
 !!!
	  

	  

	  
Documentation about the engineering of

FiDO: an Android™ app 
to manage your pets

 Object-Oriented Programming - a.y. 2013/2014    
 B.Sc. Degree in Computer Science & Engineering    
 University of Bologna - Cesena Campus    
 May 16th, 2014   

a paper by Nicola Giancecchi and Michele Sapignoli



FiDO Engineering Documentation rev. 1.0

!!
!!
CONCEPT	 4                                                                                 
01 The idea	 4
                                                                                                                 

02 Problem analysis	 4
                                                                                                   

ENGINEERING	 6                                                                          
03 Architectural design	 6
                                                                                              
03.01 Model	 6                                                                                                                             
03.02 View	 8                                                                                                                               

03.02.01 Activities	 8                                                                                                                                   

03.02.02 Adapters	 9                                                                                                                                  

03.03 Controller	 11                                                                                                                      

04 User Interface design	 12
                                                                                          

05 Packages organization	 12
                                                                                        

06 Work division	 13
                                                                                                       

07 Detailed engineering	 14
                                                                                           
07.01 Nicola Giancecchi’s work	 14                                                                                              

07.01.01 App’s fundamentals	 14                                                                                                               

07.01.02 Measures	 14                                                                                                                               

07.01.03 Diet	 15                                                                                                                                        

�2N. Giancecchi — M. Sapignoli

“A dog teaches a 
boy fidelity, 
perseverance, 
and to turn 
around three 
times before 
lying down.”!

— Robert Benchley 



FiDO Engineering Documentation rev. 1.0

07.01.04 Patterns	 16                                                                                                                                 

07.02 Michele Sapignoli’s work	 18                                                                                               

07.02.01 Reminder	 18                                                                                                                               

07.02.02 General Info	 20                                                                                                                           

07.02.03 Notification system	 21                                                                                                                 

07.01.04 Patterns	 22                                                                                                                                 

07.03 The common part	 22                                                                                                         

07.03.01 Main activity	 22                                                                                                                           

07.03.02 Stats & Costs	 22                                                                                                                         

DEPLOYMENT	 23                                                                        
08 Testing	 23
                                                                                                                 

09 Final considerations	 23
                                                                                            
09.01 Workflow	 24                                                                                                                      
09.02 Interactions & criticalities	 24                                                                                               

10 Next steps	 25
                                                                                                           

11 Bibliography & credits	 25
                                                                                         

12 Group contact informations	 25                                                                                

�3N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

CONCEPT 
01 The idea !
"Ehi Nico, cosa ne dici se facessimo una bella app per gestire i 
nostri animali domestici?" (Ehi Nico, what do you think about 
develoving an app for our pet friends?).


This is how FiDO was born. A simple idea. A smart idea. An idea that has become reality.


Since we were children, our love for pets has always been strong. We grew up surrounded 
by the companionship and the warmth of our four legged friends: Max and Stitch. Their love 
has changed us, and inspired us as well to make a colorful and essential application, able 
to manage all the needs and treatments that a pet needs from its owner.


Since the beginning, we wanted to create a powerful, useful but simple mean to deal with 
all our beloved friends. We knew that overcoming this challenge was not a joke, but we 
have done our best in order to offer to FiDO users an application that could assist them in 
their ordinary life with their pets. 


We actually had started working on this product weeks before we wrote the first line of 
code. In fact, FiDO was deeply studied and analized with the goal of making the user 
experience easy and comfortable, as much as possible.


!
02 Problem analysis !
What features does an application have to have, in order to deal with pets? 
This is the main question that occupied our minds for the first weeks. 


After a deep analysis, we indentified some basic ones, so our application should have been 
capable of:


• Adding a single owner of the pets.


• Adding a several number of pets.


• Managing pets info.


• Deleting a pet.


• Adding different types of operations for pets.


• Editing and deleting pets operations.


• Showing pets statistics.


!
�4N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

Furthermore, we focused on the kind of tasks that a pet could have and we chose some 
important features of the app:


• Reminder section: a list of upcoming and past events related to the pet's life, with the 
possibility to add and edit events of different types.


• Diet section: a side completely devoted to the pet's feeding, realized through the making 
of a weekly diet.


• Measure section: a part of the app used to add and manage daily measurements.


• Stats section: a tool to track pet growth, showing pet's measurements and owner's 
costs.


• Notifications: a system that notifies the user for events and pet's meals.


• Data loading system: realized on .dat file. 


The first analysis was also intended to choose the platform of our application, desktop or 
mobile, in order to design the corresponding GUI. The team considered the advantages and 
disadvantages of both of them and, in the end, preferred the mobile, mainly because of a 
wider and more frequent possible usage of the app. 


For this reasons we chose to develop FiDO for Android devices.


 

�5N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

ENGINEERING 
03 Architectural design !
The app basically uses the MVC (Model-View-Controller) development pattern. MVC 
allows to separate the roles for data definition, manipulation and presentation. In Android, 
the view component of the pattern is composed by two fundamental parts:


- Activities, that manages the viewing of data on the device and update it after inserting, 
editing or deleting data


- Android XML Interface Files, that specificate the static design of the view (like Visual 
Studio’s Form files and Xcode’s XIB files) and includes all the controls of the view - such 
as buttons, textviews, listviews, etc…


Other Java patterns are also used in the app, such as the Template Method - used to 
reduce significantly the duplication of code — and Singleton — used in app’s DataHelper 
class to manage the I/O, it makes available a single reference of the saved file through the 
whole app. Inherently, the app makes use of the Adapter pattern by using it in the Adapters 
for the Android ListView UI controls (they are on the com.oop1314.fido.gui.adapters 
package). These patterns will be showed later in the Detailed engineering section.


!
03.01 Model !
Description of the main aspects:
!
• Pet: class with all the animal data, which has getters and setters. In order to guarantee 

the persistence of the data, the class implements Serializable. It implements 
IPickerHelper as well.
!

• Owner: class with all the owner's data , which has getters and setters. It handles 
personal data, the selected Pet in the MainActivity and the default time for Reminder 
notification. It implements Serializable. !

• IPickerHelper: interface used to simplify the handling of date and time pickers.
!
• Event: class that models an event, which has getters and setters. It implements 

Serializable , IPickerHelper and INotification (see p.19).
!
• Meal: class that models a meal, which has getters and setters. It includes a Food field. It 

implements Serializable , IPickerHelper and INotification (see p.19).
!

�6N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

• Food: class that describes a food, with name and quantity, for the pet. It implements 
Serializable. !

• DayOfWeek: enumeration for days.  
  

�7N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

!
!
03.02 View 
03.02.01 Activities !!

�8N. Giancecchi — M. Sapignoli

03.02 View
 

03.02.01 Activities 
!U

M
L diagram

 of the View
 Activities  section.



FiDO Engineering Documentation rev. 1.0

• The WelcomeActivity is the activity the user sees at the first start of the app. It is used to 
collect name and surname of the owner. Once completed, a GeneralInfoEditorActivity is 
shown. It is made for building a Pet object, with all the info regarding the animal.


• Both WelcomeActivity and GeneralInfoEditorActivity extend AbstractEditorActivity, an 
abstract generic class that implements common methods for Editors. These methods are 
helpful in order to show alerts, build pickers or notify events. The class has a generic X 
field too. It can be an object from Pet, Owner, Event, Meal, Measure or Long class. Every 
class that extends AbstractEditorActivity has a different usage of the X field. 


• The abstract class AbstractBaseActivity is the class at the top of the activity pyramid 
and it is needed for displaying the return button, at the left top of the activities.


• The abstract class AbstractListActivity is part of the template method for list activities 
(see p. 16). It is composed by common methods for list activities (DietOverviewActivity, 
MeasuresListActivity, RemindersListActivity). It has generic X fields for an Adapter and a 
Controller and corresponding methods for setting and getting them. Other methods are 
for opening/editing objects and handling results from editor activities.


• The StatsActivity shows plots and info about the growth and the costs related to the pet.


• The MainActivity is the primary view of the app. It is composed by a large clickable 
image and four buttons, connected to GeneralInfoDisplayActivity, RemindersListActivity, 
DietOverviewActivity, MeasuresListActivity and StatsActivity.


!
03.02.02 Adapters !
Fido Adapters implements the fundamental methods for giving the user an easy-to-use 
interface.
!
• The abstract class AbstractBaseAdapter is part of a template method pattern. It 

includes common code for the list design in the activities. Its implementation differs in the 
three classes DietOverviewAdapter, RemindersAdapter and MeasuresAdapter. Each 
class creates a different style for its own list. 
!

• The classes used to manage the lateral drawer are the following:  DrawerAdapter is the 
adapter designed for the lateral navigation Drawer control. DrawerItem and 
AbstractDrawerItem are the interface and the abstract class that have common 
methods declarations and implementation. The class ListDrawerItem is designed for 
Pet's names and cells which are located in the lateral drawer.  The HeaderDrawerItem 
class, instead, is formed by methods for the cell titles. 
!!

�9N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

 

�10N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

03.03 Controller !
• As MeasureController and DietController have some common code, the abstract class 

AbstractEditableController is a factorization in a template method of the common 
methods for these classes. Its aim is to write once the code for adding, editing and 
deleting a generic X object (Measure or Meal) and for saving data on file. Each 
implementation has different controls and methods for its own needs. Being 
ReminderController a little bit different from the others, it shares only the 
IEditableController implementation. The ReminderController handles data differently 
from the other controllers, having two lists of events instead of one in Pet class.


• The MainController class does all the "dirty work" that MainActivity needs. It has a list of 
pets and methods for adding, editing, deleting and handle them. 


• The StatsController class has methods to calculate the total amount of costs and the 
detailed amount for each Event type. 


• The DataHelper class is the singletone, used to load and save data between the various 
views (see p.18). 

!!
�11N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

04 User Interface design !
A particular attention is focused on the app’s user interface & experience design since the 
beginning of the project. Some graphical sketches were made before the project approval 
to have an idea of the app behavior.


UI elements and call to actions are clear, easy to understand and in line with the actual 
mobile design trends.


!
!
!
!
!
!



!
05 Packages organization !
The app’s source code is organized into these packages, under the main package 
com.oop1314.fido.


• com.oop1314.fido.model: contains all the model classes of the app.


�12N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

• com.oop1314.fido.gui: contains the classes about the view and it’s organized into 
two subpackages:


• com.oop1314.fido.gui.activities: contains all the activities of the app 
that manage the viewing of data.


• com.oop1314.fido.gui.adapters: contains the view’s adapters, that help 
the app to show data into Android ListView items.


• com.oop1314.fido.controller: contains the controller classes that intermediate 
the dialogue between model and view classes.


• com.oop1314.fido.exceptions: contains the classes used for throwing 
exceptions.


• com.oop1314.fido.notifications: contains the classes that manage local 
notifications.


Javadoc for this project is available into the /docs folder.


!
06 Work division 



All the work (excluded the making of the idea 
and the first app concepts) was performed in 
about 200 hours, divided equally between 
Giancecchi and Sapignoli. The common 
activities took about 20 hours (20%) for each 
resource. All the hours were tracked through the 
Podio system (www.podio.com).


The features were divided following this 
scheme:


Nicola Giancecchi: 


Measure Tracking section, Diet section. Activities and Controllers for Measures and Diet. 
Exceptions. Adapters. Left Drawer. Photo handling in pet's info.


Michele Sapignoli: 


General Info section, Reminder section. Activities and Controllers for General Info and 
Reminder. Pet addition/deletion. Notification system. Beta testing on real devices.


Common part: 


�13N. Giancecchi — M. Sapignoli

Parts division

12%
5%

12%
48%

24%

Modeling (24%)
Interaction (48%)
Design (12%)
Document (5%)
Testing (12%)

http://www.podio.com


FiDO Engineering Documentation rev. 1.0

Main Activity. Stats & Costs + Info section. Activities and Controller for Stats & Costs + Info. 
Constants.


!
07 Detailed engineering !
07.01 Nicola Giancecchi’s work !
This section is under the responsibility of the resource Nicola Giancecchi.  
Will be illustrated his share of work in the project. !
My work was initially focused on the general structure and the visual fundamentals of the 
app. Then I worked on the building of Measures and Diet sections, that are very similar in 
their structure. Next, together with Michele we have built the Stats section and refactored 
the reused code into the Java main patterns.
!
07.01.01 App’s fundamentals !
In the days before the approval of the project we’ve sketched out the various views of the 
app and the general structure. In particular, it was decided to use the Navigation Drawer: an 
Android control used in many apps and in line with current trends (known on iOS for its first 
appearance in the Facebook app).

The main view has been designed to be understandable and has direct links to the major 
parts of the app.
!
In particular, the Navigation Drawer structure is under a template method:


!!!
07.01.02 Measures !

�14N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

The first section implemented by me is Measures. The main class for this section is 
Measure: it has three main fields that are the characteristic of this section — weight, height 
and length — and one Date field that can be considered as the primary field of the class: 
thanks to the relative Controller methods that I’ll show next, there must be only one 
Measure object for each day. The Measures methods are only getters and setters.


These objects are showed into the MeasuresListActivity that can be called by tapping on 
the “Measures” button on the Main Activity. In this view you can simply see on the top of 
the view the last Measure entered. Immediately after are showed all the measures inserted 
by the user.


All the logic of this view is managed by the MeasuresController class, into the controllers 
package. It has methods for adding, editing and deleting a Measures that belongs to the 
AbstractEditableController template method pattern. It also incorporates methods for 
ordering the list, checking if a Measure already exists in a day and getting the first Measure 
to be shown in the top of MeasuresListActivity. With the same view, if you tap on a ListView 
item on the List activity, you can edit a measure that already exists. In this case a red 
“Delete this measure” button will be shown to give to the user the possibility of deleting a 
Measure.


By tapping the “+” button on the Navigation Bar, you can add a Measure through the 
MeasureEditorActivity. Into this view you can add or edit a measure by filling the three 
TextView fields and setting the date through the date picker. Since a measure in a day is 
unique, if you want to edit a Measure, the date picker will be disabled. 


Tapping on “Save” button, the activity will build — or edit if it already exists — an object of 
Measure type that will be passed to the MeasuresListActivity as an Intent result. Here, with 
the AbstractListActivity template method, the object will be managed and saved onto disk.


!
07.01.03 Diet !
The second section implemented is Diet. This is a little bit more difficult section than 
Measures that required some more hours of development.
!
The Diet associated class is called Meal. It has some fields: the ID as primary key, a 
DayOfWeek enumerator that represents the choosen day, a “startDate” (hour of serving), a 
Food object that contains the name of the food and the quantity, and two flags that affects 
Notifications, implemented by my colleague.
!
As Measures, Diet is accessible from the Main Activity. The view is also similar to Measures: 
it has a top view that shows the next meal to be served to the pet and a ListView. Through 
the switch that is inside the view, you can choose if you want to show into the ListView the 
diet for today or for the whole week.
!

�15N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

By tapping the “+” button, you can add a new Meal through the DietEditorActivity. Here 
you can select the day by using a NumberPicker adapted with string values, the hour using 
a TimePickerDialog, the desired meal (Croquettes/Paste/Fodder/Targeted food/Snacks/
Supplements), the quantity in grams and choose if you want to receive a local notification.
!
Like measures, tapping on Save button will generate an object that will be managed by the 
DietOverviewActivity.
!
07.01.04 Patterns 
Understanding the AbstractListActivity template method 

�16N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

It was necessary to implement the template method into classes of "Activities List" type 
that have some common methods in which only a few parameters changes.


The methods openEditorAdding() and openEditorEditing(final X obj) were 
identical on all List views, except for the Intent constructor that requests the Class of the 
view. I’ve solved this by calling the abstract method setOpeningClass().


The method associateOnClickEvent() was identical on all List views, except for the 
logic of retrieving the data to be edited. I’ve solved this by calling the abstract method 
openEditorAtIndex(int arg) that returns the desired object at the passed index.


The method onActivityResult(final int requestCode, final int resultCode, final Intent data) 
was the same on all List views. I’ve put this on the abstract class and added an 
activityResultAccessory() method that is called if I would do some accessory operations — 
e.g. sorting — after adding/editing/deleting the object from the list.


Understanding the AbstractEditableController template method 

�17N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

It was necessary to implement the template method into the Editable controllers due to 
presence of duplicated code and for having a single performSave() method reference 
to the DataHelper class.


AbstractEditableController is the solution for easily build a controller for adding/editing/
deleting objects in a List of type X.


The method setList() sets the list where editing operations should be applied. The logic 
for manipulating data into the list is delegated to the methods addAccessory(), 
editAccessory() and deleteAccessory(). Everytime one of these methods (add/
edit/delete) are called, DataHelper will save the Owner object onto disk. 


Understanding the DataHelper singleton 

We decided to implement a singleton for the 
management of I/O because being the object to be 
manipulated only one in the whole app (the .dat file), the 
management of the references to the objects and their 
access becomes easier.
!
DataHelper provides methods for saving and reading 
the Owner serializable object and for suppling to the 
Controller classes the main Owner’s fields — like the list 
of pets or the notifications. It also manages the storage 
and the reading of images saved on disk.
!!

07.02 Michele Sapignoli’s work !
This section is under the responsibility of the resource Michele Sapignoli.  
Will be illustrated his share of work in the project. !
My first goal was to create a well-functioning Notification system and well-designed 
General Info and Reminder sections. I started working on this last section first, because I 
knew it could have been the hardest part to deal with.
!
07.02.01 Reminder !
The Event class is the base class of the whole Reminder section. It is composed by many 
fields, but the essential ones are the title and the date (beginning date and ending date).
!
Being the raw material of the section, the objects of this class are built, by tapping the "+" 
button, by the ReminderEditorActivity, which is a part of the GUI completely devoted to 
the construction of an Event.

This activity shows several TextFields to fill, two CheckBoxes used for Notifications and All-
day-activity and two Buttons. It also allows to add Event costs.
!

�18N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

Once pressed, the buttons show a DatePickerDialog and, immediately after, a 
TimePickerDialog. This action is perform through the usage of the IPickerHelper Interface, 
which is used by the abstract class AbstractEditorActivity (the one -among the others- 
extended by ReminderEditorActivity and DietEditorActivity) in order to show the 
DatePickerDialog and the TimePickerDialog.
!
This class incorporates common methods for the Editors (DietEditorActivity, 
GeneralInfoEditorActivity, MeasureEditorActivity, ReminderEditorActivity).

It is composed by a generic field X, which is the raw type of the object for the 
corresponding activity (Meal, Pet, Measure, Event), and methods such as showAlert or 
notifyEvent, which are used by the Editors. 

The methods setTimePickerDialog and setDatePickerDialog take an IPickerHelper object in 
input: in this way they can work both for Pets and Events objects.
!
I made this decision not to duplicate the code for showing the 
Dialogs in the GeneralInfoEditorActivity (for Pets) and in the 
ReminderEditorActivity (for Events). 

My colleague Nicola Giancecchi separated the two methods (before 
together) in order to use the TimePickerDialog for his 
DietEditorActivity.

O n c e a n E v e n t o b j e c t i s b u i l t , i t i s s e n t t o t h e 
RemindersListActivity, thanks to the performSave method.


�19N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

!
The part of the Activity Lists is implemented through the usage of the Template Method, 
described in my colleague's work.
!
What RemindersListActivity do, is being a display of two lists of events: upcoming and 
past. 

The ReminderController plays a fundamental role for this part of the GUI: it adds, edits 
and deletes objects from the list as the other controllers but, furthermore, it sorts the future 
lists, putting events in order (sortEventList), and checks if they are up-to-date 
(getUpToDateList). If an upcoming Event is pressed, ReminderEditorActivity opens up with 
the possibility to edit the event. If a past Event is pressed, an alert comes out, showing 
notes and giving the possibility to add/edit the amount. Amounts will be displayed in the 
StatsActivity.
!
The look of the cell is described in the reminders_listview_item.xml, located in the 
res/layout folder.
!
I found this section not so easy to develop. Linking the Date & Time Dialogs, dealing with 
up-to-date lists in the TabHost and passing data was not immediate. But after this large 
part of work, I could concentrate on the GeneralInfo section, with a useful welth of 
knowledge from the Reminder section.
!
07.02.02 General Info !
The GeneralInfo section is composed by an Editor and a display Activity too.

The user can enter this section by tapping the large image in the MainActivity. The first 
screen the user sees is the GeneralInfoDisplayActivity: a simple identity card of the pet. 
The entire layout is formed by TextViews displaying the name and the info about the animal. 
!
By clicking the Edit button, the user opens the GeneralInfoEditorActivity. In this piece of 
GUI, it is possible to change the details and the photo of the pet and to add notes. At the 
end of the page, there is a red button which gives the user the possibility to delete the 
current pet. The action will fail if the owner's current pet is the only one remained, in fact an 
Alert (made through the use of the method showAlert in the abstract class 
AbstractEditorActivity) will notify the impossibility to complete the action.

If the pet is deleted, the app will bring you to the MainActivity, otherwise, once the edit is 
complete, the modified Pet object is sent to the GeneralInfoDisplayActivity and here a 
confirm is required, in order to save the modified object.
!
The most difficult part of this section was the handing of data through the Activities. In fact 
the MainActivity, the GeneralInfoDisplayActivity and the GeneralInfoEditorActivity 
continuously deals with Pet objects, and loosing the point during the development was 
easier than expected.
!!!

�20N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

07.02.03 Notification system !
A l l t h e n o t i fi c a t i o n s y s t e m c l a s s e s c a n b e f o u n d i n t h e p a c k a g e 
com.oop1314.fido.notification.
!
Since the first meeting of the team, the implementation of a local notification system was 
scheduled.

I started with the development of the first rudimental ReminderService class, as the 
Reminder section was part of my tasks.  This class aim was to build a notification and to 
notify the NotificationManager using the extra of the Intent passed and the pendingIntent 
(necessary to open the RemindersListActivity).  Once developed, I started working on the 
deletion, writing the code for deleting a notification in the ReminderEditorActivity (after, 
this piece of code will become the method notifyEvent in AbstractEditorActivity). 

After the correct code was made for Reminder, I created the DietService and, afterwards, 
factored them in the Template Method for Notifications, with AbstractService class.
!
Unfortunately, when the phone used to reboot all the notifications were lost. In order to 
supply to this, the classes MyBroadcastReceiver and MyBroadcastAlarmService were 
created.

The first class extends BroadcastReceiver and has permissions to set notifications up after 
the re-boot of the phone. The second is the Service that MyBroadcastReceiver starts and 
wakes the AlarmManager up, passing it the notificableList of Event and Meal objects that 
the DataHelper computes.
!
The INotification interface is implemented both by Event and Meal model classes and 
helps the MyBroadcastAlarmService class to set notifications up.
!!!

�21N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

07.01.04 Patterns 
Understanding the Notification system template method 

When I realised that I needed two different Services for Meals and Events, but with some 
common code, I chose to implement the Notification system through the usage of the 
Template Method. 


In the AbstractEditorActivity class, the method notifyEvent starts the Service: 
ReminderService or DietService, depending on the intent extra. In the main method of 
AbstractService class, the onStartCommand method, the local notification is built. When it 
is necessary to get specific info for the intent extra passed, the work is passed to the 
abstract methods, which are differently implemented in the two Service classes. 


!
07.03 The common part !
07.03.01 Main activity !
The Main Activity is the meeting point for all app features. 
The main tasks that are entrusted to its activity are:

• loading the main Owner from the file, or showing the 

Welcome Activity if it doesn’t exists;

• loading the Drawer data and updating it when necessary;

• associating the buttons with the relative Intents

• managing the adding, editing and deleting operations (with 

the help of MainController class).
!!
07.03.02 Stats & Costs !
Stats & Costs part is a totally readonly part that shows some 
statistics and the summary of the costs for the selected pet.
!
For this section we have used AndroidPlot 0.6.0, that is one 
of the possible choices for showing plots and graphs in Android.
!
In the plot section, we have two choices of visualizations: Measures, so you can see the 
evolutions of length, the height or the weight for the desired pet, or Costs, which shows a 
pie plot of the overall costs, divided into the Costs categories.
!
Next in the view there are some statistics: the pet’s life and period since takeover and the 
list of total costs also here divided into categories.
!
The Activity manages the plots visualization; the dirty work of calculating all data is 
delegated to the Stats Controller. 

�22N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

DEPLOYMENT 
08 Testing !
The software has been tested throughout the development on many devices and emulators 
with Android 4.3 Jelly Bean MR2 OS (API level 18) and Android 4.1 Jelly Bean OS (API level 
16):
!

• Android Virtual Devices (under Mac OS X 10.9 Mavericks 64-bit):


• ARM64 Emulator (armeabi-v7a, 480x800px XHDPI, Cortex-A8 CPU - like 
Google Nexus S)


• Intel Atom Emulator (x86, 480x800px XHDPI - like Google Nexus S)


• Real devices:


• Samsung Galaxy S3 (GT-i9300, 720x1280px XHDPI)


• Samsung Galaxy S3 Mini (GT-i8190n, 480x800px HDPI)


The minimum SDK API level for the app is 16 (Jelly Bean) and the target API level is 19 
(KitKat). These data are visible into the Android Manifest file (AndroidManifest.xml).
!
Two builds of the app have been distributed to a small circle of friends for a more effective 
testing and feedback.
!!!
09 Final considerations !
The FiDO Team is highly satisfied of this project for some reasons.
!
The first is that the choice to develop this project on the Android platform is a challenge 
we have set ourselves to improve the way we develop in object oriented environments and 
also an opportunity to learn in detail how to develop in Android, a very important piece of 
the pie of the mobile operating systems market since it’s installed on 78% of smartphones 
worldwide, according to IBTimes.com .
1!!!!

�23N. Giancecchi — M. Sapignoli

 “Worldwide Smartphone Growth Estimates: Better Days Ahead For Windows Phone While Android And iOS 1

Are Expected To Lose Market Share” — International Business Times, Feb 28th, 2014 (bit.ly/1mNxrDl). Please 
note that, even if Android market share worldwide is 78%, only the 65% of the whole Android devices can run 
FiDO, since it’s compatible from SDK 4.1 Jelly Bean. Source: Android Dashboards, Google (bit.ly/1fDoS6p) 

http://bit.ly/1mNxrDl
http://bit.ly/1fDoS6p
http://bit.ly/1mNxrDl


FiDO Engineering Documentation rev. 1.0

09.01 Workflow !
The workflow was fairly linear and approaches the proposed workflow published on 
February 11th, 2014 on Unibo EASI moodle platform.

The only changes made to the proposed workflow are the follows:
!

• Since we have decided to develop an app on an almost unknown platform, the first 
week of work has been focused for Giancecchi — who already has experience in 
mobile development for iOS — to understand the Android SDK, the structure and the 
features of its main components. During this week, Sapignoli worked on the review of 
the model and its writing as Java classes. Once this part has finished, the team 
merged the knowledges and started with the development of designated parts. !

• The design analysis has remained almost unchanged, except for some choices 
regarding the data structures used (e.g. seeing what’s better than Lists or Maps in 
certain situations) and for keeping or removing model fields and functionalities that 
are unnecessary or non-priority for the project. !

• The implementation of the patterns was performed later — approximately at 40% of 
the work — since we aimed primarily to creating a basically working prototype of the 
app. Once we understood the various parts of MVC in Android and found the 
common parts of code, we proceeded refactoring classes and cleaning code using 
CheckStyle, FindBugs and PMD plugins.
!!

09.02 Interactions & criticalities !
There have been continuous interactions between the two components of the group aimed 
to discuss and implement the best design choices to be deployed.


The team worked separately on the code, using Mercurial as software versioning service 
and BitBucket as hosting, as recommended by professors. 
Twice/three times a week the team met to work together on the common parts, to monitor 
the work’s progress and to set some deadlines as goals to be achieved.


The critical points of the project that took more time were:


• for Nicola Giancecchi: the management of the I/O using DataHelper took a little bit 
more time for the construction and especially the testing, which involved the 
creating and reading the file and all the operations of addition, modification and 
deletion of individual objects.  
The use of AndroidPlot has requested a general learning of the platform and later 
other hours for its implementation.


• for Michele Sapignoli: the challenge to face a new OS, without having written a 
code line for mobile devices before, was exciting and hard at the same time. It took 
a while to get into the Android logic and to understand how the data flow and the 
entire system were managed. The hardest part was probably the development of 

�24N. Giancecchi — M. Sapignoli



FiDO Engineering Documentation rev. 1.0

the Notification system. First, I had to understand the possible implementation for 
Android devices and then set task apart, in order to give a working solution for both 
Reminder and Diet objects.  It was not so immediate, but I am particularly glad I 
have succedeed in developing it, as I am proud of the Reminder section.


!
10 Next steps !
Although the software presented is stable and works well, there are some enhancements 
that are needed for presenting a more efficient and consistent management of data.
!

The next main step is implementing a physical database instead 
of the current .dat file. The project will be presented to 
professors Dario Maio and Annalisa Franco for the course of 
“Basi di Dati” (Databases). SQLite (http://sqlite.org) will 
be used as main DBMS.


Thanks to the use of MVC pattern, in principle will be necessary modifications only for the 
part of Controller — in addition to some minor graphical and model adjustments. The 
presentation will take place in the second half of June 2014.
!
Finally, we are planning to release the full app with database on Google Play Store during 
this summer and to develop an iOS edition of the app within this year.
!
11 Bibliography & credits !
- Plotting library: AndroidPlot 0.6.0 - http://androidplot.com 

- Date utilities library: Joda-Time 2.3, released under Apache License - http://
joda.org/joda-time 


- Cover and document photos: Michael Gil (msvg), Matther Rogers (rogersmj), Tom Gill 
(lapstrake), Dale Hichens (gibzilla) @ flickr, released under Creative Commons 
License.


- Special thanks to Matteo Pazzaglia, Daniele “Cuore di Panna” Fabbri, Thomas Righi, 
Guido Muscioni and Lorenzo Moraccini for testing this software… and for supporting us :) 


- Thanks to Azienda Agricola Rodi di Roberta Sapignoli for the horses recordings.
!
12 Group contact informations !
Nicola Giancecchi 
UNIBO ID: 0000653628

Academic mail: nicola.giancecchi@studio.unibo.it
!
Michele Sapignoli 
UNIBO ID: 0000653917

Academic mail: michele.sapignoli3@studio.unibo.it
!

�25N. Giancecchi — M. Sapignoli

http://sqlite.org
http://androidplot.com
http://joda.org/joda-time
http://flickr.com/photos/msvg
http://flickr.com/photos/rogersmj
http://flickr.com/photos/lapstrake
http://flickr.com/photos/gibzilla
mailto:nicola.giancecchi@studio.unibo.it
mailto:michele.sapignoli3@studio.unibo.it


FiDO Engineering Documentation rev. 1.0

!
App website 
http://www.fidoapp.net/ 

nicola@fidoapp.net

michele@fidoapp.net 
!!!
Android™, Google, Google Play Store and the Google logo are registered trademark of Google Inc. 
IOS is a trademark of Cisco in the U.S. and other countries and is used under license by Apple Inc.. 
"Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 

�26N. Giancecchi — M. Sapignoli

http://www.fidoapp.net/
mailto:nicola@fidoapp.net
mailto:michele@fidoapp.net

