
Our DRM scheme is designed to allow users to play their favorite songs, while simul-
taneously allowing the ”owners” of these songs to bill the users for it.

1 Use case

The client browses the list of songs on zStore.com. He finds his favorite song and decides
to buy it – even though the song is immoderately expensive. 1

In order to listen to the song, the client will first have to purchase our hardware
player. In the process of buying the song, the zTunes client will interface with the
hardware device and send its identification – along with the client’s credit card number
– to the zStore servers.

Once zStore servers verify the completion of the monetary transaction, a license for
the song bound to the client’s hardware player will be generated. The client will be
supplied with the license and a link to download the data package containing the song.

The client can then ”enjoy” his limited number of plays.

2 Technical description

The DRM system consists of three components – the data server which provides the
encrypted data packages containing the actual songs, the license server which issues
licenses based on clients requests, and one or more clients.

2.1 Certificates

There are several certificates issued in the system.

• The license server is issued a key and a certificate, which is stored on the client’s
device and allows the client to verify the origin of licenses.

• Each client has a key and a certificate. This is used by the license server to bind
the license to that particular client.

• Client certificates are signed by a root certificate, which allows the license server
to ensure that the license is bound to a trusted client device.

2.2 Data server

The data server converts the file containing the song into a data packages, which is
merely AES-CBC-encrypted version of a PCKS7-padded song. The encryption key is
generated randomly.

In other words, the data server receives a file containing the song, and produces the
encrypted file, and a description file containing

1Note that the target audience does not consist merely of stupid people; In fact, we expect many
otherwise intelligent people to be peer-pressured to pay for data.



1. the hex-encoded SHA-512 hash of the resulting encrypted file, and

2. the hex-encoded key used to encrypt the file.

The former file can be distributed freely, whereas the latter must be kept secret and
transferred to the license server in a secure manner.

2.3 License server

The license server generates licenses given the package description file (generated by the
data server) and the client’s certificate. First, the certificate is checked for being signed
by the root certificate. Then a license is generated – a XML file containing among other
things a unique license number, the hash of the encrypted data package, the encryption
key the data package was encrypted with, and information on the how the package may
be used (e.g., limits on the number of plays).

The XML license is then AES-CBC-PKCS7 encrypted by a random key, the key is
then encrypted by the clients public key and prepended to the license. This effectively
binds the license to the target client. The resulting blob is then SHA-512 hashed and
signed by the license private key.

The license can be tranferred to the client through an unsecure connection.

2.4 Client

The client receives the license and attempts to install it. The installation process consists
of verifying that the license originates from the license server (using the license server’s
certificate), and of decrypting the license (using the client’s private key). The unique
license number is used to verify that the license is being installed for the first time.
The client will then store the encryption key and update metrics information (i.e. the
remaining number of plays) and associates them with the package hash. Both the key
and metrics data reside on a secure storage.

Given the data package, the client is then able to play the song. It first computes
the hash of the package and looks up the associated encryption key and metrics. It
verifies that the metrics allow for the song to be played. It then updates the metrics and
decrypts the package using the looked-up key.


