操作系统原理	October 8, 2011
Homework 4	
计算机 92 班	戴唯思 09055029

习题一

1. 8:00, JOB1 到达, 开始运行

8:20, JOB2 到达, 等待运行

8:25, JOB3 到达, 等待运行

8:30, JOB4 到达, 等待运行

8:35, JOB5 到达, 等待运行

8:40, JOB6 到达, 等待运行

9:00, JOB1 运行结束. 因为 JOB5 作业时间最短, 开始运行

9:05, JOB5 运行结束, JOB6 运行

9:15, JOB6 运行结束, JOB3 运行

9:35, JOB3 运行结束, JOB4 运行

10:00, JOB4 运行结束, JOB2 运行

10:35, JOB2 运行结束.

2. 如表所示

作业	提交时间	开始时刻	完成时刻	周转时间 (min)
JOB1	8:00	8:00	9:00	60
JOB2	8:20	10:00	10:35	135
JOB3	8:25	9:15	9:35	70
JOB4	8:30	9:35	10:00	90
JOB5	8:35	9:00	9:05	30
JOB6	8:40	9:05	9:15	35

平均周转时间: $\frac{60+135+70+90+30+35}{6} = 70$ min

习题三

1. 如表所示

时间 (min)	操作
0	E 运行
10	E 结束, D 运行
18	D 结束, C 运行
24	C 结束, B 运行
28	B 结束, A 运行
30	A 结束

平均周转时间: $\frac{30+28+24+18+10}{5} = 22$ min

2. 如表所示

I A ()	
时间 (min)	操作
0	A 运行
2	A 结束, B 运行
4	C 运行
6	D 运行
8	E 运行
10	B 运行
12	B 结束, C 运行
14	D 运行
16	E 运行
18	C 运行
20	C 结束, D 运行
22	E 运行
24	D 运行
26	D 结束, E 运行
30	E 结束

平均周转时间: $\frac{2+12+20+26+30}{5} = 18$ min

3. 如表所示

时间 (min)	操作	
0	C 运行	
6	C 结束, D 运行	
14	D 结束, B 运行	
18	B 结束, E 运行	
28	E 结束, A 运行	
30	A 结束	

平均周转时间: $\frac{30+18+6+14+28}{5} = 19.2$ min

4. 如表所示

时间 (min)	操作	
0	A 运行	
2	A 结束, B 运行	
6	B 结束, C 运行	
12	C 结束, D 运行	
20	D 结束, E 运行	
30	E 结束	

平均周转时间: $\frac{2+6+12+20+30}{5} = 18$ min

5.1

Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?

I/O-bound programs consume a relatively small part of computing resources but a large amount of I/O operations, by which way they occupy much time as well. CPU resources are designed to perform computing, so principles for CPU scheduling is to maximize CPU usage. I/O-bound programs usually do not use up all their CPU quantum, thus make it possible to share CPU quantums with CPU-bound programs to improve the overall performance.

5.4

Consider the following set of processes, with the length of CPU burst given in milliseconds:

Process	Burst Time	Priority
$\overline{P_1}$	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 all at time 0.

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, nonpreemptive priority(a smaller priority number implies a higher priority), and RR(quantum= 1).
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of the scheduling algorithms in part a?
- d. Which of the algorithms in part a results in the minimum average waiting time (over all processes)?

- b. See Table 1.
- c. See Table 2.
- d. Shortest job first.

Table 1: Turnaround time Turnaround time FCFS SJFPriority RR P_1 10 16 19 19 P_2 11 1 1 2 P_3 13 4 18 7 P_4 14 2 19 4 P_5 19 9 6 14

Table 2: Waiting time

	Table 2. Warring online			
Waiting time	FCFS	SJF	Priority	RR
$\overline{P_1}$	0	9	6	9
P_2	10	0	0	1
P_3	11	2	16	5
P_4	13	1	18	3
P_5	14	4	1	9

5.5

Which of the following scheduling algorithms could result in starvation?

- a. First-come, first served
- b. Shortest job first
- c. Round robin
- d. Priority
- b. Shortest Job First and d. Priority.