
1 Method of Construction

The goal is to construct all connected simple graphs with given number of
vertices up to isomorphism. The enumeration of such graphs is known; see,
for example, [1, Chapter 4] or A001349 of the On-Line Encyclopedia of Integer
Sequences. Though the formula is known, the method used there is not useful
for our purpose, because the method is, roughly speaking, counting up rooted
graphs neglecting connectedness at first, then excluding disconnected ones later.
It is hoped that the number of discarded graphs should be as small as possible.

We employ the following trivial principle:

Lemma 1.1 (Principle of the Least Degree (PLD)). Every connected simple
graph of order d(≥ 2) can be constructed from a simple graph of order d− 1 by
adjoining a vertex with the least degree.

Note that subgraph of order d − 1 is not assumed to be connected. It is,
however, possible to use only connected subgraphs for d ≤ 8.

We are going to describe general construction and prove the claim above.
Then we briefly state about isomorphism, summarize them into algorithms and
finally make some implementation remarks.

By the principle of the least degree (PLD), we construct a connected simple
graph G of order d from a simple graph G′ of order d− 1 and a vertex v0.

Assume that the subgraph G′ has k connected components, and v0 will
have degree m after the construction. Then, the first condition that should be
satisfied is k ≤ m. If m is one, then k has to be one as well, i.e. G′ is connected.

Consider the case that k ≥ 2. Fix a partition of number m into exactly k
parts: m =

∑k
i=1mi. Then each connected component Gi of G′ has its vertex

set Vi as a disjoint union of subsets Hi, Ji and Li:

1. Hi: every vertex v has degree deg(v) ≥ m+ 1.

2. Ji: empty unless i = 1, and every vertex v is a cut vertex and has degree
deg(v) ≥ m.

3. Li: |Li| = mi and every vertex v has degree deg(v) ≥ m when mi > 1 or
deg(v) ≥ m− 1 otherwise.

Each Gi will be connected with v0 at each vertex in Li. With these notations,
we show the following theorem:

Theorem 1.2. Every connected simple graph of order d(≥ 2) can be constructed
from subgraph of order d−1 and a vertex. Moreover, the subgraph of order d−1
can be either:

1. a connected simple graph or

2. k(> 1) disconnected graphs Gi satisfying the conditions above.

1

Proof. It is proved by mathematical induction.
If d = 2, the only subgraph of order d− 1 is a connected simple graph; it is

a vertex without any edges.
Assume up to d− 1, the statement holds.
Any graph G of order d has the least degree vertex v0. If v0 is not a cut

vertex, the graph G− v0 induced from G by deleting v0 is still connected graph
of order d− 1. In particular, if the degree condition for Li is not satisfied, one
can choose non-cut vertex. Thus the remaining case is that all vertices with the
least degree are cut vertices.

Pick up one of such cut vertices v. Then, we have a graph G − v induced
from G by deleting v. If all connected components of G − v except one has
no cut vertex, then all the conditions required for Hi, Ji and Li are satisfied.
Otherwise, we can pick up another cut vertex v′ with the least degree from a
component with such cut vertices, but the one with the smallest number of cut
vertices. Then, this process of changing splitting point will certainly stop in
finite steps, since the number of possible choices is finite and the number of the
least degree cut vertices in chosen component decreases each time.

Corollary 1.3. The order of a connected simple graph that needs the construc-
tion by PLD from k components and degree m vertex is at least k(m+ 2) + 1.

Proof. By the construction above, each component Gi has a vertex in Hi. Oth-
erwise, there are only vertices in Li. It is, however, a contradiction. Assume
mi = 1, then |Li| = 1 and the degree of sole vertex is 0 < m− 1, which contra-
dicts with the condition deg(v) ≥ m− 1. On the contrary, mi > 1 implies that
each vertex has degree at least m, but then |Li| ≥ m + 1 > mi; it contradicts
with the condition |Li| = mi.

Then, a vertex in Hi has degree at least m+ 1 and thus |Gi| ≥ m+ 2. There
are k components with order at least m+ 2 and the adjoined vertex.

The last corollary shows that it is unnecessary for d ≤ 8 to consider discon-
nected subgraphs, as claimed in the introduction. Another useful information
is that for d = 9, there is only one graph to be constructed from disconnected
subgraph: two complete graph K4s connected by a vertex of degree 2.

The graphs constructed by the method described above, include many iso-
morphic graphs. We need only one representative per isomorphism class. To
achieve it, we check graph isomorphisms.

Note that our consideration about isomorphism explained in this section is
not fully explored, since we only use rather small graphs.

There are two approaches; one is to find normal form of graphs so that iso-
morphic graphs can be detected by comparing the normal form identity, another
is to construct explicit isomorphism between two graphs so that isomorphic
graphs can be distinguished when an isomorphism is found. Both methods have
automorphism groups of every graph in mind. The automorphism group for a
graph with d vertices is considered as a subgroup of the symmetric group of d
elements. Thus, it grows, in general, rapidly with d.

2

Proposition 1.4. Let the number of vertices having degrees ν in a graph G be
nν , then the automorphism group of G is a subgroup of Ŝ = Sn1

×Sn2
×· · ·×Snt

,
where t is the highest degree and Sµ is the µ-th symmetric group.

This proposition has weakness for regular graphs; in such case Ŝ is trivially
known S|V | itself. However, in many other cases, the group Ŝ is rather small.

Data structure for graphs in the following algorithm is an incidence matrix.
This choice is made because the edges play central role in our application.

Our main driver algorithm is ConnectedSimpleGraphs written in pseudocode
below, followed by sub-algorithms ConnectedConstruct and DisconnectedCon-
struct.

Algorithm 1.5. (ConnectedSimpleGraphs)
input: d
output: All connected simple graph of order d representatives up to isomor-
phism

graphs ←− empty list
if d = 1:

append the simple graph of order 1 to graphs

else:
append all graphs in ConnectedConstruct(d) to graphs

append all graphs in DisconnectedConstruct(d) to graphs

while ∃G1, G2 ∈ graphs s.t. G1
∼= G2:

remove G2 from graphs

return graphs.

Algorithm 1.6. (ConnectedConstruct)
input: d
output: Connected simple graphs of order d constructed by adjoining a vertex
to a connected simple graph of order d− 1

graphs ←− empty list
for G′ in ConnectedSimpleGraphs(d− 1):

G′ is given as an incidence matrix
add a row to G′ # add v0
m←− 0
G′ ←− [G′]
while m ≤ minG∈G′ minv∈G(deg(v)):

G ←− empty list
for G in G′:

for e 6∈ E(G) and adjacent to v0:
if G + e does not break the condition m + 1 ≤
minv∈G+e(deg(v)):

Append G+ e to G

3

Append all graphs in G′ to graphs

if G is not empty:
G′ ←− G

else:
break

m←− m+ 1
return graphs.

Algorithm 1.7. (DisconnectedConstruct)
input: d
output: Connected simple graphs of order d constructed by adjoining a vertex
to disconnected simple graph of order d− 1

graphs ←− empty list
for k, m s.t. 1 + k(m+ 2) ≤ d:

for partition of m into exactly k parts m =
∑k
i=1mi:

for combinations ({mν1}, {mi | i 6= ν1}):
for partition of d− 1 into exactly k parts d = 1 +

∑k
i=1 di

where di ≥ mi:
Choose Gi with di vertices and satisfying the condi-
tions about Hi, Ji and Li and connect them with a
new vertex.
Append all obtained graphs to graphs.

return graphs.

There are a few points we omit the detail in the algorithms above.
The first point is that the algorithms hold all graphs in memory at once,

even redundant graphs to be deleted later. The bigger the number of vertices
becomes, the harder it becomes to do so. Therefore, it is usually necessary to
split the set of graphs. The simplest way is to split it by the number of edges
in addition to the number of vertices. Modification is an easy exercise, and left
to the reader.

The usage of list append is another over-simplified point. In reality, in order
to check isomorphism between graphs, it is useful to sort the graphs according
to a linear order; though the choice of order does not have much importance as
long as it is easy to calculate. The searching of isomorphic graph, then, can be
done using the binary search algorithm. Therefore, “append” in the algorithm
should be read as “insert to the appropriate position if there is no isomorphic
graph already”.

The last point is isomorphism check. The property we use is explained in
Proposition 1.4. It is far from optimal. There are, however, more powerful
graph isomorphism algorithms. If we will continue the computation, maybe [2]
will be one of the references.

4

References

[1] F. Harary and E. M. Palmer. Graphical Enumeration. Academic Press, New
York and London, 1973.

[2] B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45
– 87, 1981.

5

