
UOHN P. BAUGH

Go
Programming

Go Programming

John P. Baugh

1

ISBN: 1453636676
E~-13: 9781453636671

©John P. Baugh, 2010

2

TABLE OF CONTENTS
What is This Book About and Who is It For? 6
About the Author ... 8
1.1 Why a New Language? ... 10
1.2 How Does Go Compare with C++? 10

1.2.1 Functions ... 11
1.2.2 Is Go Object Oriented like C++? 12
1.2.3 How do I free memory in Go? 14
1.2.4 Other stuff to be aware of 14

1.3 Summary ... 16
2.1 What Platforms can I install Go on? 17
2.2 But what if I'm a Windows user? 18

2.2.1 Virtual Machine ... 19
2.2.2 Dual Booting with Ubuntu 20

2.3 Installing Go .. 22
2.3.1 Environment Variables .. 23
2.3.2 Installing Mercurial.. .. 24
2.3.3 Fetching the Go Repository 27
2.3.4 Installing Go ... 27

2.4 Compiling, Linking, and Running 28
2.4.1 What About gccgo? .. 29

2.5 Summary ... 30
3.1 Standard 1/0 .. 33

3.1.1 The Obligatory "Hello World" 33
3.1.2 Retrieving Input from the User 35

3.2 File 1/0 .. 38
3.2.1 Output to a File .. 38
3.2.2 Input from a File .. 43
3.2.3 A Short Summary of Permissions 47

3.3 Constants and Variables .. 50
3.3.1 Identifiers ... 50
3.3.2 Constants .. 51
3.3.3 Variables .. 53
3.3.4 Time Savers : Short Declarations and Distributing
.............. , ... 55

3

3.4 Some Basic Data Types .. 57
3.4.1 Numeric Data Types .. 57
3.4.2 Character Data Type .. 60
3.4.3 Boolean Data Type .. 62

3.5 The String Data Type .. 63
3.5.1 The strings Package ... 65

Prefixes and Suffixes ... 66
Counting Occurrences of a Substring 68
Index and Lastindex ... 71
Repeat .. 73
ToUpper and ToLower .. 74

3.5 .2 The strconv Package .. 7 6
3.6 Keywords and Operators ... 78

3.6.1 Keywords ... 78
3.6.2 Operators .. 79

3.7 Summary ... 80
4.1 Conditional Structures .. 81

4.1.1 Basics of Logic .. 82
Equality .. 82
AND operator ... 82
OR operator .. 83
NOT operator ... 83

4.1.2 The if Structure .. 83
4.1.3 The switch Structure .. 87

4.2 Iteration ... 92
4.3 break, continue, and Labels .. 95

4.3.1 continue .. 95
4.3.2 break ... 97
4.3.3 Labe1s ... 98

4.4 Functions ... 99
4.4.1 Single Return Value ... 1 00
4.4.2 Multiple Return Values 1 02

Result Parameters ... 1 05
Empty Return ... 1 05

4.4.3 The defer Keyword .. 1 06
4.4.4 The Blank Identifier .. 1 08

4

4.4.5 Example : Minimum I Maximum Function 1 09
4.4 Summary ... 110
5.1 Pointers and References .. 112
5.2 Arrays and Slices .. 114

5.2.1 Arrays ... 115
5.2.2 Slices .. 119

Basic Usage .. 120
Using make() to Create a Slice 122
Reslicing .. 123

5.3 Maps .. 125
Testing for Existence of an Element. 128
Deleting an Element. .. 128

5.4 Using range with for Loops 130
5.5 Simulating Enumerated Types with iota 133
5.6 Summary ... 134
6.1 Structured Types ... 136

6.1.1 Named Fields and Anonymous Fields 136
6.1.2 Methods .. 140

6.2 Custom Packages and Visibility 143
6.2.1 Visibility .. 144

6.3 Interfaces ... 14 7
6.4 Summary ... 151
7.1 Concurrency .. 153

7 .1.1 Goroutines .. 153
7.2 Communication Channels ... 156

7.2.1 The Communication Operator, <-...................... 157
7 .2.2 Communicability and Select Statements 161

7.3 A Simple Client and Server 163
7.4 Summary ... 169

5

What is This Book About and Who is
It For?

This book introduces a new, open source, concurrent,
garbage collected, experimental systems programming
language called Go. Go was invented by developers at
Google and is intended to offer faster development, better
support for modem computing technologies, and cleaner
code than other systems languages. And perhaps most
importantly, Go provides a "fresh start", if you will, for
developers.

While Go is described as primarily being a systems
language, it is, like C or C++, fully capable of supporting
the development of front end applications.

Go is currently only available for Linux and Mac platforms,
but if you are a Windows user- don't fret! In this book, I
explain the options you currently have, including usage of a
virtual machine, and I will even show you how to easily
install Ubuntu(a popular Linux OS) for dual booting with
your Windows Machine with very little hassle!

However, at the time of this writing, there has been
significant effort by several volunteers at creating a port to
work with MinGW to enable Windows users to develop in
Go. By the time you get this book, there may be something
significant and usable, so check the official website at
http://www.golang.org first and see if there are any
compilers for MinGW available.

Because Go is new and open source, it offers a lot of
potential for us, the developers. It gives us the ability to

6

help shape it to our needs and desires. Because many other
programming languages (such as C, C++, and Java) were
invented over a decade ago (some even two decades ago or
longer), they weren't invented with modem computing
technologies in mind.

Go changes the game with built-in, excellent support for
many modem technologies like communication channels
and concurrency, as well as several coding standards
enforced by the compiler to help you keep your code as
clean and efficient as possible ... not to mention a built-in
type to make unit testing quick and easy!

In this book, I assume you have some experience with a
high level programming language like C, C++, C#, Java,
Objective C, Python, Ruby, or others. I do not expect you
to be an expert programmer, but more experienced
programmers will most likely gain a deeper understanding
of the Go language than less experienced programmers, at
least at first. However, this book is perfectly readable and
understandable for someone who has a fundamental
understanding of a high level language, but not a ton of
years experience under his/her belt. I spend some time on
the primitives of the language, and throughout the entire
book, I teach by tutorial and example, with details where
necessary

Visit this book's website for errata, updates, and other
useful information at:

http://www.goprogrammingbook.com

7

About the Author

John P. Baugh has been developing software in various
forms for over ten years. He holds a Master of Science
Degree in Computer Science from the University of
Michigan at Dearborn. He is currently preparing to pursue
his Ph.D in Information Systems Engineering.

He is an Adjunct Lecturer of Computer Science at the
University of Michigan at Dearborn, and has taught at
Schoolcraft College in Livonia, Michigan as well. He has
taught classes ranging from beginning computer science to
intermediate computer science with C++, Java
programming, as well as a course inC# programming with
an emphasis on game design.

John also currently works in Ann Arbor, Michigan for
Siemens PLM Software as a software engineer in the
Licensing and Business Intelligence Group, writing and
maintaining licensing software for various products.

Prior to working for Siemens PLM Software, John was a
Research Assistant in the Vehicular Networking Systems
Research Laboratory at the University of Michigan­
Dearborn.

For more information about the Go Programming language,
other languages, and other information on the author and
his availability for book and article writing, or consulting,
please visit his personal sites at:

http://www.jpbaugh.com

http://www.goprogrammingbook.com

8

Chapter 1

Introduction to Go

One day in particular, a few months ago, I was in my room
at my house doing some development using C++. It was a
rather large program, so being the experienced developer
that I am, I did what every true-blooded geek would do in
this situation... I hit the "Build" button in my IDE of
choice, and walked out of my room to go make myself a
sandwich and pour myself a soda (whose name shall
remain secret, but if you're interested, it is a popular black
liquid and doesn't rhyme with "poke".) I was reasonably
quick about it, and when I returned to my room, the
compilation and linking was just finishing up.

Most of the seasoned developers are reading this and
thinking, "Umm ... so what's your point?". The point is that
I didn't think anything of leaving the room for a few
minutes while I waited for this program to compile and
link. In fact, I do this quite frequently. I do this at work
with my very fast and powerful dual core processor
computer, as well as at home on one of my somewhat
dinosaurian personal desktop. So, the bottom line is­
development takes a long time with many of the languages
and development environments we use. Granted, it's nice
to leave the room to get a sandwich and a soda once in a
while. But when I'm not hungry or thirsty, I certainly don't
like sitting around waiting! Well ... neither did the
inventors of the Go language.

9

In the Go example of the same Squaring algorithm, notice a
couple key differences from the C/C++ code. Firstly, the
func keyword declares that there is a function about to be
defined. Then, the identifier, the parameter list, and at the
end of the function header, the return type (int).

There are many other interesting aspects of functions with
Go (including the ability to return and assign multiple
values with a single call), but I hope this will give a basic
idea of some of the syntax.

Later in this book, we'll delve deeper into some of the more
interesting aspects of Go functions, and we're definitely
going to save Go methods (special functions with a
receiver) for later.

Go is somewhat like the first cat you've ever had contact
with, when the only animals you've ever owned were dogs.
You go to pet the cat in all the usual "dog places", and it
slices your hand open with its incredibly fast, sharp claws,
and hisses at you. Well ... to be honest, Go is a lot nicer
than this, but you get the point - you don't know where to
"pet" Go yet, so just take it nice and easy.

By the way. True story. Be careful around cats.

1.2.2 Is Go Object Oriented like C++?

This is a tricky question. In the classical sense of providing
full encapsulation, inheritance, and polymorphism, no. But
Go does have many object oriented features.

Go does not support inheritance at all. We will see later
how Go implements interfaces and allows for "pseudo­
inheritance". It is quite different from the way it is done in
C++ and will take quite a bit of explanation. Just be

12

patient. Go also allows for types to contain other types in
way that allows the types to take on somewhat of a
superclass/subclass relationship, but it isn't quite the same
as it is in C++.

There is a method (not in the programming sense of the
word) to the madness, though. Type hierarchies cause a lot
of overhead with compilation, and multiple inheritance in
languages like C++ is even worse. The inventors of Go
found complete object orientation to be quite cumbersome
and that it causes compilation to take a long time with
generation of symbol tables, the establishment of
relationships between objects in type hierarchies and other
problems endemic in this type of code. This is why they
opted out of a completely object oriented world and found a
middle ground where they hope the OOP lovers out there
will be content.

Many programmers who are staunch about object oriented
development (like myself) may be looking at this as a step
back. But it's actually not. I can tell you honestly, as a
developer who is very fond of strict object orientation in
my C++ and Java code, that Go's way of doing things is
not a move back to the entirely functional programming
paradigm of the Dark Ages, or anything of the sort. In fact,
it's quite a relevant and modem approach, which we will
see later.

In summary, Go provides a clean way that supports an
object oriented style of programming without all the
confusion and clutter. When you get to the part of this
book about interfaces and see how Go actually does things,
you'll probably like it a lot. Trust me!

1.2.3 How do I free memory in Go?

13

Memory cleanup in Go is more akin to Java than C++. Go
has automatic garbage collection. So, you don't have to
(and in fact, can't) explicitly use delete or free() to free
memory allocated to various variables.
At the time of this writing, the developers working on Go
were exploring options to make the garbage collection
much more efficient. The current build of Go utilizes a
simple mark and sweep method of garbage collection.

1.2.4 Other stuff to be aware of

There are many significant differences between Go and C+
+. Some require much more explanation than the brief
overview we provide in this section. Much of the nitty
gritty of the Go language will be examined as we explore
the language throughout this book.

Here are just a few things to be aware of as you read
through the book:

• The syntax of Go may be very different from what
you expect. For example, the order of the data type,
identifier, and parameter list may not be what you
expect.

• Go allows multiple return values from functions and
methods. This leads to some unusual syntax that
you may not recognize or be able to follow until
you see some good solid examples later in the book.

• Go has interfaces, but they are not what you'd
expect if you've dealt with languages like Java.

• Go does not allow coercion (implicit type casting).
If you try to coerce one type to another, it is a

14

compiler error. You must explicitly tell Go when
you're switching between types.

• There is no pointer arithmetic. Pointer arithmetic
leads to a lot of misbehaving code and erroneous
memory access, including fatal crashes of software,
so Go removed this capability entirely.

• Strings are immutable. You cannot create a string
and change one of the characters in it.

• Identifiers in Go are in Unicode. So you may see
special characters, such as those in Chinese,
Hebrew or Arabic as identifiers. However, you
can't mix character sets.

• Capitalization of identifiers, as we shall see later,
has an impact on the visibility of the identifier
(capital letters mean public, lower case means
private)

• There is no operator overloading in Go.

• There is no function overloading in Go. This avoids
the language fragility caused by functions with the
same name and different signatures, and doesn't
cause a mess with things like the ugly "name
mangling" that happens in C++.

1.3 Summary

In this chapter, we briefly explored the Go programming
language. We saw why the inventors of Go thought it was
necessary to start over with a fresh, new systems

15

programming language instead of just working with older
languages like C/C++ or Java.

We saw some similarities and differences between C++ and
the Go programming language. It is possible to program
Go in an object-oriented fashion, but Go does not support
strict object hierarchy, full encapsulation, or polymorphism
like C++ does.

We also took a brief tour of what Go does in terms of
garbage collection. Within that subsection, we saw that
you don't need to delete or free () allocated memory,
and in fact, you cannot explicitly do so. Go takes care of
the garbage collection itself.

And finally, we looked at several differences and "gotcha"
issues that programmers coming from another language
may find interesting or unusual.

In the next chapter, we'll take a look at how to install Go
and any necessary supporting software, including virtual
machines, or dual boots for those who have Windows
boxes.

16

Chapter 2

Installing Go and Other
Support Software

Most of the necessary instructions to installing Go onto
your Linux or Macintosh box are available at the official
Go website (http://www.golang.org). However, in this
chapter I will provide some useful information to get you
up and running.

2.1 What Platforms can I install
Goon?

As of the time of this writing, there are two officially
supported operating systems (or system groups):

• Linux
• Macintosh OS X

And, there are three processor architectures supported:

• x86 _ 64 (also known as the amd64 instruction set.
Don't be fooled by the name! This is for both Intel
64, and AMD 64.)

• x86_32 (also known as the x86 or 386. These are,
as the name suggests, 32 bit processors.)

17

• ARM (These are processors with a 32 bit RISC
instruction set. This particular port is not fully
complete, and does have some bugs in at as of this
writing)

In my opinion, the best port is <insert favorite flavor of
Linux> on the x86 _ 64 processor. Because a lot of Linux
users are very passionate about open source solutions, it is
also likely that they will ensure Go is well tested on Linux.
The x86_32 is, according to the official website, not as
"well soaked", which indicates it hasn't been as thoroughly
tested, but they believe it should be as solid.

And, as far as Macintosh users are concerned - you must
have OS X running on an Intel 64 machine. Since, to the
best of my knowledge, Macintosh OS X has never run on
any 32 bit Intel processors, the x86_32 is not even
applicable to Macintosh users.

2.2 But what if I'm a Windows
user?

Whatever anyone feels about Windows, there is no doubt it
has a healthy majority of the market as far as personal
computer is concerned. In fact, as much as Linux users
want to deny the facts, a large portion of companies use
Visual Studio on Windows machines to do their primary
development. So, while Go has been geared toward the
Linux and Macintosh users, there are still very good
options available for Windows users!

I will describe a couple options for individuals with
Windows PCs. And they are both free! And, as always,

18

you do have the option of going through the trouble of
partitioning your hard drive and putting a full install of
your favorite Linux OS, but this will not be covered here.
It is also important to note that as of this writing, there is a
project going on to port Go to work with MinGW on
Windows. So check the official site often to see if they've
developed a port that works for you.

2.2.1 Virtual Machine

One option for Windows users who want to have access to
a Linux box, for example, but don't want to invest in new
hardware and install Linux is a virtual machine. We're not
talking about the JVM (Java Virtual Machine), although
there are similarities conceptually.

Basically, a virtual machine emulates hardware, and runs
virtual appliances on this "hardware". For example, if you
wanted to install Red Hat, Ubuntu, or Suse Linux on your
virtual machine, you'd just download the virtual appliance
for that particular operating system, and install in onto your
virtual machine as if the virtual machine were an actual
piece ofhardware.

And while I won't provide a complete step by step
installation for this particular technique, I'll give you some
basic steps as resources to quickly get you going if you
choose this option. In my opinion, one of the best virtual
machines available for Windows is VMware Player. So to
get started:

1. Go to http://www. vmware.com
2. Go to Support & Downloads
3. Click on VMware Player under Desktop Products,
listed on the page
4. Download and install the VMware Player

19

Then, you'll need a Linux virtual machine appliance to run
on your VMware Player.

Note: If you plan on running a 64 bit virtual machine
appliance, the actual hardware on your physical
machine (your computer) needs to be 64 bit.

5. Now, go to Virtual Appliances near the top of the
page
6. Do a search for your virtual appliance of choice,
such as "Linux", "Red Hat", "Suse", or "Ubuntu"
7. Follow the instructions to download and install the
virtual appliance of your choice.

After you've installed the virtual appliance, you should be
able to treat it as if it were an actual Linux box. This
means you can install Go and whatever else you might
need!

2.2.2 Dual Booting with Ubuntu

Personally, this is my favorite option. I have a system that
dual boots with Windows 7 and Ubuntu.

Ubuntu is one of my favorite Linux operating systems.
I've dealt with many different operating systems based on
the Linux kernel, and Ubuntu is by far my favorite for
several different reasons.

I like Linux. Don't get me wrong. In fact, I love Linux.
But, a lot ofLinux users (many ofwhom are involved in
the development of their particular Linux of choice) hate
Windows. And, albeit a rogue element of the Linux
community, some even hate Windows so much, that they
hate Windows users.

20

Ubuntu isn't like that. Ubuntu is a very Windows friendly
community. And in fact, they provide one of the easiest
dual boot installers I've ever seen for a Linux OS. This
magical little jewel is called Wubi.

Now, here are some notes before you being. This installer
is not going to partition your hard drive. It actually
cleverly creates a special file that Linux recognizes as a
hard drive. Then, it modifies some of your boot settings so
that when your computer boots, it will let you select either
your Windows OS or the Ubuntu installation.

Wubi is not itself a Linux port. It is simply an installer of
Linux for Windows users. (Windows UBuntu Installer.
Clever, eh?) And the version ofUbuntu that installed is a
legitimate, complete installation of Ubuntu. It is not a
virtual machine.

I've used this installer before, and although I do have
access to other Linux machines, I decided I wanted Ubuntu
on my laptop. I have had very little trouble with it.
Windows 7 and Ubuntu play nicely together.

Before we beigin, there are a few important notes about
installing with Wubi:

1. Hard drive read/writes are a wee bit slower, but
shouldn't affect your Go programming significantly unless
your computer is a complete dinosaur.

2. Wubi does not support hibernation. The details are
available on the official website.

3. The Wubi-installed Ubuntu is significantly more
sensitive than an installation on a partition would be, to

21

power offs. If you shut the power off while Ubuntu is
doing something, you may completely destroy the Ubuntu
installation and have to start from scratch. If it doesn't
destroy the installation completely, it may cause strange
malfunctions like large sea creatures jumping out of your
machine and making a mess of your room (Wubi on
Whales? Okay, I had to. Moving on ...)

Regardless, your Windows machine should be safe, as
Wubi is not really messing much with your actual hardware
or doing partitioning or anything. But, use caution.

So here is where you go to get Wubi:

http://www. wubi-installer.org

It's very simple. Just download it, and follow the
installation instructions as you would with any product.
Then, you will restart your machine, and be able to select
the OS of your choice with the arrow keys. Voila!

2.3 Installing Go

Okay, so you've got the appropriate hardware and OS, now
how do you actually install Go?

In this section, I'm going to focus on installing Go onto
Ubuntu, but most of the installation should be similar
regardless of what type of Linux (or Mac) you have. As
long as it's a Unix-like OS, you can use Unix commands,
so you should be in business.

The official installation guide is on the official website,
located at:

22

http://www.golang.org/doc/instalLhtml

I recommend opening up this webpage and using it as your
primary guide through installation. However, I will make
some important notes about the installation that could
throw you off, especially if you're not familiar with Unix­
based systems.

2.3.1 Environment Variables

These are crucial to your installation. You should edit
the .bashrc file, as prescribed on the official installation
page. The .bashrc file is basically a settings file, so that
when you open a terminal window, all of the necessary
environment variables and prerequisites are set up.

If you don't edit this file, you'd need to do manual exports
of all the environment variables every time you opened up
a terminal window. That is no fun at all. Note also that
the .bashrc is not visible when you simple do an ls (list)
command. In order to see if it's there or not, you can do 1 s
-a (list all) command.

So, in the .bashrc, you must write the following:

export GOROOT=$HOME/go
export GOARCH=amd64
export GOOS=linux
export GOBIN=$HOME/bin

Make sure to save the .bashrc file with these exports. Then,
close the terminal window, and open a new one. Then, do
an

env I grep '"GO'

23

to ensure that the GO environment variables have been
added to your environment. Alternatively, you can do an

echo SGOROOT (or $GO<whatever>)

to make sure the variables are there.

Now, there is one more thing related to environment
variables that you have to do that is very important. The
official installation page says that the environment variable
GOBIN is optional, but I found that my installation did not
work appropriately without it. If you don't export GOBIN

and also add it to your PATH, the installation may have
problems when it gets to the tests at the end.

To add the GOBIN (where your Go compiler and linker
reside) to your PATH, do the following:

export PATH=$GOBIN:$PATH

This will take your new GOBIN environment variable, and
append it to the front of your PATH environment variable.

As a note, if you have any difficulties or warnings about
missing directories, you make have to create a directory
(with mkdir, for example) that is missing.

2.3.2 Installing Mercurial

Mercurial is a revision control application that allows
projects (like Go) to maintain repositories with the latest
version of their software, so that you can easily download it
and upgrade your installation.

In order to test and see if you have mercurial installed, type

24

hg

in a terminal window.

If it says it doesn't exist, or hasn't been installed yet, first,
try using the options for installation that are given.

I personally found that the method provided for Ubuntu on
the official site did not work. So I went directly to
Mercurial's download page:

http://mercurial.selenic. comlwiki/Download

Then, I went to the Linux (.deb) section for my Ubuntu OS
(obviously, you should go to the Linux installation that you
have).

Then, I selected Karmic (which is the version of Ubuntu I
have), and it takes you to the download page.

The actual download link will be at the bottom (labeled
amd64 or i386). Select the appropriate processor
architecture for your platform, and then a mirror site to
download it from.

I personally opened mine with GDebi Package Installer,
which is an incredibly helpful installation tool.

Since Mercurial has dependencies (which include things
like Python), you may have to install these dependencies
first.

25

' Package Installer - mercurial _ o x

file tlelp

Package: mercurial

EITor: Dependency is not satisfiable: mercurial­
Status: common (= 1.3.1-1)

Description Details Included files

sca la ble d istributed version control system

Merrurialls a fast. lightweight Source Control Management system designed
for efficient handling of very large distributed projects.

Its features include:

• 0(1) delta-compressed file storage and retrieval scheme

• Complete cross·index1ng of files and changesets for elllCient explorabon of
project history

• Rllbust SHAJ-based Integrity checking ond i!ppend-only storuge model

• Decentralized development model with arbitrary merging between trees

Figure 2.3.2-1

If you try to install the mercurial package, you will likely
get the error in Figure 2.3.2-1.
If you get an erTor like this one, just install the dependency
that is listed in the error, and it should take care of the
problem.

I found that all I really needed to install was the
dependency of mercurial, listed as mercurial-common (=
1.3.1-1), and nothing else.
Then I did a

sudo a?t-get insta ll me rcuria l

That was enough to get the hg command working. Your
experience with Linux or Macintosh may be slightly
different than my experience, so you may have to play
around with what dependencies need downloaded. But the
overall installation should be fairly straightforward.

26

2.3.3 Fetching the Go Repository

Once you have mercurial installed, you can fetch the Go
repository:

hg clone -r release https://go.googlecode.com/hg/
$GOROOT

You must make sure that SGOROOT doesn't exist yet, or at
very least, that it is empty.

2.3.4 Installing Go

Once you have all the supporting software installed, it is
pretty simple to install Go. Per the official installation
page, you must ensure you have the following applications
installed:

• Bison (a parser generator)

• Gee

• Libc6-dev

• Ed

• Gawk

• Make

To install these, you type:

sudo apt-get install bison gee libc6-dev ed gawk make

This should take care of the installations of the final
support software. Note carefully that the above syntax will
work on Debian-based Linux systems like Ubuntu. For
most other Linux distributions, RPMs will be used.

Now, to build Go, we follow the steps from the official
installation site:

27

cd $GOROOT/src
./all.bash

When it finishes building, you should get something like:

0 known bugs; 0 unexpected bugs

although the number of known bugs could vary.

2.4 Compiling, Linking, and
Running

By this point, you should have Go installed. This section
will hopefully help you to ensure everything's working
correctly by taking the compiler and linker for a test drive.

Go has some strange names for its official compilers and
linkers. These will vary from platform to platform.

The following shows you the name of the compiler and
linker for your platform:

Platform Compiler Linker
X86 64 6g 61
X86 32 8g 81
ARM 5g 51

Note that, for the linkers, the second character is a
lowercase "L" for "linker", not the number 1.

The entire process of creating an executable with Go is as
follows:

$ 6g filename.go

28

$ 61 fi1ename.6
$./6.out

Notice, the 6 would be replaced with the appropriate
number based on what platform you are on. Also, note the
$ signs appear at the beginning of basic prompts in the
bash shell, and are not part of the commands themselves.

Also note that you can (optionally) change the name of the
executable that is output, by using the - o flag:

$ 6g fi1ename.go
$ 61 -o myExeName fi1ename.6
$./myExeName

where myExeName is the name you want your executable
file to have.

The Go compiler is known as gc, for "Go Compiler"
(imagine that!). It should not be confused with gee, or
gee go.

2.4.1 What About gccgo?

If you don't want to use the Go compilers provided by the
inventors/developers at Google, you have another option.
gee go is a compiler frontend for gee, which as most of the
readers probably know, is the very popular GNU compiler.

The gccgo typically compiles slower than the (6g, 8g, 5g)
compiler, but the generated executable is a little bit faster.

For more information about the installation of gee go,
please refer to:

http://golang.org/doc/gccgo _ install.html

29

It is also important to note that, although much of this is
outside the scope of this book, gccgo currently offers some
interoperability with C. As with much of the projects
related to Go, much of the specifics are subject to change.

2.5 Summary

In this chapter, we covered a lot of territory related to the
installation of Go and supporting software.

Go is officially supported on Linux and Macintosh.
However, Windows users still have options, including
using a virtual machine, or Wubi, a handy installer of
Ubuntu so that you can dual boot with Windows and
Ubuntu Linux. These two options are described in a
reasonable amount of detail. A third option is to do a
partition, and full installation of your Linux (or potentially
MacOS) of choice. This option is only mentioned, and is
not described in detail. Furthermore, a MinGW port is in
the works as of the time of this writing, and it is quite likely
you will be able to program in Go even more easily on
Windows.

After ensuring we have the correct hardware and/or
software to install Go, we set up the necessary environment
variables. Next, we explored how to install Mercurial, a
revision control management system that allows us to
install Go. I described some of the pitfalls and issues you
may have when you try to install Mercurial, including
potential problems with dependencies.

Then, we learned how to fetch the code for Go from the Go
repository. And finally, we installed Go itself, so that we
could compile and link applications with the 6g (or 8g or

30

5g, depending on your platform) compiler, and the 61 (or 81,
or 51) linker.

Finally, I mentioned gccgo, the frontend for the popular
GNU GCC compiler. It is a separate project from the
official Go project at Google, but was designed based on
the language specification and works almost as well as the
Google Go compilers. Also of importance is that it
compiles more slowly than the Google Go compilers (6g,
8g, or 5g) but that the executable is often slightly faster.

In the next chapter, now that we have a basic history and
motivation under our belt and the appropriate software
installed, we will begin learning about how to program in
Go.

31

Chapter 3

Getting Started with
Go Programming

Hopefully the previous chapters were not too mind
numbing. I tried to give you a basic understanding of why
we should even be interested in Go as a language. Also,
when I start out with a new programming language, I often
find installation to be one of the most irritating aspects of
the whole process, so I tried to keep my installation
instructions to a bare minimum, but provide enough
information so that you can install Go with very little
trouble.

Anyway, enough of the dark and dirty past -let's get to the
fun, shall we? In this chapter, we'll get into the nitty gritty
of the basics. We'll learn a lot about the syntax of Go, the
different data types that are available, basic I/0, keywords,
operators, and a whole boatload of other useful
information. I'll provide some good, clear, and concise
examples so that you'll gain a solid understanding of what
is actually going on.

3.1 Standard 1/0

32

In this section, we' 11 go over some basic mechanisms for
printing to the console, and retrieving input from the
keyboard.

3.1.1 The Obligatory 11Hello World"

In this subsection, we're going to use the fmt package to
do simple output to the console, in a fashion similar to what
you may be familiar with in C.

1 package main
2 import "fmt"
3
4 func main{) {
5 fmt.Printf{"Hi there!\n ");
6

Notice a few things about the above code segment. First,
we declare this to be the main package on line 1. Then, on
line 2, we import the fmt package (for formatted 110).

On line 4, we begin our main function. Notice a few things
about this. Firstly, there is no return type. The func is just
a keyword declaring that main is a function. But return
types in Go are specified after the identifier of a function.

On line 5, we call the Printf (} method of the fmt

package. This allows us to print to the console. Finally, on
line 6, we close the code block with a closing curly brace.

Also, be careful about the opening curly brace, "{". It must
be on the same line as the declarative header of the main
function (and all functions for that matter). Some people
prefer programming with the curly brace on a separate line,
thusly:

func main {)
{

33

fmt.Printf("Hi there!\n ");

However, this will cause a compiler error, such as:

hello.go:S: syntax error near main

This may change in the future, but just to be safe, always
keep it on the same line as the function header. In fact,
keeping everything clean and compact is in line with the
Go philosophy of coding.

In case you're curious, the actual reason this causes a
compiler error has to do with how and where Go
automatically inserts semicolons. So, when you compile
the code, the compiler actually reads:

func main();
{

fmt.Printf("Hi there!\n ");

which is a syntax error.

Go is most certainly concerned with efficiency and tidiness.
In fact, let's see what happens if we include another
package, but don't use it:

1 package main
2 import "fmt"
3 import "os"
4
5 func main() {
6 fmt.Printf("Hi there!\n ");
7

or, alternatively, with some "shortcut syntax" provided by
Go (notice you can put parentheses around the things
you're importing, without retyping import. More on this
later.):

34

1 package main
2 import
3 (

4 "fmt"
5 "os"
6
7
8 func main() {
9 fmt.Printf("Hi there!\n II) i

10 }

What happens when we try to compile this code?

hello.go:5: imported and not used: os

What's this? A compiler error simply because I included a
package I'm not using? You betcha! Go wants to you to
be lean, clean, programming machines. And part of this is
to not include packages you're not using in your code.
They just adds fat to your executables (i.e., they increase
the executable size) and decrease the readability of your
code.

3.1.2 Retrieving Input from the User

Retrieving input from the user is a little bit more
complicated. Some of the syntax may appear a bit strange,
especially if you are brand new to Go. For right now, just
try to follow as best you can, and we'll go over more
details about packages, variable declarations, functions, and
a whole lot more later in the book. Here's the Go code that
we will analyze:

1 package main
2
3 import
4 (
5 "fmt"
6 "bufio"

35

7 "os"
8
9
10 func main() {
11
12 var inputReader *bufio.Reader; //reader for
input
13 var input string; //input of type string
14 var err os.Error;
15
16 inputReader = bufio.NewReader(os.Stdin);
17
18 fmt.Printf("Please enter some input: \n");
19
20 input,err = inputReader.ReadString('\n');
21
22 if err == nil{
23 fmt.Printf("The input was : %s\n", input);
24
25

As always, we start at line 1 by naming the package main
(there is reasoning behind this, that won't be covered just
yet). Then, on lines 3-8, we have our imports. This time,
we need a couple more packages than in the input example.
We need the os package so we can use Stdin, and we need
bu f i o to perform the retrieval of input from the keyboard.

In the main function, you see on lines 12-14 declarations of
variables. Notice that the format of declaring variables in
Go is:

var identifier data_type

Note that var is a keyword, identifier is the name of the
variable, and data_ type is the type of data with which we
are dealing.

On line 16, we perform the actual creation of the Reader to
read input in from the keyboard.

36

Line 18 prompts the user to enter something (this could ask
for a name, a color, favorite animal... pretty much
anything).

Line 20 may be very confusing to the reader. Notice there
are not one, but two variables (input of type string, and
err of type os. Error) receiving data from the method call
inputReader. ReadString (1 \n 1) • In full, this is:

input,err; inputReader.ReadString(1 \n 1
);

Go supports functions and methods returning multiple
values. The ReadString () method is such a method. We
will discuss this in more detail later, but for now, just know
that ReadString () returns the input string put into the
buffer (in this case, from the keyboard, i.e., standard
input/Stdin) as its first return value, and returns an error as
its second return value. So, two variables are put on the left
side of the call to catch both the input from the keyboard,
and an error returned by the method. If there are no errors,
ReadString () returns nil for its error return value.

Also, note that the argument to the ReadString () method
is the newline character ('\n ').

Finally, in lines 22-24, we check to ensure there were no
errors, and then echo the user's input back to them. For
those familiar with print£ () function from the C
programming language, you may have figured out that % s is
a specifier which will match a character string variable (or
constant) listed as one of the parameters after the first.

3.2 File 1/0

37

In this section, we' 11 examine a different case of input and
output, namely, file input and file output, known
collectively as File 110.

3.2.1 Output to a File

Below, we have some code for sending output to a file

1 package main
2 import(
3 "os"
4 "bufio"
5 II fmt II
6
7
8
9

10

12
13

func main() {
var outputWriter *bufio.Writer;

//a writer for output
var outputFile *os.File;

//an output file
var outputError os.Error;

//a variable to catch any error
var outputString string; //the string to print

14 // Create file for output
15 outputFile,outputError = os.Open("output.dat",

os.O_WRON:Yios.O_CREATE,0666);
16
17 if outputError !; nil {
18 fmt.Printf("An error occured with file creation\n");
19 return; //exit the program
20
21
22 II Create a new Writer, associated with the

file we created
23 outputWriter bufio.NewWriter(outputFile);
24
25 outputString "hello!\n";
26
27 for i:=O; i 10; i++{
28 outputWr ter.WriteString(outputString);
29 outputWr ter.Flush();
30 }//end for oop
31

38

As always, we have the initial package declaration at the
top, followed by import statements:

1 package main

2 import(

3 "os"

4 "bufio"

5 "fmt"

6

Notice that we have the fmt and os packages imported, just
like in the standard output example. However, this time,
we will utilize the bu f i o package as well.

In lines 8-12, we have the beginning of our main function,
and several variable declarations:

8 func main() {
9 var ou~putWri~er *bufio.Wri~er; //a writer for output
10 var outputFile *os.File; //an output file
11 var outputError os.Error; //a variable to catch any error
12 var outputString string; //the string to print

Notice the var keyword comes before the name, or
identifier, of the variable, and then the data type is at the
end of the declaration. Also, for some individuals coming
from C++, statements like *bufio.Writer may seem a
little peculiar. But, it's actually quite natural, when you say
the statements out loud. For example, "I'm declaring a
variable named output Writer that is a pointer to a
bufio. Writer.

It only seems "backwards" if you're accustomed to using a
language like C/C++ or Java. It could be argued that the
order of the declaration is actually closer to natural
language (at least to English) than C++, where you may
have something like:

bufio. Writer* outputWri ter; //C++ code

39

In C++, we have the data type first, and then the identifier,
and no var keyword. If you read it aloud, it becomes, "I'm
declaring a bufio. Writer pointer called output Writer". This
could be refined slightly, but it really is farther from
English than the Go syntax is.

Moving on, we create a file to represent the output file we
are going to write to:

14 // Create file for output
15 outputFile,outputError = os.Open("output.dat",

os.O_WRONLYios.O_CREATE,0666);
1.6
:7 if outputError != ni~ {
18 fmt.Printf("An error occured with file creation\n");
19 return; //exit the program
20

Notice in line 15, we are using two of the variables
declared earlier, namely, outputFile and outputError to
catch the return values of os . Open {) . We will explore
more on multiple return values later, but for now, just think
of os. Open {) as a machine that produces multiple outputs.

Let's examine the parameters of os. Open {) carefully:

os.Open{"output.dat", os.O_WRONLYI
os.O_CREATE,0666);

The general signature of the function is as follows:

os.Open{filename string, flag int, permissions
int);

Open {) function takes three parameters, in order:

• The filename of type string. This is the name of
the file to be used.

40

• Thejlag(s) of type int. This lists the flags,
indicating what operation(s) we're performing on
the file. For example, 0 _ WRONL Y for "write
only" and 0 _CREATE for "create", as in our output
example. Notice, we can combine them with the
bitwise OR operator, 1.

• The permissions of type int. This parameter
includes the access permissions to the file in
question. For example, if we are creating a file (as
above), and we want the permissions to be full read,
write, and execute permissions to users, groups, and
others, we would set the permissions to 0777. This
corresponds to the chmod command used on Unix to
change permissions.

In our particular example, we set the filename of the output
file to "output.dat". For the second parameter, we do a
bitwise OR of 0 WRONL Y and 0 CREATE to indicate - -
we want to create and/or write to the file, output.dat.
Finally, we set the access permissions to 0666, indicating
that we want to allow the user, the group, and others to
have read and write permissions.

As an experiment, try recompiling the program with the
permissions set to different numbers, like 0 (indicating no
one has the permission to do anything to the file).

In lines 22-31, we see the remainder of the program:

22 II Create a new Writer, associated
with the file we created

23 outputWriter = bufio.NewWriter(outpu~File);

24
25 outputString = "he:lo!\n";
26
27 for i:=O; i<lO; i++{
28 outputWriter.WriteString(outputString);
29 }//end for loop
30 outputWriter.Flush();
31

41

On line 23, we create a new bufio.Writer object, which
is a buffered implementer ofio.Writer. This allows us
to buffer data, before flushing it to an output stream.

We store the string "hello!" followed by a newline
character, '\n' into our string, outputString. Then, on
line 27, we write the header to the for loop. Notice that
the syntax is slightly different than C++ or Java. There are
no parentheses () enclosing the declaration, condition, and
incrementing of our counter variable i. Also, notice we did
not have to declare i as in integer explicitly. The : =
operator takes care of the data typing for us. We will
explore this handy little tool later in the book.

Inside the body of the for loop, we are essentially
appending (buffering) the outputstring ten times into our
Writer, outputWri ter. After the loop has completed, we
call Flush () to actually send the buffered data to the
output file.

To see the results of our application, we have to type:

$ 6g file_output.go
$ 61 file output.6
$./6.out-

Note that should be replaced with whatever you named
your program. And unless you used the -o option to
rename the output executable, 6 • out remains the default
executable name.

The output should be as follows:

hello!
hello!

42

hello!
hello!
hello!
hello!
hello!
hello!
hello!
hello!

This is exactly what we expect. There are 10 "hello!"
strings printed to the console, each followed by a newline.

3.2.2 Input from a File

Below, we have some code for retrieving input from a file,
and printing it to the console.

1 package main
2 import(
3 "os"
4 "bufio"
5 "fmt"
6
7

8 func main () {
9 var inputFile *os.File; //file for input
10 var inputError os.Error; //variable to catch

any input file error
11 var readerError os.Error; //variable to catch

reader errors
12 var inputReader *bufio.Reader; //input reader
13 var inputString string; //string to catch

input
14

15 // open the input file
16 inputFile,inputError =

os.Open("input.dat",os.O_RDONLY,O);
17

18 if inputError !;nil{
19 fmt.Printf("Error opening input file.\n");
20 return; //exit program
21

43

22

23 II Create a Reader for input, based on the
input file

24 inputReader; bufio.NewReader(inputFile};
25

26 for{
27 inputString, readerError

inputReader.ReadString('\n'};
28

29 if readerError !; nil{
30 return; // we've reached EOF (end of

31
32

33

file) or an error

fmt.Printf("The input was
inputString);

34 }//end for loop
35

%s",

In this program, lines 1-6 are straightforward. We import
the same packages that we required for our file output
scenario.

8 func main () {
9 var inputFile *os.File; //file for input
10 var inputError os.Error; //variable to catch

any input file error
11 var readerError os.Error; //variable to catch

reader errors
12 var inputReader *bufio.Reader; //input reader
13 var inputString string; //string to catch

input

Lines 8-13 begin our main function. The variable
declarations in lines 9-13 have comments explaining what
each does. We need an input file variable, an associated
error variable, a reader for the input, and associated error
for that, and finally, an input string that will contain the
input as it is coming in from the file.

15 // open the input file
16 inputFile,inputError;

os.Open("input.dat",os.O_RDONLY,O);

44

17

18 if inputError !=nil{
19 fmt.Printf("Error opening input file.\n");
20 return; //exit program
21

In line 16, we see that again, we capture the two return
values of the Open () function. However, this time, the
parameters to Open () are quite different:

os.Open("input.dat",os.O_RDONLY,O);

In this case, we provide a name for a file that we wish to
obtain input from. The second parameter indicates that we
are opening this file to read it only, not to do anything else
to it. The third parameter is quite useless in this particular
scenario, because we are not changing the rights to the file.
It isn't our file. We're only opening it to read, so as long as
the user set the file permissions appropriately, we can read
this file. So, for the third parameter, we just set it to 0.

In lines 18-21 we test to see if there were any errors that
occurred while trying to open the input file {input. dat).

Errors might occur if the file doesn't exist, or if the file
does not indicate sufficient permissions for us to read it.
It's good for us to catch any errors, so that we can print out
an error message to the user, and then gracefully exit the
program.

If we didn't catch errors, and one occurred, the program
would almost certainly crash in an ugly mess, horrifying
the user and maybe causing mental breakdown, loss of
wages, or chronic itchy scalp. In any case, it's good to try
to catch errors when we can.

23 II Create a Reader for input, based on the
input file

24 inputReader; bufio.NewReader(inputFile);

45

25

26 for{
27 inputString, readerError =

inputReader.ReadString('\n');
28

29 if readerError != nil{
30 break; // we've reached EOF (end of

31
32

file) or an error

33 fmt.Printf("The input was %s",
inputString);

34 }//end for loop
35

After we open the file for reading, we create a
bufio. Reader object on line 24, to be used to read the file.
The parameter to bufio. NewReader is, as was the case in
our writing program, the file we are working with.

In lines 26-34, we see the body of the for loop. Notice in
this case, the for loop has no conditions. This is valid
syntax, and is an infinite loop. There are no while or do­

while loops in Go. The for loop is the only iterative
(looping) structure in the Go language. We will learn about
for loops in more detail later on in this book.

Notice that this loop can be broken out of, if the
readerError is something other than nil. In the vast
majority of cases, the break will be caused by EOF (end of
file) being reached.

And line 35 is the end of the main () function, thus the end
of the program.

If you run the program, assuming you have a file called
input. dat that contains:

chicken

46

cow
donkey
horse
pig

You should see the following output to the console:

The input was chicken
The input was cow
The input was donkey
The input was horse
The input was pig

3.2.3 A Short Summary of
Permissions

In the code above, some of the talk about "permissions"
may have been intimidating if you are not familiar with
Unix (or Unix-like systems). On a Unix system, we have a
utility called chrnod, which allows us to change the
permissions for particular categories of users.

A typical chmod interaction may look like this:

$ chmod 777 myfile.txt

In this case the chmod command is being called on the
rnyfile. txt file, and the permissions are being changed to
777, which basically gives full access to anyone.

Go utilizes the same type of permissions technique with its
files, so it is important that we review what these numbers
mean.
First, we have to know a little about the three categories of
users:

• User
• Group

47

• Other

The user is the owner of the file, which is usually the user
who created the file. Sometimes, this can be the individual
to whom ownership was assigned (probably with the chown

command for reassignment of ownership.)

The group includes users who are part of the file's group.

Finally, other indicates all other users (users who are not
the owner of the file, nor in the file's group).

Now, for each of these, we can assign a number:

User Group Other
Read I Write I Execute Read I Write I Execute Read I Write I Execute
4 I 2 I 1 4 I 2 I 1 4 I 2 I 1

This may look a bit confusing at first glance, but we really
just add the numbers for the corresponding privilege,
within the correct category to get the appropriate number.

For example, if we want the owner of the file to have full
permissions (Read, Write, and Execute) we take the three
numbers and add them:

4+2+1=7

So the first number we will use with chmod is a 7.

Let's say we want the group to have read and write
privileges, but no execute privilege. Then, we take the
Read (4) and Write (2) and add them:

4+2+0=6

48

So, the access privilege for group is 6.

Finally, for other, let's say we will allow read privilege, but
nothing else. So that is:

4 + 0 + 0 =4.

So, in total, our three digit number is:

764

Used with chmod, we could type:

$ chmod 764 myfile.txt

For the Open () function in Go, for example, we would
use 0764 as the final parameter.

There is one important note to be made about all of this.
The final permissions of a file depends on a second value,
called the umask. If you type umask at the command line, it
should return something like:

0022

Whatever the value of umask is, subtract it from the
permissions you set with Open(), and that will be the final
permissions of the file. For example, if you used 0666 as
your permissions parameter to Open(), you get:

0666
-0022

0644

49

Thus, 0644 is your actual permissions for the file that
Open() was called upon. The umask could be changed in
the .bashrc file ifyou wished. However, umask is intended
primarily to allow the user to limit what programs can do
on his/her system in terms of changing permissions.

3.3 Constants and Variables

The Go programming language has syntax that is somewhat
different from languages like C++, Java, or C#. We have
been introduced to some practical examples of input and
output operations in the previous two sections of this
chapter. In this section, we will explore how to declare and
utilize variables and constants, and we will examine several
of the basic data types available in Go.

3.3.1 Identifiers

Valid identifiers in Go begin with a letter (which may be
anything identified as a letter in Unicode UTF -8, or an
underscore _) followed by zero or more letters or Unicode
digits. To clarify in a more concise manner:

LETTER = UNICODE_LETTER or "_"

IDENTIFIER = LETTER followed by 0 or more { LETTER or
UNICODE_DIGIT }

The following are examples of valid identifiers:

q
X56
yo yo

x23
65xg

50

Notice one very important difference with Go. Go uses
Unicode, not just ASCII letters. So, the identifier 8Ai\jltc; in
Greek is a valid identifier in Go. Although some issues are
still being sorted out in this new, ever changing
programming language, it is important to note that the
designers of Go have taken a step towards making Go a
more internationalized language. This will undoubtedly
have far reaching consequences on the future accessibility
of programming in non-English speaking nations.

In contrast, the following are not valid identifiers:

99sd //identifiers can't start with numbers!
case //identifiers can't be Go language reserved words
+2d //identifiers can't contain operators

The underscore by itself, _, is a special identifier known as
the blank identifier can be used in a declaration or value
assignment like any other identifier, but the value is
discarded. This may not seem useful right now, but will
prove useful in situations such as with functions and
methods that return multiple values.

3.3.2 Constants

Constants in Go can only be one of three types:

• Numbers
• Strings
• Booleans

The general form to declare a constant is:

51

const Identifier = value;

where cons t is a keyword indicating that the following is a
constant, Identifier is the name of the constant, and
value is the value ofthe constant.

In specific, a constant is declared as follows:

const PI = 3.14159;

Constants must be able to be evaluated at compile time.
Calculations are acceptable, as long as they involve values
that are able to be evaluated at compile time, and do not
require any runtime activities.

For example,

const myConst = 2/3;

is acceptable, since 2/3 can be evaluated at compile time.

Note that the type specifier is optional.

The following constant declaration will cause a compiler
error:

const SomeConstant = getMyNumber();

Let's assume that getMyNumber () is a function that we
declared somewhere to simply return the number 5.5, for
example.

func getMyNumber() float{
return 5.5;

52

Since getMyNurnber () requires that the program be
compiled already, so that the function can be called when
the program is executed, we cannot use its return value as
the value for SorneConstant.

Also, constants are called constant due to the fact that you
can't change their value during the execution of the
program. The value stays (wait for it ...) constant! If you
try to reassign a value to a constant, you will get a compiler
error, something like:

myProgram.go:15: cannot assign to 7

The value you see at the end (7) is the constant's value it
was initialized with. So, when the compiler gets to a
reassignment statement, such as:

myConst = 15;

it sees:

7 = 15

which is obviously an error.

3.3.3 Variables

The general form to declare a variable is:

var Identifier DataType = value;

where the var is a keyword indicating that the following
statement will be a variable, Identifier is the name of the
variable, Data Type is the type of data that the variable will
contain, and value is the initial value ofthe variable.

53

Variables in Go are similar to constants, except they can be
initialized with values computed at runtime.

For example, let's say I wanted to know what the
environment variable Goos is set to. If you recall, during
installation, Goos is the environment variable that indicates
the platform (operating system) we installed Go on.

In my case, I can use the following code to determine this
particular environment variable's contents:

1 package main
2 import(
3 "fmt"
4 "os"
5
6

7 func main(){
8 var goos string= os.Getenv("GOOS");
9 fmt. Printf ("The operating system is : %s\n",

goos);
10 }

The above code is a complete program, but is very simple.
Like other systems languages (such as C/C++), Go allows
you to obtain environment variables. The os. Getenv ()

function takes a single, string parameter and returns a string
indicating the contents of the environment variable you
specify.

In the case of the computer I'm working on (running
Ubuntu), the output of this program would be:

The operating system is : linux

Also important to note is that, like constants, the data type
identifier is optional, as long as there is an initialization
expression. One or the other, or both are acceptable.

54

For example,

var t string;
string = "hello";

var t = "hello";

are both acceptable. But,

var t;

is not an acceptable declaration and will cause a compiler
error. While Go is forgiving with its unique typing system,
it is still technically strongly typed. Just declaring var t;

does not give Go any idea as to what the type of data will
be.

3.3.4 Time Savers : Short
Declarations and Distributing

So far in this section, we've explored the basics of
declaring constants and variables, and initializing their
values. However, there are a couple handy tools in our
arsenal to make declarations and value assignment
statements shorter.

The first of these are short declarations. Short declarations
allow you to skip having to type the keywords, or even the
data type of the variable or constant.

For example,

var myint int = 16;

can be shortened to:

55

my!nt :=: 16;

In a short declaration, the data type of the identifier mylnt is
determined by the value it is assigned to. Notice that the:=
is used for a short declaration, while our old friend the = is
used in a traditional declaration.

To shorten even further, it is also acceptable to leave the
semicolon (;) off at the end of the declaration. Go
automatically inserts a semicolon. My personal preference
is to use a semicolon at the end of such statements and
expressions.

Another handy technique is distributing of a keyword.
We've seen this already with our import statements:

import(
"fmt"
"os"

The parentheses allow you to distribute the keyword. The
above is equivalent to:

import "fmt";
import "os";

We can use distribution with variables and constants too. It
becomes quite cumbersome to have to keep writing the
same keyword over and over again, so Go allows us to use
this technique to save time when coding, increasing the
writability of the language.

var(
numChickens int = 55;
numHorses int = 6;
nameCow string;
nameRooster string;
numCamels =: 12;

56

Notice that mixing the data types doesn't matter. All the
distribution does is just what its name implies. It
distributes the keyword across the identifiers. Notice also
that the same rules for declaring all of these separately
apply when using distribution. The above is equivalent to:

var numChickens int = 55;
var numHorses int = 6;
var nameCow string;
var nameRooster string;
var numCamels = 12;

3.4 Some Basic Data Types

Go has many of the data types with which you are probably
familiar if you are coming from another language.
However, how Go deals with variables and constants of
these types may be different than what you're used to. We
leave the more complicated and interested data types until
later in the book, and focus on some of the more
fundamental data types in this section.

3.4.1 Numeric Data Types

Go has a few different numeric data types that allow for the
storage of numbers. Numbers may include integers or
floating point numbers.

The architecture-dependent numeric types that Go has
predefined are as follows:

int
uint

57

float
uintptr

The int type is for storing values that are integers,
including both positive and negative values. The uint, on
the other hand, stored unsigned integers, which means that
values stored for this type can only be positive, but they can
hold larger positive numbers than their int counterparts
(because they don't have to leave space for negative values,
they can use it all towards positive values).

The float data type is used for numeric values that have
both an integer and fractional data part, such as the value
43.567.

The uintptr data type is a special data type that is an
unsigned integer that will be large enough to store a pointer
value.

Note that the sizes of int, uint, and float are dependent
upon the architecture on which they are present. For
example, if you are on a machine with 64 bit architecture,
the int type could be 64 bits, whereas if you are on a 32 bit
machine, the int will be 32 bits. The implementation of
the compiler will determine what size in t will have.
That's why we call these values architecture-dependent.

The architecture-independent numeric types are:

uinta
uintl6
uint32
uint64

int8
intl6
int32
int64

58

float32
float64

byte

These types are the size indicated by their names,
regardless of the platform on which they reside. For
example, the int8 data type is going to be 8 bits in size,
regardless of the platform. The same goes for the other
data types.

The byte is a familiar alias for uinta. This makes sense,
since a byte is 8 bits (binary digits) in size.

Also important to note is that Go does not allow implicit
type coercion. Let us consider an example program:

1 package main
2 import (
3 "fmt"
4
5

6 func ~ain() {
7 var ~yl6bit:nt int:6 = 34;
8 var ~y32bitint int32;
9

10 my32bitint = myl6bitint;
11

12 fmt.Printf("32 bit intis %d\n", my32bitint);
13 fmt.Printf("l6 bit intis %d\n", my16bitint);
14

This program will generate a compiler error:

rnyFile.go:lO: cannot use rny16bitint (type int16) as
type int32 in assignment

Even though both of the variables are integers, Go will not
allow us to coerce the value of the 16 bit integer to our 32
bit integer. We have to perform an explicit conversion. To

59

explicitly convert one type to another, you can use the
name of the type you are converting to with function call
syntax. For example, to correct the above program, we
would change line 10 from:

10 my32bitint = my16bitint;

to

10 my32bitint = int32(my16bitint);

Now, the program will compile, link, and execute correctly.

Go will also not allow implicit type coercion between
different numeric types like int to float, and float to int.
You must also explicitly convert these types as well.

And, note that even with conversion, if you assign a float
value to an integer variable, the fractional part of the float
value will be truncated (that is, removed, or lost). For
example, if your float variable contains 3.14159, and you
try to assign it to an integer variable, with conversion, the
integer will only contain 3. You will lose the 0.14159 part
of the float value.

3.4.2 Character Data Type

Like most high level languages, Go has a character data
type, char, which is used to store single characters. One
interesting thing about Go, however, is that character data
in Go is stored in UTF -8 (Unicode), not ASCII. So, you
can store characters from other character or symbol
systems.

60

Characters are essentially numbers that indicate a special
encoding. In the case of Go, we can use the traditional
ASCII code, such as:

var myChar byte= 'c';

Notice that we use the data type byte to store a simple
ASCII character. Alternatively, we can use the ASCII
encoding with the escape character at the beginning, to
achieve the same value:

var myChar byte= '\x63';

If you are not familiar with encoding, don't be frightened.
You can fairly easily find ASCII and Unicode tables online.
The ASCII hexadecimal (base 16) value for the character
'c' is 63. Don't be fooled. This isn't the same as the
decimal (base 1 0) number sixty three. It is actual 99 in
decimal. And, as you may suspect, you can write:

var myChar byte = 99;

Now, to print out the value, you can use the following:

fmt.Printf("The character is %c\n", myChar);

Note the %c to indicate that the value is to be interpreted as
character data.

The \x in the earlier value of \x63 indicates that the
number following it is to be interpreted as hexadecimal.

Now, we have mentioned that Go supports Unicode. In
order to use Unicode, you preface the value with the\
escape character, and the a u. The number that follows is
hexadecimal, and indicates a UTF -8 encoded character.

61

For example, to store the Greek letter Beta (~), we use the
following encoding:

var myBeta int = '\u03B2';

This is because the Unicode encoding for the Greek letter
Beta is 03B2. Note that this time, instead of a byte, we
needed to use an int. This is because a byte (8-bits) is too
small to hold the Unicode UTF -8 encoding of a character.

If the console you are using is capable of rendering UTF-8
encoded characters, you can declare and print out any of
the UTF -8 encoded characters. This gives you the ability
to print characters from a wide array of language character
sets, including Chinese, Japanese, Arabic, Bengalese,
Hindi, Greek, and Armenian, just to name a few.

3.4.3 Boolean Data Type

The Boolean data type is pretty straightforward. Boolean
data are used to represent truth values, and can only contain
one of two values, true or false. An example of Boolean
data in use will follow:

1 package main
2 import(
3 "fmt"
4
5

6 func main() {
7 var myBool bool;
8 myBool = false;
9

10 if myBool==false{
11 fmt.Printf("the value is false\n");
12 }else{
13 fmt.Printf("the value is true\n");
14

62

15

In this program, we create a Boolean variable on line 7 and
set its value to false on line 8. Then, to see an example
(albeit trivial) of how a Boolean variable may be used, we
see an if-else statement on lines 10-14.

We will explore if-else statements in more detail later, but
for now, you just need to know that if-else statements are
one of the control structures to allow a computer program
to make decisions.

3.5 The string Data Type

I've devoted an entire section to the string data type,
because there is a lot of useful information about strings
that I thought deserved its own section. This is not to say
that there aren't many other interesting things we could do
with Booleans or integers (which we will see more of
later), but strings in Go are quite interesting.

So what is a string, exactly? In Go, the string data type
represents a concatenated, or connected, sequence of
characters. Unlike languages like C++, strings in Go are
immutable, which means that once the string is created, you
cannot modify its contents. For example, in C++, you can
modify individual characters within the string. Go does not
allow this.

Also, in Go, strings are not NULL-terminated, but rather
length delimited. In other words, there is no \ o, at the end
of the character string.

In Go, there are two forms of strings:

• Interpreted Strings

63

• Raw Strings

Interpreted strings are nearly identical to the strings that
are familiar to readers who may be familiar with other
languages. An interpreted string is surrounded by double
quotes (" "), and escape sequences are interpreted.

Raw strings, are strings that are not interpreted. The are
surrounded by the back quotes (' ', also known as grave
accent). On a standard keyboard, the grave accent is
located on the same key as the tilde (-), to the left of the
number keys.

The following is an example of the differences between
interpreted and raw strings:

1 package main
2 import (
3 "fmt"
4
5

6 func main(){
7 var myRawString string;
8 var ~yinterString string;
9

10 myRawString ='This is a raw string \n';
11 myinterString = "This is an interpreted string \n";

13 fmt.Printf("Here is the string: %s\n",
myRawString);

14 fret.Printf("Here is the other string: %s\n",
myinterString);

15
16

The output of the above program is:

johnbaugh@ubuntu:~/Desktop/go_programming/stringsS ./6.out
Here is the string: This is a raw string \n
Here is the other string: This is an interpreted string

johnbaugh@ubuntu:~/Desktop/go_prograrrming/stringsS

64

Notice that in the first string (the raw string), the \n is
printed as if it were simply a backslash followed by the
character 'n'. In the interpreted string, the \n is interpreted
as the newline character, which is why there is a blank line
present in the output of the program.

While immutable, strings are accessible via standard
indexing methods. For example, if I wanted to access the
first character in a particular string, I can use the following
code segment:

var someString s~ring = "My name is John";
frnt.Printf("The firsc character is %c\n", someS~ring[Oj);

The character at s orne string [o 1 is 'M'. Index 0 is the first
character in the string. To know the index of the last
character in any particular string is to use the universally
available len () function. Since the first character of the
string is at 0, then the last character is at the length of the
string minus 1. So, to print out the last character of the
string we described above, we use the following code:

fmt.Printf("The first character is %c\n",
sorneString[len(someString)-1]);

Make sure that you put the -1 after the length function is
called, or there will be a runtime error.

3.5.1 The strings Package

In this subsection, we'll explore some of the functionality
of a package that Go provides for simple string
manipulation, the strings package. I will not cover all of
the functions available in this package, but will try to give
you some idea about what you can do with strings in Go
using the functionality available in this package.

65

Prefixes and Suffixes

To determine if a particular string begins or ends with a
particular character or substring, Go provides us with a
couple very handy functions in the strings package.

strings.HasPrefix(str string, prefix string) bool;

strings.HasSuffix(str string, suffix string) bool;

As you may recall from your studies in English, a prefzx is
the beginning of a word (or for our purposes, the beginning
of a string), and a suffzx is the end of a word (or string).

Each of the functions above returns a Boolean value (either
true or false), and they both take a string to search within
as their first parameter (the formal parameter s t r in the
above function prototypes).

For both of these functions, the second parameter indicates
a substring you are searching for. The function Has Prefix

will return true if the second parameter prefix is the
substring that str begins with, and false otherwise.
Similarly, the HasSuffix function will return true if the
second parameter suffix is the substring that str ends
with, and false otherwise.

Here is an example of Has Prefix and HasSuffix in action:

2
3
4
5
6

package main
import(

"fmt"
"strings"

7 func main() {
8 var myString string = "This is a string";

66

9

10 fmt.Printf("T/F? Does the string \"%s\" have prefix
%s?: ", myString,"Th");

11 fmt.Prin~f("%v\n", strings.HasPrefix(myString,
"Th"));

12

13 fmt.Prin~f("T/F? Does the s~ring \"%s\" have prefix
%s?: ", myString, "X");

14 fmt.Printf("%v\n", strings.HasPrefix(myString,
"X"));

15
16 fmt.Printf("T/F? Does the string \"%s\" have suffix

%s?: ", myString, "ing");
17 fmt.Printf("%v\n", strings.HasSuffix(rnyString,

"ing"));
18
19 fmt.Printf("T/F? Does the string \"%s\" have suffix

%s?: ", myString, "cow");
20 frnt.Printf("%v\n", strings.HasSuffix(myString,

21

22

"cow"));

The output of the above program is as follows:

johnbaugh@ubuntu:-/Desktop/go_programming/presuf$./6.out
T/F? Does the string "This is a string" have prefix Th?:
true
T/F? Does the string "This is a string" have prefix X?·
false
T/F? Does the string "This is a string" have suffix ing?:
true
T/F? Does the string "This is a string" have suffix cow?:
false

Let's briefly examine the program code above. The fmt

package is imported, along with the package we're learning
about, the strings package on lines 3 and 4.

On line 8, we declare and initialize the string that we are
going to work with.

In lines 10, 13, 16, and 19, we echo the string and the
prefix or suffix we are going to test for. Notice the usage
of \"% s \" to ensure that quotes are printed in the actual

67

output. The usage of the backs lash in front of the quotation
mark ensures that the quotation mark is escaped, or,
ignored as a part of the languages syntax. If you do not
escape quotations or other components of the Go language,
the compiler will flag them as syntax errors.

In line 11, we test for the prefix "Th", using the functions
Has Prefix (). Since our string, myString, has the prefix
"Th", this function returns true. In line 14, we test for a
prefix of "X", which causes HasPrefix() to return false.

Similarly, we can test for suffixes. In lines 17, and 20 we
test for "ing" and "cow" respectively as suffixes. Since
"ing" is a suffix of our sentence, HasSuffix () returns
true. However, for the test of"cow", HasSuffix ()

returns false.

The output is what we expect. For the prefix "Th", and
later, the suffix "ing", the output is true. But, for the
prefix "X", and the suffix "cow", the output is false, since
these are not a prefix and suffix of myString, respectively.

Counting Occurrences of a Substring

Sometimes, it may be useful to know how many
occurrences of a particular substring are in a string. The
following function is for this very purpose:

strings.Count(str string, sub string) int;

The exact definition says that the function
strings. count () returns the "number of non-overlapping
instances of sub in str".

68

What exactly does this mean? Well, let's consider some
code:

1 package main
2 import (
3 "fmt"
4 "strings"
5
6

7 func main() {
8 var myString string = "Hello how is it going,

Harold?";
9 var manyA string = "aaaaaaaaaa";
10
11 fmt.Printf("Number of H's in %sis :", myString);
12 fmt.Printf("%d\n", strings.Count(myString,"H"));
13
14 fmt.Printf("Number of double a's in %s is : ",

manyA);
15 fmt.Printf("%d\n", strings.Count(manyA,"aa"));
16

And the output of the above program is:

johnbaugh@ubuntu:-/Desktop/go_programming/countsubstS ./6.o
ut
Number of H's in Hello how is it going, Harold? is :2
Number of double a's in aaaaaaaaaa is : 5

Notice in the code (and the corresponding output) that in
lines 11-12, we test the string myString for the single, one
character long substring, "H". This returns a count of 2,
because there are 2 of the capital letter "H" in our string,
myString (one in "Hello", and one in "Harold").

To demonstrate what is meant by "non-overlapping
instances ... ", consider the string, manyA, which has 10 of
the lower case letter "a" in a row. We then test for the
number of occurrences of double a's. The resulting count
is 5. Why 5? Let's compare overlapping instances with
non-overlapping:

69

Non-overlapping instance of"aa":

Count
1 aaaaaaaaaa
2 aaaaaaaaaa
3 aaaaaaaaaa
4 aaaaaaaaaa
5 aaaaaaaaaa

As you can see, with non-overlapping instances of"aa",
you move on to the "a" following the last "a" in the double
a ("aa") that you just counted.

if the count () function considered overlapping instances, it
would count 9 such instances:

Count
1 aaaaaaaaaa
2 aaaaaaaaaa
3 aaaaaaaaaa
4 aaaaaaaaaa
5 aaaaaaaaaa
6 aaaaaaaaaa
7 aaaaaaaaaa
8 aaaaaaaaaa
9 aaaaaaaaaa

In the case of overlapping instances, we see that we use the
last "a" of the double a we just counted as the first "a" of
the next double a we are about to count.

So, just remember that strings. Count () does not count
overlapping instances.

70

Index and Lastlndex

Often, we want to know at what position a particular
character or substring occurs in a string. Go provides two
helpful functions that accomplish this task:

strings.Index(str string, sub string) int;

strings.Lastindex(str string, sub string) int;

Both of these functions return -1 if they cannot find the
substring in question.

If the substring being searched for does exist in the string
str, the Index () function will return the index of the first
instance of sub in str, while Lastindex (),not
surprisingly, returns the last index of sub in str.

As an example, consider the following code:

1 package main
2 import(
3 "fmt"
4 "strings"
5
6

7 func main() {
8 var myString string;
9 myString = "Hi, I'm John. Hi.";
10
11 fmt.Printf("The position of \"John\" is: ");
12 fmt.Printf("%d\n", strings.Index(myString, "John"));
13

14 fmt.Printf("The position of the last instance
of \"Hi\" is: ");

15 fmt.Printf("%d\n", strings.Lastindex(myString,
"Hi"));

16
17 fmt.Pr ntf("the position of \"Burger\" is: ");
18 fmt.Pr ntf("%d\n", str.:..ngs.Index(myString,

"Burger") ;
19

71

20

And the output from the above code is as follows:

johnbaugh@ubuntu:-/Desktop/go_programming/index$./6.out
The position of "John" is: 8
The position of the last instance of "Hi" is: 14
the position of "Burger" is: -1

The code and its corresponding output shows us three
different scenarios involving the finding of an index of a
particular substring. The first, on lines 11-12, uses the
Index ()function to search for the string "John". This
returns 8, because the 'J' in "John" occurs at position 8.
Secondly, we use Last Index () to search for the substring
"Hi". Notice that "Hi" occurs twice in our string,
myString.

Last Index () returns the last occurrence of the substring
"Hi", which is why the function did not return a 0 (for the
index of the 'H' in the first "Hi"), but rather it returned 14,
because 14 is the index of the 'H' in the last "Hi" in the
string.

Finally, we used Index () to search for a string that does
not exist as a substring inside of myString. Since "Burger"
is not inside myString, the function returns -1. This is a
clever return value that many programming languages use
to indicate that a value was not found. Since all indices
(the plural of index) have non-negative values (e.g. 0, 1, 2,
3, ...)we know that any negative value would never be used
as an actual index. So, the programmers of Go chose -1 to
indicate the substring was not found.

72

Repeat

If we have a string that we want to copy several times and
place in a new string, we have a quick and easy way to do
this, with the following function:

strings.Repeat(str string, count int) string;

The function prototype for Repeat () has two parameters.
The first, str of type string indicates which string we
wish to copy. The second, count of type int, indicates
how many times we want to repeat the string. And, the
return type, indicated at the end of the prototype is string.

The following code demonstrates the usage of the
Repeat () function:

1 package main
2 import (
3 "fmt"
4 "strings"
5
6

7 fun c rna in () {
8 var origString string = "Hi there ";
9 var newString string;
10

newString = strings.Repeat(origString, 3);
:2 f~t.Printf("Kew, repeated string is: %s\n",

newString);
13 }

And the output is:

johnbaugh@ubuntu:-/Desktop/go prograrrming/repeatS ./6.out
New, repeated string is: Hi there Hi there Hi there

In the above code, notice that I included a space at the end
of the original string, origString on line 8. This is so
when I create the value to place in newString, it will be
more readable when we print it.

73

The actual function call occurs on line 11, and is fairly
straightforward. We tell the Repeat () function that we
want it to return a new string that uses our origString,

and repeats it 3 times.

ToUpper and Tolower

Two very common tasks in programming involve change
the case of strings. One obvious example would be when a
user signs up for a particular website. The user creates a
login name and password, and various other information.
Consider what a nightmare it would be (and is, on some
websites) if the user's login name was case sensitive.
Often, web developers will perform a to lower () of
whatever language they are working with on the initial
registration, and on subsequent logins, so that no matter
what case the user uses, they can still log into their account.

Go offers both To Upper () and To Lower () functions.

Their prototypes are essentially identical:

strings.ToUpper(str string) string;

strings.ToLower(str string) string;

The To Upper () function returns a new string in which all
characters in the parameter str are changed to upper case.

The To Lower () function, on the other hand, returns a
string in which all characters in the parameter s t r are
changed to lower case.

74

If a particular character is already in the appropriate case,
or does not have a corresponding upper or lower case
character (such as numbers or special symbols), then the
character is left alone.

Consider the following code:

1 package main
2 import(
3 "fmt"
4 "strings"
5
6

7 func main() {
8 var origString string = "Hey, how are you, George?";
9 var lowerString string;
10 var upperString string;
11
12 lowerString = strings.ToLower(origString);
13 upperString = strings.ToUpper(origString);
14
15 fmt.Printf("Original string : %s\n", origString);
16 fmt.Printf("Lowercase string %s\n", lowerString);
17 fmt.Printf("Uppercase string: %s\n", upperString);
18

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/upper_lower$./6.
out
Original string : Hey, how are you, George?
Lowercase string hey, how are you, george?
Uppercase string : HEY, HOW ARE YOU, GEORGE?

In this program, we create our original string on line 8, and
assign it the value "Hey, how are you, George?". Then, we
declare two strings, lowerString and upperString on
lines 9 and 1 0. These are then used on lines 12 and 13 to
capture the values returned by ToLower (} and To Upper(},

respectively, when applied to origString.

Finally, on lines 15-17, we print the various strings that
we've created.

75

Pay close attention to the output. Notice that for the
lowercase string, the 'H' from "Hey" and the 'G' from
"George" in the original string are changed to lowercase,
but that all the other characters (that are already lowercase)
are not modified.
Similarly, for the uppercase string, all of the lowercase
characters are changed to uppercase, and those that are
already uppercase do not change.

3.5.2 The s trconv Package

Another package that is useful when dealing with strings is
the strconv package. This package offers several
functions to convert to and from the string data type. I
will give a few examples, but will not go into incredible
detail about this package. The usage of the functions is
mostly straightforward, and many are very similar. The
verbose documentation is available on the official Go
website (http://www.golang.org).

However, to get an idea of how to use a couple the useful
functions and externally available variables that strconv

has to offer, consider the following code:

1 package main
2 impor~(

3 II fmt II
4 11 0S"

5 "strconv 11

6
7

8 func main () {
9 var origString string = 11 365 11

;

10 var theint int;
11 var myNewString string;
12 var err os.Error;
13

76

14 fmt.Printf("The size of floats is : %d\n",
strconv.FloatSize);

15 fmt.Printf("The size of ints is: %d\n",
s~rconv.IntSize);

16
17 theint, err= strconv.A~oi(origString);
18
19 if err == nil{
20 fmt.Printf("~he integer is %d\n", theint);
21
22
23 theint = theint • 5; //use as an integer
24
25 myNewString = strconv.Itoa(theint);
26
27 f~t.Printf("!he new string is: %s\n", ~yNewString);
28
29

And the output is as follows:

johnbaugh@ubuntu:~/Des~top/go_programming/stringconversion$

. I 6. out
The size of floats is : 32
The size of ints is: 32
the integer is : 365
The new string is: 370

In this code, on lines 14 and 15, strconv. FloatSize and
strconv. IntSize are printed out. These give you the size
of the floats and ints, respectively.

Further down, we use strconv .Atoi () function, which
stands for "ASCII to Integer", allowing us to convert a
well-fanned string into an integer. In our example, we use
the origString, "365". It is then converted, on line 17, to
the integer value 365:

theint, err= strconv.Atoi(origString};

Notice there are two values being captured: the actual
integer and any possible error return if the conversion was

77

unsuccessful, which may occur, if for instance the string
did not represent an integer.

While this may not seem like much of a change, I perform
arithmetic on line 17, by adding 5 to our integer that we
obtained via the Atoi (> function. The new value of
theint is 370.

Then, on line 25 theint is converted back to a string:

myNewString = strconv.Itoa(theint);

Now, myNewString contains a string representing the Int.

Recall that theint is now 370, so the string that is returned
by Itoa () is "370".

3.6 Keywords and Operators

In this section, I'll show you the available keywords and
operators that Go has to offer. I will not go into incredible
detail in this section, as this section is only here to make
you aware of the available keywords, operators, delimiters
and other special tokens available in Go. Much of this will
be straightforward, and if you are familiar with another
high level programming language, much of this will seem
familiar. However, Go does have some keywords (also
called reserved words) that are unique to the language.

3.6.1 Keywords

The following are the keywords of the Go language:

break default interface
case defer map

78

chan else go to package switch
const fall through if range type
continue for import return var

We have seen a few of these keywords thus far, and some
of these may look familiar to people who program in other
programming languages. Note that identifiers cannot have
the same name as any of the keywords.

The func keyword designates the beginning of a function
definition. The var keyword designates the beginning of a
variable. The const keyword, similarly, denotes the
beginning of a constant definition.

We have briefly utilized, but not thoroughly explained (yet)
several other keywords, such as if, else, and for. We
will more thoroughly explore these structures later in this
book.

There are also several very unique keywords that may look
alien to newcomers to the Go programming language.
These include keywords like chan and go. We will also
explore these later after we have a stronger foundation in
the fundamentals of the language, as they make up some of
the more powerful features of Go.

3.6.2 Operators

In the Go language, the following are available operators,
delimiters, and other special tokens:

+ & += &= && -- != ()

- I -= I= I I < <= []
* "' *= "'= <- > >= { }

I << I= <<= ++ = :=
'

;
% >> %= >>= -- ! ... :

79

I &" I &"=

Many of the operators listed are probably very familiar.
The +I - , * , I , ==, ++I -- and others are quite
straightforward. The delimiters such as parentheses () ,
brackets [l, and braces, { } should also look familiar.

Others, such as <-, : =, & " may look very foreign to you.
We will look into many of the available operators later in
this book.

3.7 Summary

In this chapter, we have explored some of the fundamental
techniques and building blocks used in Go. We have
explored how to retrieve input from the keyboard, as well
as from an input file. Also, we learned how to produce
output, both to the console, and to an output file.
We explored many of the fundamental data types available
with Go. We extensively explored strings, and some of
the packages used to work with string data.

Finally, we briefly introduced the keywords and operators
available in Go.

80

Chapter 4

Control Structures
and Functions

Like most high level languages, Go has control structures
to allow programs to perform tasks such as making
decisions (conditional structures) and repeating tasks
(iterative or looping structures). It is rare when any
significant program simply performs a linear sequence of
tasks. More often than not, programs are full of decisions
and repetitive tasks.

Also, in this chapter, we will explore functional
decomposition in Go. With functions, we can take a
frequently used sequence of instructions and give them a
name, to be used over and over again without having to
rewrite the same code over and over.

4.1 Conditional Structures

With conditional structures, we can control the execution of
a program, allowing the program to make decisions based
on the current program state, values of variables, and
values of constants. Go offers two conditions structures:
the if structure and the switch structure.

81

4.1.1 Basics of Logic

This subsection serves as a review of logic so that we can
more effectively explore the conditional structures of Go.

Equality
== is the equality operator that takes two operands. It is
read as "is equal to". Notice there are two equal signs, one
followed by the other.

If we have a variable set to the value 6:

var someVar int = 6;

Give this,
sorneVar
sorneVar

AND operator

2 is a false statement
6 is a true statement

The AND operator is a logical binary operator, denoted by
& & • Logical AND takes two operands, and the entire
statement is true only ifboth operands are true.

Given T representing a value that is true, and F representing
a value that is false:

T && T is true
T && F is false
F && T is false
F && F is false

82

OR operator
The OR operator is a logical binary operator, denoted by
1 1. Logical OR takes two operands, and the entire
statement is true if any of the operands are true.

Given T representing a value that is true, and F representing
a value that is false:

T I I T is true
T I I F is true
F I I T is true
F 1 1 F is false

The only situation in which a statement involving OR is
false is if both operands are false. Otherwise, as long as at
least one of the operands is true, the statement is true.

NOT operator
The NOT operator is a logical unary operator, denoted by
! . Logical NOT takes one operand, and makes the truth
value of its operand the opposite of what it is:

!T is false
!F is true

4.1.2 The if Structure

For those familiar with other high level languages, the if

structure will look very familiar. The syntax, however,
maybe slightly different than what you may be accustom to.

The if structure takes the basic form:

if condition{

83

//do something

Also, there is an optional else or else if as part of the
if statement.

if condition{
//do something

else if condition{
//do something else

else{
//default

Notice very carefully that with Go, the else if and else

statements must be on the same line as the closing curly
brace of the previous part of the structure. Also, just like
functions (such as the main function that we are so familiar
with), the opening curly brace must be on the same line as
the if statement header and condition.

The following is a syntax error:

if condition
{

//do something

Also, notice that with proper syntax, there are no
parentheses surrounding the condition.

Another form of the if statement involves initialization in
the header, as follows:

if initialization statement; condition{
I I do something

The initialization statement must be separated from the
condition with a semicolon.

84

Up until now, we've seen the general forms that if

statements can take. One of the best ways to understand
concepts is in the contexts they will be used. So, as an
example of how to use if -statements, consider the
following:

1 package main
2 import(
3 "fmt"
4
5
6 fun c rna in () {
7 var firstint int 10;
8 var cond:nt ~nt;
9

10 if f~rstint <= 0{
11 fmt.Printf("First int is less than or equal to

0\n");
12 }else if first:nt >0 && first:nt < 5{
:3 fmt.Printf("?irst intis between 0 and 5\n");
14 }e:se{
15 fmt.Printf("?irst intis 5 or greater\n");
16
17

18

19 ~f condint = 5; cond:nt > 10{
20 fmt.Printf("condint is greater than 10\n");
21 }else{
22 fmt.Printf("condint is not greater than 10\n");
23
24

The output of the above code is as follows:

johnbaugh@ubuntu:-/Des~top/go progra~ing/if elseS ./6.out
First int is 5 or greater - -
condint is not greater than 10

This is example contains variables that were initialized with
literal values in the code itself, and is fairly trivial for the
sake of brevity. It is more common that values are input
from the user or from a file, and stored in the variables.

85

In the above example, we show the two different element
forms available for if statements. On line 7 we declare and
initialize the variable firstint. On line 8 we declare the
variable condint.

On lines 10-16, the firstint variable is tested, and the
appropriate branch is taken depending on its value. Since
the value 10 is stored into firstint statically, we know
which branch the program will take (namely, the final else

branch).

Notice the usage of<= on line 10. This is the less than or
equal to sign. Thus, if firstint was a negative number or
0, then the first branch would be taken.

Since this is not the case, the second branch condition is
tested: firstint >0 && firstint < s. The && (logical
AND) indicates that both of its operands must be true in
order for the entire statement to be true. In this case, the
branch will be followed if the integer is strictly between 0
and 5. Again, this is not the case.

An else without any if attached serves as a sort of catch­
all. In other words, if all of the above statements that were
evaluated are false, the e 1 se branch will be followed.

On lines 19-23, we see a different form of the if statement.
In this case, we perform a value assignment to the variable
on line 19, as part of the if statement's header. After
initializing condint, we test its value to determine if it is
greater than 10. Like with our first example, we also have
an else statement that acts as a catch all.

As a final note on if statements, you could use
parentheses around the condition, but it is not typical in Go
programming. It is, however, useful in situations where

86

you may wish (or need) to group logical statements, such as
if ! (varl == var2).

4.1.3 The switch Structure

Another conditional structure available in Go is the
switch structure. These switch structures are somewhat
similar to what you may have used in C/C++, but do not
require that you use constants or ints as your conditional
values.

Also, you can use multiple cases, separating them by
commas.

One major difference between Go and C/C++ switch
structures is the cases do not have automatic fall-through.
In C/C++ and similar languages, you must use a break;
statement to ensure that after one case is determined to be
true, the switch statement is completed and other cases
(such as default) are not executed. With Go, as soon as a
case is determined to be true, the switch is complete, and
program control is returned back to the outer structure
(such as the main function).

You can cause automatic fall-through (thus behaving
similarly to how C/C++ switch structures behave without
break statements) using the Go keyword fall through.

Let's consider a typical example of how the switch
structure is used:

1 package main
2 import(
3 "fmt"
4
5

6 func main() {

87

7 var sorneNum int = 5;
8
9 sw:tch someNum{
10 case 7: fmt.Printf("It's equal to 7\n");
11 case 5: frnt.Printf("It's equal to 5\n");
12 default: frnt.Printf("It's not 5 or 7\n");
13 }//end swi~ch
14

And here is the output from the above program:

johnbaugh@ubun~u:-/Desk~op/go_programrning/sw:~chlS ./6.out
It's equa:.. to 5

This is a trivial example, in that we know exactly what the
value of someNurn is, since we initialized its value to 5 and
did not change it before entering the conditional evaluation
in the switch structure header. But, as has been typical, I
am simply introducing the concept and example. We can
use it and build upon our knowledge in practice, and in
examples later in the book.
In this example, we write our switch keyword, followed
by the variable (in this case) to be evaluated. Then, with
each of the case statements, our variable sorneNum is
compared to the value indicated. For example, on line 10:

10 case 7: fmt.Printf("I~'s equal ~o 7\n");

If sorneNum is equal to 7, we print the string "It's equal to
7", followed by a newline, to the console.

In our situation, the test on line 10 evaluates to false,

since someNum is not equal to 7. Thus, it tries the next case

statement on line 11. Since this evaluates to true, since
sorneNum is equal to 5, the output is printed, and the switch

structure is exited. In C/C++, we would have needed to put
a break; statement. But, as we discussed earlier, this is
not what happens with Go.

88

Now, let's consider an example that uses strings:

1 package main
2 import (
3 "fmt"
4 "os"
5 "bufio"
6
7

8 func main() {
9 var inpu~Reader *bufio.Reader;
10 var input string;
11 var err os.Error;
12 inputReader = bufio.NewReader(os.Stdin);
13
14 fmt.Printf("Please enter your name:\n");
15 input,err = inputReader.ReadString('\n');
16
17 if(err !=nil) {
18 fmt.Printf("There were errors reading. Exiting

19
20
21

program\n");
return;

22 switch input{
23 case "John\n"
24 fmt.Printf("Welcome, John!\n");
25 case "Silas\n" :
26 fm~.Printf("Welcome, Silas!\n");
27 default:
28 fmt.Printf("You are not welcome here! Be

gone!\n");
29 }//end switch
30

And here is the interaction output from different test cases:

johnbaugh@ubun~u:-/Desktop/go programming/string switch$./
6.out - -
Please enter your name:
George
You are not welcome here! Be gone!
johnbaugh@ubuntu:-/Desktop/go_progra~ming/string_switch$./
6.out
Please enter your name:
John
Welcome, John!
johnbaugh@ubuntu:-/Desktop/go programming/string switchS ./
6.out - -
Please enter your name:

89

Silas
Welcome, Silas!

In this example, we have declared the variables required to
interact with the user through the command line. In lines
22-29, we see the case statements in our switch structure.
Since the ReadString () function returns the string read
from the input stream {os. Stdin in our case) up to and
including the delimiter, we must take the delimiter into
consideration when switching on the string variable input.

This is why we have the newline character at the end of the
strings we're comparing input against.

This program could be seen as an (albeit oversimplified and
insecure) authentication system. There are only two
usemames that are considered authenticated users, namely
"John" and "Silas". Otherwise, (default) the user is not
authenticated, and the program tells them, in no uncertain
terms, that they are not welcome.

We could have written a program similar to the above
program using the fall through keyword, by rewriting the
switch structure as follows:

switch input{
case "John\n"

fall through;
case "Silas\n" :

fmt.Printf("Welcome, %s", input);
default:

fmt.Printf("You are not welcome here! Be gone!\n");
}//end switch

In this case, regardless of whether the user is John or Silas,
we simply want to welcome them. This is thanks to the
fall through keyword, which causes the case for "John\n"
to perform the action(s) in the next case statement. Thus,
we can use the % s modifier to dynamically insert the user's
input into the output string (either "John" or "Silas").

90

And, another way to consider multiple case statements is
to separate the values by commas. Thus, the above switch
statement can be rewritten as:

swi-:ch inpu-:{
case "John\n","Silas\n" :

fmt.Printf("Welcome, %s", input);
defaul-::

f~t.Printf("You are not we:co~e here! Be gone!\n");
:!lend switch

Another form of the switch statement can be used to very
accurately simulate if-else chains. In this form, there is
no expression after the switch keyword, so the cases
switch on true. This means that if the logical expression
following the case statement is true, the body of the case
will be executed.
The following code is an example of this type of
expressionless switch statement:

pacJ<age r..ain
2 impor-: (
3 "frr.t"
4
5

6 func rr.ain () {
7 var someNumber int 5;
8

9 switch{
10 case someNumber < 0:
11 fmt.Printf("Some number is negative\n");
12 case so~eNu~er > 0 && someNu~er < 10:
:3 fr..t.Prin-:f ("Sorr.e nur..ber is be-:ween 0 and

:O\n");
14 default:
15 fmt.Printf("Sor..e nu!l'.ber is :o or greater\n");
16
17

And the output of the above code is:

91

johnbaugh@ubuntu:-/Desktop/go_prograrnming/noexp_switch$./6
.out
Some number is between 0 and 10

In the above code, we now see that the switch structure
has no expression, and to the astute reader, looks very
similar to an if-else structure. Often, switch statements
are helpful, especially with a large number of comparisons.
The syntax is often more readable, and even more writable
than if-else statements.

4.2 Iteration

It is common for a program to repeat a particular task
multiple times. In this section, we will explore how to
perform iteration with the Go programming language. Go
has only one iterative construct, the for loop. This may
seem peculiar to readers coming from other languages, like
C/C++ or Java, which have iterative constructs like while

loops and do-while loops.

In these programming languages, the for loop is used most
typically (and some would argue, most correctly) in a
manner known as count-controlled iteration, that is, when a
particular number of iterations is required, and known
before the loop is entered. Iterative constructs such as
while and do-while in these languages serve as event­
controlled loops. This means that they are ideally suited
for when a particular event must occur in order to exit the
loop. However, the programmer doesn't have to use them
in the prescribed manner.

In Go, the for loop allows for a little more flexibility, and
can be easily used for both event and count controlled
scenarios.

92

The following code will be an example of the fairly typical
usage of the for loop:

1 package main
2 import (
3 II fr..t."
4
5

6 func main () {
7

8 for i:=O; i < 5; i--i
9 fmt.Print.f("!'~ in :he %d i:erat.ion\n", i);
:o !//end for :oop

This is a very typical and simple example of using the for

loop in the manner that is most familiar to readers coming
from many other high level languages. In this form, the
for loop has an initialization, a conditional check, and a
modification of the variable, i. Notice that there are no
parentheses surrounding the header of the for loop.

Also notice that I use the short declaration format for the
counter variable. This could be rewritten with the counter
variable declared outside and before the for loop, as
follows:

var i in:;
for i=O; i < 5; i--~

fmt..Prin:f(":'n in :he %d it.era:ion\n", i);
}//end for loop

And the output of the above program is as follows:

johnbaugh@ubu tu:-/Deskt.op/go prograrrming/for loopS ./6.out
I'm in the 0 teration - -
I'm in the 1 :eration
I'm in the 2 tera:ion
I'm in :he 3 tera:ion
I'm in the 4 t.era:ion

93

Another way to use the for loop is by treating it like a
while loop, leaving out the header and replacing it with
semicolons (or nothing, as well shall see). To break out of
the loop, the break statement can be used.

1 package main;
2 import(
3 "fmt"
4
5

6 func main() {
7

8 var i int ; 5;
9

10 for ; {
11 i ; i -1;
12 fmt. Print£ ("The variable i is now %d\n", i);
13 if i < 0 {
14 break;
15 }
16 } I lend for
17

And the output is as follows:

johnbaugh@ubuntu:-IDesktoplgo_programminglfor_event$
t
The variable ~ is now 4
The variable i is now 3
The variable i is now 2
The variable i is now 1
The variable i is now 0
The variable i is now -1

.16.ou

In this code, the magic happens on line 10, the for loop
header. Notice there is no condition check (or anything
else for that matter). When there is a condition check
missing in Go for loops, it defaults to true.

This can also be written without a header at all. Instead of:

for ; ; {

94

You can write:

for {

The only difference is that we remove the semicolons
completely. These types of for loops would be infmite
loops without the break statement.

4.3 break, continue, and
Labels

In this section, we will explore some of the more
interesting aspects of the break and continue keywords in
Go, including the use of labels.

We have already seen that the break statement allows us to
break out of a particular block of code, such as a for loop.
For now, let's look at the continue statement.

4.3.1 continue

The continue statement causes the current iteration to
cease, causing the next iteration of the loop to occur. Let's
consider one scenario in which we could print out only the
odd numbers in a sequence:

- package main
2 impor-:(
3 II fr.,-: II
4
5
6 func main() {
7

8 for i:=O; i<l.O; i+-r{
9 if i%2 == 0 {
10 con-:inue;

95

11 }
12 fmt.Printf("i = %d\n", i);
13 }//end for
14

And the output of the code is:

johnbaugh@ubuntu:~/Desktop/go programming/continue example$
./6.out - -
i = 1
i = 3
i = 5
i = 7
i = 9

The meat of the code starts at line 8, where we have our
for loop header. Notice that we are iterating from 0 to 9.
On line 9, we have an interesting condition that you may or
may not be familiar with. If you recall from earlier, I listed
some of the operators in the Go language.

Like C/C++, Go has the modulus operator,%. This is also
called the remainder operator because it returns the
remainder of the division of the first operand by the second.
For example:

5%2 (read as "5 mod 2" or "5 modulus 2") is equal to 1,
because 5/2 = 2 with a remainder of 1.

In our code, the condition for the if statement on lines 9-11
says, "If the remainder of dividing i by 2 is equal to 0,
execute the continue statement". What does it mean if an
integer divided by 2 has 0 as its remainder? This means the
integer in question is even, since all even numbers are, by
definition, divisible by 2 with no remainder.

So, our code, on line 10 specifies that we should continue,
meaning we should skip the rest of the loop body (which
includes the Printf (> statement) and go to the next
iteration.

96

..

At its highest level, this code says we should skip all the
even numbers, and print out all the odd numbers. And, as
expected, this is what we see in the output of the program.

4.3.2 break

The break statement causes the flow of execution to break
out of the innermost construct (such as a for or switch

statement). We've seen examples of how break works,
earlier in this chapter. Consider the code we saw earlier:

pacj{age r:-.a.:..n;
2 import(
3 "frnt"
4
5

6 fun c rna in () {
7

8 var i int = 5;
9

10 for ; ; {
:1 i = i -1;
12 fnt. Printf (":he var.:..ab:.e i is now %d\n", i);
:3 .:..f :.. < 0 {
14 break;
15 }
:6 :!lend for
:7

Here, line 14 causes us to break out of the innermost
structure (in this case, a for loop). Note that the for loop
would be infinite if we did not provide the break to allow a
way out.

4.3.3 Labels

Labels are an interesting feature that you should at least be
aware of, even though, like goto statements (which we will

97

not cover in this book) can lead to poor program design if
not used very carefully.

We could consider an example in which we have embedded
for loops:

1 package main
2 import(
3 "fmt"
4
5
6 func main() {
7

8 myLabel: for i:=O; i < 5; i++{
9 for j :=0; j < 5; j++{
10 if j == 4{
11 continue myLabel;
12
13 fmt.Printf("i is : %d, and j is %d\n", i, j);
14 }

15 }//outer for
16

And the output:

johnbaugh@ubuntu:-/Desktop/go_programming/labels$./6.out
i is 0, and j is 0
i is 0, and j is 1
i is 0, and j is 2
i is 0, and j is 3
i is 1, and j is 0
i is 1, and j is 1
i is 1, and j is 2
i is 1, and j is 3
i is 2, and j is 0
i is 2, and j is 1
i is 2, and j is 2
i is 2, and j is 3
i is 3, and j is 0
i is 3, and j is 1
i is 3, and j is 2
i is 3, and j is 3
i is 4, and j is 0
i is 4, and j is 1
i is 4, and j is 2
i is 4, and j is 3

98

As we can see from the output, even though j does equal 4
at different points in the code (five times to be exact), "j is :
4" is never printed out. This is due to lines 10-12. Notice
that if j is ever equal to 4, we continue to the label
myLabel, which points to the header of the outer for loop,
which starts i at its next value, causing the j in the inner
for loop to reset to 0 (at its initialization).

Note that you can also use a break statement with a label,
which essentially does the same thing as continue with a
label. Both are a means by which we jump to a different
spot in the code, breaking the current flow of execution.

4.4 Functions

One of the most powerful constructs in Go, and arguably
most other high level languages, is the function. Functions
allow us to break a large problem into smaller tasks. These
functions are called, or invoked and perform the tasks
specified by a program.

If you are familiar with functions already, most of this
section will be straightforward. However, just like with
many other constructs in Go, the syntax is often very
different from what you might be accustomed to.

Additionally, Go has a very interesting (and incredibly
helpful) approach to allowing us to retrieve multiple return
values from the function. The way functions are treated in
Go is one of the most interesting treatments of familiar
programming constructs that this modem programming
language has to offer.

99

4.4.1 Single Return Value

Some functions only return a single value. In this case, the
format of the function is as follows:

func Identifier(parameter_list) return_type{

The keyword func introduces the header to a function, just
like var introduces a variable. The parameter_list will
consist of parameters, separated by commas, each in the
form:

paramidentifier dataType

The return type will be the data type of the value that the
function returns.

As usual, it is most helpful to look at a concrete example in
order to get a better grasp of this concept.

1 package main
2 import(
3 "fmt"
4
5

6 func main() {
7

8 fmt.Printf("Multiple 2 * 5 * 6 = %d\n",
Xultiply3Nums(2,5,6));

9 }
10

11 func Multiply3Nums(a int, b int, c int) int{
12 return a * b * c;
13

And the output of the above program is:

100

johnbaugh@ubun~u:-/Des~~op/go prograrrning/func:s ./6.ou~
v.u:tip:e 2 * 5 * 6 = 60 -

For those unfamiliar with functions, the idea is that we can
take a task, such as multiplying three numbers, and give
this task (or set of tasks) a name. That way, if we wanted
to, we could call this function several times, and not have
to rewrite the code in each scenario.

The task of multiplying three numbers is fairly trivial, and
the function Mul tiply3Nums () serves to simply educate us
on how functions work. On line 11, we have the function
header, and on lines 11-13, we have the body of the
function.

The header of the function starts with the keyword func,

then the identifier of the function, Mul tiply3Nums and then
the parameter list in parentheses, (a int, b int, c

in t) . Finally, the last thing in the header (before the open
curly brace, starting the body of the function) is the return
type ofthe function, which in this case, is int.

In the body of the function, we have the value of the three
parameters multiplied by one another being returned.
Noticed, another way to do this would have been to declare
a separate variable, named say, total. Then, we would set
that variable to the value of the three parameters multiplied
by one another, and then return total, thusly:

total = a * b * c;
return total;

However, this takes an extra variable, adds unnecessary
code, and doesn't really add to the readability of the
program.

101

In line 8 of our program is the actual function invocation
(also called the function call). While we defined our
function on lines 11-13, the function doesn't do anything
until we call it from another function, which in this case is
the main () function. On line 8, we call the function from
within the Printf () statement. For readability or stylistic
reasons, you could choose to separate the function call from
the printing of the value by creating a separate variable,
such as the following:

var myValue int = Multiply3Nums(2,5,6));
fmt.Printf("Multiple 2 * 5 * 6 = %d\n", myValue);

But again, I chose not to use a separate variable to store this
value, since we are using it immediately, in the Printf ()

function.

We will see more practical and complicated examples of
functions as we explore the rest of this section.

4.4.2 Multiple Return Values

One of the more interesting features of functions in Go is
that they can return multiple values. A function that returns
multiple values is of the form:

func functionName(param list) (return_value_list) {
II function body here

The func keyword begins a function definition, as before.
Then, the function identifier functionName is after the
func keyword. Then, as usual, the parameter list
pararn_list is inside parentheses. Finally, the primary
difference with the multiple return value functions is with
the return_value_list inside a set of parentheses. With
single return value functions, the parentheses are not

102

present and only one return type is specified. In this case,
multiple return value types can be specified.

Let's consider a program that contains a function to return
multiple values:

paci<age I:'.a.:..n
2 import(
3 "frr.t"
4
5
6 func main () {
7

8 var myKum in~ = :o;
9 var twice~yKum in~;
:o var thrice~yKum int;
11
12 twiceMyKum, ~hrice~yKum = getTwiceAndThrice(myNum);
13

14 fmt.Printf("~y num is : %d\n", rnyNum);
15 frnt.Printf("Twice my num: %d\n", twiceMyNurn);
16 fmt.Printf(":hree ~imes my num :%d\n", thriceMyNurn);
17
18
19 func getTwiceAnd:hrice (input int) (in:, int) {
20
21 return input*2, input*3; //re~urn twice, and 3

til':'.es the input
22

And the output of the program is:

johnbaugh@ubuntu:~/Des~top/go progral':'ning/mu:~iva:uefuncS .
/6.out -
My num is : :.0
:wice my num : 20
Three times my num :30

On line 8 of this program, we declare our variable to hold
the input value, rnyNurn. This integer variable is initialized
to the value 10. On lines 9-10, we have two integers to
hold the return values from the function, twiceMyNurn to
hold twice the input value and thriceMyNurn to hold three
times the input value.

103

Line 12 is where the function call (or function invocation)
occurs. The syntax may seem a little bit peculiar for
individuals coming from other languages. In Go, we can
perform multiple value assignments in a single line. The
variables on the left (twiceMyNum, thriceMyNum) match
up with the two return values that will be returned by
getTwiceAndThrice () on the right side of the assignment,
respectively.

Finally, in the main function, we perform a print of each of
the values on lines 14-16.

Now, we see something new (to us) on lines 19-22. Prior
to this, we have defined our own single return value
function, but this is the first multiple return value function
we have defined.

On line 19, the function header is the same as a single
return value function, up to the parameter list. After this,
however, we have a set of parentheses with two data types
specified, (int, int). In this case, we will have two
integer values returned by the function, which we do on
line 21.

Notice the return statement on line 21. The return values
input*2 and input*3 will correspond with the first int

and second int in the function header return value list.

There are other possible forms of a multiple return value
function, as follows.

Result Parameters

One other form of the multiple return value functions are
functions with result parameters. In this form, we give

104

names the return value list. Consider our function from
earlier:

func ge~TwiceAndThrice(inpu~ in~) (~woTimes in~.~hreeTimes
in~) {

~wo:imes = inpu~ • 2;
~hreeTimes = inpu~ • 3;
re~urn twoTi~es, ~hreeTimes;

Everything in the main function of our program can remain
exactly the same as before. But the changes to our
getTwiceAndThrice (> function are made. In this case,
notice that the list of return values has identifiers for the
return values. And, inside the body of the function, these
values are set as if they were local variables, and returned
by name.

Empty Return

Another useful form of the multiple return value function is
a function with an empty return.

func getTwiceAndThrice(input int) (twoTimes int,threeTimes
in~) {

~woTimes = inpu~ * 2;
~hreeTimes = inpu~ * 3;
return;

Notice that the return statement is by itself. This will
return the value of the result parameters when the return

statement is made. In other words, whatever the value of
the result parameters when the return statement is made
will be the values returned by the function.

105

4.4.3 The defer Keyword

A helpful keyword that Go makes available to us is defer.

This keyword, as the name suggests, allows us to defer the
execution of a function until the end of the enclosing
function.

Like many programming concepts, this is most easily
explained using an example:

1 package main
2 import (
3 "fmt"
4
5

6 func main() {
7

8 SomeFunction();
9
10
11 func DeferredFunc(){
12 fmt. Printf ("I was deferred until the end of my

calling function\n");
13 }
14
15 func SomeFunction() {
16 fmt.Printf("I'm in SomeFunction() at the top\n");
17 defer DeferredFunc();
18 fmt.Printf("I'm now at the bottom of

SorneFunction()\n");
19 }

And the output of the program is:

johnbaugh@ubuntu:-/Desktop/go programming/deferS ./6.out
I'm in SomeFunction() at the top
I'm now at the bottom of SomeFunction()
I was deferred until the end of my calling function

In the main function, on line 8, we call SomeFunction ().

Since SomeFunction () has no return values, we do not
have to capture any values. It is a special type of function,
just like main<), that performs a set of tasks and simply

106

exits when it completes. This is analogous to void

functions in languages like C/C++.

The first function we define after main () is
DeferedFunc () , which, like SomeFunction () does not
return a value. On line 12, all it does is print some
information before exiting.

Lines 15-19 make up the body of SomeFunction (). On
line 16, we print a statement indicating that we're at the top
of Some Function (>. Then, on line 17, we call defer on
our DeferedFunc () function, and finally on line 18, we
print another statement, indicating we're at the bottom of
SorneFunction (}.

Pay careful attention to the output of the program. Notice
that the print statement in our deferred function is not
performed until after the two print statements that are
present in Some Function (>, even though it was called in
between these two print statements.

Remove the defer statement, and the order will be
different. The defer keyword allows us to ensure that
certain tasks are performed before we return from a
function. It can be helpful to keep the code itself clean, as
well as to ensure certain tasks such as closing a file stream.

4.4.4 The Blank Identifier

In this subsection, we learn about the blank identifier,
which is denoted by an underscore, . The blank identifier
is helpful when we have a multiple return value function,
but do not want to store all of the values it returns.

107

In Go, it is a syntax error to not capture all of the return
values of a function. If we capture a value, we must then
use it, and this gets clumsy and makes the code messy with
variables we don't really intend on using. So, the blank
identifier comes to the rescue.

Consider the following:

1 package main
2 impor~(

3 "fmt"
4
5

6 func main () {
7 var myinteger int;
8 var myFloat float;
9

10 myinteger,_, myFloat = ThreeValues();
11

12 fmt.Printf("My int : %d, my float : %f\n",
myinteger, myFloat);

13 }
14
15 func ThreeValues () (int, int, float) {
16 return 5, 6, 7.5;
17

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/blankidentifierS
./6.out
My int : 5, my float : 7.500000

In this program, we have defined a trivial function named
ThreeValues () in order to demonstrate how the blank
identifier works. The function returns the values 5, 6, and
7.5. In our main () function, we are simply wishing to
capture the first in t and the f 1 oat value, ignoring the
integer return value in the middle (in our case, 6).

So, on line 10, we use our declared myinteger to capture
the first integer return value, then we use the blank

108

identifier to capture and drop the second integer return
value, and then we capture the third return value, which is a
float, in our myFloat variable.

4.4.5 Example : Minimum I Maximum
Function

To further enhance our understanding of functions, I will
give a simple example of a function that returns the
minimum and maximum of two integers.

The code:

1 paci<age r..ain
2 import.(
3 "frr.-:"
4
5
6 func main() {
7 var reyXax int;
8 var myXin int.;
9 myMax,myMin; MinMax(10,15);
10 fm-:.Prin-:f("Min : %d\nMax: %d\n", reyXin, myMax);

12 func MinMax(a in-:, b in-:) (~ax int., min int.) {
13
:4 if a < b {
15 r..in ; a;
16 max = b;
17 }else {
18 min = b;
:9 max = a;
20
21

22 re-:urn max, ~in;

23

The output:

johnbaugh@ubun-:u:-/Desi<-:op/go progranr..ing/minmaxS ./6.out.
Min : 10 -
Max: 15

109

The MinMax (> function is quite simple. It just assigns the
minimum and maximum value and returns them in the
order of maximum, then minimum.

4.4 Summary

In this chapter, we've explored control structures and
functions.

We learned about conditional (also known as branching)
control structures, such as if-else and switch structures.
We also learned about the only iterative (also known as
looping) control structure, the for structure.

Furthermore, we learned about functions, and how to use
them to break a larger problem into smaller, more
manageable sub-problems. Functions allow us to perform a
task or set of tasks over and over again (if we wish),
without having to write the same code over and over again.
In Go, we can have functions that return no value, one
value, or multiple values.

110

Chapter 5

More Data Types

In this chapter, we will explore some more of the data types
that Go has to offer. We will look at several composite
structures available in Go, including arrays, slices, and
maps.

We will begin with arrays, commonly available structures
that are used in many programming languages for storing
homogenous groups of data. However, we will see that
arrays in Go are significantly different from arrays in many
other high level languages.

Additionally, we will explore the slice structure, which is a
reference to a section of an array, and more accurately
approximates what readers from other programming
languages expect from an array.

Also, we will explore maps, which are associate arrays.

Inherent to the discussion of these data types is
understanding pointers, which we will investigate first.

5.1 Pointers and References

Computers store values in memory, and each memory
block has an address. A pointer is a special data type in

111

which the memory address of another value is stored.
Thus, a pointer points to the location of another value.

Related directly to pointers is the address-of operator,
denoted by the ampersand,&, which is used to determine
the address of a particular piece of data. Let's consider the
following example:

1 package main
2 import (
3 "fmt"
4
5

6 func main() {
7 var someint int = 5;
8

9 fmt.Printf("My integer: %d. Its location in memory:
%p\n", someint, &someint);

10 }

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/chap5/pointers$.
/6.out
My integer: 5. Its location in memory: Ox7F6927B25010

On line 7, we simply declare an integer variable, and set its
value to 5. Line 9 is where we get to see the address-of
operator in action. As we see from the output, the first
piece of data we print out is 5, which is contained in our
variable, some Int. Next, we print out the value
Ox7F6927B25010, which is the address returned by
&some Int.

Note that this value is hexadecimal (base-16) and that the
actual address value of the memory location is after the Ox

part. Ox denotes that the number following is in base-16.
Also note that this value will change when you run the
program more than once. This is because the memory

112

location assigned to the variable changes with distinct
executions of the program.

What if we wanted to store the address of a piece of data
into a variable, rather than just use it directly like we did in
the code above? No problem. That's where pointers come
in. To declare a pointer, we put an asterisk, *,in front of
the data type we are pointing to.

Let's consider the following example, which is a
modification of the above code:

pac:<age r::a.:..n
2 .:..mport(
3 "frnt"
4
5

6 func main() {
7 var sorneint: int 5;
8 var .:..nt:Ptr *int:;
9

10 intPtr = &sorneint;

12 fmt.Pr.:..ntf("My integer: %d. Its :ocation in memory:
%p\n", sorneint:, &sorneint);

13 fnt:. Print:f (":he value at rr.er;.ory :ocat:.:..on %p .:..s :
%d\n", .:..ntPtr, •.:..ntPt:r);

14 }

And the output is:

johnbaugh@ubunt:u:-/Des~top/go prograr;~.:..ng/chap5/point:ersS .
/6.out -
My .:..nteger: 5. Its :oca:ion in r::emory: Ox7FBF3AF8C010
The value at r::enory :oca:.:..on Ox7FBF3AF8CO:O is : 5

In this example, on line 8, we declare a pointer variable,
intPtr. Note the type of this variable is * int, which
means "pointer to an integer". On line 10, we set the value
of intPtr to the address of someint using the address-of
operator.

113

I've left line 12 the same so that we can make a
comparison. Line 13 is where a couple new things appear.
Notice that the variable intPtr, when printed out, is equal
to the &someint from the previous Print£(), which is
expected since intPtr contains the address of some Int.

At the end of line 13, however, we have some syntax that
may look unfamiliar to those who have not worked with a
high level programming language that allows pointer
manipulation, like C/C++, or Go. Notice the statement
*intPtr.

In this case, when the asterisk is in front of a variable that is
a pointer, it is referred to as the pointer dereference
operator or just the dereference operator for short. It takes
a pointer as its operand and asks the pointer, "What value
are you pointing to?".

As we can see from the output, when we ask the pointer,
"What are you pointing to?", we get, not surprisingly, the
data stored in someint (namely, the value 5), since intPtr

is pointing to someint.

5.2 Arrays and Slices

In this section, we will explore arrays and slices, two
composite types that can contain multiple values. We will
first consider arrays in Go, and then slices, which are
actually more similar to arrays from other high level
languages than the actual array type in Go.

5.2.1 Arrays

114

Arrays are defined to be a numbered sequence of
homogenous data elements. By homogeneous, I mean that
the data contained in an array must be of a single data type,
(such as integers, strings, Booleans, etc.) known as the
element type. You can think of an array as a long box with
different compartments in it, with each being able to
contain a piece of data.

To qeclare an array in Go, you use the following form:

[numElements]dataType identifier

where numElements is the number of items the array can
hold, called the length. Also, da taType is the type of data
to be stored in the array, and identifier is of course, the
name of the array.

Arrays in Go are values, not pointers like they are in
languages like C/C++. So, when you assign one array to
another, a distinct copy of the array is made.

Another important feature of arrays in Go is that their
length is part of their data type.

Thus:

[S]int

is a distinct data type from

[lO]int

even though they both contain integers.

Let's consider an example that makes use of arrays:

pac:o<age na.:.n

115

2 import.(
3 "fmt"
4
5

6 func main() {
7 var myArray [5]int;
8

9 for i:=O; i < len(myArray); i++{
10 myArray[ij = i * 2;
11 } I /end for
12
13 for j:=O; j < len(myArray); j++{
14 fmt. Printf ("Array at %d is %d\n", j, myArray [j));
15 } I /end for
16

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/chap5/arraysS ./6
.out
Array at. 0 is 0
Array at 1 is 2
Array at 2 is 4
Array at 3 is 6
Array at 4 is 8

In this program, we declare an array that can hold 5
integers on line 7, called myArray. On lines 9-11 we make
use of a for loop to store data in the array. Interestingly,
on line 9, we use len (),which is a compile-time constant
that returns the length of the array.

Line 10 is fairly self explanatory. Arrays are zero-indexed,
meaning that their first index starts at 0, and the last index
of an array is one less than the array length (i.e.,
len (array) -1). With each iteration of the loop, the value
stored in that index (like an individual compartment in a
box) is set to twice the value of the index, i.

Lines 13-15 are responsible for printing out the value
stored within each location within the array.

116

'·

An important note is that the value at each index of the
array is automatically set to 0.

Array literals are another way to use arrays. Let's consider
a larger example to see some of the usefulness of array
literals:

package main
2 .:..r..por~ (
3 "fmt"
4
5
6 func rr.a.:..n () {
7 var ageArray = ~s:.:..n~{:8,20,:5,22,:6:;
8 var :azyArray = : ... :.:..n~{5,6,7,8,22};
9 var ~eyva:ueArray = [5:s~r.:..ng{3:"John", 4:"George"};
:o

for i:=O; .:.. < :en(ageArray); .:..~·{

:2
13
14

fn~.Prin~f("Age at %d .:..s : %d\n", ~, ageArray[i]);
}//end for

15 fmt.Pr.:..ntf ("\n");
16
17 for j:=O; j<len(lazyArray); j·~i

18 frr.t.Printf("In~ at %dis: %d\n", j, lazyArray[j:);
:9 }//end for
20
21 fret.Pr.:..n:f("\n");
22
23 for k:=O; k<len(keyValueArray); k++{
24 fmt.. Prin~f ("Name at : %d is : %s\n", k,

keyValueArray:kJ);
25 }//end for
26

And the output is:

johnbaugh@ubuntu:-/Deskt.op/go programming/chapS/array liter
als$./6.out - -
Age at 0 is 18
Age at 1 is 20
Age at 2 is lS
Age at 3 is 22
Age at 4 is 16

:nt at 0 .:..s 5

117

Int at 1 is : 6
Int at 2 is 7
Int at 3 is 8
Int at 4 is 22

Name at 0 is
Name at 1 is
Name at 2 is
Name at 3 is
Name at 4 is

John
George

This example has a lot going on. We have three arrays that
we are dealing with in this case. Notice the not-so-typical
syntax we use when declaring on lines 7-9. First, notice
that I don't put the data type on the same side as the
identifier. While you can put the data type on that side as
well, such as in:

var ageArray [5]int = [5]int{18,20,15,22,16};

this is generally seen as overly verbose. But, if you wish,
you may use this syntax.

The most interesting of these declarations is on line 8, with
our variable lazyArray. In this case, we use ... as the
size of the array. This will automatically determine the
length of the array based on the number of elements, so we
don't have to explicitly indicate it.

However, note that you cannot do the following:

var lazyArray [...]int = [...]int{5,6,7,8,22};

This will raise a syntax error. The ... must only be used
in the context of a literal, not as a data type in the
declaration of the variable itself, whereas a specific integer
(such as [s 1) can be used in either declarations or literals.

The declaration on line 9 uses key value syntax. When an
array is declared, if the values are not set explicitly, the

118

zero value of whatever type is being stored (i.e., 0 forint,
0.0 for float, the empty string for strings) is set. But, if
we want to initialize certain values explicitly and not
others, we can use key-value syntax, with the following
form:

key: value

In our example, on line 9, 3: "John" means "Store the
string John at index 3".

Additionally, it is important to remember that arrays in Go
are values, not pointers, as they are in C/C++. So, when
you pass an array to a function:

myFunc(myArray);

a copy of the array is made. To pass it by reference (in
other words, by the memory address of the array), you use
the address-of operator, & :

someFunction(&myArray);

5.2.2 Slices

A slice is a reference to a section of an array. This section
may be the entire array, or a subset of the various indices of
the array. Because slices are references, they are less
expensive to use than arrays, and are therefore used more
often than arrays. Additionally, unlike an array, the length
of a slice can change during execution of the code.

The declaration of a slice is like that of an array, except
without the size, as follows:

var mySlice [] int;

119

A slice that has not yet been initialized is set to nil by
default, and has 0 length.

Two important functions related to slices are:

len(mySlice};

cap(mySlice};

The function len (> returns the length of the slice itself
(how many elements are in the slice), whereas the cap (>

function returns the sum of the length of the slice and the
number of elements from the end of the slice, to the end of
the underlying array.

Basic Usage

Let's consider a basic scenario where a slice is used:

1 package main
2 import(
3 "fmt"
4
5

6 func main() {
7 var myArray [6)int;
8 var mySlice [)int = myArray[2:5];
9

10 //load the array
11 for i:=O; i<len(myArray); i++{
12 myArray[i] = i;
13
14

15 //print the slice
16 for i:=O; i<len(mySlice); i++{
17 fmt.Printf("Slice at : %d is %d\n", i,

mySlice[i]);
18 }
19
20 fmt. Printf ("Length of myArray is %d\n",

len(myArray));
21 fmt.Printf("Length of mySlice is %d\n",

120

:en(rnysl.:.ce));
22 frn:. Printf ("Capac.:. ty of r.,yS2.ice .:.s: %d\n",

cap(rnySlice));
23

The output looks like:

johnbaugh@ubun~u:-/Des~~op/go prograr.~.:.ng/chap5/bas.:.c s:.:.ce
S ./6.ou~ - -
Sl.:.ce at : 0 is 2
Slice at : 1 is 3
Slice at : 2 is 4
Length of myArray is : 6
Length of myS:ice is : 3
Capac.:.:y of ~ys:.:.ce .:.s: 4

In this program, we declare an array on line 7 called
myArray, that holds 6 integers. On line 8, we create a slice
of myArray called mySlice. The slice contains the
elements at indices 2, 3, and 4 from the original array.

Note that since the slice is a reference to the underlying
array, that we declared the reference earlier than when we
populated the array on lines 11-13.

Near the bottom, on lines 20-22, we print the lengths of
myArray and mySlice, and the capacity of mySlice.

Using make () to Create a Slice

While the above example is a perfectly acceptable usage of
slices, it is not always the case that we will have an array
already defined to reference.

Sometimes, we want to create a slice and an underlying
array, without an array being previously defined. In this
case, we must use the function make <) •

Let's consider an example:

121

1 package main
2 import (
3 "fmt"
4
5

6 func main() {
7 var newSlice []int = make([]int, 10);
8

9 for i:=O; i<len(newSlice); i++{
10 newSlice[i] = 5 * i;
11 }//end for
12

13 for j:=O; j<len(newSlice); j++{
14 fmt.Printf("Slice at %dis %d\n",j, newSlice[j]);
15 }//end for
16

And the output is:

johnbaugh@ubuntu:~/Desktop/go programming/chapS/make slice$
. /6.out - -
Slice at 0 is 0
Slice at 1 is 5
Slice at 2 is 10
Slice at 3 is 15
Slice at 4 is 20
Slice at 5 is 25
Slice at 6 is 30
Slice at 7 is 35
Slice at 8 is 40
Slice at 9 is 45

In this program, we use the make () function to create a
slice of integers. The function make () is used to create
slices, maps, and channels, which we will see later.

On line 7, notice that the make < > function takes two
parameters. The first, [1 int in our case, is the data type
that is to be created. The second parameter, the number 10
in our example, indicates that number of items to be in the
slice.

This code creates an array, and then automatically creates a
slice referencing the array. The remainder of the program

122

is fairly self-explanatory. Lines 9-11 are responsible for
filling the slice (or the underlying array, to be exact) with
values. And then, on lines 13-15, the values are printed.

Reslicing

Another useful form of the make () function involves not
two, but three parameters. The basic format of this version
of make () is:

rnake(data_type, starting_length, capacity)

The parameter data_type is (not surprisingly) the data
type of the array in question (such as [1 int). The
starting_ length is the beginning length of the slice, and
the capacity is the entire length of the underlying array.

Since slices have the ability to grow within the limits of the
underlying array, it may be useful to create a slice that is
smaller than the underlying array, but can also grow as
needed when elements are added.

In the following example, we can see how resizing of the
slice is done:

1 package rr.ain
2 import(
3 "frr.t"
4
5
6 func rr.ain () {
7 var slice: :Jint = make([:int, 0, 10);
8 var numElements int = 0;
9

10 for i:=O; i < cap(slice1); i++{
11 slice1 = slice1[0:numElements+1]; //reslice
12 slice1:i: = i;
13 numElements = nurr.E:ements + 1;
14 fmt.Printf("Length of slice is : %d\n",

len(s:ice:));

123

15 } I /end for i
16
17 for j:=O; j < len(slicel); j++{
18 fmt. Printf ("Slice at : %d is %d\n", j, slicel [j]);
19 } I I end for j
20

21

Here is the output:

johnbaugh@ubuntu:-/Desktop/go_programming/chap5/resize_slic
e$./6.out
Length of slice is 1
Length of slice is 2
Length of slice is 3
Length of slice is 4
Length of slice is 5
Length of slice is 6
Length of slice is 7
Length of slice is 8
Length of slice is 9
Length of slice is 10
Slice at 0 is 0
Slice at 1 is 1
Slice at 2 is 2
Slice at 3 is 3
Slice at 4 is 4
Slice at 5 is 5
Slice at 6 is 6
Slice at 7 is 7
Slice at 8 is 8
Slice at 9 is 9

On line 7 of the code, we make an integer slice starting
with zero length, but with an underlying array that has a
capacity of 10. On line 8, we declare numElements, which
will serve as the counter of the number of elements in the
slice (note that we could creatively use the variable i for
this purpose, but I want to make it more clear what is going
on in the code).

Lines 1 0-15 contain the loop that fills the slice with data.
Line 11 is of particular interest, however, because we
"reslice" the slice, adding one to its length. The loop itself
prevents us from going out of bounds on the underlying
capacity, so we don't need to check for this. Note in the

124

output, that the length of the slice keeps increasing with
each iteration of the loop.

On lines 1 7-19, we have the loop that allows us to print the
contents of the slice. Note for this loop, we can use the
len () function for the loop condition.

As a final note about slices, the growing ability of a slice
would be more useful, not in a strictly iterating structure
like a loop, but if it were for the purpose of retrieving input
from say, the user. It would be a typical case that we
would have no knowledge of exactly how many integers
the user was going to enter. As long as it was within the
capacity, the user could enter 0 or more data elements.

5.3 Maps

Maps in Go are essentially associative arrays. They are
similar to *map<string, float> in C++ or the diet
(dictionary) type in Python. With maps, you can associate
(hence why they're called associative arrays) a key with a
value, called the data or just the value.

Maps are an alternative to strict arrays or slices, which use
integers as indices. Instead, you can use a value of any data
type for the index for which == and ! = are defined to find a
particular piece of data. For example, the data type
string can be used as the key type since == and ! =are
defined for strings.

Let's consider an example:

2
3
4

package main
import(

"frr.t"

125

5
6 func main () {
7 var myMapLiteral map[s~ring] int;
8 var myMapCreated map[string] float;
9 var myMapAssigned map[string] int;
10

11 myMapLiteral ~ map[string] int { "one":1, "two":2 };
12 myMapCreated ~ make(map[string]float);
13 myMapAssigned = myMapLiteral;
14

15 myMapCreated["chicken"J = 4.5;
16 myMapCreated["pi"J = 3.14159;
17

18 fmt.Printf("Map Literal at \"one\" is %d\n",
myMapLiteral["one"J);

19

20 fmt.Printf("Map Created at \"chicken\" is %f\n",
myMapCreated["chicken"]);

21

22 fmt.Printf("Map Assigned at \"two\" is %d\n",

23

24

25

myMapAssigned["two"]);

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/chap5/maps$./6.o
ut
Map Literal at "one" is : 1
Map Created at "chicken" is 4.500000
Map Assigned at "two" is : 2

This example shows three different ways of creating an
instance of a map type. On line 7, we declare a map,
myMapLi teral that is indexed with keys of type string,
and contains ints. This map is populated with literals on
line 11, using key-value pairs inside curly braces.

On line 8, we declare a map called myMapCrea ted which
has keys of type string and contains float values. We
create and populate this map in a slightly different way. We
actually create a map on line 12 with the make () function.

126

It is interesting to note that maps automatically grow to
accommodate any key-values that are added. You can,
however, optionally make () the map with a starting
capacity:

make(map[string] float, 50)

would create a map that uses strings as the key and
floats as the value type, with an initial capacity of 50. As
mentioned, this will not limit the size of the map. When the
number of values reaches 50, the next key-value added will
cause the map to increase its size by 1 automatically.

Line 9 creates a map named myMapAssigned, which is
assigned to refer to myMapLiteral on line 13. Since
myMapAssigned now refers to the same map as
myMapLi teral, we can use it as if it were myMapLi teral,
by using the same indices.

For the map that was created, we assign it values on lines 15
and 16. We can see how maps work from the output, which
is performed on lines 18-22. As mentioned above, pay
close attention to line 22. We can use
myMapAssigned ["two"] because myMapAssigned refers to
the same map as myMapLi teral, which has an index named
"two".

Testing for Existence of an Element

Sometimes, we want to know if an item exists in a map. In
order to do this, we use the following so-called comma ok
form to test for the existence of an element:

value, isPresent = someMap[key]

127

The variable value will contain the value at the key in
question if it exists. If the key is not present in the map,
then the value returned will be the zero-value for that
particular data type (0 forint, 0.0 for float, etc.)

The variable is Present will always be of type boolean
and is true if the key is present in the map, or false if it is
not present.

Deleting an Element

It is a common task to delete an element from a map.
Essentially, we use the comma ok form in reverse:

someMap[key] = value, delete

In the above expression, value can be essentially anything,
and delete is a boolean value that you should set to
false if you wish to delete a value of a particular key.

As an example of deleting elements, and testing for the
existence of particular key-value pairs, let's consider the
following code:

1 package main
2 import(
3 "fmt"
4
5
6 func main () {
7 var myMap map[string]int;
8 var value int;
9 var isPresent bool;
10

11 myMap = make(map[string]int);
12

13 myMap["horses"] =55;
14 myMap["cows"] = 20;
15 myMap ["pigs"] = 25;
16

128

17 va:ue, isPresen: = my~ap~"horses";;
18 frnt.Printf(":s \"horses\" in rnyMap?

%t\n",isPresent);
19 frn:.Printf("Value is : %d\n", value);
20

21 value, isPresent = myMap["chicken"];
22 frnt.Printf("Is \"chicken\" in rnyMap? %t\n",

isPresen:);
23 frnt.Prin:f("Value is : %d\n", value);
24
25 //delete an ite~
26 rnyMap["horses"] = O,fa:se;
27 value, isPresent = myMap["horses":;
28 fr..t..Prin:f(":s \"horses\" in r..yV.ap? %:\n",

isPresen:);
29

And the output is:

johnbaugh@ubun:u:-/Des~:op/go programning/chap5/exist map$
./6.out - -
:s "horses" in myMap? : true
Value is : 55
Is "chicken" in myMap? : false
Value is : 0
Is "horses" in rnyMap? : fa!se

Lines 7 - 15 contain the creation (using rna ke ()) and the
initialization of our map, myMap. Line 17 tests for the
existence of the key "horses". Since this is in myMap, we
see that isPresent is assigned the value true, and value

is assigned the value 55. These are printed on lines 18-19.

Later, on lines 21-23, we test the existence of the key
"chicken". Since "chicken" does not exist as a key,
isPresent is assigned the value false, and value is
assigned the value 0 (since 0 is the zero-value for integers).

Finally, we delete the value at key "horses" on line 26, by
using the comma ok form with any value as the first value
and false as the second. On line 27, we test for the
existence of the key "horses", which is now false (since
we deleted it). As you can see, the output reflects this.

129

5.4 Using range with for
Loops

So far in this book, we have explored various composite
types such as arrays, slices and maps. We also have done
some work with strings. Up to this point, we have only
seen basic for loops, but there is another form of the for
loop that is perfectly suited for strings and composite
types (and channels, but we haven't explored these yet in
this book).

This form of the for loop is based on the range of
elements in the composite type (or characters in the
string).

Let's consider an example using maps:

1 package main
2 import(
3 "fmt"
4
5
6 func main() {
7 var myMap map[int] float;
8 var key int;
9 var value float;
10
11 myMap = make(map[int]float);
12 myMap[1] 1.0;
13 myMap[2] 2.0;
14 myMap[3] = 3.0;
15 myMap[4] = 4.0;
16
17 for key,value = range myMap {
18 fmt.Printf("key is: %d\n", key);
19 fmt.Printf("value is : %f\n\n", value);
20 }//end for
21

130

And the output is:

johnbaugh@ubuntu:-/Desktop/go_programming/chap5/for_r
ange$./6.out
key is : 4
value is 4.000000

key is : 1
value is 1.000000

key is : 2
value is 2.000000

key is : 3
value is 3.000000

In this program, we declare a map on line 7 called myMap.
The keys in this map are ints, and the values are floats.
We create the map using make() on line 11. Then, we
populate the indices 1 through 4 with values on lines 12-
15.

On lines 17 - 20, we use a for loop with the range form to
iterate over items in the map. With this form, you must
have at least the key, and optionally you may capture the
value (which we have in this example).

However, the output is interesting. Notice that the key at
index 4 is printed out first. With maps, this order could be
anything, because by definition, maps are unordered.

The situation is quite different if we were to use an ordered
composite type, such as a slice.

Let's see what happens when we iterate over a slice using
the range form of the for loop:

1 package main
2 import(

131

3 "frnt"
4
5
6 func main() {
7 var rnySlice []int = rnake([]int, 4);
8
9 rnySlice[O] = 15;
10 rnySlice[1] = 20;
11 rnySlice[2] = 25;
12 rnySlice[3] = 30;
13
14 for key,value := range rnySlice
15 frnt.Printf("Slice at %d is %d\n", key,

value);
16 }
17

And the output is:
johnbaugh@ubuntu:-/Desktop/go programming/chapS/for r
ange$./6.out - -
Slice at 0 is 15
Slice at 1 is 20
Slice at 2 is 25
Slice at 3 is 30

Here, we use essentially the same syntax as with maps. But,
as you can see from the output, the data in the slice is in the
order we added it to the slice. This is because arrays and
slices are ordered composite types. Note also on line 14,
our usage of the idiomatic (quick and easy) : = without
having declared key or value previously.

5.5 Simulating Enumerated
Types with iota

Many readers may be wondering if Go supports anything
like the enum type of languages like C++. Go does not
technically have an enumerated type, but this can be
simulated by the iota identifier. The iota identifier is
used in const blocks. It resets to 0 any time the keyword

132

cons t is encountered, and increments any time a semicolon
is encountered. It therefore represents integer constants in
succession.

An example of iota in practice is:

1 package main
2 import(
3 nfmtn
4
5
6 func main() {
7 const(
8 first = iota;
9 second = iota;
10 third = iota;
11
12
13 fmt.Printf(nfirst : %d\nn, first);
14 fmt.Printf(nsecond: %d\nn, second);
15 fmt.Printf(nthird: %d\nn, third);
16

The above code has the output:

johnbaugh@ubuntu:~/Desktop/go_programming/chap5/iota$

. /6 .out
first : 0
second: 1
third: 2

In the code, notice the cons t block on lines 7-11. Each
successive usage of iota will increment by 1. This is why
the output starts at 0 (since iota is set to 0 at the beginning
of the cons t block), and ends at 2. We do not have to
explicitly include the semicolon at the end of each
statement, as Go automatically inserts one. In fact, many
Go programmer prefer this way:

7 const(
8 first iota

133

9 second
10 third
11

With this syntax, we leave out the semicolons.
Additionally, notice we do not have to keep using= iota
after every canst identifier. Go will automatically use the
last assignment if none is explicitly written.

Note that if we wanted to start our enumeration at say, 50,
we could use iota+SO with the initialization ofthe
elements.

5.6 Summary

In this chapter, we enhanced our knowledge of Go by
exploring more of the data types that the language has to
offer. We began the chapter discussing reference types and
pointers, and learned how they represent memory addresses
of other types.

We also focused on the composite types, including arrays,
slices and maps. We learned that slices exist on top of an
underlying array. Slices grow as needed, but we can also
use make (} to give them an initial capacity. The map type
represents associative arrays, in which a key-value pair is
used. As long as the == and ! = operators are defined for a
particular type, we can use that type as the key.

We explored how we can use range with for loops to
iterate over the composite types learned about in this
chapter.

Finally, we briefly learned how to simulate enumerated
types with the iota identifier.

134

Chapter 6

Structured Types,
Packages and Interfaces

In this chapter, we will look at structured types, interface
types, interfaces, the methods to implement interfaces, and
the values that are possible for these special types. Go has
a somewhat unusual and novel approach to object
awareness, and the unique concepts involving interfaces,
interface types, and interface values.

6.1 Structured Types

In this section, we'll explore the struct keyword, and how
we can create specialized groups of information, called
struct types, or structured types. It is often helpful to group
pieces of data together, and to be able to access that data as
if it were part of a single entity. Structured types help us do
that.

6. 1. 1 Named Fields and Anonymous
Fields

135

Structured types contain.fie/ds, which are the component
pieces of data that constitute the structured type. Let's
consider an example:

1 package main
2 import(
3 "fmt"
4
5

6 type rnyStruct struct{
7 sorneinteger int;
8 sorneFloat float;
9 sorneString string;
10
:1
12 func main () {
13 var rns *rnyStruct = new(rnyStruct);
14
15 rns.someinteger = 10;
16 rns.someFloat = 15.5;
17 rns.someString = "John";
18
19 fmt.Printf("My intis : %d\n", ms.someinteger);
20 fmt.Printf("My float is : %f\n", rns.someFloat);
21 fmt.Printf("My string is : %s\n", rns.someString);
22
23

And the output is:

johnbaugh@ubuntu:-/Desktop/go_prograrnrning/chap6S ./6.out
My int is : 10
My float is : 15.500000
My string is : John

On lines 6-9, we declare and define our structured type,
rnyStruct. This structure has three fields, some Integer,

someFloat, and sorneString. This means that whenever
we create an instance of this structured type, the instance
will have three constituent components with those names.

On line 13, we declare a variable, rns, that is a pointer to an
instance of mystruct. This is why we must put the symbol

136

*in front of the data type of the structure. Notice that we
then allocate the memory for the structure with the new (}
function.

At this point, the three fields contain the zero values for
their respective types. In other words, the int contains a 0,
the float, a 0.0, and the string, an empty string,"".

We can now populate the fields using the name of the
variable (ms) and the dot operator (.), followed by the
name of the field we wish to assign a value to. For those
coming from the C/C++ world, this may seem peculiar.

In C/C++, you must use the class member access operator
(->)to access the members of an object being pointed to.
Thus, in C/C++, objName->fieldName is equivalent to
(*objName}. fieldName. There is no such class member
access operator in Go. The indirection is performed
automatically with the dot operator.

Thus, we are able to populate ms on lines 15-17. On lines
19-21, we print the data stored in ms to the console.

Another useful feature of structures in Go is that they can
have anonymous fields. The fields in the above example
are specifically called named fields, because, well, the
fields have names!

Fields that don't have names may seem a bit peculiar at
first. These unnamed fields can even be structs themselves.
Although Go does not directly support inheritance in the
same way that a language like C++ or Java does,
anonymous fields allow for the embedding of the members
of the inner struct into the outer struct.

137

Let's consider some code:

1 package main
2 import (
3 "fmt"
4
5
6 //inner struct
7 type innerStruct struct{
8 innerint int;
9 innerint2 int;
10
11

12 //outer s~ruct
13 type outerStruct struc~{
14 b int;
15 c float;
16 int; //anonymous field
17 innerS~ruct; //anonymous field
18
19
20 func main () {
21
22
23

var outer *outerStruct

24 outer.innerint = 5;
25 outer.innerint2 = 10;
26 outer.b = 6;
27 outer.c ~ 7.5;
28 outer.int = 60;
29

new(outerStruct);

30 fmt. Printf ("outer. innerint = %d\n", outer. innerint);
31 fmt.Printf("outer.innerint2 = %d\n",

outer.innerint2);
32 fmt.Printf("outer.b = %d\n", outer.b);
33 fmt.Printf("outer.c = %f\n", outer.c);
34 fmt.Printf("outer.int ~ %d\n", outer.int);
35

And here is the output:

johnbaugh@ubuntu:~/Desktop/go_programming/chap6/anonymous_f

ieldsS ./6.out
outer.innerint = 5
outer.innerint2 = 10
outer.b = 6
outer.c = 7.500000
outer.int = 60

138

Here, on lines 7-10, we declare and define a structured
type called innerStruct. Note that it has two integer
fields, innerint and innerint2. Later on in the program,
we declare and define a second structure on lines 13-18,
called outerStruct. This structure has named fields, an
integer called b and a floating point type called c.

After these, we then see a couple peculiar things that we
haven't dealt with before now. On line 16, we have just a
data type listed, int. This is an anonymous field. There is
no identifier. In fact, when we want to store data in this
field or access the data, we simply use the name of the data
type. Notice also there would only be the ability to have
one anonymous field of each data type. In other words, for
example, we could not have two anonymous fields named
in t. This would be a naming conflict.

On line 1 7, notice that we use another anonymous field.
This time, it is the name of a type we've defined elsewhere
in the file. Namely, we've embedded innerStruct into
outerStruct. What this does is simply causes any fields
of innerStruct to be directly accessible from instances of
outerStruct.

The majority of the rest of the program is fairly self
explanatory, with a couple notes. On line 22 we create the
instance of outerStruct called outer. On lines 24-28,
we populate the members of outerStruct. Notice the first
two, innerint and innerint2 that come from the
innerStruct. They are accessed directly from outer

rather than having to go through another layer of hierarchy,
as would likely be the case in another language. In other
words:

outer.innerStruct.innerint

139

would be incorrect. Instead, we need to simply use:

outer.innerint

to access or assign values.

Lines 30-34 print the values that we stored in the structured
type instance, which we can observe from the output.

6.1.2 Methods

Methods in Go have much the same syntax as regular
functions, except that they have a receiver. The general
signature for a method is:

func (receiver) FuncName(params) returnType{
II .. body
}

The receiver is specified in parentheses before the name of
the method. A receiver is the type that the method acts
upon.

The best way to understand this is to see an example of
how methods can act upon a structured type.

1 package main
2 import(
3 "frnt"
4
5
6 type TwoNums struct{
7 a int;
8 b int;
9
10
11 func main () {
12 var myTn *TwoNums; //ptr ~o instance
13 myTn a new(TwoNurns);
14 rnyTn.a = 12;
15 rnyTn.b = 10;

140

:6
:7 fm~.Prin~f("!he sum is : %d\n", my!n.Add!hen());
:e fm~.Prin~f("Add ~hem ~o ~he param : %d\n",

19
20

rny!n.AddToParam(20));

2: func (~n *TwoKums) Add!hem() in~{

22 re~urn ~n.a - ~n.b;

23
24
25 func (~n *!woKums) Add!oParam(param in~) in~{

26 re~urn ~n.a ~ ~n.b + param;
27
28

And the output is :

johnbaugh@ubun~u:-/Desk~op/go_prograr.~ing/chap6/me~hodsS ./
6.ou~

The sum is : 22
Add them to ~he param : 42

Here, we declare a structured type named TwoNurns. This
structure contains two integer fields, a and b. On lines 12-
15, we declare and assign values to the fields of our struct
instance, rnyTn. Now, if you look a little farther down in
the file, you will notice two different methods defined on
lines 21-27.

The first method, called Add Them () states its receiver as a
TwoNurns struct. Although we could have just used
TwoNurns directly, it is more efficient to use pointers, which
is why the data type of tn is *TwoNums.

TwoNurns is said to be the receiver base type, or just base
type. It is important to note that the receiver base type must
be declared within the same package and cannot be a
pointer or interface type.

The method Add Them () takes the fields of a TwoNurns

structure, adds them, and returns them. Notice how they

141

are accessed using the name of the identifier of the
receiver. Go does not have an implicit this pointer
available that languages like Java have. Therefore, you
must give the receiver an explicit name. In our case, it is
called tn.

The second method, AddToParam not only adds the fields of
the structures, but also adds an additional parameter and
returns the sum of all three.

Now, we need to jump up to lines 17 and 18 to see how the
methods are invoked. We take our instance of the structure
that we named myTn and simply use the dot operator to
invoke the methods, just as if they were fields. This is
different from what you might be familiar with if you're
coming from a language like C++ or Java. Go does not
have classes, and the methods (also called member
functions in C++) in Go are not inside of the structure. The
association between method and type is established by the
receiver.

6.2 Custom Packages and
Visibility

In this book, we've used some packages that are available
as part of Go's libraries. But you can create your own
custom packages, too.

For a package that Go provides, you have simply used code
such as:

import{
"fmt"

142

But, if we make a custom package, we can explicitly
describe where the package is located, such as:

import(
"./packl/packl"

In the above case, the packl package is available in a
directory inside the same directory in which the importing
source file resides. In other words, if we have one file
called packageTest. go that imports packl, we would
have a packl directory inside the same directory as
packageTest. go.

And, as another note, we must resolve the name using the
dot operator, just like with the built-in Go libraries. For
example, we use fmt. Printf () to resolve the Printf ()

function available from the fmt package. Similarly, we
would use packl. FunctionName () to import a function
from packl.

6.2.1 Visibility

The frrst topic we must consider when dealing with
packages is visibility. Visibility refers to the ability of a
function, method, or data to be accessed from outside a
package. This is similar to the concept of public and
private data members and member functions/methods in
languages like C++ and Java. When an identifier is
available outside of a package, it is said to be exported.

Go has a very unique approach to indicate whether data or
functions are exported or not. Instead of a particular
keyword, Go uses the case of the identifier.

143

If an identifier in a package is uppercase, then the identifier
is exported, and therefore available outside of the package.
If the identifier is lowercase, it is not exported.

Let's look at an example. Keep in mind that this time we
have two different source files to consider. One will be the
package we are creating, and the other is the driver
program, which means the program that utilizes the
package.

Firstly, we must create a package. While not entirely
necessary, it is good to make a directory to put the package
source file in (which will be compiled into an object file).
In my case, I call the directory the same name as the
package, namely, packl.

Here is the code for the package. Note the location given is
not part of the code:

(Location : packl/packl.qo)

1 package packl
2

3 var MyPacklint int = 15;
4
5 func ReturnNum() int{
6 return 5;
7

The package code is fairly self-explanatory. The only thing
that is really different is on line 1. Notice the package
name is not main. Instead, we named this package packl.

This is the name that will be imported in the driver
program.

Now, here is the code for the driver program:

(Location : packageTest.go)

144

1

2 package rna in
3

4 inport (
5 "frnt"
6 ". /packl/packl"
7

8

9 func r..a:.n () {
10 var ~es~: :.n~;

12 testl = pack1.Re:urnNurn();
13 frnt.Printf("Hi there\n");
14 frnt.Printf("Nurn : %d\n", ~estl);

15

16 fn:.Printf("Nun 2 : %d\n", pack1.MyPacklint);
:7

Here is the output:

johnbaugh@ubuntu:-/Desktop/go_programrr.ing/chap6/packages$
/6.out
Hi there
Num : 5
Nurn 2 : 15

Again, once you understand what's going on here, we can
see that the code is not that difficult. Notice how the
package is imported on line 6. We specify the directory
and package name as we saw earlier.

When we want to call the function ReturnNum (),we
qualify it with the name of the package, packl and use the
dot operator to qualify it as we can see on line 12.

Again, we can access data from our custom package just as
well as we accessed our function, just as long as the name
begins with an uppercase letter. So, we can access
MyPacklint on line 16.

145

Before we move on, it's important to note that you must
compile the packl. go source file before you compile the
packageTest. go driver source file. The driver is actually
looking for packl. 6, the compiled object code. That is
why it must be available, or the driver will not compile.

Since we learned about structs previously, it would be
important that we note you can create and utilize exported
structures as well. Let's consider some more code:

(Location : structPack.go)

package structPack
2

3 type ExportedStruct struct{
4 Member1 int;
5 Member2 float;
6

(Location : main.go)

1 package main
2 import(
3 "fmt"
4 "./structPack"
5
6

7 func main () {
8 var myStruct *structPack.ExportedStruct;
9 myStruct = new(structPack.ExportedStruct);
10
11 myStruct.Member1 = 10;
12 myStruct.Member2 = 16.0;
13
14 fmt. Printf ("Member1 = %d\n", myStruct .Member1);
15 fmt.Printf("Member2 = %f\n", myStruct.Member2);
16

And the output is:

johnbaugh@ubuntu:-/Desktop/go_prograrnrning/chap6/package2S .
/6.out
Member1 "" 10
Member2 = 16.000000

146

This example is also fairly clear if you understood the
previous example. In the above example, take note that the
name of the structure itself, ExportedStruct is capitalized.
Also, the members that we access are also capitalized,
namely, Mernberl and Member2. If there was a member that
began with a lowercase character, we could not access it
from outside of the package. Additionally, if we had a
struct type whose name began with a lowercase letter, we
could not declare an instance of the struct type itself.

6.3 Interfaces

An interface defines a set of methods, called the method
set. Interfaces are pure and abstract. This means that they
don't have implementations or data fields. Another
concept is that of interface types. Interface types are any
type that implements the interface.

This means that the type has methods that are a subset
(proper or not) of the interface. As long as the type has
methods that are at least the methods in the method set of
the interface, then this qualifies that type as implementing
the interface.

Finally, an interface value is an actual value with its type
being the interface type. It will be more clear once we
examine some examples, but for now, we must establish
that multiple types could implement the same interface. An
interface type can point to an instance of any of the types
that implements the interface. This allows for great
flexibility.

147

As with most topics in this book, examples are the best way
to give us a stronger grasp on the concepts of an interface.

Let's see some code;

1 package main
2 import(
3 "fmt"
4
5
6 type Square struct{
7 sideLength int;
8
9

10 type Triangle struct{
11 base int;
12 height int;
13
14

15 type Areainterface interface{
16 Area() float;
17
18
19 func main () {
20 var mySquare *Square;
21 var myTriangle *Triangle;
22 var areaint Areainterface;
23
24 mySquare = new(Square);
25 myTriangle = new(Triangle);
26

27 mySquare.sideLength = 5;
28 myTriangle.base = 3;
29 myTriangle.height = 5;
30

31 areaint = mySquare;
32 fmt.Printf("The square has area

areaint.Area());
33

34 areaint = myTriangle;
35 fmt.Printf("The triangle has area

36

37
38

areaint.Area());

%f\n",

%f\n",

39 II Square implements the Areainterface interface
40 func (sq *Square) Area() float{
41 return float(sq.sideLength * sq.sideLength);
42
43

148

44 II Triangle implements the Areain:erface interface
45 func (tr *Triangle) Area() float{
46 return 0.5 * f:oat(tr.base * tr.heigh:);
47

And here's the output:

johnbaugh@ubuntu:-IDesktoplgo programminglchap6linterfacel$
.16.out -
The square has area : 25.000000
The triangle has area : 7.500000

This program has a lot going on. It combines a lot of the
things we've learned throughout the book, as well as
interface types, which we just learned in this section. In
fact, it is one of the largest programs we've looked at in
this book thus far.

On lines 6 - 13, we declare two different structure types,
Square and Triangle. Square has a sideLength field,
which is the measurement of a square's side. In Triangle,

there are two fields, base and height, indicating the length
of the base and the height of the triangle. In other words,
we have the data that is required to determine the area of
either a Square or a Triangle.

On lines 15 - 17, we declare our interface type,
Area Interface. The interface has only one method,
Area () that returns a float. In other for a type to
implement this interface, it must only implement the
Area() method.

On lines 20- 22, we declare our Square and Triangle

structure types, as well as our Areainterface type. On
lines 24 and 25, we actually create our Square and
Triangle, mySquare and rnyTriangle, respectively using
new (). And then, on lines 27-29, we set the values of the
side Length of our Square and the base and height of
our Triangle.

149

On lines 31 and 32 are where the really interesting and new
stuff happens. On line 31, we assign the Square variable to
our interface variable, area Int. This interface variable
now contains a reference to the Square variable. We can
then call areaint .Area(). This actually calls the Area()
method of Square, which is defined on 40-42.

Later, on lines 34 and 35, we store our Triangle variable
into area Int. And, although we call the exact same
method, Area<>, what is actually called is the Area<>
method of Triangle, defined on lines 44-47.

This is all possible because an interface variable can
contain a reference of any type that implements its method
set. Since both Square and Triangle implement the
Area<> method (the only method in the method set of
Areainterface), an Areainterface variable can contain
either a Square or a Triangle.

This is the closest thing to polymorphism that Go has.
And, while areaint does contain a reference to either the
Square or Triangle variable (pointer variable, to be
exact), the areaint is not a pointer itself. It is a multiword
data structure, containing the value of the receiver (which
could be a pointer, or a variable of the type itself) and a
method table pointer that points to the appropriate method.
For example, when areaint refers to a Square, it
maintains both the field data and value of the Square
variable, as well as the appropriate Area (> method,
namely, the Square's Area() method.

6.4 Summary

150

In the first part of this chapter, we learned about structured
types. We learned about named and anonymous fields of
these structured types. Also, we learned about how to
implement special functions, called methods, that act upon
these structured types.

We also learned about how to create our own custom
packages. Along with packages, we learned about visibility
and how the case of the first character of identifiers within
a package determines whether or not the identifier can be
accessed outside the package.

Finally, we discussed interfaces. We learned that interfaces
allow us to describe a set of methods that define the
interface, and how a type must implement each of these
methods in order to qualify as implementing that particular
interface. We also learned that an interface type allows us
to store a variable or reference to any of its implementing
types. This is similar to the concept of polymorphism
present in all fully object oriented languages, although not
exactly the same.

151

Chapter 7

Concurrency and
Communication

Channels

In this chapter we will discuss slightly more complicated
features of Go. Go comes with built-in types and
functionality to help with concurrency and communication.
This chapter reveals much of the interesting characteristics
of Go that make it a superb language for modem computing
paradigms.

7.1 Concurrency

In this section, we will discuss how Go handles
concurrency. Concurrency allows programs, processes,
threads, and in the case of Go, go routines (more on these
later) to operate simultaneously. Sometimes these entities
share resources as well, so this sharing must be coordinated
properly. Go offers a lot of support for concurrency and
makes resource sharing and coordination between such
simultaneously executing entities. In order to understand
exactly how does this, we must explore goroutines.

152

7.1.1 Goroutines

Typically, when talking about concurrency (also called
parallelization), you will almost certainly hear two terms:
process and thread. While these terms are often confused,
and there are some individuals who split hairs over details,
basically a process is an independently executing entity that
runs in its own address space. Composing a process may
be one or more threads, which are simultaneously
executing entities that share address space.

With Go, the designers wanted to avoid confusion or
preconceptions (and especially, the hair-splitting over
details), so they named their parallelization entities
goroutines. A goroutine is essentially a thread, which
shares address space with other goroutines within the same
process.

A goroutine is implemented as a function, and invoked
(called) with the go keyword.

A code sample follows:

~ package main;
2

3 irr.port (
4 "fn-:"
5 "-:.ime ..
6
7

8 func na:.n () {
9

10 frnt.Pri..ntln("In main()");
11 go longWai..t();
:2 go shortWai..:();
13 frr:c.Prin-:ln ("About -:o sleep :.n nain () ");
14 ti..rne.Sleep(lO * le9);
15 fmt.Println("A: the end of main()");
16
17

18 func longWait(){

153

19 fmt.Println("Beginning longWait()");
20 time.Sleep(5 * le9); //sleep for 5 seconds 5 *

l,OOO,OOO,OOOns
21 fmt.Println("End of longWait()");
22
23
24 func shortWait(){
25 fmt.Println("Beginning shortWait()");
26 time.Sleep(2 * le9);
27 fmt.Println("End of shortWait()");
28

And the output is:

johnbaugh@ubuntu:-/Desktop/go_prograrnrning/chap7/goroutine$
./6.out
In main ()
About to sleep in main()
Beginning longWait()
Beginning shortWait()
End of shortWait()
End of longWait()
At the end of main()

Before we discuss the goroutines themselves, notice we
have included the time package. We need this in order to
use the Sleep() method. Sleep() has the following
signature:

func Sleep(ns int64) os.Error{
//function body here
}

Note that we could capture an error (the return type) if we
wish. The parameter is in nanoseconds, which means
billionths of a second. The Sleep () method allows us to
pause the current goroutine for at least a certain number of
nanoseconds.

In our code, notice that in both longWai t () and
shortWait (),we have a multiplication by le9. What does
this mean? This means 1 times 10 to the power 9, in other

154

words, a 1 followed by 9 zeroes. We do this multiplication
to get seconds. Since a nanosecond is one billionth of a
second, we need to multiply a nanosecond by a billion
(1 ,000,000,000) to get one second. So any number we have
multiplied by 1 e 9 will give us the number of seconds.

On lines 11 and 12, we use the go keyword to start the
goroutines. When you execute the code, you will notice
that each of these functions will start independently and not
end in the same order that you would expect if they were
typical functions.

The function shortWai t () sleeps for 2 seconds, while
longWai t () sleeps for 5. I have the main function sleep
for 10 to ensure that it doesn't exit before the two
goroutines do.

Much of the magic of this program will be evident when
you run the program. I cannot, on this statically printed
paper (or digitally typed data file, more accurately)
accurately express the dynamics of this code. You will
have to run it and see that it does in fact wait after the two
"beginning" statements are printed. Note that the "End of
shortWait()" string is printed before the "End of
longWait()" string.

This was a very basic and trivial example just so you can
see what can be done with goroutines. We will explore
more of their power later in this chapter.

7.2 Communication Channels

Related to goroutines are communication channels, a built­
in reference type that provide mechanisms to perform

155

cross-goroutine communication. Goroutines must be able
to communicate in order to send and receive information
and coordinate their efforts.

The keyword for a channel is chan. Since channels are
reference types, you must use the rna ke () function to
allocate memory for them.

Channels are specified with the data type that transmit.
Thus, the generic form:

chan data_type;

declares a channel that allows for sending and receiving of
data_ type data.

Specifically, if I want to transmit, say, integer data, I could
create a channel thusly:

chan int;

7.2.1
<-

The Communication Operator,

We use the communication operator, <- to designate that
we are transmitting data. The data is transmitted in the
direction of the arrow. For example,

myint = <- ch;

would indicate that myint is receiving the data from a
channel, ch. The data is flowing.from the channel, to the
integer variable. However,

ch <- someint;

156

would indicate that someint is being sent over the channel,
ch.

Let's look at a fairly simple, "quick and dirty" example of
how to use channels. Note that this is not an excellent
implementation, and that we will explore better examples
later. But for now, it will get the point across without
unnecessary difficulty:

1 package ~ain;
2 impor~(

3 "fm~"

4 "time"
5
6
7 func main () {
8 var ch chan string;
9

10 ch = make (chan s-cring);
11

12 go sendData (ch);
13 go getData(ch);
14
15 time.Sleep(3 * le9);
16
17

18 func sendData(ch chan string){
19 ch <- "John";
20 ch <- "Bob";
21 ch <- "Sam";
22 ch <- "Sally";
23 ch <- "Julie";
24
25
26 func getData(ch chan s~ring){
27 var inpu~ string;
28

29 for {
30 input = <- ch;
31 fmt.Printf("%s\n", input);
32
33

And the output is:

157

johnbaugh@ubuntu:-/Desktop/go_programrning/chap7/namepump$.
/6.out
John
Bob
Sam
Sally
Julie

In this code, we declare and initialize our channel of
strings, ch, on lines 8-10. We then call two functions (in
this case, they are goroutines), sendData () and
getData (>,passing ch to them in order to provide a
mechanism for communication between them.

If we skip down a little bit in the code, and look at lines 18-
24, we see the body of sendDa ta () . Since our channel is a
channel that utilizes strings, we are able to send various
strings across it. In this case, we've used some names.

On the other side of the channel, we have our receiver
goroutine on lines 26-32, called getData (>. Notice that
we have an infinite for loop that has within its body, a
string variable input being set to whatever comes out of
the channel, and then we print the data. The reason it will
eventually break is that when the channel is closed (when
the channel goes out of scope in the sendDa ta (> function),
the for loop will exit.

Let's hop back up into the main function for a bit, on line
15. Note that right now, we are using a little quick and
dirty trick to keep the program from terminating before the
goroutines have a chance to execute. Specifically, we are
sleeping for 3 seconds. This gives us enough time for the
goroutines to send and receive data, respectively. If you
run the code, you will notice that even after the data is done
being sent and received (and in our case, printed), the
program doesn't terminate until three seconds have elapsed.

158

Our above approach is a little naive and clunky. How can
we make it better? Well, we must first consider what
causes us to exit the rna in () function in the first place.
Since we call go on both of our functions (lines 12 and 13),
the main () method has nothing to do except exit, unless we
put the Sleep () function at the end to keep it from
finishing.

Why don't we just call the second function, getData ()

instead of causing it to execute in its own goroutine?

Well, if you simply do this, you will end up with a runtime
error. The system will detect a potential deadlock. Is there
any way we could signal when we are done with the
channel on the sendDa ta () side, and is there any way to
detect that the channel is closed on the get Data () side? In
fact, there are.

The method

close(ch);

closes a channel, ch. The method

closed(ch);

returns true if the channel is closed, and false if it isn't.

Let's look at the code in total with some of our old code
commented out, and new code added.

The output will be the same, except we don't have to wait
at the end of main (),because there is no Sleep () method.

2
3
4

pacl<age ma.:..n;
.:..r..por: (

"fm:"
II "t.:..me"

159

5
6

7 func main() {
8 var ch chan string;
9

10 ch = rnake(chan string);
11

12 go sendData(ch);
13 // go getData(ch);
14 getData(ch);
15

16 // time.Sleep(3 * le9);
17 }
18

19 func sendData(ch chan string) {
20 ch <- "John";
21 ch <- "Bob";
22 ch <- "Sam";
23 ch <- "Sally";
24 ch <- "Julie";
25 close (ch);
26
27

28 func getData(ch chan string) {
29 var input string;
30

31 for{
32 input = <- ch;
33 if(closed(ch)) {
34 break;
35
36 fmt.Printf("%s\n", input);
37
38

Here, we have call sendData () with go on line 12 just as
the original code. On line 14, we simply call the function
without go this time. This will prevent the program from
exiting too early, since this function will share the main
process (or main goroutine if you wish).

The changes to the functions themselves should be
apparent. On line 25, we've added the close(} function to
send a message that the channel is finished sending data.
And, on lines 33-35, the condition of the channel is tested.
If the channel is closed, we break outside of the loop.

160

7.2.2 Communicability and Select
Statements

There are situations in which we may want to know if the
channel has blocked or not. Go does provide a way to do
this.
If we want to know if a receive on a channel has blocked or
not, we can use the following syntax:

value, proceed = <-chan;

In this case, value is the value received on the channel and
proceed is a Boolean value that is set to true if we have
received the value.

For sending, in a similar fashion we can collect the value:

proceed := chan <- value;

We can use this with a conditional statement in order to see
if we can proceed.

Go provides a very special conditional construct just for
communication channels, the select statement. The
select statement is essentially a switch statement, but for
use exclusively with control channels. Thus, each case
must be either a send or receive communication.

Let's consider a code sample:

1 package main
2 import(
3 "fmt"
4 "time"
5
6

161

7 func main() {
8 var ch1 chan int; //chan of ints
9 var ch2 chan int; //chan of ints
10
11 ch1 = make(chan int);
12 ch2 = make(chan int);
13
14 go pump1(ch1);
15 go pump2(ch2);
16 go suck(chl, ch2);
17

18 time.Sleep(10 * 1e9);
19
20

21 func pumpl(ch chan int){
22 for i:= 0; ; i++{
23 ch <-i*2;
24 }
25
26

27 func pump2(ch chan int){
28 for i:=O; ; i++{
29 ch <- i+5;
30 }
31
32
33 func suck(ch1 chan int, ch2 chan int) {
34 for{
35 select{
36 case v:= <-ch1:
37 fmt. Printf ("Received on channel 1 %d\n", v);
38 case v:= <-ch2:
39 fmt.Printf("Received on channel 2 %d\n", v);
40
41
42

I won't put the output here, because it is extensive, and will
likely (in fact, almost certainly) be different when you
execute it, even between multiple runs of the same program
on the same machine. Additionally, the output will be quite
long. You can decrease the amount of output by decreasing
the amount of time the program sleeps for.

You will undoubtedly notice that the output will alternate
between receiving on channel 1 and channel 2. There are

162

two pumps, producing integers and sending them on their
respective channels. Only one consumer (the suck ()

function) is present, which takes the information on either
of the channels, and prints the information out. Notice that
it is in an infinite for loop, polling for information being
sent over the channels.

The select statement switches on the information received
on the channels. The case that is chosen is dependent upon
which channel the information is received.

7.3 A Simple Client and Server

In this section, we will explore a simple client/server
application. In this application, the client will specify its
name, and then send information to the server.

The code for the server should be in its own source code
file, such as server. go, and is as follows:

paci<age r..a:..n
2
3 import (
4 "frnt"
5 "net"
6 "os"
7
8

9 func rna.:.n () {
:o var li.stener net.Listener;
11 var error os.Error;
12 var conn net.Conn;
13

:4 fnt.Pri.ntf("Starti.ng the server ... \n");
15

:6 //create ::..stener
17 ::..stener, error= net.::..sten("tcp",

"localhost:50000");
18 if error != nil{
19 frnt.Println("Error listening", error.String());

163

20 return; //terminate program.
21 }//end if error !=nil
22
23 //listen and accept connections from clients
24 for{
25 conn, error= listener.Accept();
26 if error != nil{
27 fmt.Println("Error accepting", error.String());
28 return; //termina~e program
29 }//end if error !=nil
30

31 go doServerStuff(conn); //do something with this
connection

32 } I /end for
33
34
35 func doServerStuff(conn net.Conn){
36
37 var buf []byte;
38 var error os.Error;
39
40 for{
41 buf = make([]byte, 512);
42 , error= conn.Read(buf);
43 if error != nil{
44 return;
45
46

47 fmt.Printf("Received data %v", string(buf));
48 }//end for
49

In the code for the server, we will use a package we are
unfamiliar with. This package, net, has many capabilities
to aid in sockets, and other network communication
functionality. It contains capabilities to aid with TCP/IP,
UDP, domain name resolution, and more.

The variable listener of type net. Listener, declared on
line 1 0 is used to listen for incoming communication from
clients. Notice on line 17, it is instantiated to listen on TCP
port 50,000 on localhost.

On line 12, conn of type net . Conn is instantiated on line
25 where the actual connection is created from the listener.

164

The main goroutine of the server waits on incoming
connections on line 25 inside of the infinite for loop, and
then continues once it receives information from the
listener. If there are no errors, the program goes to line 32
where a separate goroutine is created for that client. So
each client gets its own goroutine. The function
doServerStuff (conn net. Conn) is the goroutine that is
called.

Lines 35-50 show the definition for our goroutine,
doServerStuff (). We create a buffer called buf, of the
type byte slice. The buffer is instantiated with 512 bytes
of memory on line 41, then waits and reads information
into the buffer on line 42. If there are no errors, the
information from the client is printed out on the server side
(line 4 7). Notice that the buffer is cast explicitly to a
string.

Now, the code for the client, which should be in its own
code file, say client. go, is as follows:

2
3
4
5
6
7
8
9

1.0

1.2
1.3
:.4
15
16
17

18
19
20
21
22

paci<age rr.a:.n
ir.,port. (

.. fr.,: ..
"net."
"os"
"bufio"
"strings"

//C:.IEN:
func rr.ain() {

var conn ne:.Conn;
var error os.Error;
var inpu:Reader *bufio.Reader;
var input. string;
var clientNarr.e string;

conn,error • net.Dial("tcp","","localhost:SOOOO");
if error !-= nil{

fmt.Printf("Error : ", error.String());
re-::urn;

:1 /end if

165

23
24 inputReader = bufio.NewReader(os.Stdin);
25

26 fmt. Println ("First, \'l'hat is your name?\n");
27
28 clientName, = inputReader.ReadString('\n');
29 trimmedClient := strings.Trim(clientName, "\n");
30

31 for{
32 fmt. Println ("What to send to the server? Type Q to

quit.");
33 input,_= inputReader.ReadString('\n');
34
35 trimmedinput : = strings. Trim (input, "\n");
36 if (trinunedinput == "Q") {
37 return;
38
39
40 , error= conn.Write([)byte(trimmedClient +"

says: "+input));
41 }
42

For the client code, we must include the net package for
network communication as well as the bufio package, for
getting input from the user. The client doesn't need a
listener like the server does. Instead, on line 18, it dials the
server on TCP port 50,000. If you don't start the server
first (or if other problems exist), an error will be printed out
on line 20.

If there are no errors, we create an input reader to obtain
information from standard input, on line 24. The user is
prompted to enter their name, which they should do on line
28. We then have to perform a trim to remove the newline
character that the user enters. This is so the information
sent to the server doesn't have an unnecessary newline
character inside of it.

Later, in lines 31-41, the user can enter information to send
to the server. If they type a single character Q, the client
exits.

166

Notice on line 40, the information that is actually sent to
the server. It prepends the data with the name of the user
(that they typed right after starting the client application)
and the string, "says". This is so if there are several clients
communicating with the server (which we encourage you to
try) the server side console will show which client said
what.

The server must be started first, before the client. The
server output is as follows:

johnbaugh@ubun~u:-/Des~~op/go prograr.r.ing/si~p:e :~/serverS
./6.out - -
Starting ~he server ...
Received data John says: Hi there
Received data : John says: This is the client

On the client side, the interaction looks like this:

johnbaugh@ubuntu:-/Desktop/go programming/simple IM/client$
./6.out - -
First, what is your name?

John
What to send to the server? Type Q to quit.
Hi there
What to send to the server? Type Q to qui~.
This is the client
What to send ~o ~he server? Type Q ~o quit.

You will have two console windows (or tabs) opened at
once. In my particular implementation, I put the client and
server code in separate subdirectories. I compile them
separately. Then, I start the server first, and then the client.

After starting the server, you can start several clients and
send information to the server.

I encourage the reader to modify the server and to play
around with this basic code.

167

Ideas for modifying the code:

• Determine a way to send information to the server,
perhaps the message "shutdown" and have the
server exit

• Determine a way to track the users that log in, on
server side and then add another command to the
available commands, "who" which returns a list of
the names of all connected clients.

• Create a program using some of what you learned in
order to have the server forward information to
other clients that you pick. In other words, it would
be like a simple instant messaging program.

There are endless possibilities. The information in this
chapter was quite simple, but should give you a basic idea
of how the net package works. As always, to read more
about this package and its thorough documentation, you
can go to the official Go Language site
(http://www.golang.org).

7.4 Summary

In this chapter, we studied concurrency and communication
channels. I introduced go routines, which are similar to
threads and used for concurrency in Go. We then discussed
communication channels, which allows for communication
between goroutines. This significantly reduces the
traditional resource accessing problems found in many
other languages when dealing with cross-thread
communication. Finally, we put much of our knowledge
together and created a simple, yet complete, client-server
application.

168

Conclusion and Further
Study

Go is a very powerful language. In this book, we have
explored the fundamentals of the Go programming
language. This book is by no means exhaustive, however,
and you need to know that there are dozens of packages
available with Go. In order to explore these packages, visit
the official Go Programming site at:

http://www.golang.org

This book has been edited and corrections have been made.
We've attempted to ensure the highest possible quality, but
it is rare when a technical book is printed without any
errors or at least some need for clarification. Thus, if and
when any errata are discovered, they will be corrected at
this book's official site:

http://www.goprogrammingbook.com

You will also be able to submit questions, requests for
clarifications, and errata on this site. Also, check out the
site for further information, clarifications, news, and source
code samples.

169

Index

anonymous fields 13 7
array .. l15
arrays ll4
base type 141
Boolean data 62
break statement. 94, 95
bufio package 39
byte ... 62
capacity l23
chan ... I 56
channels 155
character data 60
client/server 163
comma ok form l27
communication operator I 56
composite typesl14
concurrency 152
continue statement.. 95
decimal. 61
dot operator 137
file input. 38
file output. 38
tint package 33
for loop 92
functions 99
goroutines 152
hexadecimal 61
inheritance 12
input. ... 35
integers 58
interface 14 7
interface type l47
interface value 14 7
interpreted strings 64
iota identifier 132
iteration 92
len() ... 65
make() l21
maps .. l25
Mercurial. 25
Methods 140
MinGW l9
modulus operator 96
multiple return values 37

170

named fields l37
net package 166
Object Oriented 12
operator overloading 15
os package 36
pointer arithmetic 15
polymorphism 150
range .. l30
raw strings 64
real numbers 58
receiver base type 141
select statement 161
short declarations 55
slice ... ll9
slices .. 114
sockets l64
strconv package 76
strings .. 63
strings package 65
TCP/IP 164
threads 152
Ubuntu .. 6
UDP .. 164
Unicode IS
visibility I43
Wubi. .. 21

171

172

lllllllllllllllllllllllll llllll
9577413R2

Made in the USA
Lexington, KY
12 May 20 11

John P. Baugh has been developing software for over
10 years. He holds a Master of Science Degree In Com·
puter Science from the University of Michigan· Dearborn.
Mr. Baugh works as a software engineer at Siemens PLM
Software in Ann Arbor, Michigan.

Prior to working for Siemens PLM Software, he worked
as a graduate student research assistant and helped to
establish the Vehicular Networking Systems Research
Laboratory at the University of Michigan • Dearborn De·
partment of Computer and Information Science.

In addition, he is an Adjunct Lecturer of Computer Science at the University of Michl·
gan • Dearborn, as well as a part time instructor at Schoolcraft College in Livonia, Michl·
gan.

Classes that he has taught include beginning and intermediate computer science
courses, C++, C#, Java, and basic game development.

He especially enjoys teaching people about software development, including design
considerations and simply how to program.

His personal website for this book is at

http://www.goprogrammingbook.com

ISBN 9781453636671

	Front Cover
	Table Of Contents
	Chapter 1 Introduction to Go
	Chapter 2 Installing Go and Other Support Software
	Chapter 3 Getting Started with Go Programming
	Chapter 4 Control Structures and Functions
	Chapter 5 More Data Types
	Chapter 6 Structured Types, Packages and Interfaces
	Chapter 7 Concurrency and Communication Channels
	Conclusion and Further Study
	Index
	Back Cover

