that provide AJAX support and we will continue with frameworks that
offer many other AJAX components. Therefore, we will talk about DynamicFaces, RichFaces,
ajax4jsf, PrimeFaces, and finally, but not the least, about Apache MyFaces Tomahawk.
Additionally, you will see how to create reusable AJAX components in JSF 2.0.

A first JSF 2.0-AJAX example

In this recipe, you will see how simple it is to use AJAX in JSF 2.0. For this we have built a
"HelloWorld" example based on a simple button that when pressed renders a random number
on the screen using the AJAX mechanism. The following screenshot is a capture of this:

1001496980| iRandom!

AJAX in JSF

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

We start with a simple bean, meant to generate a random number using the
java.util.Random class. This bean looks like the following code snippet:

import java.util.Random;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean (name = "random")
@SessionScoped
public class RandomNumber {

private Integer random = 0;
Random generator = new Random(19580427) ;

public Integer getRandom()

random = generator.nextInt () ;
return random;

}
We go further and develop the JSF page that will call the previous bean:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<h:head>
<title>Simple JSF2.0-AJAX example</title>
</h:head>

<h:body>
<h:form id="formID" prependId="false">
<h:outputScript name="jsf.js"
library="javax.faces" target="head"/>
<h:outputText id="randomID" value="#{random.random}"/>

202

Chapter 6

<h:commandButton id="buttonID" value="Random"
onclick="jsf.ajax.request (this, event, {execute:
this.id, render: 'randomID'}); return false;"/>
</h:form>

</h:body>
</html>

That's it!

For understanding how it works, we should take a closer look at some code lines. First, we
have the h:outputScript line, which includes the JSF AJAX library into our page (this is
necessary for the call to ajaxRequest). After that, we have an outputText component,
which displays the random number from the bean. Third, we have a commandBut ton, which
calls ajaxRequest and returns false when it is clicked. An ajaxRequest has three
arguments, as follows:

» The calling object, which is this.

» The calling event, which is event.

» The third argument is a little tricky. It contains the execute and render properties.
The first property takes a list of the IDs of all the JSF components that we would like
to execute, while the second property contains the IDs of all the JSF components that
we want to re-render (refresh).

There's more...

In the next recipe, you will see another way of using AJAX in JSF 2.0.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: First JSF 20 AJAX example.

203

AJAX in JSF

Using the f:ajax tag

In JSF 2.0, there are two ways of adding AJAX support to the JSF 2.0 applications. The first way
was described in the previous recipe, and the second way is to use the new <f :ajax> tagto
declare AJAX support for the JSF components. We choose to develop the same "HelloWorld"
example from previous recipe (a simple button that when pressed renders a random number
on screen using the AJAX mechanism), to allow you to compare the two methods of using AJAX
in JSF 2.0.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

We keep the same bean from the previous recipe, and we list only the main page:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.o0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title>Using the f:ajax tag</titles>
</h:head>
<h:body>
<h:form id="formID" prependId="false">
<h:outputText id="randomID" value="#{random.random}"/>
<h:commandButton id="buttonID" value="Random">
<f:ajax execute="formID:buttonID formID:randomID"
render="formID:randomID"/>
</h:commandButton>
</h:form>

</h:body>
</html>

204

Chapter 6

Notice that we have placed the <f : ajax> tag inside the <h: commandButton> component—
this allows sending AJAX requests upon the "onclick" action of this component. If the tag is
placed inside a value holder component like <h:selectOneListboxs>, it allows sending the
AJAX requests upon the "onchange" action of the component.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Using the f ajax_ tag.

Installing and using Dynamic Faces in

NetBeans 6.8

In this recipe, we will install and use the Dynamic Faces library in NetBeans 6.8. Dynamic
Faces, also known as POJC (Plain Old JavaServer Faces Components), are an extension to
JavaServer Faces technology that lets you easily implement AJAX functionality. Practically,
you use the Ajax Transaction component included with the Dynamic Faces component library
(0.2), which lets you visually configure AJAX functionality at design time.

Getting ready

The Dynamic Faces and necessary dependencies can be installed as shown next:

1. Launch NetBeans 6.8.

From the Tools main menu select the Plugins item.

Switch to the Available Plugins tab and wait until it is populated.
Locate the Dynamic Faces project and select it from the list.

Press the Install button, from the bottom of the wizard.

© o M w DN

A new window will appear (notice that NetBeans will install all the necessary
dependencies for us). Press the Next button.

7. Next, you should accept the terms in all of the license agreements and press the
Install button again.

205

AJAX in JSF

8.

3

® NetBeans IDE Installer, §|

Installation completed successfully
Click. Finish to quit the NetBeans IDE installer.

The MetBeans IDE Installer has successfully installed the Following plugins:

Wisual J5F Runtime
Project Dynamic Faces Ajax Components and Samples
Wisual J5F

Click Finish. When installation is complete, you should see the following message:

9.

Click Close to exit the Plugin Manager.

10. Restart the IDE.

How to do it...

Now, let's try to make a simple stub for an application that uses Dynamic Faces. Follow the

given steps:
1. From the File main menu, select New Project.
2. Select Java Web as the category and Web Application as the Project Type.
Click Next.
3. Name the project dynaExample and click Next.
Select GlassFish v3 Prelude as the server and click Next.
5. From the Frameworks list, select the Visual Web JavaServer Faces framework and

click Finish.

Now you have to add the component libraries as shown next:

1.

206

In the Projects window, right-click the Component Libraries node and choose Add
Component Library.

In the Add Component Library dialog box, make sure that Dynamic Faces
Components (0.2) is selected and click Add Component Library.

Chapter 6

Now, the Dynamic Faces category appears in the Palette as in the following screenshot
(as you can see the Woodstock Basic JSF is also available):

- Palette e =

B Dynamic Faces -

i+ Ajax Transaction

.....

- Woodstock Basic
5 Label

|A] Static Text
[T Texk Field
Text Area
| # | Bukkon
=2 Hyperlink

Image Hyperlink W

At this point you have everything you need to start developing a Dynamic Faces application.
We will not go through the entire process of developing such an application (because of

a limited space), but we will show you the basic steps in adding AJAX support to a JSF
component. Usually, the steps are:

1. Drag and drop the JSF Woodstock components from the Palette to the
Visual Designer.

2. Right-click each component and choose the Add Binding Atrribute item from the
contextual menu.

3. Inthe Visual Designer toolbar, click Show Virtual Forms i,

The Ajax Transaction component included with the Dynamic Faces component library
lets us configure AJAX functionality at design time in a visual approach, displaying
various components with color-coded borders in the Visual Designer. Common
settings indicate the components that send input to the server when the Ajax
Transaction fires as well as the components that re-render when the client receives
the AJAX response. The components that send input to the server are displayed with
a solid border in the Visual Designer; the components that re-render are displayed
with a dashed border. In addition, you must code a line of JavaScript to fire the

Ajax Transaction.

Drag and drop an Ajax Transaction component onto Pagel.

5. Right-click on a component that will send input to the server and choose Configure
Ajax Transactions (this will open a dialog box).

6. Double-click the Send Input value and change the value to Yes and make sure that
Re-Render is set to No. Click Ok.

207

AJAX in JSF
For the components that re-render set Re-Render to Yes and Send Input to No.

7. Inthe Visual Designer, select each component, and in the Properties window, add
the following parameters to the proper event (for example, for a text field, use the
onKeyUp event; for a list box, use the onChange event):

DynaFaces.Tx.fire("transaction", "component id")

Done! From this point forward, you have to implement the application business logic.

For a complete example, please check http://www.netbeans.org/kb/docs/web/
ajax-textfield.html?intcmp=925655.

Using the inputSuggestAjax component

The Apache Sandbox project tries to add new components to the Tomahawk project, and we
are interested in components that come with AJAX support, such as the inputSuggestAjax
component, which is a tag that defines an autosuggest control complete with AJAX binding.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 1.2, and GlassFish v3. The JSF 1.2
classes were obtained from the NetBeans JSF 1.2 bundled library. In addition, we have used
Apache MyFaces Tomahawk Sandbox 1.1.9, which provides support for JSF 1.2. You can
download this distribution from http://myfaces.apache.org/sandbox/index.html.
The Apache MyFaces Tomahawk Sandbox libraries (including necessary dependencies) are in
the book code bundle, under the /JSF_1libs/Apache Tomahawk Sandbox—JSF 1.2 folder.

How to do it...

The inputSuggestAjax component allows you to do real-time auto-completion using
asynchronous server requests. Firstly, let's mention the tag's main attributes (there are
many more attributes and they can be seen in the official documentation that comes with
the product):

208

Chapter 6

Name Required Description

id No The control ID.

suggestedItemsMethod No Reference to the method that returns the
suggested items.

maxSuggestedItems No Maximum number of suggested entries.

value No The initial value of this component.

binding No According to official documentation "the binding

into a control object, this binding is needed
because the control object does all the needed
data transformation between the AJAX control and
the backend/frontend".

Now, the most used syntax is:

<g:inputSuggestAjax id="id" binding="control binding"
suggestedItemsMethod="backend bean callback method" value="backend
bean property"/>

Keeping in mind the previous syntax, we have developed a simple JSF page as shown next:

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://myfaces.apache.org/tomahawk" prefix="t"%>
<%@ taglib uri="http://myfaces.apache.org/sandbox" prefix="sg"%>

<html>
<head>
<title>Use the s:inputSuggestAjax tag</title>
</head>
<body>

<f:view>
<h:form prependId="false">

<h:outputText value="Enter Name:"/>

<g:inputSuggestAjax
suggestedItemsMethod="#{namesBean.getSuggestedNames}"
value="#{namesBean.name}" />
</h:form>
</f:views>
</body>
</html>

209

AJAX in JSF

And the NamesBean is:

package bean;

import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;

public class NamesBean {
String name;

public String getName () {
return name;

public void setName (String name) {
this.name = name;

public List<String> getSuggestedNames (String nume)

{

List<String> list = new ArrayList<Strings>();

list.add ("Alyn") ;
list.add ("Andrey") ;
list.add ("Mike") ;
list.add(
list.add(

"Tom") H
"Susana") ;

List<String> selectedNames = new ArrayList<Strings>();
Iterator<String> iterator = list.iterator();
while (iterator.hasNext ())
{
String currentName = (String)iterator.next();

if ((currentName.toLowerCase ()) .startsWith (name.toLowerCase()))
{selectedNames.add (currentName) ; }

return selectedNames;

Chapter 6

The call mechanism is based on the flow depicted in the following diagram (the AJAX request
calls the suggestion method (implemented in the bean) request and fetches the necessary
data. After that, the data is pushed into the control binding):

Control
Ajax Request

Suggestion Method in Backend Bean

Values Pushed into the Control Binding

Result Sent Back to the Client

Control Shows Suggestions Drop Down

See also

The code bundled with this book contains a complete example of this recipe. The project can be
opened with NetBeans 6.8 and it is named: Using_the inputSuggestAjax component.

ajax4jsf—more than 100 AJAX components

"RichFaces is a component library for JSF and an advanced framework for easily integrating
AJAX capabilities into business applications". More than 100 AJAX components can be
found under the RichFaces libraries, a4y (ajax4jsf) and rich. Some of the most impressive
components are listed next:

» a4j:support (this is available starting with RichFaces 3.0.0 and "it is the most
important core component in the RichFaces library. It enriches any existing
non-Ajax JSF or RichFaces component with Ajax capability. All other RichFaces Ajax
components are based on the same principles <a47j : support> has"). Notice that
starting with RichFaces 4.0, is possible that this tag will be replaced with one named
a4j:ajax.

» a4j:commandLink

» a4j:commandButton

» a4j:push

» a4j:mediaOutput

» a4dj:status

» a4j:jsFunction

» a4j:log

» a4j:outputPanel

AJAX in JSF

In this recipe, we will develop two examples with a4 7 : support and one example for a4 :
commandButton and a4j : commandLink.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
RichFaces 3.3.3.BETA1 (ajax4jsf included), which provides support for JSF 2.0. You can
download this distribution from http://www. jboss.org/richfaces. The RichFaces
libraries (including necessary dependencies) are in the book code bundle, under the
/JSF_libs/RichFaces - JSF 2.0 folder.

How to do it...

The best way to get further is to try to develop an application that exploits ajax4jsf
components. Since a4j : support is the most important ajax4jsf component, we try
to build an example with it. But, before this, let' see the a4j : support tag's attributes:

Name Required Description

action No MethodBinding pointing at the application action
to be invoked, if this UIComponent is activated by
you, during the Apply Request Values or Invoke
Application phase of the request processing lifecycle,
depending on the value of the immediate property. Type:
javax.el.MethodExpression (sighature must
match java.lang.Object action()).

actionListener No MethodBinding pointing at method accepting an
ActionEvent with return type void. Type: javax.
el .MethodExpression (signature must match
void actionListener (javax.faces.event.
ActionEvent)).

ajaxSingle No Limits JSF tree processing (decoding, conversion,
validation, and model updating) only to a
component that sends the request. Type: javax.
el .ValueExpression (must evaluate to boolean).

value No The initial value of this component.

binding No The attribute takes a value-binding expression for a
component property of a backing bean. Type: javax.
el .ValueExpression (must evaluate to javax.
faces.component .UIComponent).

Chapter 6

Name Required Description

reRender No "ID[s] (in format of call UIComponent .
findComponent ()) of components, rendered in
case of AjaxRequest caused by this component.
Can be single ID, comma-separated list of IDs, or EL
Expression with array or Collection. Type:
javax.el.ValueExpression (must evaluate
to java.lang.Object)

event No Name of JavaScript event property (onclick, onchange,
etc.) of parent component, for which we will build AJAX
submission code. Type: java.lang.String.

onsubmit No The client-side script method to be called
before an AJAX request is submitted. Type:
javax.el.ValueExpression (must
evaluate to java.lang.String).

oncomplete No The client-side script method to be called
after the request is completed. Type:
javax.el.ValueExpression (must
evaluate to java.lang.String).

The complete documentation of the a47j : support tag can be found at http://docs.
jboss.org/richfaces/3.3.1.GA/en/tlddoc/a4]j/support.html.

Now, based on these attributes we are ready to develop our first example to test the
a47j:support tag. We want to render a text field (h: inputText tag) and, at each key up
event, to render the inserted character in capitals using the AJAX mechanism. For this, our
main form looks as shown next:

<h:form id="myForm">
<h:outputText value="Text:" />
<h:inputText value="#{textBean.text}">
<a4dj:support event="onkeyup" reRender="textId"
action="#{textBean.upperText}"/>
</h:inputText>
<h:outputText value="Upper Text:" />
<h:outputText id="textId" value="#{textBean.text}" />
</h:form>

AJAX in JSF

The event attribute indicates the event that fires up the AJAX process, the reRender
attribute indicates the ID of the component to be re-rendered when AJAX completes, and the
action attribute indicates a method that is executed to convert characters from lowercase to
uppercase—the AJAX business logic. The method is listed in the following bean:

@ManagedBean (name="textBean")

@RequestScoped

public class TextBean {
private String text;

public String getText ()
return text;
}

public void setText (String text)
this.text = text;
}

public void upperText () {
this.text = this.text.toUpperCase() ;

}

Now, let's develop a more complex example, and we will try to render three radio buttons
(h:selectOneRadio tag) and, when the current radio button is changed, to render a
table (h:dataTable tag) with a different content. The radio buttons will represent three
automobile manufacturers' names and the table will represent the list of cars from the
selected company. Obviously, we want to change the table's content through AJAX
mechanism. The view is listed next:

<h:form id="myForm">
<h:selectOneRadio id="companyId" value="#{carsBean.carCompany}"
valueChangeListener="#{carsBean.companyChanged}">
<f:selectItems value="#{carsBean.allCars}"/>
<adj:support event="onchange" reRender="carsId" />
</h:selectOneRadio>

<h:outputText value="Available cars for company
#{carsBean.carCompany}:" />
<h:dataTable id="carsId" value="#{carsBean.companyCars}" var="car"s
<h:column>
<h:outputText value="#{car}" />
</h:column>
</h:dataTable>
</h:form>

214

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 6

This time the event attribute indicates the onchange event and the re-rendered component

is a table. The bean behind the scenes is:

package bean;

import java.util.ArrayList;

import java.util.List;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;
import javax.faces.event.ValueChangeEvent;
import javax.faces.model.SelectItem;

@ManagedBean (name = "carsBean")
@RequestScoped
public class CarsBean {

private String carCompany = "Renault";
private String carName;

public List<SelectItem> allCars = new ArrayList<SelectItems();

public List<String> companyCars = new ArrayList<Strings () ;
private static final String[] carsRenault = new

String[] {"Clio", "Clio Estate", "Clio RS", "Symbol",
"Fluence", "Sedan", "Megane", "Megane Coupe",

"Megan Sport Tourer", "Scenic", "Grand Scenic", "Kangoo",
"Coupe", "Koleos", "Espace", "Laguna", "Laguna Estate"};

private static final String[] carsFiat = new
String[] {"500", "Panda", "Punto Classic", "Grande Punto
Unico", "Albea", "Bravo", "Linea", "Croma",
"Sedici", "Doblo Panorama"};

private static final String[] carsDacia = new

String[] {"Sandero", "Logan", "Logan MCV", "Van", "Pick-up"};

public CarsBean() {

allCars.add (new SelectItem("Renault", "Renault")) ;
allCars.add (new SelectItem("Fiat", "Fiat"));
allCars.add (new SelectItem("Dacia", "Dacia"));

for (int i = 0; 1 < carsRenault.length; i++) {
companyCars.add (carsRenault [i]) ;

public void companyChanged (ValueChangeEvent event)

AJAX in JSF

companyCars.clear () ;

if (((String) event.getNewValue()) .equals ("Renault")) {
addCompanyCars (carsRenault) ;

}

if (((String) event.getNewValue()) .equals("Fiat")) {
addCompanyCars (carsFiat) ;

}

if (((String) event.getNewValue()) .equals("Dacia")) {
addCompanyCars (carsDacia) ;

private void addCompanyCars (String[] currentCars) {
companyCars.clear () ;

for (int i = 0; 1 < currentCars.length; i++) {
companyCars.add (currentCars [i]) ;

public String getCarCompany ()
return carCompany;

public void setCarCompany (String carCompany) {
this.carCompany = carCompany;

public String getCarName ()
return carName;

public void setCarName (String carName)
this.carName = carName;

public List<SelectItem> getAllCars() {
return allCars;

public void setAllCars(List<SelectItem> allCars) {
this.allCars = allCars;

Chapter 6
}

public List<String> getCompanyCars () {
return companyCars;
}

public void setCompanyCars (List<String> companyCars)
this.companyCars = companyCars;
}

}

The most important method here is companyChanged, which populates a list with the
cars' names depending on the selected company. This method is called through the
valueChangeListener attribute of the h: selectOneRadio tag, not through the
action attribute of a4 : support tag.

The mechanism of a4 7 : support is pretty straightforward. The event attribute will indicate
the mouse/keyboard event that must happen to start the AJAX process. Now, the client AJAX
business logic is executed and the desired modifications take place—the method responsible
with client AJAX business logic is called through a4 7 : support attributes, action, and/or
actionListener or similar attributes of tags that wrap the a47j : support tag. This is the
basic mechanism, but we have to be aware of the entire suite of attributes that allows us to
have full control over this AJAX process. The most important thing, as you can see, is that the
a4j:support component in not tied to any other component, which means that we can use
it to implement AJAX support to any JSF component that can be logically involded with AJAX.

If you take a look in the web . xm1 descriptor, you will notice that ajax4jsf is implemented

as a filter. This is an important aspect, because when a user makes an ajax4jsf request, a
JavaScript event is fired and it is processed by the AJAX Engine, commonly on the client side.
Next, the original request is submitted by the AJAX Engine to ajax4jsf filter. At this step, a set
of XML filters will convert the data into XML format and the request reaches the original Faces
Servlet. Keep in mind that it is very possible that this configuration will not be necessary in
RichFaces 4.0.

There's more...

Next you will see how to use another two ajax4jsf components, as follows:

a4j:commandLink: "The <a4j:commandLink> component is very similar to the
<h:commandLink> component, the only difference is that an Ajax form submit is generated
on a click and it allows dynamic re-rendering after a response comes back. It's not necessary
to plug any support into the component, as Ajax support is already built in."—see home page
at: http://docs.jboss.org/richfaces/3.3.1.GA/en/devguide/html/a4]j
commandLink.html.

AJAX in JSF

a4j:commandButton: "The <a4j : commandButton> component is very similar to JSF
<h:commandButtons>, the only difference is that an Ajax form submit is generated on a
click and it allows dynamic re-rendering after a response comes back."—see home page at
http://docs.jboss.org/richfaces/latest 3 3 X/en/devguide/html/a4j
commandButton.html.

Now, we can use these two ajax4jsf components to develop the following JSF page:

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="f" uri="http://java.sun.com/jsf/core"%>
<%@taglib prefix="h" uri="http://java.sun.com/jsf/html"%>
<%@ taglib uri="http://richfaces.org/a4j" prefix="a4j"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >
<html>
<head>
<title>Demo of a4j:commandLink and a4j:commandButton</title>
</heads>
<body>
<f:view>
<h:outputText value="Set page number manually:"/>
<h:panelGrid id="panellID" columns="2"
border="0" style="width:600px;">
<h:outputText value="a4j:commandLink Example" />
<adj:form>
<h:outputText value="Set page number: " />
<h:inputText value="#{book.pagenr}" />
<a4j:commandLink value="Get Page Number" reRender="pagesID" />
<h:panelGroup id="pagesID">
<h:outputText value="Pages: "
rendered="#{not empty book.pagenr}" />
<h:outputText value="#{book.pagenr}" />
<h:outputText value="!" rendered="#{not empty book.pagenr}" />
</h:panelGroup>
</a4j:form>
</h:panelGrid>

<h:outputText value="Increase/decrease page number using buttons
(the start page is the one setted manually) :"/>
<h:panelGrid id="panel2ID" columns="3"
border="0" style="width:600px;">
<h:outputText value="a4j:commandButton Example" />
<adj:form>

Chapter 6

<a4j:commandButton action="#{book.pageltForward}"
value="Page It Forward" reRender="pifID" />
<a4j:commandButton action="#{book.pageltBackwards}"
value="Page It Backwards" reRender="pifID" />
</a4j:form>
<h:outputText value="Page number:#{book.pagenr}" id="pifID" />
</h:panelGrid>
</f:view>
</body>
</html>

The Book bean looks like this:

package a4jdemo;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean (name = "book")
@SessionScoped
public class Book

private int pagenr = 1;

public int getPagenr() {
return pagenr;

public void setPagenr (int pagenr)
this.pagenr = pagenr;

public void pageltForward() {
pagenr = pagenr + 1;

}

public void pageItBackwards()
pagenr = pagenr - 1;

}

AJAX in JSF

The application output can be seen in the following screenshot:

adycommandLink Example

ady commandButton Example

Set page mumber manually:

Jet page mumber: 24 et Page MumberPages: 241

Increasefdecrease page number using buttons (the start page 15 the one setted manually):

Page ft Forward | PPage it Backwards | | Page number.20

Other ajax4jsf component

Some other ajax4jsf components are:

>

>

220

<a4j
<adj
<a4j
<adj
<a4j
<adj
<a4j
<a4j
<a4j
<a4dj
<a4j
<a4dj
<a4j
<a4dj
<a4j
<a4dj
<a4j
<a4dj
<a4dj
<a4dj
<adij

:ajaxListeners>
:keepAlives>
:actionparams>
:form>
:htmlCommandLink>
:jsFunction>
:includes
:loadBundle>
:loadScript>
:loadStyle>
:log>
:mediaOutput>
:outputPanel>
:page>

:polls>
:portlet>
:push>
:regions>
:repeats>
:status>

:support>

Chapter 6

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named:

» Using ajax4jsf support component I

» Using ajax4jsf support component IT

» Using ajax4jsf commandLink and commandButton
An ajax4jsf developer guide can be found at http://labs.jboss.com/file-access/

default/members/jbossajax4jsf/freezone/docs/devguide/en/html/index.
html.

Writing reusable AJAX components in

JSF 2.0

In this recipe, we will modify the recipe Building a spinner composite component in JSF 2.0
from Chapter 5, Custom Components, to offer the possibility to use more than one spinner on
the same page. Practically, you will see how to use multiple AJAX-aware components in a

JSF page.

How to do it...

First we modify the spinner.xhtml page as following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:composite="http://java.sun.com/jsf/composite">

<h:head>

<title>Creating a rusable AJAX spinner composite component
</title>
</h:head>

<h:body>
<composite:interfaces
<composite:attribute name="value" required="true" />
<composite:attribute name="step" required="false" />
</composite:interfaces>
<composite:implementations>
<h:outputScript name="ajax.js" library="javax.faces"
target="head"/>

221

AJAX in JSF

<h:outputScript name="spinner/spinnerdS.js" target="head" />
<script type="text/javascript"s>

initSpinner ("#{cc.clientId}", "#{cc.attrs.step}");
</script>
<h:inputText id="nrID" value="#{cc.attrs.value}"/>
<h:commandButton id="leftID" value="Plus step"

onclick="return goDirection('#{cc.clientId}',1);"/>
<h:commandButton id="rightID" value="Minus step"
onclick="return goDirection('#{cc.clientId}',-1);"/>
</composite:implementation>
</h:body>
</html>

As you can see there are two main modifications here. First, the JavaScript code was moved
to a separate file, named spinnerJS.js, and each spinner was initialized by calling the
initSpinner function. spinnerJS. js looks as following;

var steps = {};

function initSpinner (comp_id, step) {
if (isNaN(step)) {
steps [comp id]l= 1;
}else{
steps[comp id] = Number (step) ;
}

}

function goDirection (comp id,s) {
var obj = document.getElementById(comp id+":"+"nrID") ;
var cv = Number (obj.value) ;
if ((isNaN(cv)) || (ev == 0)) {
cv = 0;
}

obj.value = cv + (s * steps[comp id]) ;
return false;

}

Now, you can test a set of three spinners, as shown next:

<h:outputText value="Spinner I - initial value = 10, step

= 10"/>

<e:spinner value="10" step="10" id="spinnerI"/>

<h:outputText value="Spinner II - initial value = 5, step = 1"/>

<e:spinner value="5" step="1" id="spinnerII"/>

<h:outputText value="Spinner III - initial value = 0, step = 2"/>

<e:spinner value="0" step="2" id="spinnerIII"/>

222

Chapter 6

A possible output is shown in the following screenshot:

Spinner T - wutial walue = 10, step = 10

-20 [Flus step H binus step l
Spinner 1T - initial value = 5, step = 1

3 [Flus step H binus step l
Spinner 1T - initial walue = 0, step = 2

] [EPIus stepi H Minus step l

In this case, the main idea is that we have to manage an array of components instead of a
single component. We switch between components (or we identify them)—for maintaining their
state—using their corresponding IDs. The initSpiner function is responsible for creating

an initial state for each new component, while the goDirection function implements the
component behavior after it identifies it using the component ID.

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Write_reusable_AJAX_components_in_
JSF20.

You also may want to see Jim Driscoll's blog at http://weblogs.java.net/blog/
driscoll/. This recipe was inspired by his idea.

PrimeFaces, CommandLink, and

CommandButton

As you probably saw in the previous chapters, PrimeFaces provides a set of amazing
components with great design and functionality. AJAX got a special treatment from
PrimeFaces and the result is reflected in some great AJAX components. In this recipe, we
will present two of them that extend standard JSF components with AJAX, partial processing,
and confirmation features. These are: p : commandLink (extends h: commandLink) and

p: commandButton (extends h: commandButton).

223

AJAX in JSF

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used PrimeFaces 2.0, which provides support for JSF 2.0. You can download this distribution
from http://www.primefaces.org/. The PrimeFaces libraries (including necessary
dependencies) are in book code bundle, under the /JSF_1libs/PrimeFaces - JSF 2.0
folder.

How to do it...

In many sites, when we need to register an ID (a nickname), we have a pre-submit option
(usually a link or a button) of type Check ID availability. This facility allows us to check if our
ID already exists or is available to be used. This kind of facility fits perfectly to the AJAX aim,
since we can refresh only a portion of the page and we don't submit the entire form. Our
example will look as the following figure (the arrows identifies the PrimeFaces components
that we have used—notice that except the p: commandLink and p:ajaxStatus, the rest of
them can be replaced by pure JSF components, but with a different visual effect):

Provide your ID to check ... <ppanel>

[y Thas IT) 15 available! j_

<hzoutputLabel> ——IT): * |Fackt Check ID availabiity — ———

<pmessages=

<rajaxStatus=

<hcinprtText> <p:commandLink=

Now, let's put together these components to obtain the following page:

<h:form prependId="false">
<p:panel id="panel" style="width: 420px; margin-bottom:10px;"
header="Provide your ID to check ...">
<p:messages showDetail="false" globalOnly="false" />
<h:panelGrid border="0" columns="4">
<h:outputLabel for="nickId" value="ID: *" />
<h:inputText id="nickId" value="#{bean.nick}" required="true" />

<p:commandLink actionListener="#{bean.nickAction}"
update="panel" style="margin-right:20px;">
<h:outputText value="Check ID availability" />
</p:commandLink>

224

Chapter 6

<p:ajaxStatus style="height:16px">
<f:facet name="start">
<h:graphicImage value="resources/images/ajaxloading.gif" />
</f:facet>
<f:facet name="complete">
<h:outputText value="" />
</f:facet>
</p:ajaxStatus>
</h:panelGrid>
</p:panel>
</h:form>

Now, let's identify the main parts of this page. The first thing we did in the page was to set
the formtag's prependId attribute to false so that we can refer to component IDs without
prepending the form's ID. In AJAX applications, you often have to refer to client IDs. Without
the prependId attribute, you'd have to add the form ID to every client ID reference, which
adds extra bytes to network transactions and is a pain to type.

Next, we have used a PrimeFaces panel (p : panel), which will contain our design stuff
(you can think of it as a normal HTML <div>). This panel will be refreshed after the AJAX
transaction completes, and for this, it is very important to specify the panel id attribute.

Going further, we have a another PrimeFaces component, tagged p:messages. These
components are highly customizable and pre-skinned versions of standard message
components. We use it for displaying one of the messages This ID is available! or
This ID is not available!

Next, we have a simple panel grid and an h: inputText. In this component, the user
specifies the desired ID, which is mapped by the nick String property in a managed
bean. The ID is required.

Now, comes the main part of our recipe. We use the p : commandLink component to take
advantage of the AJAX support. Since this is very similar to the JSF core component, h:
commandLink, it is very easy to use and understand—notice that we don't have any special
code that reveal that AJAX is used. Notice that we have set the update attribute with

the value of the panel id; therefore, the panel will be updated after the AJAX transaction
completes. The actionListener attribute indicates that the nickaAction method should
deal with this transaction—this method must get an ActionEvent instance, and it is

listed next:

public void nickAction (ActionEvent actionEvent) {

Random check = new Random() ;
int val = check.nextInt (100) ;

if (val < 50) {

225

AJAX in JSF

FacesContext.getCurrentInstance () .addMessage (null,
new FacesMessage (FacesMessage.SEVERITY INFO,
"This ID is available!", ""));
} else {
FacesContext.getCurrentInstance () .addMessage (null,
new FacesMessage (FacesMessage.SEVERITY ERROR,
"This ID is not available!", ""));

Of course, in the real world, you will replace our random stuff with a check
s against a database, web service, and so on.

The last part of our form uses the p:ajaxStatus Primefaces component. This component
can monitor the AJAX transaction's status (such as transaction started or transaction
completed) and we have used it to display a picture that signals to the user that something is
going on, and he or she should wait for the process to end. Without this "visual flag", the user
has no idea that something is happening behind the scenes.

The process is simple and starts with the user providing an ID. The ID is checked (usually
against a database) when the user press the link rendered by the p: commandLink
component. When this action is fired up, the nickAction method is called and the AJAX
request status is monitored by the p:ajaxStatus and rendered accordingly by displaying or
hiding a picture. The AJAX result in our example is reflected in two info messages, but you can
do anything else.

There's more...

Similar to p : commandLink, we have p: commandButton. The main difference between
these two consists in the fact that h: commandButton supports an attribute named async
(in older versions it is known as ajax) that takes a Boolean value. If it is set to true (default)
then the submission would be made with AJAX. As per the example, if we want to use a button
instead of the previous link, we can replace it as shown next:

<p:commandButton async="true" value="Check ID availability"
update="panel" actionListener="#{bean.nickAction}"
style="margin-right:20px;"/>

226

Chapter 6

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: PrimeFaces_CommandLink_and_
CommandButton.

You also may want to check:
PrimeFaces tag documentation: http://primefaces.prime.com.tr/docs/tag/.
PrimeFaces home page: http://www.primefaces.org/.

PrimeFaces ShowCase: http://www.primefaces.org:8080/prime-showcase/ui/
imageCropperExternal.jsf.

227

Internationalization
and Localization

In this chapter, we will cover:

» Loading message resource bundles in JSF

» Using locales and message resource bundles

» Message resource bundles without £ : 1loadBundle
» Working with parameterized messages

» Accessing message resource keys from a class

» Providing a theme to a Visual Web JSF Project

» Displaing Arabic, Chinese, Russian, and so on

» Selecting a time zone in JSF 2.0

Introduction

As the official definition said:

Internationalization and localization are means of adapting computer software

to different languages and regional differences. Internationalization is the
process of designing a software application so that it can be adapted to various
languages and regions without engineering changes. Localization is the process
of adapting internationalized software for a specific region or language by

adding locale-specific components and translating text. The terms are frequently
abbreviated to the numeronyms i18n (where 18 stands for the number of letters
between the first i and last n in internationalization, a usage coined at DEC in the
1970s or 80s) and L10n respectively, due to the length of the words. The capital L
in L10n helps to distinguish it from the lowercase i in i18n.

Internationalization and Localization

In this chapter, you will see some recipes meant to prove the JSF support for
internationalization and localization. You will see how to use different locales, how to
customize messages, how to work with resource bundles, and how to display characters
specific to the Chinese, Arabic, and so on writing systems.

Loading message resource bundles in JSF

Suppose that we have a message resource bundle with the following content
(message resource bundles are simply property files with key/value pairs) named
myMessages.properties (its contentis not relevant here):

HELLO_WORLD = Hello world message!

In this recipe, you will see how to load and use such a file into a JSF page.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

For loading the message resource bundle we use the core tag £ : loadBundle. This loads the
bundle and stores it in the request scope. For example:

<f:loadBundle basename="custom.MyMessages" var="msg"/>

Usually, this line appears after an <f : views> tag and the attribute basename indicates the
location and name of the resource bundle, while the variable's name is specified by the var
attribute of the £ : loadBundle element (for example, msg).

Now you can display a localized string from our message resource bundle with a
JSF component.

<h:outputText value="#{msg.HELLO WORLD}"/>
The resource bundle is also registered in faces-config.xml, as shown next:

<applications>
<message-bundle>custom.MyMessages</message-bundle>
</application>

230

Chapter 7

When JSF finds the £ :1oadBundle tag, it tries to load the specified message resource
bundle and assign a variable to it, through the var attribute. Now, this var can be used
globally in JSF page for writing ELs to indicate the desired messages. Usually, this is done
by indicating the message's key.

Notice that we have placed the MyMessages .properties under the
source folder of our application. This will help JSF 2.0 to find it without an
A

explicit entry in the faces-config.xml descriptor.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Load_the message_ resource bundle
in JSF.

Using locales and message resource

bundles

In this recipe, we will extend the previous recipe to add locales. We will add English and
French locales, but you easily follow this pattern to add more locales.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0 and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

First we create two files named MyMessages_en.properties (this will be for the English
locale) and MyMessages_fr.properties (this will be for the French locale). Both of them
will have the same key, HELLO WORLD, but the value of the key will be "Hello world!" for
the English locale, and "Bonjour tout le monde!", for the French locale.

231

Internationalization and Localization

Next, we configure the message resource bundle in faces-config.xml and we set the
default locale to English:

<application>
<locale-config>
<default-locales>en</default-locale>
<supported-locale>fr</supported-locale>
</locale-config>
<message-bundle>custom.MyMessages</message-bundle>
</application>

Now, we can test our locales by using the 1ocale attribute of the £ : view tag, as shown next:

<f:view locale="fr">
<f:loadBundle basename="custom.MyMessages" var="msg"/>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8"/>
<title>Hello World</title>
</head>
<body>
<hl><h:outputText value="#{msg.HELLO WORLD}"/></hl>
</body>
</html>

</f:views>

Depending on the configured or detected locale, JSF will use the en or fr locale and will
extract and display the value of the HELLO WORLD key.

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Using locales and message
resource_ bundles

232

Chapter 7

Message resource bundles without

f:loadBundle

In this recipe, you will learn how to use message resource bundles without the
f:loadBundle tag. In other words, we will not load the message resource bundle
explicitly as you have seen in the previous two recipes.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The first secret resides in faces-config-xml. Instead of using the message-bundle tag
for registering the message resource bundle, we will use the resource-bundle tag as
shown next:

<applications>
<resource-bundle>
<base-name>custom.Messages</base-name>
<vars>msg</vars>
</resource-bundle>
</application>

The base-name tag indicates the location and base name of the message resource bundle,
while the var tag indicates the associated variable's name.

The second secret consists in using the msg variable. This time we should indicate the desired
key in one of these two forms:

<h:outputText value="#{msg['HELLO WORLD']}"/>
<h:outputText value="#{msg.HELLO WORLD}"/>

This time the £ : 1loadBundle tasks are moved into faces-config.xml by using specific
entries, therefore we don't need to explicitly use this tag.

233

Internationalization and Localization

There's more...

A message bundle is not the same as a resource bundle. The message bundle is usually
defined when you want to override default JSF conversion or/and validation messages.

For the configuration use the resource-bundle tag instead of message-bundle. The
resource-bundle tag declares a bundle and a logical name, freeing you from needing to
use the f : 1loadBundle tag in your JSF view definitions.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Message resource bundle without
loadBundle

Working with parameterized messages

So far we have used only static messages. In this recipe, we will write more complex
messages that will allows us to provide more realistic and flexible outputs. We will
respect the sentence's grammar and we will be able to replace portions of the message
regarding a variable component.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

JSF allows us to provide placeholders for content that will be replaced at runtime. Let's have a
look at the following key:

USER_ORDERS = You have {0} orders on our site! Your last order was
placed on {1,date,long} at {1,time,short}

As you can see the message is parameterized using two parameters. The first parameter
is an integer containing the number of orders from a user; the second parameter is a
java.util.Date containing both the date and time when user posted the last order.

You can replace the two parameters like this:

<h:outputFormat value="#{msg.USER_ORDERS}">
<f:param value="#{myBean.orders}" />
<f:param value="#{myBean.date}" />
</h:outputFormat>

Chapter 7

Let's get a closer look, and let's focus on the "You have {0} orders on our site!"
message. Regarding the number of orders this message will become:

You have 0 orders on our site!
You have 1 orders on our site!
You have 5 orders on our site!

Following the previous example, it is easily noticable that the second sentence is grammatical
incorrect. For fixing such issues, we can use a more elaborate format, as shown:

USER_ORDERS CORRECT=You have {0} {0, choice, O#orders|l#order|2#orders
} on our site!

It is awkward but it works! The pattern is dissected in following table:

{0, choice Taking the first parameter and base the output on a choice of formats

, Offorders If the first parameter contains O (or below), then it should print "orders"
| L#order If the first parameter contain 1, then it should print "order"

| 2#torders} If the first parameter contains 2 (or above), then it should print "orders"

Now, you can test this pattern as shown next:

<h:outputFormat value="#{msg.USER_ORDERS CORRECT}">
<f:param value="#{0}" />
</h:outputFormat>

<h:outputFormat value="#{msg.USER_ORDERS CORRECT}">
<f:param value="#{1}" />
</h:outputFormat>

<h:outputFormat value="#{msg.USER_ORDERS CORRECT}">
<f:param value="#{5}" />
</h:outputFormat>

As you have just seen, when we are using parameters in messages, the hardest thing that
we have to accomplish is to correctly spell the parameterized string. JSF will know how to
replace parameters with the correct values and it knows how to generate messages to
respect grammar rules.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Working with parameterized message.

235

Internationalization and Localization

Accessing message resource keys from

a class

In this recipe we will access message resource keys from a Java class. This provides much
more control over the rendered keys.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Our little secret will be a helper class that will get a message string from a message resource
bundle for an indicated locale. Practically, there are two methods:

» getClassLoader: This returns the class loader for the current thread or the class
loader of a default object
» getLocaleString: This returns the message key for the corresponding locale

Now, our helper class is as shown next:

public class LocaleHelper {

protected static ClassLoader getClassLoader (Object defaultObject)

{

ClassLoader loader =
Thread.currentThread () .getContextClassLoader () ;

if (loader == null) {
loader = defaultObject.getClass () .getClassLoader () ;

return loader;

public static String getLocaleString(
String bundle,
String key,
Object parameters|[],
Locale locale) {

String message = null;

236

}
}

Chapter 7

ResourceBundle resourceBundle = ResourceBundle.getBundle (bundle,

locale, getClassLoader (parameters)) ;

try {
message = resourceBundle.getString(key) ;
} catch (MissingResourceException e) {
message = "ERROR MESSAGE!";
}
if (parameters != null) {

StringBuffer stringBuffer=new StringBuffer() ;
MessageFormat messageFormat = new MessageFormat (message,

locale) ;
message = messageFormat.format (parameters, stringBuffer,
null) .toString () ;

return message;

Next, we write a bean class that will show you how to use the previous helper class. The bean
class will have getter and setter methods for two properties, user first name and age, and two
methods that will provide the messages USER_AGE and USER_NAME, rendered to the user

depending on the locale:

@ManagedBean

@SessionScoped

public class UserBean

private int userAge;
private String firstName;

public int getUserAge () {

return this.userAge;

public void setUserAge (int userAge) {

this.userAge=userAge;

public String getFirstName () {

return this.firstName;

237

Internationalization and Localization

public void setFirstName (String firstName) {
this.firstName=firstName;

public String getUserAgelnsert() {
FacesContext context = FacesContext.getCurrentInstance() ;

//get default locale
Locale myLoc = context.getViewRoot () .getLocale() ;

//manually set a Locale for English
//Locale myLoc=new Locale("en") ;

//manually set a Locale for French
//Locale myLoc=new Locale("fr");

String message = LocaleHelper.getLocaleString(
context.getApplication () .getMessageBundle (),
"USER AGE", null, myLoc) ;

return message;

public String getUserNamelInsert ()

FacesContext context = FacesContext.getCurrentInstance() ;

//get default locale
Locale myLoc = context.getViewRoot () .getLocale() ;

//manually set a Locale for English
//Locale myLoc=new Locale("en") ;

//manually set a Locale for French

//Locale myLoc=new Locale("fr");

String message = LocaleHelper.getLocaleString(
context.getApplication () .getMessageBundle (),
"USER _NAME", null, myLoc) ;

return message;

238

Chapter 7

The JSF page is listed next:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title>Access message resource keys from a Java class</title>
</h:head>
<f:view locale="en">
<f:loadBundle basename="users.MyMessages" var="msg"/>
<h:form id="UserForm">
<h:outputText value="#{userBean.userAgelnsert}"/>

<h:inputText id="userAgeID" required="true"
value="#{userBean.userAge}">
<f:validateLongRange minimum="18" maximum="50"/>
</h:inputText>
<h:message showSummary="true" showDetail="false"
for="userAgeID" style="color: red;
text-decoration:overline"/>

<h:outputText value="#{userBean.userNamelInsert}"/>

<h:inputText id="userNameID" required="true"
value="#{userBean.firstName}">
<f:validatelength minimum="5" maximum="25" />
</h:inputText>
<h:message showSummary="true" showDetail="false"
for="userNameID" style="color: red;
text-decoration:overline"/>

<h:commandButton id="submit" action="response?faces-
redirect=true" value="Submit"/>
</h:form>
</f:views>
</html>

239

Internationalization and Localization

The JSF page will call the userBean.userAgeInsert and userBean.userNameInsert
methods to render the corresponding messages in front of two inputText components. The
bean will extract the messages from our helper class, which extracts the messages from the
message resource bundle.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Access_message resource keys from
class.

Providing a theme to a Visual Web JSF

Project

In this recipe, you will see how to add a theme JAR file to a Visual Web JSF Project.

Getting ready

As you probably know, a Visual Web JSF Project is developed under NetBeans IDE (you can
use NetBeans IDE 6.7, for example).

"The Visual Web JSF interface is too unstable to be included in 6.8.
6.7.1 is the last version that supports it." —Jeff Rubinoff, from the NetBeans
T~ team on the NetBeans forum.

How to do it...

The necessary steps to accomplish our task are:

1. From the Tools main menu, select Libraries.
2. Inthe bottom-left of the Library Manager, click New Library.

3. Inthe New Library wizard, enter the theme name and choose Theme Libraries as the
library type.

4. Inthe Classpath tab of the Library Manager, click Add JAR/Folder.
5. Navigate to the theme JAR file, and then click Add JAR/Folder.
In the Library Manager, click OK to add the new theme library.

240

Chapter 7

To set the current theme:

1. Inthe Projects panel, open the ${project_name} | Themes node.
2. Right-click the theme and choose Set As Current Theme.

Displaying Arabic, Chinese, Russian,

and so on

A common problem when using Arabic, Chinese, Russian characters (and so on) sounds like
this: "l can type such characters in an inputText component, but when | submit the form, the
inserted text is displayed in Unicode characters, instead of human readable characters. How
to fix this?".

Well, this is what you will see in this recipe!

How to do it...

The solution is very simple. All you have to do is to write the following line in your JSF page:
<%@page contentType="text/html" pageEncoding="UTF-8"%>

This should fix the problem, as you can see in the following screenshot:

Insert any text:

Epwel wel ¢ krelbiwg T €
Subymit

Submitting a russian text!

w
Inserted text Epmrer et ¢ sreienndT eyuel

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Display Arabic Chinese Russian
and_so_on.

241

Internationalization and Localization

Selecting a time zone in JSF 2.0

In this recipe, we will present a few perspectives of working with time zone in JSF 2.0.
These are more theoretical proposals, since there is no concrete release to totally
support these aspects.

How to do it...

Any experienced JSF developer knows that date and time should be treated as UTC, except
when the t imeZone attribute is present under the f : convertDateTime converter tag.
There is no need to prove the disadvantages of this approach, and let's say that JSF 2.0 offers
a way to override the standard time zone setting of the JSF application, so that it uses that
time zone where the application server is running. This setting will be done in the web . xm1
descriptor (approximately) as shown next:

<context-param>
<param-name>
javax.faces .DATETIMECONVERTER DEFAULT TIMEZONE IS SYSTEM TIMEZONE
</param-name>
<param-value>true</param-values>
</context-param>

Also, it is possible that in the future release JSF 2.0 will go even further and allow the time
zone to be set per JSF application, configured in faces-config.xml, as shown next:

<applications>
<locale-config>
<default-time-zone-id>Romanie/RO</default-time-zone-id>
</locale-config>
</application>

However, probably this value will not be a static value and it will allow the use of a
ValueExpression for setting a time zone.

We will see!

242

JSF, Images, CSS,
and JS

In this chapter, we will cover:

» Injecting CSS in JSF

» JSF, CSS, and tables

» JSF and dynamic CSS

» Integrating JavaScript and JSF

» Getting a JSF inputText value from JavaScript

» Working with JSF hidden fields from JavaScript

» Passing parameters from JS to JSF (client to server)
» Passing parameters from JSF to JS (server to client)
» Opening a pop-up window using JSF and JS

» Passing parameters with HTTP GET within the URL
» Communicating between parent pop-up windows

» Populating a JS load function with JSF values

» Dynamic images with PrimeFaces

» Cropping images with PrimeFaces

» Working with rss4jsf project

» Using resource handlers

JSF, Images, CSS, and JS

Introduction

These days every website contains images, CSS, and/or JavaScript code. Apparently, there

is no relation between them, but when put together in the same website, they provide great
design oppurtuinities, amazing effects, powerful navigability between pages, and so on (notice
that I didn't even mention AJAX!). If we top this cocktail with JSF, then we have the perfect
combination for creating a big impression on our users.

In this chapter, we will see a set of recipes that will periodically discuss integrating images
with JSF, CSS with JSF and, obviously, JS with JSF.

Starting from the presented recipes, you can then extrapolate them to obtain more complex
solutions for your own websites. We have tried to put on the line the main aspects of
integrating JSF with images, CSS, and JS.

In this recipe, you will see how to add CSS styles to JSF tags. It is a simple solution, but it has
the advantage that it can be applied to almost all JSF tags that render text, images, and so on.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

When you need a simple and classic solution to integrate CSS in JSF it is important to know
that JSF components support the styleClass and style attributes. The styleClass
attribute is used when you are working with CSS classes, while the style attribute allows you
to place CSS code directly in place between quotes.

You can see in the following code snippet how this works with the h: output Text component:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title>JSF and CSS example</title>

fﬂ
H
B

Chapter 8

<style type="text/css">
.message { text-align: left;
letter-spacing:5px;
color:#000099

}

.message-overline { text-decoration:overline;
.message-font { font-family:georgia,garamond, serif;
font-size:20px;
font-style:italic;

</style>

</h:head>
<h:body>

<h:outputText styleClass="message"
value="This text is CSS formated by 'message' class!"/>

<h:outputText styleClass="message message-overline"
value="This text is CSS formated by 'message' and
'message-overline' classes!"/>

<h:outputText styleClass="message message-overline message-font"
value="This text is CSS formated by 'message'’,
'message-overline' and 'message-font' classes!"/>

<h:outputText style="text-align: left;letter-spacing:5px;
color:#000099" value="This text is CSS formated
using the 'style' attribute instead of 'message' class!"/>

<h:outputText style="text-align: left;letter-spacing:5px;
color:#000099; text-decoration:overline;™"
value="This text is CSS formated using the
'style' attribute instead of 'message’
and 'message-overline' classes!"/>

<h:outputText style="text-align: left;letter-spacing:5px;
color:#000099; text-decoration:overline;
font-family:georgia,garamond, serif;
font-size:20px; font-style:italic;
" value="This text is CSS formated using the
'style' attribute instead of 'message',
'message-overline' and 'message-font' classes!"/>

</h:body>
</html>

245

JSF, Images, CSS, and JS

Notice that when you need to specify more CSS classes under the same styleClass you
need to separate their names by space.

As you can see the JSF - CSS construction looks similar to HTML - CSS usage. The interaction
between JSF - CSS imitates HTML - CSS interaction, but, as you will see in the next recipes,
JSF is more flexible and supports more kinds of attributes for injecting CSS code in JSF pages.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Injecting CSS in JSF.

JSF, CSS, and tables

There are two kinds of grids (tables) that are very often used in JSF, h: panelGrid and
h:dataTable. Both of them can be styled with CSS in detail using a set of dedicated
attributes. In this recipe you will see these attributes at work for h: panelGrid, but it
is very simple to extrapolate this to h:dataTable.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Suppose that we have an h:panelGrid. We can "populate" it with CSS styles, using the
following set of attributes:

Name Description

columnClasses This is used to specify the comma-separated list of CSS style
classes to be applied on the columns of the table.

headerClass This is used to specify the spaces-separated list of CSS style
classes to be applied on the header of the table.

footerClass This is used to specify the spaces-separated list of CSS style
classes to be applied on the footer of the table.

rowClasses This is used to specify the comma-separated list of CSS style
classes to be applied on the rows of the table.

styleClass This is used to set the CSS class for the component.

style This is used to set the CSS style definition for the component.

246

Chapter 8

Knowing these attributes, we build a JSF page to show you how to use them in practice
(notice where we have placed the attributes):

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>JSF and CSS example</title>
<style type="text/css">
.message { text-align: left;
letter-spacing:5px;
color:#000099
}
.message-font { font-family:georgia,garamond, serif;
font-size:20px;
font-style:italic;
}
.0odd { background-color: blue }
.even { background-color: red }
</style>
</h:head>
<h:body>
<h:form>
<h:panelGrid columns="3" border="1" footerClass="message"
headerClass="message-font" rowClasses="odd, even"
title="PanelGrid and CSS">
<f:facet name="header">
<h:outputText value="Fill Names Below"/>
</f:facet>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>

247

JSF, Images, CSS, and JS

<f:facet name="footer">
<h:outputText value="The End"/>
</f:facet>
</h:panelGrid>
</h:form>

</h:body>
</html>

Since we have an attribute for each part of a grid, we can easily specify CSS styles to
customize the design of each of these parts. JSF will combine the specified CSS styles to
render a cool grid to the user.

There's more...

The h:dataTable allows you to use the same CSS attributes for table header, footer,
and so on.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: JSF_CSS_and_tables

JSF and dynamic CSS

In the previous two recipes, we have specified the desired styles between quotes as static
CSS. In this recipe, we will use dynamic CSS, which means that we will let a managed bean
provide the desired styles and we will use EL to collect them.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

248

Chapter 8

How to do it...

First we develop a managed bean that is capable of returning CSS styles depending on our
business logic. Actually, our bean returns CSS class names as shown next (you may also
return CSS styles):

package bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Bean {

private String messageProperty = "message";
private String messageFontProperty = "message-font";
private String oddevenProperty = "odd, even";

public String getMessageProperty() {
return messageProperty;

public void setMessageProperty (String messageProperty)
this.messageProperty = messageProperty;

public String getMessageFontProperty()
return messageFontProperty;

public void setMessageFontProperty (String messageFontProperty)
this.messageFontProperty = messageFontProperty;

public String getOddevenProperty ()
return oddevenProperty;

public void setOddevenProperty (String oddevenProperty) {
this.oddevenProperty = oddevenProperty;

249

JSF, Images, CSS, and JS
Now the JSF page defines the CSS classes, and uses EL to collect their names from bean:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>JSF and CSS example</title>
<style type="text/css">
.message { text-align: left;
letter-spacing:5px;
color:#000099
}
.message-font { font-family:georgia,garamond, serif;
font-size:20px;
font-style:italic;
}
.0odd { background-color: blue }
.even { background-color: red }
</style>
</h:head>
<h:body>
<h:form>
<h:panelGrid columns="3" border="1"
footerClass="#{bean.messageProperty}"
headerClass="#{bean.messageFontProperty}"
rowClasses="#{bean.oddevenProperty}"
title="PanelGrid and CSS">
<f:facet name="header">
<h:outputText value="Fill Names Below"/>
</f:facet>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>
<h:inputText/>

250

Chapter 8

<h:inputText/>
<f:facet name="footer">
<h:outputText value="The End"/>
</f:facet>
</h:panelGrid>
</h:form>
</h:body>
</html>

The managed bean returns a CSS class name (or more than one name) that is defined in
the JSF page. The advantage of using dynamic CSS consists in the possibility of changing
the page aspect randomly, or based on business logic; for example you may want to apply
different CSS depending on season.

See also

The code bundled with this book, contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: JSF_and_dynamic_CSS.

Integrating JavaScript and JSF

JSF and JavaScript can combine their forces to develop powerful applications. For example,
let's see how we can use JavaScript code with h: commandLink and h: commandButton to
obtain a confirmation before getting into action.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

As you know the h: commandLink takes an action after a link is clicked (on the mouse click
event), while h: commandBut ton does the same thing, but renders a button, instead of

a text link. In this case, we place a JavaScript confirmation box before the action starts its
effect. This is useful in user tasks that can't be reversed, such as deleting accounts, database
records, and so on.

251

JSF, Images, CSS, and JS

Therefore, the onclick event was implemented as shown next:

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>

<title>JSF and JavaScript example</title>
</h:head>

<h:body>

<!-- using h:commandLink and JavaScript -->

<h:form id="myCLForm">

<h:commandLink id="cmdlinkID" value="Delete record"
onclick="if (!confirm('Are you sure you want to delete the
current record?')) return false"
action="#{bean.deleteRecord}"/>

</h:form>

<!-- using h:commandButton and JavaScript -->
<h:form id="myCBForm">
<h:commandButton id="cmdbtnID" value="Delete record"
onclick="if (!confirm('Are you sure you want to delete the
current record?')) return false"
action="#{bean.deleteRecord}"/>
</h:form>
</h:body>
</html>

Notice that we embed the JavaScript code inside the onclick event (you also may put it
separately in a JS function, per example). When the user clicks the link or the button, a JS
confirmation box appear with two buttons. If you confirm the choice the JSF action takes
place, while if you deny it then nothing happens.

You can use this recipe to display another JS box, such as prompt box or alert box.

252

Chapter 8

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Integrating JavaScript and JSF.

Getting a JSF inputText value from

JavaScript

In the next example we will type text in a JSF h: input Text component, and after each
character is typed, a JavaScript alert box will reveal the text inserted so far.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The secret of our recipe consists in using the onkeyup event for calling a JavaScript function.
Here it is the code:
<h:head>
<script type="text/javascript" language="javascript"s>

function getInputText (text)

{

alert (text.value) ;
}

</script>
</h:head>
<h:body>

<h:inputText id="inputId" value=""

onkeyup ="getInputText (this);"/>

</h:body>

When a character is typed in the h: input Text, the onkeyup event is fired and the
JavaScript get Input Text function is called. This JS function extracts the text from the
JSF h: inputText through the received argument. Notice that the this keyword is used.

253

JSF, Images, CSS, and JS

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Getting a JSF_inputText value
from JavaScript.

Working with JSF hidden fields from

JavaScript

The idea of putting together JSF hidden fields and JavaScript comes from a simple
question—how to use JavaScript and JSF to submit a form from a control event? In other words
you will see how to submit a form immediately after a checkbox is checked or unchecked (it is
simple to imagine how to apply this solution for other components such as radio buttons).

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The solution is pretty simple, but the idea it self is ingenious and involves JavaScript and
JSF command links. First we write a simple JSF form (this form will be submitted when the
checkbox is checked / unchecked):

<h:form id="myForm">

<h:selectBooleanCheckbox id="checkbox"
value="#{participateBean.participate}" title="Click it to select or
deselect" onclick="submitForm ('myForm:hiddenCommandLink');"/>
<h:outputText value="Want to participate?"/>

</h:form>

As you can see, when the onclick event is fired (the checkbox is checked or unchecked) the
submitForm JavaScript function is called. This function receives one argument, representing
the id of a simple JSF h: commandLink component. This component contains the form's
action (a redirection to another page) and a simple CSS style for being invisible. Putting this
command link in the form will look like the following:

<h:form id="myForm">

<h:selectBooleanCheckbox id="checkbox"
value="#{participateBean.participate}" title="Click it to select or
deselect" onclick="submitForm ('myForm:hiddenCommandLink');"/>
<h:outputText value="Want to participate?"/>

Chapter 8

<h:commandLink id="hiddenCommandLink"
style="display:none;visibility:hidden;" action="response?faces-
redirect=true"/>
</h:form>

Now, the submitForm function simulates a click event on our command link through pure
JavaScript code:

function submitForm (commandLinkId) {
var fire = document.getElementById(commandLinkId) ;
if (document.createEvent) {
var eventObject = document.createEvent ("MouseEvents") ;

eventObject.initEvent ("click", true, false);
fire.dispatchEvent (eventObject) ;
} else if (document.createEventObject); { fire.
fireEvent ("onclick"); }

We didn't say anything about the ParticipateBean, since is not relevant here, it is just for
proving that the submission really works.

When users check/uncheck the form's checkbox, the onclick event is fired and the

JS submitForm is called. The secret is that this function received the id of a command
link—which is in the JSF form—and it is able to submit this form through its action attribute.
This action is forced by JavaScript code by dispatching an artificial click event for the
command link.

You can use this recipe for any other JSF component. For example, you may want to submit
a form after a radio button is selected, or after a character is typed in a text field, or a
combo-box item is selected and so on. The principle remains the same, except that you
need to fire up the correct event (such as onclick or onchange), depending on the

JSF component.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Working with JSF _hidden fields
from JavaScript.

255

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

JSF, Images, CSS, and JS

Passing parameters from JS to

JSF (client to server)

Working in the same application with a client-side and a server-side language always raises
the same question: how to pass parameters between them. In this recipe we will pass
parameters from JS (client side) to JSF (server side), while in the next recipe we will reverse
this task.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

In this recipe we will present two examples, and we start by passing a parameter from
JavaScript to a JSF managed bean, through a JSF inputText component. The idea is to
allow to a JS function to submit the form (the form contains the inputText) and, before
submitting, to set the inputText's value attribute to the desired value. For this we
implement the onclick event of a JSF button. Instead of submitting the form, this button
will actually call the JS function, which modifies the value inputText's value attribute and
submits the form. Here it is the code:

<script type="text/javascript" language="javascript"s>
function setTextValue () {
document .getElementById('formId:textId') .value = 'JavaScript 1';
document .getElementById (' formId') .submit () ;

}

</scripts>

<h:form id="formId">
<h:inputText id="textId" value="#{bean.text}" />
<h:commandButton id="btn 1 Id" value="Submit (use setTextValue)"
action="#{bean.action}" onclick="setTextValue();" />
</h:form>

In the second example, we pass the variable on the GET request using the JS window.
location object. Here it is the code:

function setWindowLocation () {
var param = 'JavaScript 2';
window.location =
'http://localhost:8080/Pass_param from JS to JSF
/newpage .xhtml?p=' + escape (param) ;

256

Chapter 8

}

<h:outputText value="Parameter on GET reugest" />
<h:commandButton id="btn 2 Id" value="Submit (use window.location)"
onclick="setWindowLocation() ;" />

Getting the variables passed on an HTTP GET request in the JSF is presented in the Passing
parameters with HTTP GET within the URL recipe.

The main trick here is that the form submission in not performed by JSF; it is performed by
JS, which has the "power" to modify the values of the JSF components and also knows how to
submit a JSF form. In practice, the user is not aware that JS is involved in the equation.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Pass_param from JS to JSF.

Passing parameters from JSF to JS (server

to client)

Reversing the preceding recipe, takes the form of passing variables from JSF to
JS (from server to client).

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The solution is straightforward, and it is presented next (we have passed a constant and an EL
result to a JS function, using the onload event with the h:body task:

<script type="text/javascript" language="javascript"s>
function variableFromServer (variable) {

alert ("Variable from server: " + variable)
</script>
<!-- passing a constant -->

257

JSF, Images, CSS, and JS

<h:body onload="variableFromServer ('JSF_1') ;">
<!-- passing the EL result -->
<h:body onload="variableFromServer ('#{bean.text}') ;">

| think that the previous code is self explanatory!

There's more...

We passed a variable using the onload event, but this is just an example. You can follow this
example to use any other events and conjunctures, accordingly to your application's needs.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Pass_param from JSF to_ JS.

Opening a pop-up window using JSF and JS

In this recipe, we propose to see how to open a pop-up window using JSF and JS. Actually, we
will open a pop-up window using JSF and JS using:

» The target attribute of the h:commandLink component
» The JSF h:outputLink component

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

We can have many approaches to accomplish this task, but we prefer to present two of them.
We start with opening a pop-up window using the target attribute of the h: commandLink
component—"The target attribute identifies the name of a frame into which the resource
retrieved by this hyperlink should be displayed."—JSF HTML Tag Reference definition. The
following is the source code:

<h:commandLink target="NewWindow" action="#{bean.actionNewWindow}"

actionListener="#{bean.listenerNewWindow}"
value="Open Popup Window 1" />

258

Chapter 8

Another approach uses the JSF h:outputLink component. This time we use the onclick
event and the window. open call:

<h:outputLink onclick="window.open ('newwindow.xhtml', 'MyWindow',

'dependent=yes, menubar=no, toolbar=no'); return false;" value="#">
<h:outputText value="Open Popup Window 2" />

</h:outputLink>

As a third approach we also use the h: outputLink, but this time the JS code is moved into a
function, as shown next:

function openNewWindow () {
//alert ('#{facesContext.externalContext.requestContextPath}/
newwindow.xhtml"') ;
window.open ('#{facesContext.externalContext.requestContextPath}/
newwindow.xhtml', 'MyWindow', 'dependent=yes,
menubar=no, toolbar=no') ;
return false;

<h:outputLink onclick="openNewWindow() ;">
<h:outputText value="Open Popup Window 3" />
</h:outputLink>

The first approach is very intuitive, since the definition of the target attribute is very clear.
The next two approaches use the JS window. open object. This object provide a set of
attributes that allows us to open a popup and to customize different aspects, such as size,
scrollbars, menubars, and so on.

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Open_a popup window using JSF
and JS.

259

JSF, Images, CSS, and JS

Passing parameters with HTTP GET within

the URL

In the Passing parameters from JS to JSF (client to server) recipe, you saw how to pass
parameters from client to server. One of the presented solutions passes parameters with
HTTP GET within the URL. In this recipe, you can see a quick method of retrieving those
parameters from JSF code.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

You can retrieve parameters using the #{param.parameter name} expression, such as the
following (notice that the parameter is named id, and we are using #{param.id} to retrieve
its value):

<h:form id="formId"s>
<h:commandButton id="btnlId" value="Pass parameter 100 ..."
onclick="window.open ('pagetwo.xhtml?id=100', 'MyWindow',
'height=350,width=250, menubar=no, toolbar=no'); return false;" />
</h:form>

<h:outputText value="The parameter passed is: #{param.id}" />

Another solution is to retrieve the value through a managed bean, as shown next:

<h:form id="formId"s>
<h:commandButton id="btn2Id" value="Pass parameter 200 ..."
onclick="window.open ('pagethree.xhtml?id=200"', 'MyWindow',

'height=350,width=250, menubar=no, toolbar=no'); return false;" />
</h:form>

<h:outputText value="The parameter passed is: #{bean.passedParameter}"

/>

260

The managed bean that actually retrieves the parameter value is:

package bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;
import javax.faces.context.FacesContext;
@ManagedBean

@RequestScoped

public class Bean ({

private String passedParameter;

public String getPassedParameter () {

Chapter 8

FacesContext facesContext = FacesContext.getCurrentInstance() ;

this.passedParameter = (String) facesContext.getExternalContext ().

getRequestParameterMap () .get ("id") ;
return this.passedParameter;

public void setPassedParameter (String passedParameter)

this.passedParameter = passedParameter;

}

In the first example, the task is performed by the EL, # {param.parameter name}, while,
in the second example, the managed bean uses the getRequestParameterMap function,

which has access to the GET request parameters.

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Pass parameters with HTTP GET

within the URL.

261

JSF, Images, CSS, and JS

Communication between parent pop-up

windows

If in the previous recipe, you saw how to open a pop-up window, in this recipe, you will see how
to implement a communication between parent pop-up windows. To understand our example,
please refer to the following figure:

% Dpen a popup window ... @@

l: J http:fflocalhost:3080/Recipe_10_Res 5

| Car Chooser

‘Compa.nies:‘ O Renault © Fiat @

‘Select car; ‘ H_\

s
Lwalable cars for Dacia company:

‘ Browse

Sandero

- Logan
Logan MCWV
WVan

Pick -y

Parent Window

Popup Window

Gata #-‘ E

First the user selects one of the three car companies (represented by three radio buttons) and
then presses the Browse button. The action will be to open a pop-up window that contains

a set of links with the names of cars constructed by the selected company. When a car is
selected, the pop-up window closes, and the parent text field (labelled with Select car text)
will be automatically filled with the name of the selected car.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

262

Chapter 8

How to do it...

Actually, everything you see in this recipe is a resume of parts of the previous recipes
regarding JSF and JS. We use the window. open JS object to open a pop-up window, and we
use JSF-JS communication to create a bridge between the main window (parent) and the

pop-up window (child). After you see the code everything should be clear. The parent window
is listed next:

<?xml version='1.0' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">
<h:head>
<title>Open a popup window</title>

<script type="text/javascript" language="javascript"s>
function carsPopup () {
var popup = null;
var companies = document.forms["formId"].

elements ["formId:companyId"];

for (var company in companies) {
if (companies [company] .checked) {
popup = window.open ("popupwindow.xhtml?company=" +
companies [company] .value, "popup",
"height=350,width=250, toolbar=no,
menubar=no," + "scrollbars=yes");

popup.openerFormId

"formId";
popup . focus () ;

}

</script>
</h:head>

<h:body>
<h:form id="formId"s>
<h:panelGrid columns="3" border="1">
<f:facet name="header">
<h:outputText value="Car Chooser"/>
</f:facet>

263

JSF, Images, CSS, and JS

<h:outputText value="Companies:"/>
<h:selectOneRadio id="companyId" value="#{bean.carCompany}">

<f:selectItem itemLabel="Renault" itemValue="Renault"/>
<f:selectItem itemLabel="Fiat" itemValue="Fiat"/>
<f:selectItem itemLabel="Dacia" itemValue="Dacia"/>

</h:selectOneRadio>

<h:outputText/>

<h:outputText value="Select car:"/>

<h:inputText id="carId" value="#{bean.carName}"/>

<h:commandButton id="btnId" value="Browse"
onclick="carsPopup (); return false;"/>

</h:panelGrid>
</h:form>
</h:body>
</html>

The parent window renders three radio buttons to list the car companies, and implement the
onclick event of the Browse button, which calls a JS function responsible for displaying the
pop-up window and passing it the selected company.

The pop-up window code is as shown next:

<?xml version='1.0' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Open a popup window</title>
<script type="text/javascript" language="javascript"s>
function fillUpCarName (car) {
var formId = window.openerFormId;
opener .document . forms [formId] [formId + ":carId"].value = car;
window.close () ;
}
</script>
</h:head>

<h:body>
<h:form>
<h:outputText value="Available cars
for #{param.company} company:" />
<h:dataTable value="#{bean.allCars [param.company] }" var="car">

264

Chapter 8

<h:columns>

<h:outputLink value="#" onclick="fillUpCarName ('#{car}');">

<h:outputText value="#{car}" />
</h:outputLink>
</h:column>
</h:dataTable>
</h:form>
</h:body>
</html>

The pop-up window renders the cars produced by the selected company. In addition, when a
user clicks on a car, the £i11UpCarName JS function is responsible for filling up the parent
window's form with the name of the selected car and closing the pop-up window.

The helper managed bean used in this recipe is:

package bean;

import java.util.HashMap;

import java.util.Map;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class Bean {

private String carCompany = "Renault";
private String carName;

private Map<String, String[]> allCars = new HashMap<String,

private static final String[] carsRenault
new String[]{"Clio", "Clio Estate",
"Fluence", "Sedan", "Megane", "Megane Coupe",
"Megan Sport Tourer", "Scenic", "Grand Scenic",
"Kangoo", "Coupe", "Koleos", "Espace",

"Laguna Estate"};
private static final String[] carsFiat =

new String[]{"SOO", "Panda", "Punto Classic",
"Grande Punto Unico", "Albea", "Bravo",

"Sedici", "Doblo Panorama"};

private static final String[] carsDacia =
new String[]{"Sandero", "Logan",
"Van", "Pick-up"};

"Clio RS",

"Logan MCV",

String[l>();

"Symbol",

"Croma'",

265

JSF, Images, CSS, and JS

public Bean() {

allCars.put ("Renault", carsRenault) ;
allCars.put ("Fiat", carsFiat);
allCars.put ("Dacia", carsDacia) ;

public String getCarCompany () {
return carCompany;

public void setCarCompany (String carCompany) {
this.carCompany = carCompany;

public String getCarName ()
return carName;

public void setCarName (String carName)
this.carName = carName;

public Map<String, String[]> getAllCars() {
return allCars;

public void setAllCars (Map<String, String[]l> allCars) {
this.allCars = allCars;

}

There are a few important mechanisms that interact in this application:

» Calling a JS function from JSF

» Opening a pop-up window with JSF and JS
» Passing variables from JS to JSF

» Passing variables from JSF to JS

» Getting variables from HTTP GET with JSF

266

Chapter 8

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Communcation between parent popup
windows.

Populating a JS load function with

JSF values

As you know, when a web page is loaded, the code on the page is generally processed from
the top down. JS code can interfere in this top-down order in many ways, and the onload
function (specified on the body tag) is one of these possibilities. When the page is loaded, the
browser will stop at the onload function and will execute the indicated script. In this recipe,
you will see how to populate that script with JSF values, provided by a managed bean.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The onload function calls our JS function, named calledOnLoad. Our function will retrieve
some JSF values from a managed bean. Here it is how it will do this:

<?xml version='1.0' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">
<h:head>
<title>Passing parameters on HTTP GET</title>
<script type="text/javascript" language="javascript"s>
function calledOnLoad () {
var p_1 = '<h:outputText value="#{bean.param 1}"/>';
var p_2 = '<h:outputText value="#{bean.param 2}"/>"';

var ot = document.getElementById("formId:textId") ;
ot.textContent="Parameters from bean are:"+p 1+" and " + p 2;

}

</script>
</h:head>

<h:body onload="calledOnLoad() ;">

267

JSF, Images, CSS, and JS

<h:form id="formId"s>
<h:outputText id="textId" value=""/>
</h:form>
</h:body>
</html>

The managed bean is:

package bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped

public class Bean {

private String param 1

IlMe n ,.
private String param 2 = "You";

public String getParam 1() ({
return param 1;

}

public void setParam 1(String param 1) {
this.param 1 = param 1;

}

public String getParam 2 () ({
return param 2;

}

public void setParam 2 (String param 2) {
this.param 2 = param 2;

}
}

The secret of this recipe is in this line:
var p_1 = '<h:outputText value="#{bean.param 1}"/>';

Notice that JS knows how to parse this line to extract the JSF value, instead of assigning a
verbatim text to the p_1 variable.

268

Chapter 8

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Populate a JS load function with
JSF_values.

Dynamic images with PrimeFaces

PrimeFaces is a lightweight library for JSF with regard to its functionality, simplicity, and
support. Its power consists in AJAX support, providing more than 70 AJAX-based components.
The additional TouchFaces module features a Ul kit for developing mobile web applications.

In this recipe, you will see how to use PrimeFaces to retrieve images from a database and to
provide them dynamically to our JSF page.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have

used PrimeFaces 2.0, which provide support for JSF 2.0. You can download this distribution
from http://www.primefaces.org/. The PrimeFaces libraries (including necessary
dependencies) are in the book bundle code, under the /JSF_libs/PrimeFaces - JSF 2.0
folder.

How to do it...

Our recipe will look very simple, thanks to PrimeFaces. Practically, all we do is to pick up the
PrimeFaces fruits. The following code retrieves a BLOB from a JDBC ResultSet and provides
its InputStream as a StreamedContent (the backing bean is listed next):

public class PictureBean {
private StreamedContent myImage;

public PictureBean() {
InputStream inputStream = //InputStream of a blob
myImage = new DefaultStreamedContent (inputStream, "image/png") ;

}

public StreamedContent getMyImage () {
return myImage;

}

269

JSF, Images, CSS, and JS

public void setMyImage (StreamedContent myImage)
this.myImage = myImage;
}
}

And the p:graphicImage tag can display any binary image, as shown next:

<p:graphicIimage value="#{pictureBean.myImage}" />

The entire solution is mapped in PrimeFaces; therefore you will need to go deeply into this
framework to understand its secrets. Apparently, everything we have done relates to a simple
JSF application with a simple conversational state between a JSF page and a backing bean.

See also

You also may want to check:
PrimeFaces tag documentation: http://primefaces.prime.com.tr/docs/tag/
PrimeFaces home page: http://www.primefaces.org/

PrimeFaces ShowCase: http://www.primefaces.org:8080/prime-showcase/ui/
imageCropperExternal.jsf

Cropping images with PrimeFaces

In this recipe, you will see how easy is to crop an image using PrimeFaces framework.

Getting ready

See the recipe Dynamic images with PrimeFaces.

How to do it...

PrimeFaces provides a component, named imageCropper, which crops a region of an image
to create a new one. This component is used as shown next:

<p:imageCropper value="#{cropBean.cropImage}"
image="images/2009/rafael nadall.PNG" />

270

Chapter 8

And the CropBean looks like the following:

package beans;

import javax.faces.context.FacesContext;

import javax.imageio.stream.FileImageOutputStream;
import javax.servlet.ServletContext;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

import org.primefaces.model.CroppedImage;

@ManagedBean (name="cropBean")
@SessionScoped
public class CropBean {

private CroppedImage croplmage;

public CroppedImage getCropImage () {
return croplImage;
}

public void setCroplmage (CroppedImage croplmage) {
this.cropImage = croplmage;
}

public String crop() {

ServletContext servletContext = (ServletContext) FacesContext.
getCurrentInstance () .getExternalContext () .getContext () ;

String fileName = servletContext.getRealPath("") + File.separator +
"images" + File.separator + "2009" + File.separator+ "rafael nadall.
PNG" ;

FileImageOutputStream imageOutput;

try {
imageOutput = new FileImageOutputStream(new File (fileName)) ;
imageOutput.write (cropImage.getBytes(), O,

cropImage.getBytes () .length) ;
imageOutput.close() ;
} catch (FileNotFoundException e) {
//log error
} catch (IOException e) {
//log error
}

return null;

}

271

JSF, Images, CSS, and JS

In the following picture, you can see what this PrimeFaces component looks like:

As you can see the hard work is accomplished by the CropBean bean. Here the cropped
image is obtained using a FileImageOutputStream object.

There's more...

The last two recipes present you some great facilities of the PrimeFaces framework. Don't
forget that PrimeFaces comes with over 70 other amazing components and all of them are
easy to use and understand.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Cropping images with PrimeFaces.

You also may want to check:

PrimeFaces tag documentation: http://primefaces.prime.com.tr/docs/tag/

272

Chapter 8

PrimeFaces home page: http://www.primefaces.org/

PrimeFaces ShowCase: http://www.primefaces.org:8080/prime-showcase/ui/
imageCropperExternal.jsf

Working with rss4jsf project

In this recipe, you will see how to use a JSF component, rss4jsf, able to show RSS content in
JSF pages. As you will see in our example, the newest release of rss4jsf includes the ability to
have full control over the HTML generated through facets.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have
used rss4jsf, which provides support for JSF 2.0. You can download this distribution from
http://code.google.com/p/rss4jst/ (itis also available through Maven). The
rssdjsf library (including necessary dependencies) is in the book bundle code, under the
/JSF_libs/rss4jsf - JSF 2.0 folder.

How to do it...

For a start we have to specify the tag library, which is http://hexiao.cn/rss4jsft,

and the prefix, which is usually rss4jsf or r4j.The rss4jsf/r4j prefixes the
simpleRssOutput tag, which supports four important attributes (it also contains an entire
set of attributes for applying CSS styles to RSS items):

» url: The value of this attribute is a string representing the RSS document URL.

» count: The value of this attribute is an integer representing the number of RSS
articles that should be rendered.

» channelVar: The value of this attribute is a string that maps the RSS channel.
We can obtain channel name and number of items through it.

» itemVar: The value of this attribute is a string that maps an RSS item.

» entrysSummaryStyleClass, postTimeStyleClass, readMoreStyleClass,
rssEntryStyleClass, rssEntryTitleStyleClass,
rssSiteNameStyleClass, and rssSiteStyleClass: These attributes indicate
CSS classes for styling the CSS result.

273

JSF, Images, CSS, and JS

The content of the simpleRssOutput tag consists of a set of facets (£ : facet), depending
on how you decide to format the RSS output. You can see two examples are listed out next:

Example 1

<rss4jsf:simpleRssOutput
url=" http://services.devx.com/outgoing/devxfeed.xml"
count="5"

channelVar="channel"
itemVar="item">
<f:facet name="header">
<div class="header"s>
<h2>#{channel .name}</h2>
<p>#{channel .numberOfItems} items. <
ahref="#{channel.siteUrl}">View Site.</p>
</div>
</f:facet>
<f:facet name="item">
<div class="item">
<h3>#{item.title}</h3>
<p>#{item.author} - #{item.body }</p>
</div>
</f:facet>
</rss4jsf:simpleRssOutput>

Example 2

<rss4jsf:simpleRssOutput
url="http://services.devx.com/outgoing/devxfeed.xml"
count="500">
<f:facet name="item">
<div class="item">
<h:outputLink value="#{item.url}"s>
<h:outputText value="#{item.title}"/>
<f:verbatim> - </f:verbatims>
<h:outputText value="#{item.author}"/>

<i><h:outputText value="#{item.body}"/></i>

</h:outputLink>
</div>
</f:facet>
</rss4jsf:simpleRssOutput>

274

Chapter 8

A possible output may look like the following screenshot:

Multicore Claps Require 08 Reworls, Wimdows Arclitect Advises - editonali@dews.com
Microsaft's Dave Probert says the OS kornel neads io act more fike a hypervisor.

Pay to Playv: Some iPhone App Sites Demand Money for Reviews - editorial@devz.com
It's mot illegal, but paning o have vour app reviewed certainly raises some ethical questions.

Create a Map Client with Web Services, Part IT - IMark Woodman
This project demonstraies how binding io web services with Flash Builder's daia service foo

IBM Remvents x86 Platformn with eXS Servers - editonial@dews com

The gmount of data trvolved in the average Web-based workioad today doubles every year,
organizations is io throw more servers af the probism, which furthers ssrver spraw! and inc
utilization.

The rss4jsf component takes the RSS feed address and returns the result. We can customize
how the result is rendered through facets and CSS style. Notice that we can take control over
each piece of the RSS result, such as title, author, content, and so on, which provides us the
facility of rendering something really cool!

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: RSS_for JSF.

You also may want to check the rss4jsf project page at http://code.google.com/p/
rss4jst/.

Using resource handlers

Starting with JSF 2.0 we have access to a standard mechanism for defining and accessing
resources. We must place our resources under a top-level directory named resources, and
use the dedicated JSF 2 tags to access those resources in our views.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

275

JSF, Images, CSS, and JS

How to do it...

First, we create the top-level folder, named resources, and, under it, we create a set of
sub-folders that reflect their content by suggestive names. For example, the following figure
is our resources folder tree:

/fresources

css
simple.css

images
RafaelNadal_1.jpg
RafaelNadal_2.jpg

javascript
simple.js

Going further, we can access resources with a set of dedicated tags, as follows:

» Accessing images can be accomplished with h: graphicImage, shown next:

<h:graphicImage library="images" name="RafaelNadal 1.jpg"/>
<h:graphicImage library="images" name="RafaelNadal 2.jpg"/>

» Accessing CSS documents can be accomplished with h: outputStylesheet,
shown next:

<h:outputStylesheet library="css" name="simple.css"/>
» Accessing JS documents can be accomplished with h: outputScript, shown next:

<h:outputScript library="javascript" name="simple.js"
target="head"/>

Notice that in all tags we have a common attribute, named library. Its value corresponds
to the name of a sub-directory of the resources directory—the name of the directory

in which the resource resides. The name attribute indicates the resource name and the
target attribute indicates where the resource should be placed (as you can see, we placed
the JavaScript resource under the <head> tag—remember that if you put JavaScript in the
<body> of a page, the browser will execute the JavaScript when the page loads. On the other
hand, if you place JavaScript in the <head> of a page, that JavaScript will only be executed
when called.).

Working with this new mechanism is very simple and intuitive since JSF will automatically
search for our resources under the resources folder. All we need to do is to use the
corresponding tag as you just saw. The most important thing is to correctly indicate the
sub-folder of the resources folder and the resource's name and JSF will take care of
the rest.

276

Chapter 8

There's more...

Sometimes you'll need to access a resource using the JSF expression language. For example,
you can access an image with h: graphicImage, like this:

<h:graphicImage value="#{resource['images:RafaelNadal 1.jpg']l}"/>

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Use_resource_ handlers.

277

JSF—Managing
and Testing

In this chapter, we will cover:

» Managing JSF with Faces Console

» Testing JSF applications with JSFUnit
» JSFUnit and Ant

» JSFUnit API

» A JSF and JMeter issue

» Working with JSF Chart Creator

Introduction

In this chapter, we will talk about testing and managing JSF applications. We start by
presenting a simple and nice tool, dedicated to managing JSF configuration and TLD (Tag
Library Descriptor) files, and we continue by exploring some tips and tricks about the JSFUnit
and JMeter testing tools.

Managing JSF with Faces Console

In this recipe, we introduce you to a simple and nice tool, named Faces Console. This is a free
"standalone Java Swing application for developing and managing JavaServer Faces-based
applications". Practically, this tool can be used to visually edit JSF configuration files (such as
faces-config.xml and web.xml) and JSP Tag Library files.

JSF—Managing and Testing

Getting ready

When this book was written, the Faces Console stable version was 1.7 and it can be
downloaded from http://www.jamesholmes.com/JavaServerFaces/console/.
Notice that, in the simple case, Faces Console can be unzipped anywhere and can be
started from the /bin folder, by double-clicking on the console.bat file. It will start like
any Swing standalone application, as you can see in the following screenshot:

Faces Console El@lg{

File Options Help

=]

Instructions:

1. Select "Open” from the "File" menu.
2. Select desired configuration file.

For further instructions please consult the "Help" section of the documentation.

Faces Console can also act as a plugin for the most popular Java IDEs. The supported IDEs
are as follows:
» Borland JBuilder 4.0 and higher
Eclipse 1.0 and higher
» IBM WebSphere Appl. Dev. 4.0.3 and higher
» IntelliJ IDEA 3.0 (build 668) and higher
» NetBeans 3.2 and higher

v

» Oracle JDeveloper 9i and higher
» Sun One Studio (Forte) 3.0 and higher

The address http://www.jamesholmes.com/JavaServerFaces/console/help.
html provides a quick guide to the plugin Faces Console in the previous Java IDEs.

280

Chapter 9

How to do it...

After you launch the Faces Console (as standalone or under an IDE) you will see the
previous screenshot. You can start by creating a new JSF configuration or TLD file or you
can try to modify an existing one. For creating a new file, choose the New option from the
File menu—the pop-up window shown in the following screenshot will be displayed:

' New Configuration File [g|
) Faces 1.1 Configuration File
) Faces 1.0 Configuration File
) JSP Tag Library 1.2 (id)

() JSP Tag Library 1.1 (.tld)

As you can see, currently there are four types of files that can be created and validated by the
Faces Console application. After you select a type (for example, we selected the Faces 1.1
Configuration File), you will see the following:

Faces Console - [new 2]
File Options Help

&

“] WavaServer Faces 1.1 Config)
] Application

& Companents

Converers

B8 Factories

@ Lifecycle

& Managed Beans

L Mavigation Rules

@ Referenced Beans

B Render Kits

e Validators

Source

281

JSF—Managing and Testing

The right panel will reveal the main nodes contained by a faces-config.xml file, while the
left panel provides a visual GUI for populating the configuration file (each node has its own
visual GUI). For example, in the next screenshot, we have added a navigation rule using the
corresponding GUI:

Faces Console - [new 2*]
File Options Help

JavaServer Faces 1.1 Config

@ Application

| Referenced Beans

% Componers | e e PR —_Class Add...
Corvertars :
& Factories ; _T‘E’Efi_ heanhyBean
= e ————
@ Lifecycle ;
@& Managed Beans
= P " v Remuove
bz Mavigation Rules fRE eferenced Bea

o= & Referenced Bean
2 Render Kits
e Validators

Name: |mvElean | Move Up

Class: |bean.ru1\,rElean | Move Down

| OK H Cancel |

Source

You can switch between the visual GUIs and source code by using the
Editor and Source tabs from the right panel. The Source view is not

editable by hand!
A~ If you take a look into the Options menu, you will notice that Faces

Console also provides validation support for the loaded configuration/TLD
files. This option can be disabled if you want to work with a non-valid file.

From this point forward, you can try to explore on your own and see how easy it is to manage
JSF configuration/TLD files using Faces Console. Also, you may want to keep in mind these
possible upcoming functionalities:

» Create a plugin for JEdit
» Add the ability to clone elements
» Add support for XML entities in config files

282

Chapter 9

Testing JSF applications with JSFUnit

In this recipe, we will discuss the JSFUnit, which is a JBoss framework for testing JSF
applications. JSFUnit is based on the well known JUnit framework, but is more dedicated

to JSF, because it runs in the container and it was created for understanding the main JSF
concepts, such as JSF lifecycle, JSF components, Faces Context, EL expressions, and so on.

To describe it in detail, JSFUnit can be used for the following tests (as you can conclude from
the following list, JSUnit can test JSF-specific tasks and more):

» Managed beans

» Navigation rules

» Invalid input

» View components

» Application configuration

» Anything else

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

When this book was written, the JSFUnit stable version was 1.1.0 GA. You can download
this version from http://labs.jboss.com/jsfunit/downloads/. Depending on your
needs, you can download:

» JSFUnit Core (this is used in our example)
» JSFUnit RichFaces/Ajax4jsf

» JSFUnit Ant

» JSFUnit Deployer for JBoss AS 5.x

In addition, Maven fans can download JSFUnit distributions from JBoss Maven Repository at
http://repol.maven.org/maven2. The POM declarations are:

<repositories>
<repositorys>
<id>jboss</id>
<name>JBoss Repository</name>
<urls>http://repository.jboss.org/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>

283

JSF—Managing and Testing

</repository>
</repositories>

<!-- Core jar needed for all JSFUnit tests -->

<dependencys>
<groupIds>org.jboss.jsfunit</groupIlds>
<artifactId>jboss-jsfunit-core</artifactIds>
<version>1.1.0.GA</version>

</dependency>

<!-- RichFaces and Ajax4jsf Client jar -->

<dependencys>
<groupIds>org.jboss.jsfunit</groupIld>
<artifactId>jboss-jsfunit-richfaces</artifactIds>
<version>1.1.0.GA</version>

</dependency>

<!-- Ant task used to "jsfunify" a WAR file -->

<dependencys>
<groupIds>org.jboss.jsfunit</groupIlds>
<artifactId>jboss-jsfunit-ant</artifactIds>
<version>1.1.0.GA</version>

</dependency>

Finally, you can try to access it directly from the JBoss Maven Repository at
http://repository.jboss.org/maven2/org/jboss/jsfunit/.

JSFUnit 1.1.0 GA is updated to the latest beta version of JSF 2, so now you
can use JSFUnit with JSF 1.1, JSF 1.2, and JSF 2.0 Beta 2. It is important to

¢ use HtmlUnit 2.5 instead of 2.4. The JSFUnit libraries (including necessary

% dependencies) are in the book bundle code, under the /JSF 1libs/
s L —

JSFUnit - JSF 2. 0 folder. The Xerces and Xalan distributions are
required only if the container doesn't provide one or if you explicitly want
to use others. These are, however, totally excluded in JBoss 5.x AS.

How to do it...

Next, we will develop a JSFUnit test for a basic JSF application named Working with
JSFUnit. For starters, we present the pure JSF application, without any JSFUnit involved.
After that, we will configure the JSFUnit test, and we will make proper configurations.

Chapter 9

Our application contains three parts as follows (the code is very simple and self explanatory,
therefore no more details are provided):

>

The start page (a simple JSF form):

<h:form id="UserForm">
<h:outputText value="Enter your name:"/>
<h:inputText value="#{userBean.firstName}" id="userId" />
<h:commandButton value="Submit"
action="response?faces-redirect=true"
id="submit_ button"/>

</h:form>

The end page (displays what was inserted into the form):

<h:outputText value="Inserted name:"/>

<h:outputText value="#{userBean.firstName}"/>

And a simple managed bean:

package users;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;
@ManagedBean
@SessionScoped
public class UserBean {
private String firstName = "Rafael Nadal";
public String getFirstName () {

return this.firstName;

public void setFirstName (String firstName)

this.firstName=firstName;

285

JSF—Managing and Testing

Now we write a JSFUnit test for the application. Conforming to the documentation
(http://www.jboss.org/community/wiki/JSFUnitDocumentation), we wrote a
test for the previous managed bean, as follows (in the JSFUnit API recipe, you can see more
snapshots of using the JSFUnit API):

package tests;

import java.io.IOException;

import javax.faces.component.UIComponent ;

import junit.framework.Test;

import junit.framework.TestSuite;

import org.jboss.jsfunit.jsfsession.JSFServerSession;
import org.jboss.jsfunit.jsfsession.JSFSession;

public class JSFUnitTest extends org.apache.cactus.ServletTestCase

{

public static Test suite()

{

return new TestSuite(JSFUnitTest.class);

public void testInitialPage () throws IOException

{
// Send an HTTP request for the initial page
JSFSession jsfSession = new JSFSession ("/index.xhtml") ;

// A JSFServerSession gives you access to JSF state
JSFServerSession server = jsfSession.getJSFServerSession() ;

// Test navigation to initial viewID
assertEquals ("/index.xhtml", server.getCurrentViewID()) ;

// Assert that the prompt component is in the
//component tree and rendered

UIComponent prompt = server.findComponent ("userId") ;
assertTrue (prompt . isRendered()) ;

// Test a managed bean

assertEquals ("Rafael Nadal",
server.getManagedBeanValue ("#{userBean.firstName}")) ;

286

Chapter 9

Before we can run our test, we must configure JSFUnit in web . xm1 by adding the following
lines (these lines will configure JSFUnitFilter and two servlets, ServlietRedirector
and ServletTestRunner):

<filter>
<filter-name>JSFUnitFilter</filter-name>
<filter-class>
org.jboss.jsfunit.framework.JSFUnitFilter
</filter-class>
</filters>

<filter-mapping>
<filter-name>JSFUnitFilter</filter-name>
<gervlet-name>ServletTestRunner</servlet-name>
</filter-mapping>

<filter-mapping>
<filter-name>JSFUnitFilter</filter-name>
<servlet-name>ServletRedirector</servliet-name>
</filter-mapping>

<servlets>
<gservlet-name>ServletRedirector</servlet-name>
<servlet-class>
org.jboss.jsfunit.framework.JSFUnitServletRedirector
</servlet-class>
</servlet>

<servlet>
<gervlet-name>ServletTestRunner</servlet-name>
<servlet-class>
org.apache.cactus.server.runner.ServletTestRunner
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>ServletRedirector</servlet-name>
<url-pattern>/ServletRedirector</url-patterns>
</servlet-mappings>

<servlet-mapping>
<gervlet-name>ServletTestRunner</servlet-name>
<url-pattern>/ServletTestRunner</url-patterns>
</servlet-mappings>

287

JSF—Managing and Testing

The reports generated by JSFUnit are rendered through a stylesheet, known as
cactus-report.xsl (this is developed under the Apache Cactus project—main page at
http://jakarta.apache.org/cactus/). This stylesheet can be downloaded from
http://jakarta.apache.org/cactus/misc/cactus-report.xsl, and it should
be placed in the /web folder of our application.

After you complete these three steps you can deploy the application and run the test using the
next URL:

http://localhost:8080/Working with JSFUnit/ServletTestRunner?suite=te
sts.JSFUnitTest&xsl=cactus-report.xsl

If everything works fine, you should be able to see something like the following screenshot:

@

€3 Mozilla Firefox

Figier Editare Yjzualizare Istoric Semne decarte Unelte Ajutor

@v c “ar L L | Petpiflacalhest:a080; working_with_IsFUnit/s 77 - [Gl- P

Unit Test Results

Summary

Tests Failures Erroas Success rate Time
1 a a 10K, 0¥

TestCase tests . JSFUnitTest

Mame Status Tyvpe Timeis)
Back to top
hkkp:ifjakarta, apache orgicactus! -@-‘ E

288

Chapter 9

Well, the important thing here is the part where we run the test. Notice that the test is
executed through a servlet named ServletTestRunner that gets two parameters
as follows:

» suite: The value of this parameter represents the fully qualified name of the
JSFUnit test class.

» xsl: The value of this parameter represents the name of an XSLT (EXtensible
Stylesheet Language Transformations) document (in our case the
cactus-report.xsl).

There's more...

The hardest part about using JSFUnit is preparing your WAR, since the configuration steps
are slightly different depending on the platform used. At http://www. jboss.org/
community/wiki/GettingStartedGuide page you can find a simple JSFUnit
example (including the code) for the following platforms:

» For older servlet containers (Tomcat 5, Jetty 5, and so on)

» For non-JEE servlet containers that support JSP 2.1 (Tomcat 6, Jetty 6, and so on)

» For JEE 5 containers such as JBoss AS 4.2 and Glassfish

» For JBoss AS 5.x

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Working with JSFUnit.

JSFUnit and Ant

In this recipe, you will see how to get JSFUnit and Ant working together. To be more specific,
JSFUnit will exploit Ant to "jsfunitfy" your WARs. The Ant task capable of accomplishing this job
is known as jsfunitwar.

Getting ready

You need the JSFUnit Core and JSFUnit Ant. Both of them can be downloaded from
http://labs.jboss.com/jsfunit/downloads/. Regarding additional libraries,
you can take a quick look at the previous recipe.

289

JSF—Managing and Testing

How to do it...

As you already know, for developing and running JSFUnit tests, we need to add some specific
configurations in our JSF applications. The jsfunitwar Ant task was especially created to
accomplish this job for us.

The sub-elements allowed by this task are as follows:

» <classes>: Indicates the location of the test classes.
» <lib>:Indicates any additional JARs.

» <TestRunner/>:Addsthe ServletTestRunner to the web.xml descriptor. This
allows you to run tests from a browser.

The attributes allowed by this task are:

» srcfile:Indicates the path to a WAR file or exploded WAR.
» destfile: Indicates the location and name of the resulting WAR.

» autoaddjars: This can be true or false. Ifitis true then all the needed JARs
found in classpath are added to the /WEB-INF/1ib folder.

» container: Indicates the container name.

Now, let's suppose that we have the WAR file (or exploded WAR) of a JSF application and we
want to "jsfunitfy" it. For this, we can customize the following Ant script stub:

<?xml version="1.0" encoding="UTF-8"?>

<project name="JSFUnitfy" default="default" basedir=".">
<description>Tests the jsfunitwar ant task.</description>

<property name="src.jsf.app"

location="${basedir}PATH TO JSF APP WAR FILE OR EXPLODED WAR"/>
<property name="dest.jsfunitfied.app"

location="${basedir}/PATH TO JSF-UNITFIED WAR OR EXPLODED WAR"/>
<property name="1lib.dir" location="${basedir}/lib"/>
<property name="classes.test" location="${basedir}/classes"/>

<path id="jsfunit.classpath">
<fileset dir="${lib.dir}">
<include name="**/*_ jar"></include>
</fileset>
</path>

<taskdef name="jsfunitwar"
classname="org.jboss.jsfunit.ant.JSFUnitWarTask"

290

Chapter 9

classpathref="jsfunit.classpath"/>

<target name="default" depends="make.jsfunitfied">
</target>

<target name="clean">
<delete dir="${dest.jsfunitfied.app}"/>
<mkdir dir="${dest.jsfunitfied.app}"/>
</target>

<target name="make.jsfunitfied" depends="clean"s
<jsfunitwar srcfile="${src.jsf.app}"
destfile="${dest.jsfunitfied.app}" autoaddjars="true">

<classes dir="${classes.test}" includes="**/tests/**/*.class">
</classes>
<TestRunner/>

</jsfunitwars>

</target>

</project>

To make this script work, you need to:

>

Replace the text PATH TO JSF APP WAR FILE OR EXPLODED WAR with the location
and name of the WAR file or with the location of the WAR exploded of the JSF
application that will be tested.

Replace the text PATH TO JSF-UNITFIED WAR OR EXPLODED WAR with the location
and name of the WAR file or with the location of the exploded WAR where the
application should be stored after it has been "jsfunitfied".

In the same folder with this script, you need a /1ib folder containing the JSFUnit
libraries and the additional libraries.

In the same folder with this script, you need to place a /classes folder that contains
the JSFUnit test classes (you need to compile the JSFUnit test sources and place the
resulting classes in this folder).

Optionally, you may want to write an Ant target for automatically adding the
cactus-report.xls stylesheet.

When you run the script, the jsfunitwar task uses the provided resources (libraries, JSFUnit
test classes, JSF projects, and so on) to jsfunitfy the desired JSF application. In addition, you
can try to use the Ant tasks for deploying and running the tests.

291

JSF—Managing and Testing

See also

A complete kit is available in the applications that come with this book, under the folder
/JSFUnit and Ant

This recipe comes to amplify the previous two recipes with more details regarding JSFUnit
API. You will see a set of snapshots that cover the main questions about writing JSFUnit
test classes.

How to do it...

You can integrate the following code snippets into your JSFUnit test classes just by simple
copy-pasting and then replacing the [...] sections accordingly to your needs:

» Start a JSFUnit session by getting a page:
WebClientSpec webClientSpec = new WebClientSpec("/[PAGE NAME] ") ;
HtmlPage htmlPage = (HtmlPage)webClientSpec.doInitialRequest() ;
» Getthe FacesContext instance:

FacesContext facesContext =
FacesContextBridge.getCurrentInstance () ;

» Get the key to all state as of the last request:

UIViewRoot uiViewRoot = facesContext.getViewRoot () ;

» Test navigation to initial viewID:
assertEquals ("/ [PAGE NAME] ", uiViewRoot.getViewId()) ;

» Assert that a component is in the component tree and rendered:
UIComponent ui =
uiviewRoot.findComponent (" [FORM_ ID] : [COMPONENT ID]") ;
assertTrue (ui.isRendered()) ;
» Assert that a component is in the component tree but it is not rendered:
UIComponent ui =
uiviewRoot .findComponent (" [FORM ID] : [COMPONENT ID]") ;

assertFalse (ui.isRendered()) ;

292

Chapter 9

Submit data for a inputText component (it could be valid or invalid data):
HtmlInput anInputText =
(HtmlInput) htmlPage.getElementById (" [FORM_ ID] : [INPUT TEXT ID]");
anInputText.setValueAttribute (" [VALUE TO POPULATE INPUT TEXT]");
HtmlSubmitInput htmlSubmitInput = (HtmlSubmitInput)htmlPage.
getElementById (" [FORM ID] : [SUBMIT BUTTON ID]");
htmlSubmitInput.click() ;

Check the FacesMessage generated for the previous test (also you may want to

check if the control returned to the initial state because of an error):

FacesMessage message =
(FacesMessage) facesContext .getMessages () .next () ;

assertTrue (message.getDetail () .contains (" [INPUT TEXT ID]"));

Assert that a component has the desired value:

UIComponent ui = uiViewRoot.findComponent (" [FORM_ ID] : [COMPONENT
IDl");

assertTrue (ui.isRendered()) ;
assertEquals (" [TEXT TO COMPARE] ", ((ValueHolder)ui) .getValue());

Assert value for a backing bean property:

assertEquals (" [TEXT TO COMPARE] ", (String)facesContext.
getApplication() .

createValueBinding ("#{ [BEAN PROPERTY] }") .getValue (facesContext)) ;

Simulate a button press:

HtmlSubmitInput htmlSubmitInput = (HtmlSubmitInput)htmlPage.
getElementById("[FORM_ID]:[BUTTON_ID]");

htmlSubmitInput.click() ;

Start a JSFUnit session by getting a page:
JSFSession jsfSession = new JSFSession("/[PAGE NAME]") ;
JSFClientSession client = jsfSession.getJSFClientSession() ;

JSFServerSession server = jsfSession.getJSFServerSession() ;

Test browser version:
WebClientSpec webClientSpec = new WebClientSpec ("/[PAGE NAME]",
BrowserVersion.INTERNET EXPLORER 6 O0) ;
JSFSession jsfSession = new JSFSession (webClientSpec) ;
assertEquals (BrowserVersion.INTERNET EXPLORER 6 O,
jsfSession.getWebClient () .getBrowserVersion()) ;
Populate and submit an inputText through JSF client session:
client.setValue (" [INPUT TEXT ID]", "[TEXT TO POPULATE]");
client.click (" [SUBMIT BUTTON ID]");

293

JSF—Managing and Testing

>

Check/uncheck a checkbox:
client.click (" [CHECKBOX ID]"); // check/uncheck
client.click (" [SUBMIT BUTTON ID]");

assertFalse ((Boolean) server.getManagedBeanValue ("#{ [BEAN
PROPERTY] }")) ;

client.click (" [CHECKBOX ID]"); // check/uncheck
client.click (" [SUBMIT BUTTON ID]");

assertTrue ((Boolean) server.getManagedBeanValue ("#{ [BEAN
PROPERTY] } ")) ;

Test a command link without view change:

Client.click("[NAVIGATION_BUTTON_ID]");
client.click (" [COMMANDLINK ID]");

// still on the same page ?

assertEquals ("/[PAGE_NAME]", server.getCurrentViewID()) ;

Test a text area:

assertEquals (" [INITIAL VALUE]",
server.getManagedBeanValue ("#{ [BEAN PROPERTY] }")) ;

client.setValue (" [TEXT AREA ID]", "[FINAL VALUE]");
client.click (" [SUBMIT BUTTON ID]");

assertEquals (" [FINAL VALUE]", server.getManagedBeanValue ("#{ [BEAN
PROPERTY] } ")) ;

Test a radio button:

assertEquals("[SELECTED_CURRENT_RADIO_ITEM_VALUE]",
server.getManagedBeanValue ("#{ [BEAN PROPERTY] }")) ;
client.click (" [ANOTHER RADIO ID]");
client.click (" [SUBMIT BUTTON ID]");
assertEquals (" [SELECTED_ ANOTHER RADIO_ ITEM VALUE]",
server.getManagedBeanValue ("#{ [BEAN PROPERTY] }")) ;

Test selectManyListbox:

client.click (" [SELECT_ITEM ID 1]");

client.click (" [SELECT ITEM ID 3]");

client.click (" [SELECT_ITEM ID 6]");

HtmlSelectManyListbox htmlSelectManyListbox =
(HtmlSelectManyListbox) server.
findComponent (" [SELECT MANY LISTBOX ID]");

Object [] selectedValues =
htmlSelectManyListbox.getSelectedValues() ;

assertEquals (3, selectedValues.length) ;

List listValues = Arrays.asList (selectedvalues) ;

assertTrue (listValues.contains (" [SELECT ITEM VALUE 1]")
assertTrue (listValues.contains (" [SELECT ITEM VALUE 3]")
assertTrue (listValues.contains (" [SELECT ITEM VALUE 6]")
assertFalse (listValues.contains (" [SELECT ITEM VALUE 2]"
assertFalse(listValues.contains (" [SELECT_ITEM VALUE 4]"

I

’

assertFalse(listValues.contains (" [SELECT ITEM VALUE 5]"

» Test simple timing (example 1):

JSFTimer jsfTimer = JSFTimer.getTimer () ;
assertTrue (jsfTimer.getTotalTime () > 0);

» Test simple timing (example 2).

)
)
)

client.setValue (" [INPUT TEXT ID]", " [TEXT TO_ POPULATE]") ;

Client.click("[SUBMIT_BUTTON_ID]");
JSFTimer jsfTimer = JSFTimer.getTimer () ;
assertTrue (jsfTimer.getTotalTime () >= 1000) ;

7
7

7

Chapter 9

Well, this is just the beginning in exploring the JSFUnit API, but | think that you get the main
idea of how JSFUnit works in the "testing world". If you are a JSF developer and you are
familiar with JUnit, then it will be a piece of cake to understand and write JSFUnit tests.

A JSF and JMeter issue

In this recipe, we will discuss an important issue that appears when we try to develop a
JMeter test for a JSF application. The main problem is that JSF is a bit special because of the
special request parameters needed and the requirement for POST requests. In this recipe, you

will see how to fix that in an elegant approach.

Getting ready

If you are not familiar with JMeter or you want to download a JMeter distribution please
go through the JMeter main page at http://jakarta.apache.org/jmeter/. A short

definition from there says:

Apache JMeter is open source software, a 100% pure Java desktop application
designed to load test functional behavior and measure performance. It was
originally designed for testing Web Applications but has since expanded to other

test functions.

295

JSF—Managing and Testing

How to do it...

We can resume the discussed issue to two requirements:

» We must simulate the JSF viewState request parameter.
» We must include all form elements in a POST request.

To accomplish the first requirement, we create a JMeter Regex Extractor (you could also use
the XPath extractor instead of the Regex). We can apply the extractor to the Thread Group so
it applies across the whole test script. The extractor will find the viewState parameter and
store it in a JMeter variable named jsfviewState. The necessary parameters are:

Parameter Value

Reference name jsfVviewState

Regular expression <input type="hidden" name="javax\.faces\.ViewState"
id="javax\.faces\.ViewState" value="(.+?)" />

Template $1s$
Match no. 0

Usually, the first request is a GET request and will be free of JSF, therefore we are more
interested in the rest of the requests (that follow after the first request). For this, we need

to create an HTTP request using the POST method for all JSF requests. This is possible if we
record a session with the web application and change the dynamic variables (all JSF requests
will have a few request parameters that need to be part of the request). All of these parameter
names will start with the name of the form, then a %34, and then the parameter name.

For example, let's suppose a form is named "jsfForm", and here is the minimum set

of parameters:

Parameter Value

jsfForm %3A_ SUBMIT 1

jsfForm %$3A link hidden none

jsfForm %3A_ idcl use the recorded value (if it is a must)
javax.faces.ViewState ${jsfviewState}

In addition, we will add parameters in the same format for all form elements
that are part of our request. Check the Encoded box for the extracted view,
g otherwise the view will not be restored in the server.

| think that the previous solution is pretty self explanatory.

296

Chapter 9

Working with JSF Chart Creator

Even if JSF Chart Creator is not a tool for managing or testing it can be used to visualize
different kinds of data through various types of charts. You can exploit this open source free
tool to display charts of performance data, testing reports, monitoring, and so on. This tool
was developed by Cagatay Civici based on JFreeChart and can display many kinds of charts,
as follows:

» Pie charts

» 3D Pie charts

» Barcharts

» Stacked Bar charts

» 3D Barcharts

» 3D Stacked Bar charts

» Area charts

» Stacked Area charts

» Line charts

» 3D Linecharts

» Waterfall charts

» Time Series charts

» XY Line charts

» Polar charts

» Ringcharts

» Scatter charts

» XY Area charts

» XY Step Area chart

» XY Step charts

» Bubble charts

» Candlestick charts

» Gantt charts

» Boxand Whisker charts

» High and Low charts

» Histogram charts

» Signal charts

» Wind charts

In this recipe, we will explore the JSF Chart Creator bundled examples.

297

JSF—Managing and Testing

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

Now, you can download JSF Chart Creator from http://cagataycivici.wordpress.
com/2006/01/05/jsf_chart creator/. At this address, you can find the following:
» The latest JSF Chart Creator version, 1.2.0-RC1
» An example web application
» Anonline demo
» Documentation

How to do it...

Since the component comes with a large number of examples and great documentation, there
is no need to create an example from scratch. The easiest way to learn how to work with it is
to download the example web application, run it, and take a look at the source code.

After download, you can deploy the out-of-the-box WAR under GlassFish v3 through the

server console. It works with no problem and in just a few seconds you can see the provided
examples. You can see a few pictures of the examples as follows—you have access to the code
of all these examples:

Chart with Glickakle Regions and Toullips Barca ¥uhat a nice chart

-

Ilove JSF Chart Creator -

1202020 000,300 1 020202000

W el W G TE) =2

298

Chapter 9

Notice that the component has several attributes for customizing the chart's properties such
as type, datasource, colors, dhtml events, image maps, 3D, antialias, styleclass, and more.
Refer to the documentation for the whole list.

See also

For the latest news, please check the following:

» JSF Chart Creator home page:

http://cagataycivici.wordpress.com/2006/01/05/jsf chart
creator/

» Cagatay Civici web blog:

http://cagataycivici.wordpress.com/

299

10

Facelets

In this chapter, we will cover:

>

Installing Facelets under JSF 1.2 (or JSF 1.1)
Facelets aliasing components

Facelets templating

Creating composition components in JSF 2.0
Passing sub-elements to composition components

Passing actions to composition components

Introduction

Our goal for this chapter is to cover the main aspects regarding Facelets technology. As you
probably know, Facelets is the name behind JavaServer™ Faces View Definition Framework and
basically it represents a page declaration language that can be used with JavaServer Faces
technology (in many aspects it is similar to Tapestry). Most usually, Facelets is used to build
JavaServer Faces views using HTML style templates and to build component trees (not a servlet
as with JSP). While doing this, it provides some important features, such as the following:

>

>

Reusability of code and ease of development
Functional extensibility of components
Optimized compilation time

Compile-time EL validation

High-performance rendering

Support for the XHTML language for web pages
Support for unified expression language
Components and pages can be templated

Facelets

» Facelets isn't dependent on a JSP container

» Support for JavaServer Faces Facelets Tag Library

» Support for JavaServer Faces HTML Tag Library

» Support for JavaServer Faces Core Tag Library

» Support for JSTL Core Tag Library

» Support for JSTL Functions Tag Library

» Support for tags for composite components (you can declare custom prefixes)

If the previous list was not a strong argument for you to try Facelets in your applications,
then you probably should know that starting with JSF 2.0, Facelets is a part of JavaServer
Faces specification and the recommended and preferred presentation technology to use in
conjunction with JSF.

In this chapter, we will start by with a recipe that describes how to install Facelets (for JSF
under 2.0) and we will continue by exploring features like templating, creation of composition
components, passing sub-elements and actions to composite components, and more.

Installing Facelets under JSF 1.2

(or JSF 1.1)

This recipe lists the main steps for installing Facelets under JSF 1.2. For JSF 2.0, Facelets is
bundled, therefore no installation is needed.

Getting ready

To start with, you need to download Facelets from https://facelets.dev.java.net/.
It is recommended to download the latest stable release.

How to do it...

Once you have downloaded the Facelets distribution, you can install it under your project by
following the given steps:
» Unzip the Facelets distribution under your favorite folder.
» Copy the Facelets JARs under your project /WEB-INF/1ib folder.
» Add the Facelets init parameter(s) to the web . xm1l file, as follows:
<context-param>
<param-name>javax.faces.DEFAULT SUFFIX</param-name>

<param—va1ue>.xhtml</param—va1ue>
</context-param>

302

Chapter 10

Add the FaceletViewHandler to the faces-config.xml file, as follows:

<applications>
<locale-config>
<default-locales>en</default-locale>
</locale-config>
<view-handler>com.sun.facelets.FaceletViewHandler</view-handlers>
</application>

Done! Now, you are ready to explore Facelets in your JSF projects.

A JSF ViewHandler consists a plugin that handles the Render Response
s and Restore View phases of the JSF request-process life cycle.

Do not forget that for JSF 2.0, Facelets is already bundled and configured, therefore you can
use it out of the box.

Facelets aliasing components

Facelets offers a different way to specify components within your page with the jsfc attribute
within a standard HTML element. In this recipe, we will use this technique for developing a
simple JSF view.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The following JSF view shows you this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html">

<head>
<title>Facelets Hello Application</titles>
</head>

303

Facelets

<body>
<h:message showSummary="true" showDetail="false" for="name" />
<form jsfc="h:form" id="helloForm">
Your name:
<input jsfc="h:inputText" required="true" id="name"
value="#{person.name}" />
<input type="submit" jsfc="h:commandButton" id="submit"
action="greeting" value="Say Hello" />
</form>

</body>
</html>

This view contains a simple h: form made off a text field (h: inputText) for inserting your
name and a submit button (h: commandButton). Behind the scenes is a backing bean that
is simple and irrelevant for us now.

Now, it is absolutely normal to ask "But, how is the view created using this jsfc attribute?".
Well, the answer is simple. The Facelets compiler searches for a jsfc attribute for every
element in the document. The value of an jsfc attribute is the name of an alternative
element to replace the one used in the page. In our case, the compiler will render

an h:form, an h: inputText, and an h: commandButton as these are the values for our
jsfc attributes. Aliasing components allows the user to see a normal HTML element, such as
form, input, and submit button, while the programmer can treat it as a JSF component.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Facelets aliasing components.

Facelets templating

Templating is a useful feature available with Facelets that allows you to create a page that will
act as the template for the other pages in an application (something like Struts tiles). The idea
is to obtain portions of reusable code without repeating the same code on different pages.

In this recipe, you will learn the main aspects of templating and you will see how to develop a
JSF application based on this feature.

304

Chapter 10

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Before developing and using some Facelets templates, let's say that the Facelets namespace
ishttp://java.sun.com/jsf/facelets and it is usually prefixed with the ui prefix.
Now, let's have a look at the Facelets tags that are used for templating:

Parameter Value

ui:component Defines a component in the component tree.

ui:composition Defines a page composition that can use a template (any content
outside of this tag is ignored).

ui:debug Defines a debug component in the component tree.

ui:define Defines content that is inserted into a page by a template.

ui:decorate Similar to the ui : composition tag but doesn't ignore the
content outside this tag.

ui: fragment Similar to ui : component tag but doesn't ignore content outside
this tag.

ui:include Used to encapsulate and reuse content for multiple pages.

uil:insert Inserts content into a template.

ui:param Passes parameters to an included file.

ui:repeat Used as an alternative for loop tags such as c: forEach orh:
dataTable.

ui:remove Removes content from a page.

The previous list contains two tags that are commonly used together for creating and using
a template. These tags are ui:insert and ui:define. The first one inserts content into a
template, while the second one defines the content that is inserted into a page by a template.

Now, let's create a template page, named template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<head>
<title>
<ui:insert name="page title">
Place here page title

305

Facelets

</ui:inserts>
</title>
</head>

<body>
<table width="50%" style="height:150px;border:5px solid #000000;™"
bgcolor="white" align="1left" cellpadding="0" cellspacing="0">
<tbody>
<tr style="height:20px;border:5px solid #000000;"
bgcolor="green">
<th>
<ui:insert name="table header">
Place here table header
</ui:inserts>
</th>
</tr>
<tr>
<td align="center" width="100%" valign="middle">
<ui:insert name="page body">
Place here page body
</ui:inserts>
</td>
</tr>
</tbody>
</table>
</body>
</html>

As you can see, the reusable parts of the template are marked by the ui: insert tag, and
these parts represents the page title, a table header, and the page body. Now, the client
page invokes the template by using the ui : composition tag and fills up the reusable
parts by invoking the ui : define tag. Here it is a possible use of our template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<ul:composition template="/template/template.xhtml">
<ui:define name="page title">
Facelets template example-page 1
</ui:define>
<ui:define name="table header">
Provide your name below!

306

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Chapter 10

</ui:define>
<ui:define name="page body">
<h:message showSummary="true" showDetail="false" for="name" />
<form jsfc="h:form" id="helloForm">
Your name:
<input jsfc="h:inputText" required="true" id="name"
value="#{person.name}" />
<input type="submit" jsfc="h:commandButton" id="submit"
action="greeting" value="Say Hello" />
</forms>
</ui:defines>
</ui:composition>
</html>

When the form defined in the previous page is submitted, a greeting page is displayed. This
page is also built over the previous template, as shown next:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets">

<ul:composition template="template/template.xhtml">
<ui:define name="page title">Facelets template example - page 2
</ui:defines>
<ul:define name="table header">Greeting for you!</ui:defines>
<ui:define name="page body">

Hello #{person.name}!

</ui:define>

</ui:composition>

</html>

First, Facelets locates the template to use by analyzing the value of the template attribute of
the ui: composition tag. Second, it correlates the ui: insert tags with ui : define tags,
by inspecting the value of the name attribute, which is common to both the tags. When the
values of two name attributes are equal, the portions of the template marked by ui: insert
are filled with the code defined by ui :define.

307

Facelets

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Facelets templating.

More details about the Facelets tags are at the following location: http://java.sun.com/
javaee/javaserverfaces/2.0/docs/pdldocs/facelets/.

Creating composition components in JSF 2.0

A great feature of Facelets consists in composition components (available starting with
JSF 2.0). For a better understanding, we will start with a traditional application, and we will
compare it with an application that uses composition components. At the end, you will love
composition components.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Let's suppose that we have a list of books, characterized by title, author, and price, and we
need to display this list in a table and provide the sorting (ascending/descending) action for
each category (see next screenshot):

Book-title] Book-aunthor] Book-price|
ascending, ascending, ascending,
descending] descending] descending]
Learning Website .

Development with Dijango Aymen Hourieh -

Building Websites with

Tooralal 1.5 Hagen Graf £29.74

ASPIET 3.5 Application .

Architecture and Design WVivel: Thalkour £30.99

Drupal & Themes Eic Shreves £26 34

WordPress Theme Design Tessa Blakeley Silver £26.34

308

Chapter 10

Focusing on this view (not on functionality or backing beans), we will probably write a JSF page
like the following (this is the traditional approach):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<h:head>
<title> Composition components in JSF 2.0</title>
<style type="text/css">
.header { text-align: left;
letter-spacing:5px;
color:#000099
}
.0odd { background-color: yellow }
.even { background-color: orange }
</style>
</h:head>

<f:view>
<h:form>
<h:dataTable id="booksId" value="#{booksStore.books}" var="bk"
rowClasses="odd, even" headerClass="header">

<!-- book title -->
<h:column>
<f:facet name="header">
<h:panelGroup>
<h:outputText value="Book Title" />
<f:verbatims[</f:verbatim>
<!-- Ascending link -->
<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="booktitleascid" value="ascending" />
<f:param name="by" value="title"/>
<f:param name="order" value="ascending"/>
</h:commandLink>

<h:outputText value="," />

<!-- Descending link -->

<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="booktitledescid" value="descending" />
<f:param name="by" value="title"/>
<f:param name="order" value="descending"/>

309

Facelets

</h:commandLink>
<f:verbatim>]</f:verbatim>

</h:panelGroup>
</f:facet>

<h:outputText value="#{bk.title}" />
</h:column>

<!-- book author -->
<h:column>
<f:facet name="header">
<h:panelGroup>
<h:outputText value="Book Author" />
<f:verbatims>[</f:verbatim>
<!-- Ascending link -->
<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="bookauthorascid" value="ascending" />
<f:param name="by" value="author"/>
<f:param name="order" value="ascending"/>
</h:commandLink>

<h:outputText value="," />

<!-- Descending link -->

<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="bookauthordescid" value="descending" />
<f:param name="by" value="author"/>
<f:param name="order" value="descending"/>

</h:commandLink>

<f:verbatim>]</f:verbatim>
</h:panelGroup>
</f:facet>
<h:outputText value="#{bk.author}" />

</h:column>

<!-- book price -->
<h:column>
<f:facet name="header">
<h:panelGroup>
<h:outputText value="Book Price" />

<f:verbatims>[</f:verbatim>

Chapter 10

<!-- Ascending link -->

<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="bookpriceascid" value="ascending" />
<f:param name="by" value="price"/>

<f:param name="order" value="ascending"/>
</h:commandLink>

<h:outputText value="," />
<!-- Descending link -->
<h:commandLink action="#{booksStore.sortBooks}">
<h:outputText id="bookpricedescid" value="descending" />
<f:param name="by" value="price"/>
<f:param name="order" value="descending"/>
</h:commandLink>
<f:verbatim>] </f:verbatim>
</h:panelGroup>
</f:facet>
<h:outputText value="#{bk.price}" />

</h:column>
</h:dataTable>

</h:form>
</f:views
</html>

In addition, we have two backing beans as follows:
A Book . java backing bean that maps the book characteristics:

package bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class Book

private String title;
private String author;
private String price;

public Book (String title, String author, String price) {
this.title = title;

Facelets

this.author = author;
this.price = price;

public Book() {

}

public String getAuthor()
return author;

public void setAuthor (String author) {
this.author = author;

public String getPrice() {
return price;

public void setPrice(String price) {
this.price = price;

public String getTitle() {
return title;

public void setTitle(String title) {
this.title = title;

}

A BooksStore. java backing bean that defines a list of Book instances and defines a
method for sorting the books by title, author, or price is shown next:

package bean;

import java.util.ArrayList;

import java.util.List;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

import javax.faces.context.FacesContext;
import javax.servlet.http.HttpServletRequest;

@ManagedBean

312

Chapter 10

@SessionScoped
public class BooksStore

private List books = new ArrayList() ;

public BooksStore()

books.add (new Book ("Learning Website Development with Django",

"Ayman Hourieh", "€26.34"));
books.add (new Book ("Building Websites with Joomla! 1.5",
"Hagen Graf", "€29.74"));
books.add (new Book ("ASP.NET 3.5 Application Architecture and
Design", "Vivek Thakur", "€30.99"));
books.add (new Book ("Drupal 6 Themes", "Ric Shreves", "€26.34"));
books.add (new Book ("WordPress Theme Design",
"Tessa Blakeley Silver", "€26.34"));

public List getBooks() {
return books;

public void setBooks (List books) {
this.books = books;

public void sortBooks ()
FacesContext facesContext = FacesContext.getCurrentInstance() ;
HttpServletRequest httpServletRequest = (HttpServletRequest)

facesContext.getExternalContext () .getRequest () ;

String by = httpServletRequest.getParameter ("by") ;
String order = httpServletRequest.getParameter ("order") ;

System.out.println ("The books should be order " + order +

n by "+by+"l");

//ordering books

Facelets

Obviously, the redundancy of the JSF view is annoying and very primitive. We can fix this

by defining a composition component that can be invoked instead of repeating code (the
backing beans remain unchanged). The composition component can be created by following
a few steps. To start with, we define the composition component page and place it under the
/WEB- INF folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core">

<ui:compositions
<h:columns>
<f:facet name="header">
<h:panelGroup>
<f:verbatim>Book-</f:verbatim>
<h:outputText value="S${attr}" />
<f:verbatims[</f:verbatim>

<!-- Ascending link -->

<h:commandLink action="#{compbean.sortBooks}">
<h:outputText value="ascending" />
<f:param name="by" value="${attr}"/>
<f:param name="order" value="ascending"/>

</h:commandLink>

<h:outputText value="," />

<!-- Descending link -->

<h:commandLink action="#{compbean.sortBooks}">
<h:outputText value="descending" />
<f:param name="by" value="${attr}"/>
<f:param name="order" value="descending"/>

</h:commandLink>

<f:verbatims>] </f:verbatim>
</h:panelGroup>
</f:facet>
<h:outputText value="${book [attr]}" />

</h:column>
</ui:compositions>
</html>

314

Chapter 10

Next, we define a tag library file to map the tag name to the tag source or, in other words, to
map the name of the composition component with the composition component source page.
In addition, it defines the namespace used to access the tag. This is an XML file that looks
like this:

<?xml version="1.0"?>

<!DOCTYPE facelet-taglib PUBLIC
"-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
"facelet-taglib_1 0.dtd"s>

<facelet-taglib>
<namespace>http://www.my.facelets.component.com/jsf</namespace>

<tag>
<tag-name>tableColumn</tag-name>
<sources>mycomp .xhtml</source>
</tag>

</facelet-taglib>

Further, we declare the tag library in the web . xm1 descriptor—you need to indicate the path to
the tag library as follows:

<context-param>
<param-name>javax.faces.FACELETS_LIBRARIES</param-name>
<param-value>/WEB-INF/facelets/tags/taglibmycomp.xml</param-value>
</context-param>

Finally, we import the corresponding namespace and invoke the composition component. The
client page for our composition component is listed as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:x="http://www.my.facelets.component.com/jsf">

<h:head>
<title>Composition components in JSF 2.0</title>
<style type="text/css">
.header { text-align: left;
letter-spacing:5px;
color:#000099
}
.0odd { background-color: yellow }
.even { background-color: orange }

Facelets

</style>
</h:head>

<f:views
<h:form>
<h:dataTable id="booksId" value="#{booksStore.books}" var="bk"
rowClasses="odd, even" headerClass="header">

<x:tableColumn book="${bk}" attr="title"
compbean="${booksStore}" />
<x:tableColumn book="${bk}" attr="author"
compbean="${booksStore}" />
<x:tableColumn book="${bk}" attr="price"
compbean="${booksStore}" />
</h:dataTable>

</h:form>
</f:view>
</html>

As you can see, now the code is simpler, cleaner, and more optimal.

Regarding the values passed by the client page to the composition component, we need to
notice the following (is very important to keep this in mind and to adapt it to your applications):

» When the composition component is invoked we pass three attributes, representing a
Book instance (bk), a constant string, and a BooksStore instance (booksStore)

» The Book is passed using the book="%{bk}" construction, and it is used as the
${book [attr] } construction, where attr can be title, author, or price depending
on attr attribute value

» The constantis passed as attr="title", "author", and "price" anditis used
as s{attr}

» The BooksStore instance is passed as compbean="3{booksStore}", and it is
used as #{compbean . sortBooks }

The composition component acts as a reusable component. The client page calls the
composition component as many times as it wants and each time it customizes it by passing
it different values. As you just saw, Facelets provides support for passing different kinds of
values, and, as you will see in the next two recipes, we can go even deeper on this line. As

we can customize the composition component aspect, behavior, and so on, we can create a
application without multiplying "islands" of code all over the application. Put this in correlation
with templating and you will obtain great code!

316

Chapter 10

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Create composition components in
JSF20.

Passing sub-elements to composition

components

First of all, you need to keep in mind that this recipe uses the knowledge and code from the
previous recipe, therefore it is recommended to read the previous recipe first!

Now, focusing on this recipe, you should know that the key to its design lies in the fact that
a Facelets composition component is actually a type of template. Based on this important
observation, we can pass a template argument using the ui : define (associated to a
corresponding ui : insert). Also, we can pass the body as a default ui : insert.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

First, we place an anonymous ui: insert in the composition component (you should place it
exactly in the place where you need it to be replaced by Facelets) For example, we place it in
each table column as shown next:

<h:outputText value="${book[attr]}" />

<ui:insert />
</h:column>

</ui:composition>
</html>

Facelets

Now, when we invoke the composition component, the anonymous insert introduces the
passed body. If the body is present, then nothing is introduced. In the following example, we
are using a body for author and price columns (our body is just an £ : verbatim component,
but it can be anything else).

<x:tableColumn book="${bk}" attr="title" compbean="${booksStore}" />

<x:tableColumn book="${bk}" attr="author" compbean="${booksStore}">
<f:verbatim> [*****]</f:verbatim>

</x:tableColumn>

<x:tableColumn book="${bk}" attr="price" compbean="${booksStore}">
<f:verbatim> - Promotion!</f:verbatim>

</x:tableColumn>

Now the rendered table looks similar to the following screenshot:

Book-title] Book-author] Book-price]
ascending, ascending, ascending,
descendingl] descending] descendingl]
Learnihg Website Development PR .

= |
with Diango Lyman Houreh [] £26.34 - Promotion|

o : : |

?‘;ﬂdmg Websttes with Toomlal - pp | e £29 74 - Promotion!
ASP MET 3.5 Application . S .

- |
Architecture and Design Vivek Thalour [] £30 59 - Promotion!
Drupal & Themes Ric Shrewes [*F++*] £26 34 - Promotion!
WordPress Theme Design Tessa Blakeley Siver [**¥+F] £26.34 - Promotionl

Well, as we said in the description of the recipe, the secret lies in the fact that a Facelets
composition component is acting like a template. | think that this observation says it all!

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Pass sub elements to composition
components.

Chapter 10

Passing actions to composition components

In the recipe Creating composition components in JSF 2.0, we passed different types of
values to our composition component. In this recipe, we take a step forward and pass an
action to it, instead of explicitly mapping the action in the composition component.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

The solution is based on two steps:

1. We pass the action name as shown next (focus on the action attribute):

<x:tableColumn book="${bk}" attr="title" action="sortBooks"

compbean="${booksStore}" />

2. We use the passed action in the composition component:

<h:commandLink action="#{compbean[action] }">
<h:outputText value="ascending" />
<f:param name="by" value="${attr}"/>
<f:param name="order" value="ascending"/>

</h:commandLink>

That's all! Now you should be able to pass an action binding to create different elements such
as toolbars.

As the standard EL can't help us here, we have used a little trick supported by Facelets—we
have referenced the value binding in a generic way!

Facelets

See also

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Pass_actions to composition
components.

320

11

JSF 2.0 Features

In this chapter, we will cover:

» JSF 2.0 annotations

» The JSF 2.0 exception handling mechanism
» Bookmarking JSF pages with PrettyFaces

» JSF declarative event handling

» URLs based on specified navigation outcome
» JSF view parameters

» JSF 2 and navigation cases

Introduction

Through this book's chapters you have seen many recipes based on JSF 2.0 features. This
chapter comes only as an add-on to fill out JSF 2.0 by presenting another set of seven recipes.

For a complete list of JSF 2.0 features, have a look at Andy Schwartz's Weblog at
http://andyschwartz.wordpress.com/2009/07/31/whats-new-in-jsf-2/ or
the Javabeat classification available at http://www.javabeat .net/tips/116-new-
features-in-jsf-20.html.

JSF 2.0 Features

JSF 2.0 annotations

One of the most important and useful features of JSF 2.0 consists in annotations. Based
on them, JSF 2.0 provides an easy way to accomplish important tasks. In this recipe, we will
present the most commonly used annotations and we will see what they can do for us.

How to do it...

If you are a JSF 1.2 fan, then you are familiar with the faces-config.xml configuration
file. Starting with JSF 2.0, the content of this descriptor can be partially (sometimes totally)
replaced with annotations.

Annotations for managed beans

The most common case is represented by the managed bean, which can be annotated as
shown, instead of placing a specific declaration in faces-config.xml:
import javax.faces.bean.ManagedBean;

@ManagedBean
public class MyBean {

}

In the previous example, the bean is referenced as myBean, but you may specify another
name, as shown next:

@ManagedBean (name="coolBean")

And what is a managed bean without a context (a scope)? JSF 2.0 supports an entire list of
scope annotation, as shown next:

Annotation Annotation Class

@RequestScoped javax.faces.bean.RequestScoped
@SessionScoped javax.faces.bean.SessionScoped
@ApplicationScoped javax.faces.bean.ApplicationScoped
@ViewScoped javax.faces.bean.ViewScoped
@NoneScoped javax.faces.bean.NoneScoped
@CustomScoped (value="#{someMap javax.faces.bean.CustomScoped

I

322

Chapter 11

In addition, we can annotate a managed bean's properties using the @ManagedProperty
annotation. The presence of this annotation on a field of a class annotated with
@ManagedBean instructs the system to inject a value into this property:

@ManagedProperty ("fooval")

private String foo;

@ManagedProperty ("#{fooval}")
private String foo;

Going further, you can react to the creation and the destruction of a managed bean,
as shown next:

public class MyBean {

@PostConstruct
public void postCreate () {

@PreDestroy
public void preDestroy () {

}

If you use JSF inside of a JEE container you can inject resources, session, message-driven

beans, and web services into your managed beans. Something like the following is
perfectly legal:

@ManagedBean
@SessionScoped
public class MyBean implements Serializable

@EJB
private Facade facade;

@ResourceDependency annotation

JSF 2.0 specification has added the @ResourceDependency annotation to allow component
authors to declare the resources the component will need. For example:

@ResourceDependency (name="my.css",library="1ibus")
public class MyComponent extends UIComponentBase {

323

JSF 2.0 Features

You may use more than one @ResourceDependency using the @ResourceDependencies
annotation, as the following:

@ResourceDependencies ({ @ResourceDependency (name="my .
css",library="1ibus") ,

@ResourceDependency (name="my.js",library="1ibus", target="head")
3]

public class MyComponent extends UIComponentBase {

% Now the components can be used without any knowledge about any of the
s CSS or JS code. The necessary dependencies will be rendered automatically.

The @ListenerFor annotation

A component will be annotated with the @L.istenerFor annotation to indicate that it is
subscribing to a particular set of events. Therefore, we will have two renderers that act as
listeners for particular events and that implement the ComponentSystemEventListener
interface (a detailed description of this interface is available at http://blogs.sun.com/
rlubke/entry/jsf 2 0 new featurel, butasa quick description, system events are
new in JSF 2.0, and there are system events that are global and others that are related to a
component. They are created at various moments of application or request lifetime).

Let's see what this looks like:

@ListenerFor (systemEventClass=AfterAddToParentEvent.class,
sourceClass=UIOutput.class)

public class MyRenderer extends Renderer implements
ComponentSystemEventListener {

public void processEvent (ComponentSystemEvent event) throws

AbortProcessingException {
UIComponent component = event.getComponent () ;

FacesContext context = FacesContext.getCurrentInstance() ;

String target = (String)component.getAttributes() .get ("target");
if (target != null) {

context .getViewRoot () .addComponentResource (context,

component, target);

324

Chapter 11

There is also a plural version, named @ListenersFor.

There is one more annotation in which we are interested, named
o @NamedEvent, which will be discussed in the JSF declarative

event handling recipe.

Annotations for managed beans

Once you have annotated a class as a managed bean, it can be referred to as a bean with
#{beanName. foo}, where beanName is class name (except packages) with the first letter
changed to lower case, and "foo" is either an exact method name or a shortcut for a getter
and setter method.

Regarding managed beans scopes we have:

@RequestScope: (this is the default scope of a managed bean). This puts the bean in
request scope. It makes a new instance for every HTTP request. Commonly, the bean is
instantiated twice, once when form is displayed and once when it is submitted.

@SessionScope: This puts a Serializable bean in session scope. When the same user
with the same cookie returns then the same bean instance is used (for this, the session
timeout should not be expired).

@ApplicationScoped: This puts the bean in application scope. All users will have access to
this bean, therefore the bean either should have no state or you must manually and carefully
synchronize access to it.

@ViewScoped: This puts the bean in view scoped. The same bean instance is used as long
as the same user is on same page (for example, with AJAX).

@CustomScope: This puts the bean in custom scope. The bean is stored in the Map, and the
developer can control its lifecycle.

@NoneScope: The bean is not put in a scope. Commonly these beans are referenced by other
beans that are in scopes.

@ViewScoped, @CustomScoped and @NoneScoped are
i available only in JSF 2.0.

325

JSF 2.0 Features

@ResourceDependency annotation

Once a component is created, it will be added as a child to another component.

Before returning from the add () method, the component will be checked for
@ResourceDependency annotations (both versions). When the @ResourceDependency
is found a new UIOutput component instance is created. The ResourceHandler is
queried for an appropriate Renderer based on the content type of the resource. In our case
this is text /css, therefore the style sheet renderer will be used as the Renderer for this
UIOutput component.

The values of the name, 1ibrary (optional), and target (optional) attributes

from the annotation are stored in the component's attribute map. UIViewRoot .
addComponentResource () is called passing in the UIOutput and the value of the
target attribute from the annotation (if exists).

Now when we render the view, for the head renderer we encode each of the resources that
have been targeted for the head, like so:

UIViewRoot viewRoot = context.getViewRoot () ;

for (UIComponent ui comp:viewRoot.getComponentResources (context,
"head")) {ui_ comp.encodeAll (context) ;}

The @QListenerFor annotation

When the Renderer for this component is obtained it is queried for @L.istenerFor
annotations. For each annotation, the Renderer will be added as a component listener for
the corresponding event. Going further, when the component is added in the tree, the event
is invoked and the processEvent method will be called for adding the component as a
resource to the VewRoot with the corresponding target.

The JSF 2.0 exception handling mechanism

In this recipe we talk about the exception handling mechanism provided by JSF 2.0. You will
see how to map exceptions to error pages in the web . xm1 file, how to use a managed bean
for extracting an exception from the request and build a String from the stack trace, and
how to customize the exception handling with a user-defined exception handler.

How to do it...

We start our recipe with the simplest solution for handling exceptions. It consists in mapping
exception to error pages in the web . xm1 descriptor. For start we add in web.xml an entry
for to define a JSF page as an error page (in our example, we define an error page named
error.xhtml, mapped to the java.lang.NumberFormatException exception):

326

Chapter 11

<error-pages>
<exception-types>java.lang.NumberFormatException</exception-types>

<locations>/faces/error.xhtml</locations>

</error-page>

Now, JSF keeps track of a set of values in the request that provide more details on the error
page. Next you can see one of these values edited in error.xhtml:

User Error:
#{requestScope['javax.servlet.error.message'] }

Now, we can test the previous example by throwing a java.lang.NumberFormatException
from a bean getter method, as shown next (when the error is thrown, the error.xhtml error

page is getting into action):

private String number = "345s";

public String getNumber ()

try {
Integer intnumber = Integer.valueOf (this.number) ;

return String.valueOf (intnumber) ;
} catch (NumberFormatException e) {
throw new java.lang.NumberFormatException (e.getMessage()) ;

}

public void setNumber (String number) {
this.number = number;

Going further, we can write a managed bean for extracting the exception from the request and
building a string from the stack trace. You can see the action that does this job for us next:

private String error = "";

public String getError() {
StringBuilder errorMessage = new StringBuilder () ;
FacesContext facesContext = FacesContext.getCurrentInstance() ;
Map<String, Object> map =
facesContext.getExternalContext () .getRequestMap () ;

327

JSF 2.0 Features

Throwable throwable = (Throwable)
map.get ("javax.servlet.error.exception") ;

if (throwable != null) {
errorMessage.append (throwable.getMessage ()) .append ("\n") ;
for (StackTraceElement element : throwable.getStackTrace())

{
errorMessage.append (element) .append ("\n") ;
}

}

this.error = errorMessage.toString() ;
return this.error;

}

To get the stack trace we use the following code in the error . xhtml page:

System Administrator Error:

<h:outputText value="#{bean.error}"/>

You can go even further and customize the exception handling. Any custom exception handler
should be defined in faces-config.xml, as in the folllowing example:

<factorys>
<exception-handler-factory>
exception.handler.CustomExceptionHandler
</exception-handler-factorys>
</factory>

In the custom exception handler you should override the handle method to describe the
behavior of your application in the case of a particular exception or set of exceptions. The
prototype of this method is:
public void handle() throws FacesException (
..//do your job here
super.handle () ;

}

Basically, in all three cases described previously, the idea is the same. The exceptions are
caught by the system and they are treated according to our desires. We can provide a simple
error page, or we can get much deeper and exploit the exception's stack trace and create
large logs with detailed information for users or for administrators.

328

Chapter 11

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: Exception handling mechanism.

Bookmarking JSF pages with PrettyFaces

In this recipe, we will explore an open source extension for JSF 1.0 and JSF 2.0 that enables
creation of bookmarkable, pretty URLs. Its name is PrettyFaces and it includes some nice
features, such as:

» Page-load actions

» Seamless integration with Faces navigation

» Dynamic view ID assignment

» Managed parameter parsing

» Configuration-free compatibility with other JSF frameworks

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library. In addition, we have used
PrettyFaces, which provides support for JSF 2.0. You can download this distribution from
http://ocpsoft.com/prettyfaces/. The PrettyFaces libraries (including necessary
dependencies) are in the book code bundle, under the /JSF_libs/PrettyFaces - JSF
2.0 folder.

First copy the PrettyFaces libraries into your application /WEB-INF/1ib folder, and second,
add into the web . xm1 descriptor the PrettyFaces filter, as shown next:

<filter>
<filter-name>Pretty Filter</filter-name>
<filter-class>com.ocpsoft.pretty.PrettyFilter</filter-class>
</filter>
<filter-mappings
<filter-name>Pretty Filter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatchers>
<dispatcher>FORWARD</dispatchers>
<dispatcher>ERROR</dispatchers>
</filter-mapping>

Now, you are ready to use PrettyFaces into JSF applications.

329

JSF 2.0 Features

How to do it...

PrettyFaces is able to work around URLs by reading a specific configuration file, named
pretty-config.xml, which is responsible for mapping URLs to Faces Views. Such a
file is listed next (this file is stored in the /WEB-INF folder):

<?xml version="1.0" encoding="UTF-8"?>

<pretty-config
xmlns="http://ocpsoft.com/prettyfaces-xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://ocpsoft.com/prettyfaces-xsd
http://ocpsoft.com/xml/ns/prettyfaces/pretty-1.0.xsd">

<url-mapping id="1">
<pattern> /say hello 1 </patterns>
<view-id>faces/hellol.xhtml</view-id>
</url-mapping>

<url-mapping id="2">
<pattern> /say hello 2 </patterns>
<query-param name="hello" decode="false">
#{bean.hello}
</query-param>
<view-id>faces/hello2.xhtml</view-id>
</url-mapping>

<url-mapping id="3">
<pattern> /say hello 3 </patterns>
<query-param name="hello" decode="false">
#{bean.hello}
</query-params>
<action>#{bean.upperHello}</action>
<view-id>faces/hello2.xhtml</view-id>
</url-mapping>

<url-mapping id="4">
<pattern> /say hello 4 </patterns>
<view-id>#{bean.beanURL}</view-1id>
</url-mapping>

</pretty-configs>

As you can see a pretty-config.xml file is made from a set of <url-mapping>
tags. Each tag maps a URL and is uniquely identified by the id attribute. The body of
<url-mapping> can contain the following elements:

<patterns/../../#{someBean.paramName }</pattern>

330

Chapter 11

The <patterns> tag is required and it specifies which URL will be matched. Any EL
expressions #{ someBean.paramName } found within the pattern will be processed
as value injection. This tag must appear only once per <url-mapping> tag.

<query-param name:"key">#{someBean.queryParamValue}</query—param>

The <query-params> tag is optional and it defines a managed query parameter of the form
http://my.site.com/url?key=somevalue, where if the parameter exists, the value will
be injected into the specified managed bean. The name attribute is required and its value is a
string representing the request value key. This tag also supports an optional attribute, named
decode, which can be true (default) or false and it indicates if this <query-param> will/
will not be URLDecoded. This tag can appear zero or more times per <url-mapping> tag.

JSF commandLink and AJAX <f : params> values are also covered by the
S <query-params> tag.

<view-id>#{someBean.methodName }<view-1id>

The <view-1id> tag specifies the JSF view ID displayed by this mapping. It can be provided
by a bean method (in this case the method must return an object for which the toString
method will return the view Id) or by a String value. This tag must appear only once per
<url-mappings> tag.

The View ID may be any resource located within the current Servlet Context.

<action>#{someBean.methodName}</action>

The <action> tag specifies an action method to be called after URL parameters have been
parsed and assigned into beans. This tag also supports two attributes: the phaseId attribute
is optional and its value is a string indicating that this action should occur immediately after
the specified phase (the default is after RESTORE VIEW phase, but it can be RESTORE VIEW,
APPLY REQUEST VALUES, PROCESS VALIDATIONS, UPDATE MODEL VALUES, INVOKE
APPLICATION, RENDER RESPONSE, Or ANY PHASE).

If the phase does not occur, neither will your action method. If ANY PHASE is
s specified, the action method will fire on EVERY phase.

331

JSF 2.0 Features

The second optional attribute is onPostback, which is a Boolean (default true). Set it to
false if this action method should not occur on form postback.
This tag can appear zero or more times per <url-mapping> tag.

Now, you can see all these elements in the previous pretty-config.xml file. Next, we have
developed a page to show how to call different other pages through Pretty. This page is named
index.xhtml and is listed next:

<h:body>
<!-- example 1 -->
<h:outputLink value="say_hello 1">
<h:outputText value="HELLO (example 1)."/>
</h:outputLink>

<!-- example 2 -->

<h:outputLink value="say_hello 2?hello=Adrian">
<h:outputText value="HELLO (example 2)"/>

</h:outputLink>

<!-- example 3 -->

<h:outputLink value="say_hello 3?hello=Adrian">
<h:outputText value="HELLO (example 3)"/>

</h:outputLink>

<!-- example 4 -->

<h:outputLink value="say_hello 4">
<h:outputText value="HELLO (example 4)"/>

</h:outputLink>

</h:body>

And the bean used in this example is:

package beans;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean

@SessionScoped
public class Bean

332

Chapter 11

private String hello = "";

public Bean() {

public String getHello() {
return hello;

}

public void setHello(String hello) {
this.hello = hello;

}

public void upperHello() {
this.hello = this.hello.toUpperCase() ;

}

public String beanURL() {
return "/faces/hello3.xhtml";

}
}

Now when you try to bookmark a URL managed by PrettyFaces you can see the "pretty" URL is
used instead of the "ugly" one!

PrettyFaces makes use of its own filter to intercept URLs. Once it captures a URL it resolves it
against the pretty-config.xml file by accessing the corresponding <url -mapping> tag.
When we bookmark a page the <patterns> body is bookmarked and the real URL is hidden.

PrettyFaces also provides other facilities such as:

» Using dynamic view ID capabilities

» Using the Managed Query Parameter facility
» Validating URL parameters

» Wiring navigation into JSF action methods

» Parsing complex / dynamic-length URLs

» Accessing PrettyContext through EL

» Rendering HTML links and URLs

» Configuring logging (log4j)

333

JSF 2.0 Features

The code bundled with this book contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: Bookmarking JSF pages with
PrettyFaces

More information about PrettyFaces is available at
http://ocpsoft.com/prettyfaces/docs/.

JSF declarative event handling

Starting with JSF 2.0 the event system has been really improved and the declarative
event handling is exposed through a tag, £ :event, and an annotation, @NamedEvent.
In this recipe, you will see how to work with these two and how to subscribe to events like
preRenderComponent, PostAddToView, and So on.

Getting ready

We developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0 classes
were obtained from the NetBeans JSF 2.0 bundled library.

How to do it...

Starting with the f : event tag, we can say that this is a simple tag that should be fitted in
the right place and configured with its two simple attributes. Speaking of fitting it in the right
place, you should know that f : event can be placed in any component that you want—for
example we putitin an h: inputText component:

<h:inputText value="#{bean.number}">
<f:event type="preRenderComponent"
listener="#{bean.initNumber}" />
</h:inputText>

As you can see there are two attributes of the £ : event tag, named type and 1istener. The
value of the type attribute represents the name of the event for which to install a listener (in
our example, we have used the preRenderComponent value—with other words, before the
component is rendered). In the following table are the possible values, and the corresponding
event type for which the listener action is registered.

Chapter 11

Value for type attribute Type of event sent to listener method
preRenderComponent javax.faces.event.
PreRenderComponentEvent
postAddToView javax.faces.event.PostAddToViewEvent
preValidate javax.faces.event.PreValidateEvent
postvalidate javax.faces.event.PostValidateEvent

The listener attribute's value represents a MethodExpression pointing to a method that
will be called when the listener's processEvent method would have been called.

In our example, that method is named initNumber and it can be seen in the following
managed bean:

package beans;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class Bean {

private String number = "";

public Bean() {

}

public String getNumber () {
return number;

public void setNumber (String number) {
this.number = number;

public void initNumber () {
setNumber ("2010") ;

335

JSF 2.0 Features

While £ : event works only with predefined events, the @NamedEvent provides support for
exposing custom events. The application developer can make a custom event available to the
page authors using the @NamedEvent annotation. This annotation can be placed on custom
events to register them with the runtime, making them available to £ : event. When the
application starts, JSF scans for a set of annotations, including @NamedEvent. If it is
found on a class, the following logic is applied to get the name/names for the event:

1. Getthe unqualified class name

2. Cut off the trailing "Event", if present
3. Convert the first character to lower-case
4

Prepend the package name to the lower-cased name

The preceding four rules are ignored if the shortName attribute
s is specified. In this case JSF registers the event by that name.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: JSF_declarative event handling.

URLs based on specified navigation

outcome

One of the most requested features in JSF 2.0 was a nice and smooth mechanism for
achieving bookmarkability of JSF pages. As you will see in this recipe, this mechanism
is finally provided by JSF 2.0 and is a very robust and easy-to-use solution.

In this chapter, you have already seen a recipe about JSF bookmarkability, but
remember that we talked about a solution based on a JSF extension, while
’ now we are talking about a JSF core solution.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

336

Chapter 11

How to do it...

Now, let's get into the subject, and let's say that the JSF 2.0 bookmarkability mechanism is
based on two new tags, named h:1link and h:button. These tags will generate a URL
based on the specified navigation outcome.

In JSF 2.0, we can make use of implicit navigation, therefore the outcome
s can be defined in the view or using common navigation rules.

OK, enough theory, let's see an example:

<h:1ink outcome="page2" value="HelloToYou'">
<f:param name="helloparam" value="#{bean.hello}"/>
</h:1ink>

In the previous example, we assume no navigation rule, therefore the outcome attribute
indicates a navigation to page2 .xhtml (the FacesServlet is mapped to * .xhtml). The
value attribute indicates text that will be rendered as a link in the page. The £ : param will
add a query parameter to the generated URL. The result of this component will be:

http://localhost:8080/ URLs based on specified navigation outcome/
faces/page2.xhtml?helloparam=Adrian

The Adrian value comes from a simple managed bean:
package beans;

import javax.enterprise.context.RequestScoped;
import javax.faces.bean.ManagedBean;

@ManagedBean
@RequestScoped
public class Bean

private String hello = "Adrian";

public Bean() {

}

public String getHello() {
return hello;
}

public void setHello(String hello) {
this.hello = hello;
}

337

JSF 2.0 Features

You can bookmark this page at any moment and conserve the URL. The h:button works in
the same manner except that it renders a button instead of a link.

Before the user uses the component—clicks on the hyperlink—the current view ID and the
specified outcome are used to find the target view ID. Afterwards, it is translated into a
bookmarkable URL and used as the hyperlink's target. Note that this is true even if the
user never activates the component.

The target view ID is placed in the attribute named outcome on the new bookmarkable
component tags, h: 1ink or/and h:button (those components inherit from a component
class named UIOutcomeTarget). Notice that you are not targeting a view ID directly, but
rather a navigation outcome, which may be interpreted as a view ID if the matching falls
through to implicit navigation.

We consider that this is a good place and time to point out some methods of creating the
query string parameters, therefore we present them in the order that they are processed:
1. Implicit query string parameter
2. View parameter (the <f :metadatas> of the target view ID)
3. Nested <f :params> in UIOutcomeTarget (such as, <h:1ink>)
4

Nested <view-params> in the navigation case <redirect> elementin faces-
config.xml

The code bundled with this book, contains a complete example of this recipe. The project
can be opened with NetBeans 6.8 and it is named: URLs _based on_specified
navigation outcome.

JSF view parameters

Starting with JSF 2.0, a new set of parameters is available. This set is named view
parameters. These parameters are specified as metadata to the page and can be
included in the generated URLs as you will see in this recipe.

Getting ready

We have developed this recipe with NetBeans 6.8, JSF 2.0, and GlassFish v3. The JSF 2.0
classes were obtained from the NetBeans JSF 2.0 bundled library.

338

Chapter 11

How to do it...

The official APl documentation describes a view parameter as an entity represented by the
javax.faces.component .UIViewParameter component class that acts as a declarative
binding (using an EL value expression) between a request parameter and a model property.

A view parameter is commonly specified in the £ :metdata tag using the f : viewParam

tag (we say that the parameters are specified as metadata to the page), as in the following
example (notice that this parameter is defined in page2 . xhtml—we will navigate to this page
from pagel.xhtml):

<f:metadatas>
<f:viewParam id="id" name="viewParam" value="#{bean.bye}"/>
</f:metadatas>

Now, we will "exploit" this view parameter from a h: 1ink hyperlink. This hyperlink is defined in
pagel.xhtml like this:

<h:1ink includeViewParams="true" outcome="page2.xhtml"
value="HelloToYouByeToHer" >
<f:param name="helloparam" value="#{bean.hello}"/>
</h:1ink>

Notice that we have set the includeViewParams attribute to true on h:1ink (this is true
for h:button also). This will have a great effect because the UIViewParameters will be a
part of the generated URL. You also may use the include-view-params attribute on the
redirect element of a navigation case set to true to obtain the same effect.

The result of this component is listed next—even if you never activate the component. Note
that this URL can be bookmarked from the first moment: http://localhost:8080/JSF
view parameters/faces/page2.xhtml?helloparam=Adrian&viewParam=Mary.

The bean responsible for the values of helloparamand viewParam is:

package beans;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class Bean

339

JSF 2.0 Features

private String hello = "Adrian";
private String bye = "Mary";

public Bean() {

}

public String getBye() {
return bye;

public void setBye(String bye) {
this.bye = bye;

public String getHello() {
return hello;

public void setHello(String hello) {
this.hello = hello;

Keep in mind that the view parameters that are included in the generated
i URL will be those of the view being navigated to.

Now, going deeper into the view parameters world, we notice that JSF 2.0 process the view
parameters using the standard post-back processing lifecycle, which allows us to attach
converters and validators to them. For example, we indicate that our view parameter is
required as shown next:

<f:metadatas>
<f:viewParam id="1id" name="viewParam" value="#{bean.bye}"

required="true" requiredMessage="This parameter is a must!"/>
</f:metadata>

340

Chapter 11

Or here is a more complex example, with a validator attached:

<f:metadatas>
<f:viewParam id="1id" name="id" value="#{bean.property}"
required="true" requiredMessage=".." converterMessage=".."
validatorMessage="..">
<f:validatelLongRange minimum="1"/>
</f:viewParam>
</f:metadatas>

Usage of £ :metadata can be extended to Facelets templating features and
view events, and is not specific only to view parameters. There's a lot more to
g view parameters than what was shown before.

We can't say that the previous examples are self-explanatory, but we also can't explain here
the secrets behind the scenes because we would then have a very large section. Anyway,
what we can do is to make you aware that the view parameters provide information about how
request parameters should be handled when a view is requested or linked to, which means
that the view parameters are not rendered themselves. So, we say that they are part of the
view's meta-model and described using metadata, £ :metadata.

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and it is named: JSF_view parameters.

JSF 2 and navigation cases

A great feature of JSF 2.0 is focused on the navigation mechanism. Until JSF 2.0 the
navigation cases mapped into faces-config.xml were fixed and once the application
was deployed this file could not be altered, therefore its content was not flexible. That

is no longer the case in JSF 2.0, because a new navigation handler interface, named
ConfigurableNavigationhandler, has been introduced. It allows us to query and make
live modifications to the registered NavigationCase objects. This is the subject of our last
recipe in this chapter.

341

JSF 2.0 Features

How to do it...

At JSF startup the navigation cases are extracted from the descriptor and registered with the
ConfigurableNavigationHandler (of course, they are also put into NavigationCase

objects). ANavigationCase object can be retrieved by the action expression signature and
logical outcome under which it is registered:

NavigationCase navigationCase =
navigationHandler.getNavigationCase (facesContext, "#{m}", ")

In addition, you can retrieve the complete navigation set as a Map<String,
Set<NavigationCases>>. The keys are the <from-view-id> tag values (notice that you
can use the extracted map to register your own navigation cases dynamically—once you can
control a NavigationCase you can dynamically control flow):

Map<String, Set<NavigationCase>> ns =
navigationHandler.getNavigationCases () ;

To obtain a ConfigurableNavigationHandler object you need to apply a cast conversion
as shown:

ConfigurableNavigationHandler configurableNavigationHandler =
(ConfigurableNavigationHandler) FacesContext.
getCurrentInstance () .getApplication () .getNavigationHandler () ;

In principle, the new JSF 2.0 API allows us to have complete control over navigation cases.
This feature allows us to dynamically control the application flow and once you get an instance
of ConfigurableNavigationHandler you can define the navigation model or use it to
generate bookmarkable URLs.

342

12

Mixing JSF with
Other Technologies

In this chapter, we will cover:

» Configuring Seam with JSF

» An overview of Seam JSF controls
» Mixing JSF and JSTL

» Integrating JSF and Hibernate

» Integrating JSF and Spring

» Mixing JSF and EJB (JPA)

Introduction

In the previous eleven chapters, you saw how to use JSF 2.0 (and technologies built over JSF)
to accomplish a wide range of tasks regarding JSF web applications. In this final chapter,

we provide a few hints about mixing JSF with other technologies, such as Seam, Hibernate,
Spring, JSTL, EJB, and JPA.

Mixing JSF with Other Technologies

Configuring Seam with JSF

The official JBoss Seam home page describes Seam as follows:

Seam is a powerful open source development platform for building rich Internet
applications in Java. Seam integrates technologies such as Asynchronous
JavaScript and XML (AJAX), JavaServer Faces (JSF), Java Persistence (JPA),
Enterprise Java Beans (EJB 3.0) and Business Process Management (BPM)

into a unified full-stack solution, complete with sophisticated tooling.

As you can see, JBoss Seam provides support for JSF (1.2 and 2.0), and in this recipe you will
see what are the main configurations that should be accomplished for integrating these two
powerful technologies.

Getting ready

The JBoss Seam distribution can be downloaded from http://seamframework.org/.

How to do it...

Supposing that you already have the JBoss Seam and JSF libraries, then you can integrate
Seam with JSF and your servlet container by adding a few entries to the web .xml and
faces-config.xml descriptors. It should be done as shown:

1. Add a listener that is responsible for bootstrapping Seam, and for destroying session
and application contexts. This can be added as:

<listeners>
<listener-class>org.jboss.seam.servlet.SeamListener
</listener-class>

</listeners>

2. You need a JSF PhaseListener registered in the faces-config.xml file:

<lifecycle>
<phase-listeners>
org.jboss.seam.jsf.SeamPhaselListener
</phase-listeners>
</lifecycle>

Chapter 12

3. |If you are using JSF 1.2 then you should also add this to
faces-config.xml:

<applications>
<el-resolver>org.jboss.seam.jsf.SeamELResolver</el-resolvers
</application>

Some JSF implementations have a broken implementation of server-side state
saving that interferes with Seam's conversation propagation. You can fix this
by adding the following parameter to web . xm1:

% <context-params>
S

<param-name>javax.faces.STATE SAVING METHOD</param-
name>

<param-value>client</param-value>
</context-param>

The previous configurations provide the minimum support required for integrating JSF and
Seam. Depending on your application's complexity you may need more configurations.

Configuring Seam Resource Serviet

Seam Resource Servlet provides resources used by Seam Remoting, captchas, and some JSF
Ul controls. The following web . xm1 entry configures this servlet:

<servlet>
<gservlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>
org.jboss.seam.servlet.ResourceServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-names>
<url-pattern>/seam/resource/*</url-patterns
</servlet-mapping>

345

Mixing JSF with Other Technologies

Configuring Seam servlet filters

Seam lets you add and configure servlet filters exactly as you would configure other built-in
Seam components. For this you must first install a master filter in web . xm1:

<filters>
<filter-name>Seam Filter</filter-names>
<filter-class>org.jboss.seam.web.SeamFilter</filter-class>

</filter>

<filter-mappings>
<filter-name>Seam Filter</filter-names>
<url-patterns>/*</url-pattern>
</filter-mapping>

Multipart form submissions

The following entry detects multipart form requests and processes them according to the
multipart/form-data specification (RFC-2388). To override the default settings, add the
following entry to components.xml:

<web:multipart-filter create-temp-files="true"
max-request-size="1000000"
url-pattern="*.seam"/>

» create-temp-files:Ifthisissetto true, uploaded files are written to a
temporary file (instead of being held in memory). The default is false.

» max-request-size:indicates the maximum size of the file upload. The default
setting is O (no size limit).
» url-pattern: used to specify which requests are filtered; the default is all requests.

Setting the character encoding

Setting the character encoding of submitted form data can be accomplished by adding the
following entry to the component . xml descriptor:

<web:character-encoding-filter encoding="UTF-16"
override-client="true"
url-pattern="*.seam"/>

346

Chapter 12

» encoding: The encoding to use.

» override-client: If thisis setto true, the request encoding will be set to
whatever is specified by encoding no matter whether the request already specifies
an encoding or not. If it is set to false, the request encoding will only be set if the
request does not already specify an encoding. By default it is false.

» url-pattern: Used to specify which requests are filtered; the default is all requests.

Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It
intercepts any browser redirects and adds a request parameter that specifies the Seam
conversation identifier. The behavior of this filter is adjusted in components .xml:

<web:redirect-filter url-pattern="*.geam"/>

url-pattern: Used to specify which requests are filtered; the default is all requests.

Exception handling

By default, the exception handling filter will process all requests; however, this behavior may
be adjusted by adding a <web:exception-filters> entry to components.xml, as shown:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:web="http://jboss.com/products/seam/web"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/core

http
http
http
http
http

://jboss.
://jboss.
://jboss.
://jboss.
://jboss.

com/products/seam/core-1.2.xsd
com/products/seam/components
com/products/seam/components-1.2.xsd
com/products/seam/web
com/products/seam/web-1.2.xsd">

<web:exception-filter url-pattern="*.geam"/>

</components>

url-pattern: Used to specify which requests are filtered; the default is all requests.

347

Mixing JSF with Other Technologies

See also

More details about configuring Seam and JSF can be found at:

http://docs.jboss.org/seam/1.2.1.GA/reference/en/html/

An overview of Seam JSF controls

In this recipe, you will see a short overview of a set of Seam controls that are intended to
complement the built-in JSF controls, and controls from other third-party libraries.

Getting ready

To use these controls you need to define the s namespace in your page as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib" >

[For JSP pages, modify it accordingly.]

How to do it...

Keep in mind that we are presenting only a few Seam JSF controls, but just enough to make
you curious to explore here:

http://docs.jboss.org/seam/1.2.1.GA/reference/en/html/controls.html

Control Description

<s:validate> A non-visual control, which validates a JSF input field
against the bound property using Hibernate Validator.

<s:convertEnum> Assigns an enum converter to the current component.
This is primarily useful for radio button and dropdown
controls.

<s:selectItems> Creates a List<SelectItems> froma List, Set,

DataModel or Array.

<s:cache> Caches the rendered page fragment using JBoss
Cache. Note that <s : cache> actually uses the
instance of JBoss Cache managed by the built-in
pojoCache component.

<s:conversationPropagation> Customizes the conversation propagation for a
command link or button (or similar JSF control).
Facelets only.

348

Chapter 12

More details and the complete list of Seam controls for JSF are at:

http://docs.jboss.org/seam/1.2.1.GA/reference/en/html/controls.html

Mixing JSF and JSTL

As you probably know, JSTL stands for JavaServer Pages Standard Tag Library and it:

Encapsulates as simple tags the core functionality common to many Web
applications. JSTL has support for common, structural tasks such as iteration and
conditionals, tags for manipulating XML documents, internationalization tags, and
SQL tags. It also provides a framework for integrating existing custom tags with
JSTL tags.

In this recipe, you will see how to mix JSF and JSTL to accomplish a common task, displaying
an ArrayList.

Getting ready

JSTL libraries can be downloaded from http://java.sun.com/products/jsp/jstl/
and they should be placed in the /WEB-INF/1ib folder of your application, next to the JSF
libraries. Notice that NetBeans already comes with a library that contains a JSTL distribution.

How to do it...

We can integrate JSTL into JSF by following these steps:

1. We develop a simple managed bean that contains our ArrayList (this ArrayList
is named cars and it will be further rendered with pure JSF and with JSF and JSTL):

package beans;

import java.util.ArrayList;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
@ManagedBean (name="bean")
@SessionScoped

public class Bean ({

private ArraylList cars = new ArrayList();

349

Mixing JSF with Other Technologies

public Bean() {

cars.add ("Clio") ;
cars.add ("Sandero") ;
cars.add ("Fiat") ;
cars.add ("Citroen") ;

public ArraylList getCars() {
return cars;

public void setCars (ArrayList cars)

this.cars = cars;

}

2. The JSF code to render the cars ArrayList is:

<h:outputText value="Available cars:" />
<h:dataTable value="#{bean.cars}" var="car">
<h:column>
<h:outputText value="#{car}" />
</h:column>
</h:dataTable>

3. Now is the interesting part, where we mix JSF and JSTL. We add JSTL tag library,
as shown next:

xmlns:c=http://java.sun.com/jsp/jstl/core

_ We develop an XHTML page, but if you are more interested in a
% JSP page then use this form:
e <%@taglib prefix="c¢" uri="http://java.sun.com/
jsp/jstl/core"%>

4. Use JSTL c:forEach and c: set tags mixed with JSF h: outputText to render
the same collection (which is a collection provided by a JSF managed bean), as
shown next:

<table>
<h:outputText value="Available cars:" />
<c:forEach items="${bean.cars}" var="car"s
<tr>
<td>

350

Chapter 12

<c:set var="jstlcar" value="${car}"/>
<h:outputText value="#{jstlcar}" />
</td>
</tr>
</c:forEachs>
</table>

Notice how JSTL accesses the JSF managed bean, and JSF accesses the JSTL variables.

It is obvious that JSF and JSTL code can appear on the same page, as long as they are
tag-based technologies. In addition, they can interact (access, modify, and so on) over
common resources, like bundles, session managed beans, POJOs, and so on and they
can influence each other in the application flow.

Since both JSF and JSTL provide tags for rendering collections we can choose one of them
independent of the other one (many situations are reduced to this—another example is the
loading of a resource bundle, which can be accomplish using pure JSF, pure JSTL, or mixing
them). But, there are cases where the coexistence of JSTL and JSF can help us solve different
tasks, like conditional navigation (JSTL can decide JSF navigation).

As a final conclusion on which technology to use, we can say that this really depends on your
situation. If you're developing a new application then a complete JSF solution will definitely be
cleaner, but if you're refactoring an existing JSTL application, the JSTL-JSF mix will be faster.
Anyway, if you are using JSF then it is best to use JSF for everything it can do unless there is a
compelling reason to do otherwise.

See also

The code bundled with this book contains a complete example of this recipe. The project can
be opened with NetBeans 6.8 and is named: Mixing JSF_and JSTL.

Integrating JSF and Hibernate

As you probably know, Hibernate is one of the most powerful Java-based ORMs in the market.
Since JSF doesn't provide support for manipulating databases (it acts in the presentation tier),
it is normal to think of a solution to accomplish this job in a JSF web application (this is

the Integration tier)—and this solution may be Hibernate. In this recipe we will discuss

this approach.

351

Mixing JSF with Other Technologies

Getting ready

The latest Hibernate distribution is available at https://www.hibernate.org/. If you are
using NetBeans, then a Hibernate library is available in the default libraries.

How to do it...

Normally, JSF can call Hibernate classes (objects mapped to tables) from managed beans
exactly like any other classes. In other words JSF will not be aware that Hibernate is behind
the scene, since no configuration is required, no injection or annotations, just the right
imports. We can instantiate a Hibernate class (usually a fooHome class) and we can call its
methods (usually, methods like persist, delete, merge, £indByExample, and so on) just
as we call a non-Hibernate Java class. So, as you can see, there is no magic, no hidden tips,
just pure and simple programming. But, is this a good programming technique?

Since we want to integrate Hibernate classes right in the managed beans, it means that a
part of our business logic will reside in managed beans, which is not a good technique, since
managed beans are dedicated to managing the Ul components of JSF pages. A more realistic
solution would be to provide a business logic tier, as EJB for example, between Presentation
tier and Integration tier. In this approach, JSF managed beans will inject EJB, which will make
use of Hibernate's power.

Well, as we said it works, it but is not recommended! Therefore, a direct integration of JSF and
Hibernate is not recommended since it is a bad programming technique which is compresses
the Business logic tier with the presentation tier.

Integrating JSF and Spring

Reducing Spring to a simple definition, we may say that it is a framework based on inversion
of control (loC is an abstract notion describing the possibility of inversion of the flow of control
in comparison to procedural programming), which does not impose any specific programming
model and it has become popular in the Java community as an alternative to or addition to the
EJB model. In this recipe you will see how to integrate Spring with JSF.

Getting ready

Spring libraries are available at http://www.springsource.org/ and NetBeans 6.8 also
comes with Spring 2.5 libraries. Installation and configuration details are beyond our scope,
and they can be found at the same address.

352

Chapter 12

How to do it...

Well, before mixing JSF and Spring, we should say that, from the Spring perspective, beans
(also known as Spring beans) are just simple Java classes. Behind the scenes Spring beans
can be declared in XML descriptors and they are exposed to client applications and managed
by loC, which means that Spring beans relationships are not manually woven. An example of a
Spring bean can be seen as follows:

<bean id="carBean" class="com.spring.beans.Car"s>

<property name = "color"s>
<valuesred</value>
</property>
</bean>

The preceding code snippet defines Spring beans of type Car, identified by carBean id, with
a color property initialized with text red.

Now, keeping in mind this stuff, let's turn to JSF. Just to have a complete image, we should
say that JSF has a correspondent of Spring beans, which are managed beans or backing
beans. They are associated with Ul components and they are responsible for accomplishing a
web application's actions. The following code is trivial to every JSF developer, but here it is a
managed bean declared in a faces-config.xml descriptor:

<managed-beans>
<managed-bean-name>paymentBean</managed-bean-name>
<managed-bean-class>
com. jsf.beans.PaymentBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Now, we know that Spring uses Spring beans and JSF uses managed beans. What we may
not know is that Spring provides support in such a way that a Spring bean is made visible to
the JSF environment, as in the following example, where we have used the Spring carBean
in JSF:

<managed-beans>
<managed-bean-name>carBean</managed-bean-name>
<managed-bean-class>
com.spring.beans.Car
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

Now, we have access to a Spring Bean from JSF, therefore we may say that we have mixed
Spring and JSF.

353

Mixing JSF with Other Technologies

The key is the fact that the Spring bean configured in the XML files can be directly referenced
inthe faces-config.xml file as if it was a JSF managed Bean. Therefore it is a good
technique to use Spring and JSF together for our web application.

There's more...

In the Spring community there is a project named Spring Web Flow. This project focuses on
providing the infrastructure required for building and running rich web applications and also
provides support for JSF. For more details check: http://www.springsource.org/.

Mixing JSF and EJB (JPA)

Before mixing JSF and EJB (JPA based) let's have a brief description of these two notions:

» Enterprise JavaBeans (EJB): is the server-side component architecture for Java
Platform, Enterprise Edition (Java EE). EJB technology enables rapid and simplified
development of distributed, transactional, secure, and portable applications based
on Java technology.

» Java Persistence API (JPA): is a Java programming language framework that allows
developers to manage relational data in applications using Java Platform, Standard
Edition and Java Platform, Enterprise Edition.

Now, JSF, EJB, and JPA can be mixed to provide a powerful web application. Let's see how to
accomplish this!

Getting ready

For testing this solution we have used (and recommend) GlassFish v3, as an application
server, and NetBeans 6.8 as an IDE (you will see in There's more section, why we prefer
NetBeans version 6.8).

Chapter 12

How to do it...

We jump right into example, and we consider the following JSF view fragment (a simple
login form):

<h:form>
<h:outputLabel value="Name:"/>
<h:inputText value="#{bean.name}"/>
<h:outputLabel value="Password:"/>
<h:inputText value="#{bean.password}"/>
<h:commandButton action="#{bean.login}" value="Login"/>
</h:form>

Now, the managed bean that is behind our form is defined as follows:

@ManagedBean (name="bean")
@RequestScoped

public class Bean
@EJB LoginService loginService;
private String name;
private String password;

//place here getter and setter for 'nmame' and 'password'
properties

public String login() {
String loginSuccess = this.loginService.loginUser
(username, userpassword) ;
return //return a corresponding message depending on
loginSuccess

}

So far you saw the JSF part of our application, and we have injected a stateless session
bean in our managed bean. The next step is to write our entity bean that maps name and
password to a database:

@Entity
@Table (name = "userstable")

public class Users implements Serializable {
private static final long serialVersionUID = 1Lj;

355

Mixing JSF with Other Technologies

@Id

@GeneratedValue (strategy = GenerationType.AUTO)
private String username;

private String userpassword;

//getter and setter methods for 'username' and 'userpassword'

properties

}

Next we build the stateless session bean, LoginService, which makes use of JPA to access
the database and implement login business logic:

@Stateless
@LocalBean
public class MapycAccountsBean

@PersistenceContext (unitName = "mapyc-ejbPU")
private EntityManager em;

public String loginUser (String username, String userpassword) {
//use 'em' to query and login user
//return a message code depending on login success

}

Donel!

The key to it is that the JSF managed bean supports session bean injection. Be careful
to avoid injecting stateful session beans in "stateless" managed beans, for example in a
managed bean placed on request scope.

You can use JSF 2.0 without EJBs, but then you will have to manage the persistence and
transactions manually. When you don't want to deal with this task, it is recommended to
use EJB or something similar.

356

Chapter 12

There's more...

Starting with NetBeans 6.8 we can generate a JSF 2.0 application from an existing database
using EJB 3.1 and JPA 2. You can apply the wizard to a Java EE 6 project and deploy it to
Glassfish v3. Here are the steps:

1.
2.
3.

6.

Create a new web application and choose Glassfish v3, Java EE 6.
Add JSF 2 as a framework.

Right mouse click on the WAR and choose: Entity Classes From Database..... Select
an existing DataSource, then a Table.

Press the Create Persistence Unit button to obtain a JPA entity and a
persistence.xml file.

Right mouse click on the WAR and choose: JSF Pages from Entity Classes... and
choose the generated JPA entity.

Customize the templates (just click on the link in the right bottom corner).

The generated code can be customized later to satisfy you project's needs.

357

Configuring
JSF-related
Technologies

Over the chapters of this book, we have developed many recipes involving JSF and other
technologies related to JSF. Usually, when a JSF-related technology gets into the equation, you
need to add some specific configurations, you have to create a “bridge" between JSF and the
technology used. This appendix contains the configurations for a few technologies.

Apache MyFaces Trinidad (supports JSF 2.0)

Namespaces: http://myfaces.apache.org/trinidad (prefix: tr)
http://myfaces.apache.org/trinidad/html (prefix: trh)

A JSF web . xml file configured for Apache MyFaces Trinidad may look like this (the bolded
code is specific to Apache MyFaces Trinidad):

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<!-- setting the project stage to be DEVELOPMENT -->
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-names>
<param-value>Development</param-value>
</context-param>

Configuring JSF-Related Technologies

<context-param>
<param-name>Jjavax.faces.DEFAULT SUFFIX</param-name>
<param-values>.jsp</param-value>

</context-param>

<!-- Temporary internal flag to set to enabled and test Optimized

PPR -->

<context-param>

<param-name>
org.apache.myfaces.trinidadinternal.ENABLE PPR OPTIMIZATION

</param-name>
<param-value>false</param-value>

</context-param>

<!-- In Trinidad, we use an optimized, token-based mechanism if
either

1] javax.faces.STATE SAVING METHOD = server

2] javax.faces.STATE SAVING METHOD client and

org.apache.myfaces.trinidad.CLIENT STATE METHOD = token
-->

<context-param>
<param-name>javax.faces.STATE SAVING METHOD</param-name>
<param-value>client</param-value>
<!--param-value>server</param-value-->

</context-param>

<!-- Temporarily disable partial state saving default until

we make it work with Trinidad -->

<context-param>
<param-name>javax.faces.PARTIAL STATE SAVING</param-name>
<param-value>false</param-value>

</context-param>

<!-- Trinidad by default uses an optimized client-side state
saving mechanism. To disable that, uncomment the following -->
<!l--context-param>

<param-name>org.apache.myfaces.trinidad.CLIENT STATE METHOD
</param-name>
<param-value>all</param-value>
</context-param-->
<!-- Trinidad also supports an optimized strategy for caching some
view state at an application level, which significantly improves
scalability. However, it makes it harder to develop (updates to
pages will not be noticed until the server is restarted), and in
some rare cases cannot be used for some pages (see Trinidad
documentation for more information) -->
<context-param>

360

Download from Wow! eBook <www.wowebook.com>

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

Appendix

<param-name>
org.apache.myfaces.trinidad.USE APPLICATION VIEW CACHE
</param-name>
<param-value>false</param-value>
</context-param>
<context-param>

<param-name>org.apache.myfaces.trinidad.CACHE VIEW ROOT
</param-name>

<param-value>true</param-value>
</context-param>
<!-- If this parameter is enabled, Trinidad will automatically
check the modification date of your JSPs, and discard saved
state when they change; this makes development easier,
but adds overhead that should be avoided when your application
is deployed -->
<context-param>
<param-name>
org.apache.myfaces.trinidad.CHECK FILE MODIFICATION
</param-name>
<param-value>false</param-value>
</context-param>
<!-- Enables Change Persistence at a session scope. By default,
Change Persistence is entirely disabled. The ChangeManager is
an API, which can persist component modifications (like,
is a showDetail or tree expanded or collapsed). For providing
a custom Change Persistence implementation inherit from the
Trinidad API's ChangeManager class. As the value you have
to use the fullqualified class name. -->
<context-param>

<param-name>org.apache.myfaces.trinidad.CHANGE PERSISTENCE
</param-name>

<param-value>session</param-value>
</context-param>
<context-param>

<param-name>org.apache.myfaces.trinidad.resource.DEBUG
</param-name>

<param-value>false</param-value>
</context-param>
<context-param>

<param-name>org.apache.myfaces.trinidad.DEBUG JAVASCRIPT
</param-name>

<param-value>true</param-value>
</context-param>
<filter>
<filter-name>trinidad</filter-name>

361

Configuring JSF-Related Technologies

<filter-class>
org.apache.myfaces.trinidad.webapp.TrinidadFilter
</filter-class>
</filter>
<filter-mapping>
<filter-name>trinidad</filter-name>
<servlet-name>faces</servlet-name>
</filter-mapping>

<servlets>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<!-- resource loader servlet -->

<servlet>
<servlet-name>resources</servlet-name>
<servlet-class>

org.apache.myfaces.trinidad.webapp.ResourceServlet

</servlet-class>

</servlet>

<servlet-mapping>
<servlet-names>Faces Servlet</servlet-names>
<url-pattern>/faces/*</url-patterns>

</servlet-mapping>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>

</servlet-mapping>

<session-configs
<session-timeouts>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/index.jsp</welcome-files>
</welcome-file-list>
</web-app>

362

Appendix

A JSF faces-config.xml configured for Apache MyFaces Trinidad may look like this (the
bolded code is specific to Apache MyFaces Trindidad):

<applications>
<!-- Use the Trinidad RenderKit --»>
<default-render-kit-idsorg.apache.myfaces.trinidad.core</default-
render-kit-id>
<locale-config>
<default-locales>en</default-locale>
<supported-locale>ar</supported-locale>
<supported-locale>ca</supported-locale>
<supported-locale>cs</supported-locales>
<supported-locale>da</supported-locale>
<supported-locale>de</supported-locale>
<supported-locale>el</supported-locale>
<supported-locale>es</supported-locale>
<supported-locale>es ES</supported-locales>
<supported-locale>fi</supported-locale>
<supported-locale>fr</supported-locale>
<supported-locale>fr CA</supported-locales>
<supported-locale>hr</supported-locale>
<supported-locale>hu</supported-locale>
<supported-locale>is</supported-locale>
<supported-locale>it</supported-locale>
<supported-locale>iw</supported-locale>
<supported-locale>ja</supported-locale>
<supported-locale>ko</supported-locale>
<supported-locale>nl</supported-locale>
<supported-locale>no</supported-locale>
<supported-locale>pl</supported-locale>
<supported-locale>pt</supported-locale>
<supported-locale>pt BR</supported-locales>
<supported-locale>ro</supported-locale>
<supported-locale>ru</supported-locale>
<supported-locale>sk</supported-locale>
<supported-locale>sv</supported-locale>
<supported-locale>th</supported-locale>
<supported-locale>tr</supported-locale>
<supported-locale>zh CN</supported-locales>
<supported-locale>zh TW</supported-locales>
</locale-configs>
</application>

363

Configuring JSF-Related Technologies
Additionally, you need trinidad-config.xml, like this:

<?xml version="1.0" encoding="UTF-8"?>

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
<debug-output >true</debug-output>
<accessibility-mode>default</accessibility-mode>
<skin-family>simple</skin-family>

</trinidad-config>

RichFaces (supports JSF 2.0)

Namespaces: http://richfaces.org/a4j (prefix: a4j)
http://richfaces.org/rich (prefix: rich)

A JSF web . xm1 file configured for RichFaces may look like this (the bolded code is specific to
RichFaces):

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-names>
<param-value>Development</param-values>
</context-param>
<context-param>
<param-name>org.richfaces.SKIN</param-name>
<param-value>blueSky</param-value>
</context-param>
<context-param>
<param-name>org.richfaces.CONTROL SKINNING</param-name>
<param-value>enable</param-value>
</context-param>
<context-param>
<param-name>javax.faces.STATE_SAVING METHOD</param-names>
<param-value>server</param-value>
</context-param>
<context-param>
<param-name>com.sun. faces.validateXml</param-name>
<param-value>false</param-value>
</context-param>
<filter>
<display-name>RichFaces Filter</display-name>
<filter-name>richfaces</filter-name>

364

Appendix

<filter-class>org.ajax4jsf.Filter</filter-class>
</filter>
<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
</filter-mapping>
<servlets>
<servlet-names>Faces Servlet</servlet-names>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-names>Faces Servlet</servlet-names>
<url-pattern>/faces/*</url-patterns>
</servlet-mapping>
<session-configs
<session-timeouts>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/index.jsp</welcome-files>
</welcome-file-list>
</web-app>

Apache MyFaces Tomahawk (supports

JSF 1.2)

Namespaces: http://myfaces.apache.org/tomahawk (prefix: t)

A JSF web . xml file configured for Apache MyFaces Tomahawk may look like this (the bolded
code is specific to Apache MyFaces Tomahawk):

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<filter>
<filter-name>MyFacesExtensionsFilter</filter-name>
<filter-class>

365

Configuring JSF-Related Technologies

org.apache.myfaces.webapp.filter.ExtensionsFilter
</filter-class>
<init-param>
<param-name>uploadMaxFileSize</param-name>
<param-value>20m</param-value>
</init-param>
<init-param>
<param-name>uploadThresholdSize</param-name>
<param-value>100k</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>MyFacesExtensionsFilter</filter-name>
<servlet-name>Faces Servlet</servlet-name>
</filter-mapping>
<filter-mapping>
<filter-name>MyFacesExtensionsFilter</filter-name>
<url-pattern>/faces/myFacesExtensionResource/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>MyFacesExtensionsFilter</filter-name>
<url-pattern>*.jsf</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>MyFacesExtensionsFilter</filter-name>
<url-pattern>/faces/*</url-pattern>
</filter-mapping>
<servlets>
<servlet-names>Faces Servlet</servlet-names>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>l</load-on-startup>
</servlet>
<servlet-mapping>
<gservlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-patterns>
</servlet-mapping>
<session-configs
<session-timeouts>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/uploadFile.jsp</welcome-file>
</welcome-file-lists>
</web-app>

366

Appendix

Apache MyFaces Tomahawk Sandbox

(supports JSF 1.2)

Namespaces: http://myfaces.apache.org/sandbox (prefix: s)

A JSF web . xml file configured for Apache MyFaces Tomahawk Sandbox is the same as the
one for Apache MyFaces Tomahawk.

Apache MyFaces Commons Validators
(supports JSF 2.0)

Namespaces: http://myfaces.apache.org/commons/validators (prefix: mvce)

A JSF web . xml file does not contain special configurations for Apache MyFaces
Commons Validators.

Prime Faces (supports JSF 2.0)

Namespaces: http://primefaces.prime.com.tr/ui (prefix: p)

In any JSF page that uses PrimeFaces, you should place in the <head> section the following
tag. This tag loads PrimeFaces resources:

<p:resources />

A JSF web . xml file configured for PrimeFaces look like this (the bolded code is specific to
PrimeFaces):

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 3 0.xsd">
<context-param>
<param-name>javax.faces.PROJECT STAGE</param-names>
<param-value>Development</param-values>
</context-param>
<context-param>
<param-name>javax.faces.STATE_SAVING METHOD</param-names>
<param-value>server</param-value>
</context-param>
<context-param>
<description>

367

Configuring JSF-Related Technologies

Parameter required by PrimeFaces 2.0 and Mojarra 2.0
</description>
<param-name>com. sun. faces.allowTextChildren</param-name>
<param-value>true</param-value>

</context-param>

<servlet>
<description>This servlet injects PrimeFaces 2.0</description>
<servlet-name>Resource Servlet</servlet-name>

<servlet-class>org.primefaces.resource.ResourceServlet</servlet-
class>

<load-on-startup>2</load-on-startup>
</servlet>
<servlets>
<servlet-names>Faces Servlet</servlet-names>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1l</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Resource Servlet</servlet-name>
<url-pattern>/primefaces resource/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-names>Faces Servlet</servlet-names>
<url-pattern>/faces/*</url-patterns>
</servlet-mapping>
<session-configs
<session-timeouts>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>
</web-app>

368

Appendix

If you need to use the PrimeFaces upload support, you need to configure the PrimeFaces
FileUpload Filter like this (this should be the first filter in web . xm1):

<filters>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<filter-class>org.primefaces.webapp.filter.FileUploadFilter</filter-
class>
<init-param>
<param—name>thresholdsize</param—name>
<param-value>51200</param-value>
</init-param>
</filters>
<filter-mapping>
<filter-name>PrimeFaces FileUpload Filter</filter-name>
<servlet-name>Faces Servlet</servlet-name>
</filter-mapping>

Mojarra Scales (supports JSF 1.2)

Namespaces: http://java.sun.com/mojarra/scales (prefix: sc)

A JSF web . xml file does not contain special configurations for Mojarra Scales.

j4j (supports JSF 2.0)

Namespaces: http://javascript4jsf.dev.java.net/ (prefixi j473)

A JSF web.xml file does not contain special configurations for j4;j.

rssdjsf (supports JSF 2.0)

Namespaces: http://www.hexiao.cn/rss4jsf (prefix: rss4jsf)

A JSF web .xml file does not contain special configurations for rss4;jsf.

369

Index

Symbols binding at.tribute 212
event attribute 213
<action> tag 331 oncomplete attribute 213
<from-view-id> tag 342 onsubmit attribute 213
<pattern> tag 331 reRender attribute 213
<query-param> tag 331 value attribute 212
<url-mapping> tags 330 Acegi/Spring libraries 123
<view-id> tag 331 Acegi/Spring security
@ApplicationScoped 325 using, in JSF applications 123
@CustomScope 325 ActionEvent instance 225
@FacesConverter annotation 24 actionListener attribute 225
@ListenerFor annotation 324 actions
@ManagedProperty annotation 323 passing, to composition components 319
@NamedEvent annotation 336 add() method 326
@NoneScope 325 AJAX, in JSF
@Override annotation 24 about 201
@RequestScope 325 f:ajax tag, using 204
@ResourceDependency annotation 323 HelloWorld example 201
@SessionScope 325 JSF 2.0-AJAX example 201
@SessionScoped annotation 37 ajax4jsf components
@ViewScoped 325 adj:actionparam 220
adj:ajaxListener 220
A a4j:commandButton 211
adj:commandLink 211
adj:commandButton component adj:form 220
about 218 a4j:htmiCommandLink 220
using 218 adj:include 220
adj:commandLink component adj:jsFunction 211, 220
about 217 a4j:keepAlive 220
using 217 a4jloadBundle 220
adj:support component a4j:loadScript 220
example, developing 212-216 a4j:loadStyle 220
working 217 adjlog 211, 220
adj:support tag a4j:mediaOutput 211, 220
action attribute 212 adj:outputPanel 212, 220
actionListener attribute 212 adj:page 220

ajaxSingle attribute 212

adj:poll 220
adj:portlet 220
adj:push 211, 220
adj:region 220
adj:repeat 220
adj:status 211, 220
adj:support 211, 221
about 211
AJAX components
writing, in JSF 2.0 221, 222
AJAX functionality
AJAX capabilities, adding to image slide viewer
158-160
image viewer, creating 144-148
image viewer, transforming into image slide
viewer 150-157
AJAX multi-file
uploading, RichFaces used 93-96
ajaxRequest 203
AJAX support
adding, to custom component 144
annotations, Bean validation
@AssertFalse 69
@AssertTrue 69
@DecimalMax 69
@DecimalMin 70
@Digits(integer=, fraction=) 70
@Email 71
@Future 70
@Length(min=, max=) 71
@Max 70
@Min 70
@NotEmpty 71
@NotNull 70
@Null 70
@Past 70
@Range(min=, max=) 71
@Size(min=, max=) 71
@Valid 70
annotations, for managed beans
@ApplicationScoped 322
@CustomScoped 322
@NoneScoped 322
@RequestScoped 322
@SessionScoped 322
@ViewScoped 322

312

about 322

working 325
annotations, JSF 2.0

about 322

for managed beans 322
Ant

working with, JSFUnit 289
Ant script stub

customizing 290
Apache MyFaces commons validators

<mcv:validateCompareTo> 67

<mcv:validateCreditCard> 67

<mcv:validateCSV> 67

<mcv:validateDateRestriction> 67

<mcv:validateEmail> 67

<mcv:validatelSBN> 67

<mcv:validateRegExpr> 67

<mcv:validateUrl> 67

about 67
Apache MyFaces Commons Validators

(supports JSF 2.0) 367
Apache MyFaces Tomahawk

about 88

libraries 88
Apache MyFaces Tomahawk (supports JSF

1.2)

JSF web.xml configuration 365, 366
Apache MyFaces Tomahawk 1.1.9 88
Apache MyFaces Tomahawk Sandbox

(supports JSF 1.2)

JSF web.xml configuration 367
Apache MyFaces Trinidad 40
Apache MyFaces Trinidad (supports JSF 2.0)

JSF faces-config.xml configuration 363

JSF web.xml configuration 359-362

trinidad-config.xml 364
application lifecycle, with converter involved

Apply Request Values Phase 9

Invoke Application Phase 9

Process Validations Phase 9

Render Response Phase 9

Restore View Phase 9

Update Model Values Phase 9
Arabic, Chinese, Russian characters

displaying 241
async attribute 98

base-name tag 233
bean, fileUploadListener attribute
implementing 94, 95
Bean validation
annotations 69
exploiting 68, 69
f:validateBean, used 71
working 76
Bean Validation Specification (BVS) 71
Bean validator
disabling 72
using 72
BigDecimal object 10
Biginteger object 10
binding attribute 30
bookmarkability mechanism, JSF 2.0
about 336
using 336, 337
working 338
ByteArrayOutputStream object 85

C

c:forEach tag 350
c:set tag 350
calledOnLoad 267
CarBean instance 28

client-side converters, with MyFaces Trinidad

creating 40-49

working 50
ColorPickerBean 33
columnClasses attribute 246
communication

implementing, between parent-pop:up

windows 262-265

composition components

actions, passing to 319

creating, in JSF 2.0 308-316

sub-elements, passing to 317, 318

working 316
ConfigurableNavigationhandler 341
converter attribute 24
converterDateTime converter 16
converterlP tag 49
converters, with NULL values

about 19-21

working 21
convertNumber converter

binding, to backing bean property 30
convertNumber tag 30
createTempFile parameter 96
CSS styles

adding, to JSF 244, 245
CSV 104
currencyCode attribute 13
currentdate property 20
currenySymbol attribute 13
custom components

resources, accessing, from 167
custom converter

creating 22

defining, in RichFaces 34

implementing 22

using 22-24

using, for h:selectManyCheckbox 29

using, for h:selectManyListbox 29

using, for h:selectOneMenu 25-29

working 25
custom renderer

writing 140-142
custom validator

creating 58, 59

setting 138, 139

working 60

D

data
exporting, to CSV 109, 110
exporting, to Excel 109, 110
exporting, to PDF 109, 110
exporting, to XML 109, 110
extracting, from CSV file 104-107

data attribute 83

data conversion 8

date and time

converting, standard converters used 15-18

dateStyle attribute 16

DateTimeConverter 24

declarative event handling, JSF 2.0
about 334

PostAddToView event, subscribing 334-336

preRenderComponent event, subscribing

334-336

decode method 142

decoding 130

DefaultStreamedContent class 99

delegated implementation 130

direct implementation 130

Dojo 195

DoubleRangeValidator 53

DownloadBean

Enterprise JavaBeans. See EJB
error.xhtml 326
error messages, for validators
customizing 55-57
error messages customization, for validators
about 55
default messages, customizing from Message.
properties 55
exception handling mechanism, JSF 2.0
about 326-328

developing 83-85 working 328
download tag explicit conversion
binding attribute 82 about 10

data attribute 82
disabled attribute 82
fileName attribute 82
height attribute 82

id attribute 82
iframe attribute 82
method attribute 82
mimeType attribute 82 F
rendered attribute 82

working with 10, 11
exporterActionListener tag

about 109

filename attribute 109

fileType attribute 109

for attribute 109

urlVar attribute 82 f:ajax tag
width attribute 82 using 204
dynamic CSS working 205
using 248, 250 f:converter tag 32
working 251 f:convertNumber JSF converter 12

f:event tag 334
f:loadBundle tag

Dynamic Faces
implementing 206-208

installing, in NetBeans 6.8 205, 206 using 230
dynamic IDs, custom components working 231
getting 161 f:validateBean
about 68
E binding attribute 71
disabled attribute 71
EJB 354 validationGroups attribute 71

EJB (JPA based) integration, in JSF f.validateLongRange tag 61

about 354-356

f:validateLongRange validator

working 356 binding, to backing bean property 61
EL expressions, jsf:security project f:validateRegex validator

about 114 about 78

using 114, 115 regular expressions, using 78
EmailValidator 139 working 78
encodeBegin method 133, 147 f:validateRequired validator
encodeChildren method 133 about 76
encodeEnd method 133 value’s presence, enforcing 76
encoding 130 working 77

n

Facelets

about 302

aliasing components 303

composition components, creating in JSF 2.0

308-316

downloading 302

installing, under JSF 1.2 302, 303

templating 304
Facelets aliasing components

about 303, 304

working 304
Facelets tags

about 305

uizcomponent 305

ui:composition 305

ui:debug 305

ui:decorate 305

ui:define 305

ui:fragment 305

uizinclude 305

uicinsert 305

ui:zparam 305

ui:remove 305

uicrepeat 305
Facelets templating

about 304-307

features 305

working 307
faces-config.xml

about 25

properties file, configuring in 55, 57
Faces Console

about 279

features 280

supported IDEs 280

using, for JSF managing 279
fileHolder attribute 87
FilelmageOutputStream object 272
file management

about 81

AJAX multi-file, uploading with RichFaces 93

data, exporting to CSV 109

data, exporting to Excel 109

data, exporting to PDF 109

data, exporting to XML 109

data, extracting from CSV file 104

file, uploading with MyFaces Tomahawk 88

fileDownload component, using 98
files, dowloading using Mojarra Scales 81
multi-files, uploading using Mojarra Scales 85
PPR multi-file, uploading with PrimeFaces 2.0
100
files
downloading, Mojarra Scales used 81-83
uploading, Apache MyFaces Tomahawk used
88-91
fileUpload component, RichFaces
about 93
acceptedTypes attribute 94
allowFlash attribute 94
createTempFiles attribute 94
features 93
fileUploadListener attribute 94
immediateUpload attribute 94
maxFilesQuantity attribute 94
maxRequestSize attribute 94
fileUploadListener attribute 94
findComponent method 193
footerClass attribute 246
for attribute 58
forms
validating, rich:ajaxValidator used 65, 66
validating, rich:beanValidator used 63, 64

G

getAsObject method 22, 29
getAsString method 20, 22
getClassLoader method 236
getClientConversion() method 45
getClientimportNames() method 45
getClientLibrarySource() method 45
getClientScript() method 45
getConvertedValue method 183
getConverter method 183
getCurrentdate method 20
getFamily method 132
getinputText function 253
getLocaleString method 236
getRendererType method 142
getUploaditem method 95
getValueAsString method 183
goDirection function 223

group 73

groupingUsed attribute 13

315

H

h:commandButton

extending, with p:commandButton 223-226
h:commandButton component 251
h:commandLink

extending, with p:commandLink 223-226
h:commandLink component 251

target attribute 258
h:dataTable 246
h:graphiclmage 277
h:inputText component 253
h:message component 11
h:message tag 58
h:outputText component 244
h:panelGrid

about 246

populating, with CSS styles 246-248
h:selectOneMenu

custom converter, using for 25-29
headerClass attribute 246
HelloWorld component

building 131-137

working 137
HelloWorld example

building 201-203
helloworld tag attribute 134
Hibernate 351
Hibernate integration, in JSF

about 351, 352

working 352
Hibernate Validator 63
HttpRequestDispatcher 123

id attribute 163
imageCropper component 270
images

cropping, PrimeFaces used 270-272

retrieving, PrimeFaces used 269
implicit conversion

about 10

working with 10, 11
initSpinner function 222
inputFileUpload tag

binding attribute 89

required attribute 89

316

storage attribute 89
value attribute 89
inputSuggestAjax component
about 208
using 208-210
working 211
inputText component
about 256
value attribute 256
instance variables, in converters
about 36
declaring 36
relpacing with, session variable 40
simulating, session variable used 36-39
IntegerColorConverter converter
using 32
integerOnly attribute 13
internationalization 229
loC 352
IPConverterTag 49
isMultiUpload method 95

J

j4j (supports JSF 2.0) 369

java.awt.Color.getRGB method 34

Java Persistence API. See JPA

JavaScript

integrating, with JSF 251, 252

JavaServer Pages Standard Tag Library. See
JSTL

javax.faces.convert.BigDecimalConverter
class 8

javax.faces.convert.BigintegerConverter
class 8

javax.faces.convert.BooleanConverter class 8

javax.faces.convert.ByteConverter class 8

javax.faces.convert.CharacterConverter
class 8

javax.faces.convert.DateTimeConverter
class 8

javax.faces.convert.DoubleConverter class 8

javax.faces.convert.FloatConverter class 8

javax.faces.convert.IntegerConverter class 8

javax.faces.convert.LongConverter class 8

javax.faces.convert.ShortConverter class 8

JMeter issue
about 295
fixing 295, 296

JMeter RegEx Extractor 296

JPA 354

JSF
client-side converters, with MyFaces Trinidad

40

converters, with NULL values 19-21
CSS, adding 244,245
custom converter, creating 22
dynamic CSS, using 248-250
EJB(JPA used), integrating 354-356
file management 81
Hibernate, integrating 351, 352
JavaScript integration 251
JMeter issue 295
JMeter issue, fixing 295, 296
JSTL, integrating 349, 350
managing, Faces Console used 279-282
message resource bundles, loading 230
Seam, configuring, with 344
Spring, integrating 352, 353
validation 52

JSF-CSS construction
about 244
working 246

JSF-JavaScript integration
about 251
working 252

jsf-security project
EL expressions 114
JSF page, writing 114, 115
modifying, roles used 116-119
using, without JAAS roles 116
working 116
working with 113

JSF 2.0
annotations 322
bookmarkability mechanism 336
declarative event handling 334
exception handling mechanism 326
features 321
navigation mechanism 341
PrettyFaces 329
time zone, selecting 242
view parameters 338

JSF 2.0-AJAX example
about 201
working 203
JSF and Dojo widget
mixing, for custom components 195-200
JSF and JS
using, for opening popup window 258
JSF applications
testing, JSFUnit used 283-288
JSF Chart Creator
charts, displaying 297
exploring 297
working with 297, 298
JSF converters
about 8
custom converters 8
instance variables 36
lifecycle 9
standard converters 8
uses 8
JSF custom component
about 129
AJAX support, adding 144
creating, JSF and Dojo widget 195-200
developing, RichFaces CDK used 177-186
dynamic IDs 161
HelloWorld component, building 131
renderers/validators 138
RichFaces CDK, using 173
stubs, generating 169
JSF form
integrating, with fileUpload component 101
jsfForm
about 296
parameters 296
JSF hidden fields
working with 254
JSF ID Generator
downloading 163
installing 164
using 163-167
working 167
JSF inputText value
getting, from JavaScript 253
JSF login application
developing, Acegi/Spring security used
123-128

3n

working 128
JSF pages
bookmarkability, achieving 336, 337
bookmarking, PrettyFaces used 329-333
JSF related technologies
configuring 359
JSF security
about 113
extending, secured managed beans used
121, 122
JSF tags
<h:inputHidden> 9
<h:inputSecret> 9
<h:inputText> 9
<h:inputTextarea> 8
<h:outputFormat> 9
<h:outputLabel> 9
<h:outputLink> 8
<h:outputText> 8
<h:selectBooleanCheckbox> 9
<h:selectManyListbox> 8
<h:selectMaynyMenu> 8
<h:selectOnelListbox> 9
<h:selectOneMenu> 9
<h:selectOneRadio> 9
JSFUnit
about 283
configuring, in web.xml 287
JSF specific tasks, testing 283
working with, Ant 289
JSFUnit and Ant
working, together 289-291
JSFUnit Ant 289
JSFUnit API
about 292
JSFUnit test classes, writing 292-294
JSFUnit Core 289
JSFUnit distributions
downloading 283
JSFUnit test
developing 284
JSFUnit test classes
writing 292-294
jsfunitwar Ant task
about 289
attributes 290
sub elements 290

318

jsfunitwar Ant task, attributes
autoaddjars 290
container 290
destfile 290
srcfile 290
jsfunitwar Ant task, sub-elements
classes 290
lib 290
TestRunner 290
jsfViewState variable 296
JS load function
populating, with JSF values 267, 268
JSTL
about 349
integrating, into JSF 349, 350
JSTL integration, in JSF
about 349
working 351

L

LengthValidator 53
library attribute 276
lifecycle, JSF converters
Apply Request Values Phase 9
Render Response Phase 9
locale attribute 12, 16, 232
locales
using 231, 232
localization 229
login composite component
creating, in JSF 2.0 190-192
longAge property 62
LongRangeValidator 53

managed beans properties
binding, to groups 73, 74
maxFractionDigits attribute 13
maxIntegerDigits attribute 12
maxRequestSize parameter 97
mcv-validateEmail validator
using 67
Message.properties 55
message resource bundles
loading, f:loadBundle tag used 230
loading, in JSF 230

using 231, 232

using, without f:loadBundle 233
message resources keys

accessing, from Java class 236-240
minFractionDigits attribute 13
minintegerDigits attribute 12
Mojarra Scales (supports JSF 1.2) 369
Mojarra Scales 1.3.2 82
Mojarra Scales libraries 82
Mojarra Scales project 81
msg variable 233
multi-file

uploading, Mojarra Scales used 85-87
multiFileUpload tag

about 86

binding attribute 86

buttonText attribute 86

destinationUrl attribute 86

disabled attribute 86

fileFilter attribute 86

fileHolder attribute 86

height attribute 86

id attribute 86

maxFileSize attribute 86

rendered attribute 86

startDir attribute 86

type attribute 86

width attribute 86
multipart form submissions 346
MyFaces JSF Components Archetype

using 169-172

working 173
MyMessages.properties 55

name attribute 276
NavigationCase object 342
navigation mechanism, JSF 2.0
about 341
working 342
nickAction method 225
nulldate 20
NumberConverter instance 31
number property 31
numbers
converting, standard converters used 12-15

0

onclick event 252

onClick mouse event 153

onkeyup event 66, 253

onload event 257

onload function 267

onPostbac attribute 332

org.richfaces.convert.IntegerColorConverter
using 32

P

p:ajaxStatus 224
p:commandButton component 98, 226
p:commandLink component 225
p:dataExporter

configuring 111
p:fileUpload complete tag reference 101
p:growl component 101
parameterized message

working with 234, 235
parameters

passing, from JSF to JS 257

passing, from JS to JSF 256

passing, with HTTP GET within URL 260, 261
parent-pop-up windows

communication, implementing 262-265
path attribute 150
pattern attribute 12, 16
phaseld attribute 331
PhaselListener object 168
pom.xml elements

groupld 177

url 177

version 177
popup window

opening, JSF and JS used 258
PPR 100
PPR multi-file

uploading, PrimeFaces 2.0 used 100-102
prependld attribute 225
pretty-config.xml file 330
PrettyFaces

about 329

features 329, 333

working 333

319

PrimeFaces forms, validating 63

dynamic images 269 working 65
images, cropping 270-272 rich:graphValidator 65
images, retrieving 269, 270 RichFaces (supports JSF 2.0)
Prime Faces (supports JSF 2.0) JSF web.xml configuration 364, 365
JSF web.xml configuration 367, 369 RichFaces 3.3.3
PrimeFaces 2.0 org.richfaces.convert 32
about 97 org.richfaces.convert.rowkey 32
downloading 97 org.richfaces.convert.seamtext 32
features 97 org.richfaces.convert.seamtext.tags 32
fileDownload component, using 97 org.richfaces.convert.selection 32
upload types 100 org.richfaces.converter 32
PrimeFaces fileDownload component RichFaces 3.3.3.BETA1 93
about 98 RichFaces CDK
using 97-99 about 173
working 99 using 173-177
PrimeFaces libraries 100 RichFaces ColorPicker component
PrimeFaces upload RGB color, converting 32
working 104 RichFaces custom converter
processEvent method 326 about 34
proxy Id library Converter interface, implementing 34, 35
using, for dynamic IDs 161, 162 working 36
working 163 RichFaces libraries 93
RichFaces standard converter
R using 32
working 33
regular expressions rowClasses attribute 246
using, with f:validateRegex 78 rssdjsf (supports JSF 2.0) 369
renderer class 131 rssdjsf component
requiredMessage attribute 56 working 275
resource-bundle tag 233 working with 273, 274
resource handlers
using 275, 276 S
working 276
resources Seam
accessing, from custom components 167 about 344
accessing, Phaselistener object used 168 configuring, with JSF 344
accessing, renderer used 168 Seam configuration
accessing, third-party libraries used 168 about 344
direct access 168 character encoding, setting 346, 347
resources folder tree 276 conversation, propagating with redirects 347
rich:ajaxValidator exception handling 347
about 65 multipart form submissions 346
forms, validating 65 Seam Resource Servlet, configuring 345
working 66 Seam servlet filters, configuring 346
rich:beanValidator Seam JSF controls
about 63 <s:cache> 348

<s:conversationPropagation> 348 for date and time 15, 18

<s:convertEnum> 348 for numbers 12-15
<s:selectltems> 348 javax.faces.BigDecimal 8
<s:validate> 348 javax.faces.Biginteger 8
overview 348 javax.faces.Boolean 8
using 348 javax.faces.Byte 8
Seam Resource Serviet javax.faces.Character 8
configuring 345 javax.faces.DateTime 8
Seam servlet filters javax.faces.Double 8
configuring 346 javax.faces.Float 8
secured managed beans javax.faces.Integer 8
using, with JSF security 121 javax.faces.Long 8
security 113 javax.faces.Short 8
selectedCar property 27 standard validators
selectedFactor property 37 about 53
Selectltem object 29 binding, to backing bean properties 61, 62
setPattern 24 DoubleRangeValidator 53
setProperties method 134, 152 LengthValidator 53
setSelectedCar method 29 LongRangeValidator 53
shortName attribute 336 using 54
simple composite custom component working 54
creating, JSF 2.0 used 187-189 working with 53
simpleRssOutput tag StreamedContent class 99
about 273 style attribute 244, 246
channelVar attribute 273 styleClass attribute 244, 246
count attribute 273 sub-elements
entrysSummaryStyleClass attribute 273 passing, to composition components
itemVar attribute 273 317, 318
postTimeStyleClass attribute 273 submitForm function 255
readMoreStyleClass attribute 273 submit method 91
rssEntryStyleClass attribute 273 suite parameter 289
rssEntryTitleStyleClass attribute 273 supported IDEs, Faces Console
rssSiteNameStyleClass attribute 273 Borland JBuilder 4.0 280
rssSiteStyleClass attribute 273 Eclipse 1.0 280
url attribute 273 IBM WebSphere Appl. Dev. 4.0.3 280
spinner.xhtml Intelli) IDEA 3.0 (build 668) 280
modifying 221 NetBeans 3.2 280
spinner composite component Oracle JDeveloper 9i 280
creating, in JSF 2.0 193-195 Sun One Studio (Forte) 3.0 280
spinnerJS.js 222
Spring integration, in JSF T
about 352, 353
working 354 taglib element 137
Spring Web Flow 354 templating 304
standard converters timeStyle attribute 16
binding, to backing bean properties 30, 31 time zone
defining, in RichFaces 32 selecting, in JSF 2.0 242

381

timeZone attribute 16

title attribute 162

TLD (Tag Library Descriptor) files 279

TLD document 131

Tomahawk ExtensionsFilter
configuring 92

toString method 331

TrConverter 40

TrConverterException 42

type attribute 12, 16

U

UlComponentBase class 132,179

Ul Component class 131

Ul Component tag class 131

UlOutput class 132

UlOutput component 326
extending 144

UlViewRoot.addComponentResource() 326

UploadBean

developing 87

handleFileUpload method, implementing

101, 102

uploadedFile.getinputStream() method

developing 91
UploadedFile object

implementing 90
upload types, PrimeFaces 2.0

auto upload 100

multiple file upload 100

PPR Integration 100

single upload 100
userAge 10
userBean.userAgelnsert method 240
userBean.userNamelnsert method 240
usersCredentialsGroup group 74
usersldsGroup group 74

Vv

validation
about 52
types 52

validation, types
application-level validation 52
custom validation components 52
standard validation components 52

382

validation methods, in backing beans 52
validationGroups property 73
validatorMessage attribute 56
value’s presence

enforcing, fivalidateRequired used 76
value attribute 90, 132
values, type attibute

PostAddToView 335

postValidate 335

preRenderComponent 335

preValidate 335
var tag 233
view parameters, JSF 2.0

about 338

specifying 338-340

working 341
ViewState parameter 296
Vinicius solution, JSF security

analyzing 121

using 122
Visual Web JSF Project

theme, adding 240, 241

w

web.xml descriptor 326
window.location object 256
write method 91

X

xsl parameter 289

Y

Yahoo! User Interface (YUI) JavaScript widgets

81

Thank you for buying
rusLisninet JSF 2.0 Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

PUBLISHING

JBoss RichFaces 3.3
ISBN: 978-1-847196-88-0 Paperback: 320 pages

Enhance your JSF web applications using powerful AJAX
components

1. Build a new RichFaces JSF project in minutes
using JBoss RichFaces with JBoss Seam and
Facelets

JBoss RichFaces 3.3 2. Customize the look-and-feel of your JSF
) applications with Skinnability

3. Integrate AJAX into your applications without
using JavaScript

BACKT 4. Create, customize, and deploy new skins for

the RichFaces framework using the powerful
plug’'n’skin feature

Apache MyFaces Trinidad 1.2:

A Practical Guide
ISBN: 978-1-847196-08-8 Paperback: 292 pages

Develop JSF web applications with Trinidad and Seam

1. Develop rich client web applications using

- the most powerful integration of modern web
[Fewn Teasnatvaivs va Baistions | technologie

Apache MyFaces
Trinidad 1.2

2. Covers working with Seam security,
internationalization using Seam, and more

ide

A Pra

3. Get well-versed in developing key areas of web
applications

PACKT
4. A step-by-step approach that will help you

strengthen your understanding of all the
major concepts

Please check www.PacktPub.com for information on our titles

PUBLISHING

Java EE 5

Development With NetBeans 6

PACKT

Java EE 5 Development with
NetBeans 6

ISBN: 978-1-847195-46-3 Paperback: 400 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
improve Java EE development

2. Careful instructions and screenshots lead you
through the options available

3. Covers the major Java EE APIs such as JSF, EJB 3
and JPA, and how to work with them in NetBeans

4. Covers the NetBeans Visual Web designer in detail

ICEfaces 1.8: Next Generation
Enterprise Web Development

ICEfaces 1.8: Next Generation
Enterprise Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applications using AJAX Push, JSF,
Facelets, Spring and JPA

1. Develop a full-blown Web application using
ICEfaces

2. Design and use self-developed components using
Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: Using Standard and Custom Converters in JSF
	Introduction
	Working with implicit and explicit conversions
	Standard converters for numbers
	Standard converters for date and time
	Converters and NULL values
	Creating and using a custom converter
	Using custom converters for h:selectOneMenu
	Binding converters to backing bean properties
	RichFaces and standard converters
	RichFaces and custom converters
	Instance variables in converters
	Client-side converters with MyFaces Trinidad

	Chapter 2: Using standard and custom validators in JSF
	Introduction
	Using a standard validator
	Customizing error messages for validators
	Creating a custom validator
	Binding validators to backing bean properties
	Validating forms with RichFaces rich:beanValidator
	Validating forms with RichFaces rich:ajaxValidator
	Apache MyFaces Commons validators
	Bean validation with f:validateBean
	Enforcing a value's presence with f:validateRequired
	Using regular expressions with f:validateRegex

	Chapter 3: File Management
	Introduction
	Downloading files using Mojarra Scales
	Upload multi-file" to "Multi-file upload using Mojarra Scales
	File upload with Apache MyFaces Tomahawk
	AJAX multi-file upload with RichFaces
	Download with PrimeFaces 2.0
	PPR multi-file upload with PrimeFaces 2.0
	Extracting data from an uploaded CSV file
	Exporting data to Excel, PDF, CVS, and XML

	Chapter 4: Security
	Introduction
	Working with the JSF Security project
	Using the JSF Security project without JAAS Roles
	Using secured managed beans with JSF Security
	Using Acegi/Spring security in JSF applications

	Chapter 5: Custom Components
	Introduction
	Building a "HelloWorld" JSF custom component
	Renderers/validators for custom components
	Adding AJAX support to JSF custom components
	Using Proxy Id library for dynamic IDs
	Using JSF ID Generator
	Accessing resources from custom components
	Custom components with Archetypes for Maven
	RichFaces CDK and custom components
	Composite custom components with zero Java
	Creating a login composite component in JSF 2.0
	Building a spinner composite component in JSF 2.0
	Mixing JSF and Dojo widget for custom components

	Chapter 6: AJAX in JSF
	Introduction
	A first JSF 2.0-AJAX example
	Using the f:ajax tag
	Installing and using Dynamic Faces in NetBeans 6.8
	Using the inputSuggestAjax component
	ajax4jsf—more than 100 AJAX components
	Writing reusable AJAX components in JSF 2.0
	PrimeFaces, CommandLink, and CommandButton

	Chapter 7: Internationalization and Localization
	Introduction
	Loading message resource bundles in JSF
	Using locales and message resource bundles
	Message resource bundles without f:loadBundle
	Working with parameterized messages
	Accessing message resource keys from a class
	Providing a theme to a Visual Web JSF Project
	Displaying Arabic, Chinese, Russian, and so on
	Selecting a time zone in JSF 2.0

	Chapter 8: JSF, Images, CSS, and JS
	Introduction
	Injecting CSS in JSF
	JSF, CSS, and tables
	JSF and dynamic CSS
	Integrating JavaScript and JSF
	Getting a JSF inputText value from JavaScript
	Working with JSF hidden fields from JavaScript
	Passing parameters from JS to JSF (client to server)
	Passing parameters from JSF to JS (server to client)
	Opening a pop-up window using JSF and JS
	Passing parameters with HTTP GET within the URL
	Communication between parent pop-up windows
	Populating a JS load function with JSF values
	Dynamic images with PrimeFaces
	Cropping images with PrimeFaces
	Working with rss4jsf project
	Using resource handlers

	Chapter 9: JSF—Managing and Testing
	Introduction
	Managing JSF with Faces Console
	Testing JSF applications with JSFUnit
	JSFUnit and Ant
	JSFUnit API
	A JSF and JMeter issue
	Working with JSF Chart Creator

	Chapter 10: Facelets
	Introduction
	Installing Facelets under JSF 1.2 (or JSF 1.1)
	Facelets aliasing components
	Facelets templating
	Creating composition components in JSF 2.0
	Passing sub-elements to composition components
	Passing actions to composition components

	Chapter 11: JSF 2.0 Features
	Introduction
	JSF 2.0 annotations
	The JSF 2.0 exception handling mechanism
	Bookmarking JSF pages with PrettyFaces
	JSF declarative event handling
	URLs based on specified navigation outcome
	JSF view parameters
	JSF 2 and navigation cases

	Chapter 12: Mixing JSF with Other Technologies
	Introduction
	Configuring Seam with JSF
	An overview of Seam JSF controls
	Mixing JSF and JSTL
	Integrating JSF and Hibernate
	Integrating JSF and Spring
	Mixing JSF and EJB (JPA)

	Appendix: Configuring JSF-related Technologies
	Apache MyFaces Trinidad (supports JSF 2.0)
	RichFaces (supports JSF 2.0)
	Apache MyFaces Tomahawk (supports JSF 1.2)
	Apache MyFaces Tomahawk Sandbox (supports JSF 1.2)
	Mojarra Scales (supports JSF 1.2)
	j4j (supports JSF 2.0)
	rss4jsf (supports JSF 2.0)

	Index

