
操作系统原理 October 24, 2011
Homework 5

计算机 92 班 戴唯思 09055029

6.4
Explain why spinlocks are not appropriate for single-processor systems yet are often used
in multiprocessor systems.

Spinlocks are locks where the thread simply waits in a loop (spin) repeatedly checking until the
lock becomes available.

• Spinlocks should not be used on single-processor systems.

In the best case, a spin lock on a single processor system will waste resources,
slowing down the owner of the lock; in the worst case, it will deadlock the processor.

• Spinlocks are not needed in single-processor systems.

Generally you should start with a mutex, and if profiling show it to be a bot-
tleneck, you may want to consider a spinlock.

• Spinlocks are efficient when implemented on multi-processor systems.

6.9
Show that, if the wait() and signal() semaphore operations are not executed atomically,
when mutual exclusion may be violated.

Given semaphore x = 0, when a wait() and a signal() operation are done atomically, x
changes to 1 then 0, or −1 then 0. If they are not executed atomically, x gets an uncertain value
except at the initial step.

6.11
The Sleeping-Barber Problem. A barbershop consists of a waiting room with n chairs
and a barber room with one barber chair. If there are no customers to be served, the
barber goes to sleep. If a customer enters the barbershop and all chairs are occupied,
then the customer leaves the shop. If the barber is busy but chairs are available, then
the customer sits in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

class customer:
def main(self):

if barbershop.all_chairs_occupied:
self.leave()

self.sit_in(pick_one_from(barbershop.free_chairs))

1



class barber:
def main(self):

while True:
while barbershop.chairs_occupied>0:

self.serve(pick_one_from(barbershop.occupied_chairs))
self.sleep(until=lambda:(barbershop.chairs_occupied==0))

Supplement 1
P, V described like this would cause starvation, because V resumes a process from the tail of the

waiting queue, ones on the head would never be resumed.
Initialize s to 1. Invoke P(S) and V(S) separately before and after visits to the shared variable.

Supplement 2
def managed_write:

Swait(wcount,1,1);
Swait(Rcount, R, 0;

mutex,1,1);
write();
Ssignal(mutex,1);
Ssignal(wmutex,1);

def managed_read:
Swait(wcount,w,0;

Rcount,1,1);
read();
Ssignal(Rcount,1);

Supplement 3
4 processes: enter the room, students do the exam, students leave the room, the teacher leaves

the room
Semaphores:

• gate=1

• exampaper=number of students

• teacher=1

• freeseat=number of students

• pack=0

2



Enter the room
P(gate)
Enters the room
V(gate)
V(freeseat)

Students do the exam
P(teacher)
Get the exam paper
P(exampaper)
V(teacher)
Write on the exam paper
P(teacher)
Hand in the exam paper
V(exampaper)
V(teacher)

Leave(S)
P(own exampaper)
V(own exampaper)
P(gate)
Leave the room
V(gate)

Leave(T)
P(pack)
V(pack)
P(gate)
Leave the room
V(gate)

7.3
A possible solution for preventing deadlocks is to have a single, higher-order resource that
must be requested before any other resource. For example, if multiple threads attempt
to access the synchronization objects A . . .E, deadlock is possible. We can prevent the
deadlock by adding a sixth object F . Thenever a thread wants to require the lock for
any object A . . .E, it must first acquire the lock for object F . This solution is known
as containment: the locks for objects A . . .E are contained within the lock for object F .
Compare this scheme with the circular-wait scheme of section 7.4.4.

Table 1: Comparison of containment and circular-wait scheme
Containment Circular-Wait

Both prevent the deadlock
Inefficient Efficient

One-at-a-time Not restricted
Usually easy to implement Usually hard to implement

3



7.11
Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the context of the matrix Need?

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0, 4, 2, 0), can the request be greanted imme-
diately?

a.

Need:

A B C D
P0 0 0 0 0
P1 0 7 5 0
P2 1 0 0 2
P3 0 0 2 0
P4 0 6 4 2

b. Yes, the plan P0, P2, P1, P3, P4 satisfies the safety requirements.

c. Yes, one possible sequence is P0, P2, P3, P1, P4.

References
1. https://secure.wikimedia.org/wikipedia/en/wiki/Spinlock

2. http://stackoverflow.com/questions/1025859/is-spin-lock-useful-in-a-single-processor-
uni-core-architecture

3. http://comp.ist.utl.pt/ec-sc/0405/docs/ecos-2.0b1/doc/html/ref/kernel-spinlocks.html

4. Thomas Anderson. The Performance of Spin Lock Alternatives for Shared-Memory Multi-
processors. IEEE Transactions on Parallel and Distributed Systems, vol. 1, num. 1, January
1990, pages 6 - 16. An earlier version appeared in Proc. 1989 International Conference on Par-
allel Processing (ICPP), August 1989. http://www.cs.washington.edu/homes/tom/pubs/spinlock.pdf

5. http://www.moserware.com/2008/09/how-do-locks-lock.html

4

https://secure.wikimedia.org/wikipedia/en/wiki/Spinlock
http://stackoverflow.com/questions/1025859/is-spin-lock-useful-in-a-single-processor-uni-core-architecture
http://stackoverflow.com/questions/1025859/is-spin-lock-useful-in-a-single-processor-uni-core-architecture
http://comp.ist.utl.pt/ec-sc/0405/docs/ecos-2.0b1/doc/html/ref/kernel-spinlocks.html
http://www.cs.washington.edu/homes/tom/pubs/spinlock.pdf
http://www.moserware.com/2008/09/how-do-locks-lock.html


6. http://wiki.osdev.org/Atomic_operation

7. http://www.cs.rpi.edu/~moorthy/Courses/os00/soln78.html

8. http://www.cs.umbc.edu/courses/undergraduate/421/spring06/homework1-soln.pdf

5

http://wiki.osdev.org/Atomic_operation
http://www.cs.rpi.edu/~moorthy/Courses/os00/soln78.html
http://www.cs.umbc.edu/courses/undergraduate/421/spring06/homework1-soln.pdf

