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Introduction
Perhaps mention Open Source Brain; NeuroElectro - motivation: We were moti-
vated to structure our code and produce these tools to increase the accessibility
of our model, both to other modelers and to experimentalists. Model code is of-
ten difficult to read and poorly documented, the final models not as transparent
as wanted - er, the biological relevance of them uncertain.

Here, we aimed to increase the accessibility to experimentalists by creating
an AutoRig tool that characterizes various aspects of the model within experi-
mental protocols. This includes ion channel IV curves and activation/inactivation
curves, single cell current clamps, and paired cell recordings. Additionally, the
RunOrganizer makes it easy to produce network level outputs that can be com-
pared to experimental data .

a. Modeling at a detailed level (individual cells, detailed synapse and ion
channel characterization) is quite common now i. At least 1176 models have
been published using NEURON software as of January 2012 (nrnwebsite) ii.
That number doesn’t include the many models developed using other simula-
tion methods, such as GENESIS (genesiswebsite) or MATLAB. iii. Many of
these models are of networks, which incorporate detailed connectivity infor-
mation (synapse strengths and kinetics) iv. These models also often include
physiologically detailed cells that incorporate ion channel mechanisms (with
characteristic activation, inactivation processes and dependence on voltage or
other conditions). v. These details are added to enable the model to better
represent biological reality, but we often don’t fully appreciate them (character-
ize) b. Models generally can and should be made more transparent i. Increased
transparency aids comprehension, validation, reproducibility 1. At the level
of the code a. Consistent structure, organized/grouped logically 2. At the
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level of the model behavior a. breaking down the behavior of the model as we
would do experimentally ii. But characterizing models can be time-consuming
c. Characterizing models using computational analogs of common experimental
procedures would enhance model transparency i. single cell recordings ii. paired
cell recordings iii. ion channel characterization (IV curve, activation curve, inac-
tivation curve) d. Organizing the model code not only makes it easier for other
programmers to understand, it also enables automation of the characterization
process

We also aimed to increase the accessibility to other modelers. The code has
already been used by a variety of people , even as a learning tool . However,
we feel that it can be made even more accessible and could possibly serve as
a template for other modelers who will eventually share their code as well.
We produced a detailed user manual and documented the code extensively. We
organized the code and broke it into smaller modules or files where it made sense.
We parallelized it and shifted the connection-making mechanism to compiled
code to speed it up. We introduce a tool to organize the runs and results and
to easily reproduce any run. As well as to produce standard output figures and
analyses.

With this system, it becomes much easier to reproduce modeling results. By
tracking both the code version and parameters used, we ensure that the exact
model code can be rerun. This tool also makes it easy to see what models have
already been run, to look up any particular simulation result, and to compare
simulation results from different runs.

- scope: NEURON code (Carnevale and Hines, 2006) with MATLAB tool
(The Mathworks, Inc, Natick, MA) and Mercurial versioning (Babenhauserheide
et al., 2013) - how this solution compares or fits in with other tools (NeuroCon-
struct, NeuroML, Neuroscience Gateway).

1 Methods
Installing the Code and Tool on your Personal Computer
You must install NEURON and Mercurial on your computer. If you have a
Windows operating system, you must also install Cygwin to get access to Linux
commands. You must either install MATLAB or the MATLAB Compiler Run-
time (MCR) and compiled RunOrganizer software.

Installing Mercurial

Visit the Mercurial site to download Mercurial at http://mercurial.selenic.
com/. On Windows, download the TortoiseHg version and restart your computer
after the installation. On Linux, download the appropriate version for your
system.

Then set up your user configuration file. On Windows, this can be found at:
C:\Users\username\mercurial.ini
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On Linux, the configuration file can be found at:
$HOME\.hgrc

Add the following text to the configuration file:
[ui]
username F̄irstname Lastname <name@school.edu>
#remotecmd /̄opt/rocks/bin/hg

Installing NEURON

Follow the instructions for downloading NEURON on the NEURON website at
http://www.neuron.yale.edu/neuron/download. Make sure to add the bin
folder within the installation to your system path. Also add a new environmental
variable called NEURONHOME with the path to the NEURON folder. .

Installing Cygwin (for Windows Machines)

For Windows, also install Cygwin so the RunOrganizer has access to basic Linux
commands, available at http://cygwin.com/install.html. Make sure you
install in the default location, right in your C drive at C:\cygwin, so that the
paths in RunOrganizer work correctly.

Install the default packages and the openssh package. In the Packages
to Install part of the setup process, scroll down to the Net category and
expand it. In there, find the entry for openssh and click the Skip to the
left of it, toggling it until it shows the version to be installed. Leave the rest
of the settings as is. Cygwin will find any other necessary packages for ssh
and download them. After installing ssh, update the /etc/passwd file, which
should be located in C:\cygwin\etc . In that file, it assumes the path to the
user’s folder is /home/[username], though this is not the case on Windows.
So find the row that starts with your username and update it with your own
path: /cygdrive/c/Users/[username]. Note, use the cygdrive path and not
C: because the : is a delimiter.

Then add the Cygwin path to your environmental variables so you can run
the linux commands sed, cp, rm, etc. The instructions for this are available at
http://www.howtogeek.com/howto/41382/how-to-use-linux-commands-in-windows-with-cygwin/.
Then create a CYGWIN environmental variable and set its value to nodosfilewarning.
You may need to restart your computer at this point for the updated values of
the environmental variables to become available to MATLAB.

If you have MATLAB installed, you can check what values it sees for the
environmental variables by entering the following at the command prompt:
getenv(’Path’)

Running NEURON from the command line

Whether in Linux or Windows, you must now ensure that NEURON can be
started from the command line. Open a command prompt (or on Windows,
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a Cygwin prompt), and enter something like the following: nrniv (or nrniv -
PythonThingie). Determine what is necessary to start NEURON and make
a note of the exact command you used, since you will need to customize the
RunOrganizer with it later.

Obtaining the NEURON model template

The code for this model can be downloaded from ModelDB (Hines et al., 2004),
accession # . Create a directory repos and within that directory unzip the
model directory zip file. After extracting the zip file, a folder containing the
model code will be generated. The general organization of the folder is shown
in Figure 1.

If you are pulling in an updated repository from somewhere else, do the
following. First, create a folder for the model. What you do next depends on
your operating system:

For Windows: Then, right click in the window for that directory. There
should be Tortoise Hg options in there.

For Linux: Open to the model directory within the terminal. Then enter
the commands:
hg init
hg clone path
hg update -C -r tip

where path is the path to the code. For example, to download fresh ca1 model
code, enter the command:
mycommand
Note that, for the ca1 model, this should be done on top of the unzipped model,
as the Mercurial repository does not contain some ignored files within the model
directory that are necessary for the model to run.

If you are starting your own repository. At the command prompt, change
the directory to the main folder for this model. Then enter the command:
hg init
at the command prompt. This will generate a new repository for the model.
After creating the repository, then commit the latest version so that the changes
are saved, by entering this command:
hg commit -m “First version of the ModelDB code”
Now, check the log to see that the version was committed by entering:
hg log
which should return a result like:
changeset: 0:0ca73aafe064
user: Your Name <your.name@school.edu>
date: Wed Nov 10 12:03:28 2010 -0800
summary: First version of the ModelDB code

Mercurial uses a file called .hgignore to determine which file to track and
which to ignore. As we walk through each of the various folders and files of the
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model, we will also comment on those folders containing files that are ignored
by Mercurial.

Obtaining the RunOrganizer

The GUI is available from two different locations, depending on whether you
have MATLAB installed on your computer and can download the MATLAB
files, or you do not have access to MATLAB and need to download the precom-
piled version of the RunOrganizer.

MATLAB version If you have MATLAB installed on your computer, the
source code can be downloaded from MATLAB’s File Exchange at , entry #
. The first time you download the RunOrganizer code, you should download
the zip file which contains files necessary for the RunOrganizer to work that
are not included in the Mercurial repository. However,vsubsequent updates to
the RunOrganizer code can be obtained from the Mercurial repository on the
bitbucket site:
bitbucketsite

Standalone version The compiled versions for Windows or Linux can ob-
tained fromModelDB’s SimToolDB at http://senselab.med.yale.edu/SimToolDB/

Enabling UID generation

The RunOrganizer and NEURON code need a way to generate a unique ID
for each run, the UID. On Linux and Mac, this is accomplished with a builtin
command. On Windows, RunOrganizer requires a VBS (Visual Basic Script)
script to generate the UID, called uuid.vbs. This file is included with both
types of RunOrganizer installation, and it must remain in the same folder as
the RunOrganizer program.

Customizing the RunOrganizer for your computer

Open up the RunOrganizer and, under Settings > General, enter the appropriate
settings. 1. The command that you used to start NEURON earlier should be
entered ... 2. The command you would use to open window from the command
prompt. On Linux, this may be something like nautilus or other navigation
application name. On Windows, enter ’explorer’. Also enter the name of the
programs used to open other types of files. On Windows, these other fields can
usually be left blank .

You will have to tell the RunOrganizer where on your computer you placed
the model code repository. Under the File menu, click ’New’ and choose the
folder that contains your main repository code.
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Using the code with a supercomputer
This tool and template is set up so that you can use it both on your local
computer and on one or more supercomputers. The RunOrganizer will track
which computer was used to run each simulation, will create and submit cus-
tomized jobscripts to each supercomputer, and can upload results of runs from
each supercomputer. The RunOrganizer can also be used with the Neuroscience
Gateway, which provides more user-friendly access to the supercomputer Tres-
tles. The Neuroscience Gateway is covered in a later section.

Obtaining access to a supercomputer

There are many supercomputers available for running parallel NEURON code.
If you are associated with a university or corporation, check with its information
technology department to see if there is a local supercomputer available for your
usage. There are also universities that make their supercomputers available for
outside usage, such as University of Texas or the San Diego Supercomputing
Center. These supercomputers can be accessed through an XSEDE allocation,
funded by the NSF. If you have not applied for an allocation before, you may
apply for a startup allocation with minimal review, at any time during the year.
Otherwise, you can apply for a research allocation (which can be larger) using a
full application that may be reviewed by a full committee that meets four times
a year.

Installing NEURON on a supercomputer

In some cases, NEURON may already be available as a module on the super-
computer. In this case, you will simply need to load the NEURON module
(and perhaps the associated MPI module, if not already loaded). Make sure
to add the module load commands to your login script so that NEURON is
always available whenever you login. You will need NEURON available to run
nrnivmodl, for example. So add a command to load the module in one of your
profile scripts, such as in your $HOME directory, .profile or .bash_profile or
.login:
module load neuron/7.3

To determine whether NEURON is available as a module and the name of
the NEURON module, enter at the command line:
module avail
If NEURON is not available as a module, you will need to install NEURON
yourself. The installation process varies slightly depending on the supercom-
puter. It is recommended that you look on the NEURON forum to see if there
are installation instructions for your supercomputer already available. If there
are not, you are welcome to try using the instructions for one of the other
supercomputers to see if they work on your supercomputer. If not, you may
email the NEURON developer Michael Hines at michael.hines@yale.edu for
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assistance with setting up NEURON. In that case, please document the instal-
lation process and post it on the NEURON forum for others to use, as well.
See these posts in the forum for guidance on how to document the installation
process: "‘NEURON on Ranger"’, "‘NEURON on Stampede"’, and "‘NEURON
on Trestles"’ within the "‘UNIX/Linux"’ section of the "‘NEURON installation
and configuration"’ category of the NEURON forum.

Setting up the model repository

On the supercomputer, find a directory out of which your code can be run. For
example, on some supercomputers, there is both a HOME and a WORK envi-
ronment; your code will likely be run out of the WORK environment. Within
this directory, create your subdirectories:
mkdir repos
cd repos
mkdir ca1
cd ca1

And create a Mercurial repository within the model folder on the supercom-
puter:
hg init
Note that you may have to load a Mercurial module before using Mercurial
commands.

Then set up your Mercurial repository within the model directory. At the
command line on your local computer, enter the following where model_directory_path
is the full path to your ca1 directory:
cd model_directory_path
hg push -f ssh://username@supercomputer.address.edu/repository_directory_path
Note the presence of an extra slash after the address to the supercomputer. Be-
cause the repository_directory_path starts with a slash as well, there will
be two slashes in a row. After you enter this command, you will be prompted
for your supercomputer account password. After entering that, the Mercurial
repository is uploaded to the supercomputer.

Next, you need to update the repository to the current working version. To
do this, while logged into the supercomputer and with the model directory set
to the current directory, enter the following at the command prompt:
hg update -C -r tip
Then make the other folders that are not tracked by Mercurial :
mkdir jobscripts
mkdir results

Setting up scripts used by RunOrganizer

The RunOrganizer uses a custom command called testq, which reports the
names of any jobs created by your account that are currently in any of the
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queues on that supercomputer. You will need to define this custom command
yourself, using the following steps. First, create a testq file in your home di-
rectory on the supercomputer and make it executable:
cd $HOME
chmod +x testq

Then open the testq file and add the commands necessary to pull a list of
your runs in the queue, displaying only the names of each run job separated by
newline characters. Enter the following to open the file:
vi testq
Then type a to edit the file. What you actually enter in the file depends on the
supercomputer. Examples of some testq commands are given here (replace the
word username with your username on that supercomputer):

Ranger

qstat -j ‘qstat -s p -u username | grep ’username’ | cut -f1 -d ’ ’ | tr ’\n’ ’,’ ‘ | grep job_name | cut -f2 -d: | tr -d ’ ’

Stampede

squeue -u username -o "\%j" | tail -n +2

Trestles

/opt/torque/bin/qstat -au username | awk ’/username/ { if ( \$10 != "C" ) { print \$4 } }’

UC Irvine’s HPC

qstat -u username | grep -v ’\-\-’ | cut -f4 -d’ ’

After entering the correct command, hit the Esc key and type :wq to save
the changes.

Another useful alias to have on the supercomputer is qs. The qs command
runs whatever command is necessary on that machine to show all your runs (in
every status) in all the queues, followed by the current datetime. This has to be
defined in one of your profile scripts, such as in your $HOME directory, .profile
or .bash_profile or .login:
alias qs=’qstat -u username;date’
Another useful one is to list all file attributes using the list command, using
only the l command. This can be accomplished by adding this line to the same
file:
alias l=’ls -l’

Another useful one is submitinfo .
cd $HOME
vi submitinfo qsub jobscript.sh # start a run
qdel jobid # cancel a run
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Then when you type submitinfo, it will remind you of how to submit and
cancel jobs on that machine. Sometimes you have to go in and do that if the
RunOrganizer couldn’t get the job to submit (for ex, if you have too many
jobs in the queue right now, all the submission files have been loaded onto the
supercomputer by the RunOrganizer but the batch queue software refused the
submission. Then you, the user, must watch for when enough run submissions
have finished that the next run will be allowed, and you have to submit it your-
self). If you have to submit a job manually, login to the supercomputer, change
the directory to the model directory (NOT the jobscript directory) and enter
the command at the command prompt:
qsub jobscripts/myjob.sh
Replace qsub with whatever command is used by that supercomputer’s schedul-
ing program.

Creating the jobscript template for the supercomputer

Different supercomputers have different batch scheduling programs, requiring
differently formatted job submission scripts. You will need to find an exam-
ple job submission script or some documentation about job submission scripts
(formatting and what parameters to include) for your supercomputer. Based
on what you find, you will create a MATLAB script that will be able to pro-
duce the required job submission script format. You will create this file as
an m-file and save it within the jobscripts folder as write_[supercomputer
nickname]script.m.

Adding the supercomputer as an option to the RunOrganizer

Within the RunOrganizer menu, navigate to Settings>Machines. A new win-
dow will open with the machine information in it. Click the ’Add line’ button
at the top right corner to add a new line to the table of machines. Fill in the
nickname, full address of the supercomputer, your username on that supercom-
puter, the path to the repos directory, the number of cores per node on that
supercomputer, the command used to submit a job to the queue, and the job-
script template to use in creating jobs for that supercomputer. After filling in
the table, click the ’Save’ button.

Once the machine has been saved, it will be available in the drop-down list
below. Select the new supercomputer from the drop down list. Then click the
’Add line’ button above the lower table to add an entry for each queue available
on that supercomputer. Enter the name of the queue, the maximum time jobs
are allowed to run in that queue in hours, and the maximum number of cores
allowed to be requested for jobs in that queue. After adding all the queues, click
the ’Save’ button again. Then close the window to return to the RunOrganizer.
A message will appear, stating that the machine list has been updated.
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Enabling MATLAB to connect to the supercomputer from aWindows
machine

MATLAB has some trouble on Windows where it doesn’t allow you to en-
ter passwords for ssh; it acts as though you submitted a blank password and
doesn’t show you the prompt for it. It’s some problem with MATLAB not being
recognized as a terminal. Therefore, you have to set up something so that ssh
doesn’t ask you for the password each time, if you are to use it in MATLAB on
Windows.

I’m following these directions: http://inside.mines.edu/~gmurray/HowTo/
sshNotes.html In the command line, at your home directory, enter the follow-
ing:
ssh-keygen -t dsa
The terminal will prompt you for a filename and a passphrase. Hit Enter with-
out entering anything for either prompt to generate a file with the default name
id_dsa and no passphrase. Then the program will tell you where the file has
been generated:
Your identification has been saved in [homepath]/.ssh/id_dsa.
Your public key has been saved in [homepath]/.ssh/id_dsa.pub.
The key fingerprint is: [keyprint]

Next, you need to set the permissions of this file so that only you have ac-
cess to it. Note that, on some Windows machines, running the chmod command
won’t have the intended effect. To properly update the permissions of the pri-
vate key file you generate on a Windows machine, enter the following command
before using chmod:
chgrp -R Users /.ssh
Then, on both Windows and Linux, set the permissions by entering the follow-
ing: chmod 600 .ssh/id_dsa

Using the code with the Neuroscience Gateway
The Neuroscience Gateway provides a user-friendly way to run your model on
the supercomputer Trestles. The RunOrganizer can set up your model so that
it can be easily uploaded to the Neuroscience Gateway and the results easily
organized on your own machine.

Accessing the Neuroscience Gateway

The Neuroscience Gateway can be accessed by visiting http://www.nsgportal.
org/. Within that site, click to access the portal site. At the portal site, you
can download an application and email it to the specified email address to gain
access to the portal.
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Running your model on the NSG

To run a model on the NSG, you must upload to the NSG a zip file containing
all your model files and folders. The RunOrganizer will prepare this zip file for
you when you click ’Execute Run’ on a run in the RunOrganizer with the NSG
specified as the output machine. Once the zip file has been prepared, a folder
will open, displaying the zip file. It will also create and open the folder where
you will need to save the model results. You must then log into the NSG and
create a new task to run your simulation. Upload the zip file as the data for
the run. When you want to submit the run, you must tell the NSG which file
in your zip file is the main program file to run. This information is provided to
you by the RunOrganizer in a dialog box after the zip file is created. Then tell
the NSG how many processors and for how long, etc and click ’Save and Run’.

After the model is done running on the NSG, you must download the results
to the folder that the RunOrganizer opened for you. If you closed it, go into
the RunOrganizer, click the run, and from the menu, choose ’Runs > Upload
selected run’. The window will open. After you have placed the output.tar file
in that folder, go back into the RunOrganizer, click the run, and from the menu,
choose ’Runs > Upload selected run’.

Testing
The RunOrganizer software was tested in the MATLAB 2012a environment on
a Linux machine running SUSE, the MATLAB 2011b environment on Windows
machines running Windows 7 and 8. The compiled standalone version was
tested on a Linux machine running SUSE and another one running Ubuntu.
The compiled Windows standalone version was tested on Windows machines
running Windows 8 and Windows 7.

The NEURON code was tested on a Linux machine running SUSE or Ubuntu,
Windows machines running Windows 7 and 8, and the supercomputers trestles
(both using the NSG and accessing the computer without the NSG), Stampede,
and a local UC Irvine supercomputer (HPC).

Model Code
Overview of the code

Within the main folder are 1) the main hoc file for the model, called , 2) the
.mod files that define the subcellular mechanisms of the model, and 3) the folders
containing the auxilary files of the model. The folders include the following:

• cells The definitions for each cell type

• cellframes The definitions for each cell type, but without the synapse infor-
mation

• connections Files defining different connectivity combinations
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• synapses Files defining different synapse strength and kinetics combinations

• stimulation Files defining different stimulation protocols

• results A folder where the results will be stored, with each set of simulation
results stored in a new folder within the results folder

These components will be discussed in more detail in the following sections.

Figure 1: Diagram of the model directory.

Code Template

The model is set up with one main file. This file reads in a parameter file that
specifies which other files will be loaded by the main file. The structure of the
main file and its relation to the other files is diagrammed in Figure 2. The
sections of the main file are as follows.

Load libraries This section loads the standard NEURON library as well
as some class definitions. It defines a ParallelNetManager class (written by
Michael Hines), which is used to set up a network that runs on parallel proces-
sors. This section loads a definition for the ranstream class, also written by
Michael Hines, which is used to generate streams of random numbers in sev-
eral procedures in the model. It also loads a CellCategoryInfo class used to
store cell type-specific parameters; one instance is created for each type of cell
in the model. It then defines a procedure created by Michael Hines called the
default_var proc. This procedure allows one to pass in arguments to the model
at the command line in the execution command. Finally, this section loads a
file that sets the customizable parameters of the model and a second file that
sets some lesser varied parameters or parameters that cannot be set using the
default_var proc.

Define cells and model size The first file in this section loads a list of cell
types and numbers of each cell, populating that information into instances of the
CellCategoryInfo class described above. The next file loads in the specified
connectivity information: for possible combination of presynaptic cell type and
postsynaptic cell type, the total number of connections, the weight of each
connection, and the number of synapses per each presynaptic connection type
are stored in vectors within the cellType array instance for that postsynaptic
cell type. Next, a procedure is run that loads the definition for each cell type
class. The next procedure calculates the size of the network. For each cell type,
the number of cells listed in the chosen cellnumbers_*.dat file is added to a
running count of cells. If certain cell types are subject to cell death, that is taken
into account here. Even the artificial cells used for stimulation are included in
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the total cell count. Finally, a procedure is ran that calculates some parameters
necessary for defining a 3D network.

The random number offset is also set here. This is a value used to ensure
that each random number stream in the model is statistically independent.
Two index values define the random number stream, the low index and the high
index. To use an analogy to a track, the low index number determines which
lane of the track you are in. Streams that use different low index numbers will
never overlap. The high index number determines how far down the lane you
start. Therefore, if the random number generators are going to be used 200
times during the simulation, and multiple generators are going to use the same
low index number (be in the same lane), then the high index numbers should be
more than 200 numbers apart (so that each generator starts over 200 numbers
away from any other generator and that way they don’t come to overlap after
200 uses). The random number offset defines how far apart the high index
numbers will be.

The parameters file bears further explanation.

Set up parallel capability and write out run receipt - versioning track-
ing - run receipt The run receipt includes information about the run that will
be useful for tracking or reproduction. For example, the code in the run receipt
procedure executes a system command to grab the Mercurial version of the code
that is in use and report that in the receipt. Since a modeler can update to a
particular version of the Mercurial repository and then make changes on top of
it, the run receipt function also checks for this. If it finds that changes have
been made, it executes system commands to write out a list of files changed
(hg_status.out) and a line listing of each change made to the version of the
code that is currently in use (hg_diff.out).

Create, identify, and position cells The cells were already assigned to a
host processor as described above in the ?? section. Now, each processor creates
the cells that were assigned to it by gid, and positions them using an algorithm
that specifies their 3D coordinates given their gid and cell type.

Load balancing is an option not used in this model. However, it is described
in a separate section.

Creating a topographical model This version of the model can be de-
signed and run without regard to any model topography. However, the model
can also be specified in three dimensions. Cells can be positioned uniformly
within a three dimensional block, or uniformly within adjacent three dimen-
sional layers . Connections can be constrained such that cells only make con-
nections with cells within a certain distance, or preferentially make connections
with close cells.

Connect the cells
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Initialize and run the simulation; output result files The results of the
simulation are saved in a folder with the same name as that particular simulation
run, within the results folder of the model directory. The result files include:

• spikeraster.dat A list of spike times and GIDs of the cells that spiked is
printed out. This is the main output of the simulation, used for most
subsequent analysis of the model and simulation.

• runtimes.dat The amount of time (in seconds) spent on each section of the
code by one processor (host 0) is printed out

• voltage traces traces

• numcons.dat Summary connection file that gives pre- and post- synaptic
cell types and number of connections

• connections.dat File that gives pre- and post- synaptic cell gids and synapse
types, optionally printed out

• sumnumout.txt A summary file that gives the number of cell types in the
model, total number of cells in the model, the total number of connections
in the model, the total number of spikes by all cells during the simulation,
and the total run time of the model. This file is loaded into the RunOr-
ganizer and its values displayed there when the finished run is uploaded.

• celltype.dat File that gives cell name and gid range for each cell type

• position.dat Position file that gives the gid and x, y, and z coordinates of
each cell, as well as the processor on which the cell resides

• traces

The code within these sections is extensively documented and should be
referred to for further detail.

Figure 2: Diagram of the model code.

Parallelization and Simulation

choice of dt In this model, we use a fixed time step for the simulation. The
value of dt (integration time step of the simulation) should be chosen with
care: small enough for a reasonably accurate simulation but large enough that
the simulation can be completed in a reasonable amount of time. We felt that a
dt of 0.1 ms was sufficient for our simulations. However, in some cases a smaller
dt may be necessary. This is especially true if the model network is highly active
and currents may become large. .
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Parallelizing The most significant time-saver in the model was to parallelize
it, such that multiple processors could solve equations for the model at the same
time. To do this required using a parallel net manager, which set up the network
such that each processor could know which processor owned every other cell,
and also be able to talk to every other processor.

For determining the connectivity of the model, it was necessary for each
processor to know certain information about cells that were owned by other
processors. Our way of dealing with this was to make these properties of the
cell derivable from its gid, such that other processors could determine the needed
information using only the gid of the cell. For example, the position of the cell...
or the number of cells of each type?

load balancing Load balancing is a way of assigning cells to processors. Our
code generally uses the round robin technique, in which cells are assigned uni-
formly to each processor such that each processor has approximately the same
number of cells as any other processor, similar to how a dealer would deal cards
out to each player in a game. However, if the cells differ widely in complexity,
this may not be the most efficient way of assigning cells. It can be useful to
take into account the complexity of the cells when assigning them to proces-
sors, such that the overall number of equations each processor has to solve are
roughly equal. That is where load balancing comes in. To load balance the
model, the cells of the model are created and the complexity of each cell type
is determined. Then, the model is re-created using the complexity information
when assigning each cell to a processor, and the simulation proceeds.

Determining the model complexity takes some time, but only has to be
done once per each version of the model where the cell definitions are changed.
However, if the model is quite complex and the simulation time is long, it makes
sense to invest a small amount of time in determining the complexity to save
a large amount of time during simulation. In our case, the pyramidal cells are
more complex than the interneurons and all the interneuron types are roughly
equal in complexity. Because there are so many more cells than processors, the
round robin distribution is sufficient to give each processor roughly the same
amount of complexity and therefore we do not use load balancing. However, an
option for load balancing is included in our model for explanatory purposes.

The psolve method of simulation

Ion Channel/subcellular mechanism Techniques

Ion channels are generally defined either using Hodgkin-Huxley formalism or
kinetic schemes. While kinetic schemes may provide better accuracy, they re-
quire many more parameters than Hodgkin-Huxley style definitions. In many
cases, Hodgkin-Huxley definitions can provide adequate fitting to experimental
data with far fewer computations. These methods of defining ion channels are
described in detail in Sterratt et al. (2011); Carnevale and Hines (2006).

15



ch_CavL a ghk-based model of the L-type Ca2+ channel, this model includes
an activation term (Hodgkin-Huxley style formalism?). Based on Migliore et al,
1995, which was based on Jaffe et al, 1994.

ch_CavN a quasi-ohmic model of the N-type Ca2+ channel, this model in-
cludes an activation term and an inactivation term. Hodgin-Huxley style for-
malism (?). Based on Aradi and Holmes, 1999. Depends on temperature.

ch_CavT a ghk-based model of the T-type Ca2+ channel, this model in-
cludes an activation term and an inactivation term (Hodgkin-Huxley style for-
malism?). Based on Migliore et al, 1995, which was based on Jaffe et al, 1994.

Why not produce all the Ca2+ channels based on the same paper? The
L-type channel from the Migliore paper has more natural looking activation,
inactivation, and IV curves, whereas the same is true for the N-type and T-type
channels from the Aradi and Holmes paper (AutoRig 198-203).

ch_KvCaB a quasi-ohmic model of the big potassium channel, the voltage
and Ca2+ gated potassium channel (BK). How to describe how the rate con-
stants are come up with though ... looks like kinetic schemes in the paper, but
not so much in the mod file. This model says it was adapted from the follow-
ing paper: Moczydlowski and Latorre (1983) J. Gen. Physiol. 82. Model 3.
(Scheme R1 page 523). Something like this model is available in ModelDB under
number 3509. This model is known as CaBK in model 124513 from ModelDB.
We updated it to calculate the calcium concentration at every time step, which
had been left out of the model 124513, rendering the channel essentially calcium
independent. With the addition, it is now informed of the calcium concentration
at each time point and properly activated by it.

ch_KCaS a quasi-ohmic model of the small potassium channel, Ca2+ sensi-
tive but not voltage sensitive (SK). It looked like, originally it had been based
on Aradi and Holmes 1999, but those alpha and beta functions were commented
out and something different (and simpler) was put in. But I don’t know where
that different stuff came from, so I will just say it’s been altered for now.

ch_Kdrfast a quasi-ohmic model of the fast, delayed rectifier channel. al-
tered from Aradi and Holmes 1999 (by adding 65 mV to the voltage terms!).
Don’t know why...

ch_Nav a quasi-ohmic model of the fast, inactivating Na channel. Altered
from Aradi and Holmes 1999 (by massively changing the v terms).

ch_HCN quasi-ohmic model, nonspecific ion. formerly known as hyperde3.
from Chen et al, 2001. This channel is known as hyperde3 in model 124513
from ModelDB.
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iconc_Ca modified from Aradi and Holmes, 1999. Calculates the calcium
concentration in a small shell next to the inside membrane. Takes into account
the current through the membrane and the radial diffusion out of the shell.

Some of these channels were taken from models that ran at 6.3o celsius. We
are now running the model at 34o celsius, which necessitated altering the max-
imum conductances of some of the channels (since their magnitudes sometimes
altered drastically with the change in temperature).

What is our rationale for using these models? Well, we want something that
is biologically feasible is all. The behavior at the individual cell level is what is
really important for us, and as long as we have a biologically feasible method
of getting that behavior, we are satisfied even if it doesn’t match a particular
configuration found in some experimentally observed rat hippocampal neurons.
- Syntax of the model - so that it is compatible with the GUI, g_max and myi_i.
- Figures characterizing the ion channels. All here or just one with some in the
appendix. Note that the later sections will explain how to create these figures
for yourself.

- Not just ion channels; how do the calcium mechanisms work? If multiple
calcium currents, then why? - How do the synapses work?

Model Cells

Within the cells folder is a file for each cell type in the model, named in the
format “class_[celltype].hoc”. Each cell file contains a class definition for the
cell type following a standard template. The template includes:

• public variables those accessible outside of the class definition, within the
main code, are defined first. They include properties of interest and those
that need to be set in the main code, procedures and functions that need
to be called from the main code, and references to morphological sections
and lists of sections of the cell.

• objects some objects, the lists of synapse objects, are defined

• external variables those variables from the main code that need to be ac-
cessed by the cell class are then named

• section creation next, the morphological sections of the cell are created

• initialization procedure next, the initialization procedure is defined. This
procedure is run immediately for each instance of the class upon instanti-
ation.

• function and procedure definitions finally, each function and procedure
called by the initialization procedure is defined.

The functions and procedures used include:
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• append_sections This proc will append all the sections to their respective
lists, such as lists for axon sections, lists for soma sections or dendritic
sections, lists for presynaptic cell type possible synapse locations, or lists
used to set the subcellular mechanisms

• connect_sections This proc will connect all the morphological sections to
each other in the correct order

• size_sections This proc will set the diameter and length of each section or,
alternatively, the diameter and 3D coordinates of the beginning and end
of each section

• insert_mechs This proc will insert and set the parameters of the various
subcellular mechanisms

• set_nseg This proc will set the resolution at which each section needs to be
calculated during simulation to ensure a certain level of accuracy in the
results

• define_synapses This proc will define the possible synapses for each presy-
naptic cell type. It will create a list of lists, where the top level of list
specifies the possible presynaptic cell types and the second level of lists
specifies the possible synapses for each presynaptic cell type. For each
type, it iterates over all the possible synapse locations.

- synaptic input SynData - some figures of single cell current clamp data,
plus associated ion channel currents. Note that these figures can be produced
using the GUI explained later.

In the cells folder there is also a file per cell type detailing the axonal dis-
tribution of that cell type, named in the format “dist_[celltype].hoc”. There are
three numbers within the file, a, b, and c, which describe the axonal distribution
of the presynaptic cell type. They correspond to an equation of the form:

P = 1
a
exp

(
−
[

(D − b)
c

]2
)

(1)

where the probability P is a number between 0 and 1 that describes the
probability of a connection forming between two cells distance D apart.

There is also a cellframes folder containing class definition files for each
cell type. These files are not directly used by NEURON. The purpose of this
folder and these other class definition files will be explained in the SynData
section.

Connectivity

Multiple possibilities exist for defining the connections between cells. Each one
can be defined in its own file. Here, a connectivity file contains the procedure and
function definitions as well as calls them to run. The name of the connectivity
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file is itself a parameter which is then used by the main code to load the proper
connectivity file. - different options - ConnData - fastconn mechanism The
connectivity part of the code takes the bulk of the setup time. This is because
the total number of connections made is large, scaling exponentially with the
number of cells in the model. Also, the decision of which cells to connect requires
the computer to evaluate many possible connections, and this evaluation must
take place for each connection formed . The decision of which connections to
form depends on an element of randomness and, for topographical networks, the
distance between cells and the axonal distribution. To speed up the connection
process, I transferred the decision of which connections to make to a mechanism,
so that it became compiled code. Hoc allows you to define new vector methods.
So I defined a vector method that determined which cells to connect. I would
pass in a bunch of parameters to the method by putting them in the vector.
These parameters included the number of cells of the pre- and postsynaptic
types, the number of connections to make, and for topographical models, the
axonal distribution. Also, the gid ranges of each cell type which were used
for calculating the position of each cell. Within the mechanism, these values
were used to come up with a list of cell connections, in terms of the gids of the
presynaptic and postsynaptic cell, as well as the synapse identifier (since more
than one type of synapse or synapse location is available for each connection
type). Then, these values were loaded into a results vector, which was returned
from the vector method function. So in hoc, there was a results vector that was
set to that return value. Then in hoc, the code iterates through that results
vector and builds the chosen connections.

A large amount of memory may be needed for this section. It will be needed
to store the connections to be made in a vector that is passed between the hoc
code and the fastconn vector method. The vector space must be set aside before
using the fastconn method. It is important that a large enough vector be set
aside, or else the fastconn method will error out . However, if too large of a
vector is set aside, the program will run out of memory. Therefore, the following
formula is used to determine the vector size for the conns2make vector:

The number of connections to be made total (for that pre and postsynaptic
cell type combination) is divided by the number of processors, assuming the
connections will be spread out evenly across all processors. For buffer, the total
number of postsynaptic cells is added to this number as well . Then, because
for each connection, 3 data points need to be stored (the presynaptic gid, the
postsynaptic gid, and ...?), and we want to double the saved space just to be
safe (why?), we then multiply this number by 6 to get the total reserved vector
length.

- how the GUI can calculate the convergence and divergence.

Stimulation

Similar to the connectivity portion of the model definition, multiple strategies
exist for stimulation, each in their own file. Each stimulation file contains the
procedure and function definitions and calls them to run. The name of the
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stimulation file is introduced as a parameter to the main code and used to load
the proper stimulation file.

NetStims are the artificial cells used for stimulation in the model. In general,
they have parameters to specify their properties as random, Poission-distributed
spike generators. However, they can also be used as single pulses by setting the
number of spikes to 1. The properties used in these cells include:

• start The simulation time at which to start the NetStim spiking protocol, in
ms

• number The number of spikes to execute

• interval The average interval at which to execute the spikes, in ms

• noise On a scale of 0 to 1, to what extent the interspike interval is randomly
determined

It also has a procedure called noiseFromRandom that takes as an argument
an instance of the RanStream class. The instance has its own high index and
low index values that specify the random number stream. These index values
should be chosen such that no instances of the RanStream in the model overlap.
The instance also has a way to specify the type of random number generator
used to set the interspike intervals. Examples of commonly used ones include a
Poisson-distributed one and a normal one... This is explained in more detail in
another section.

The NEURON website has an excellent explanation of the use of randomness
for NetStims in parallel models (Randomness in NEURONmodels, http://www.neuron.yale.edu/neuron/node/59).
Within this explanation is an example demonstrating the use of the noiseFromRandom
procedure.

Note that if the number of spikes and the interval multiplied lead to a longer
time than the simulation time, not all of the spikes set in the number field will
occur. Also, note that the noise variable can be used to specify a minimum ISI
even in the presence of some randomness. For example, if the ISI is set to 100
ms and the noise is set to 0.2, then the ISI will always be at least 20 ms, but
the actual length will vary in a Poisson-distributed manner such that the mean
ISI is 100 ms. To override these parameters and specify the precise spike times,
the start time must be set to a negative number to essentially turn the NetStim
’off’ and then a vector of spike times can be fed into the NetStim, as described
later.

Various forms of stimulation can be applied to the model. Each one is
defined in its own file, with the file name following the convention of ’[stimulation
type]_stimulation.hoc’. Some examples of stimulation type are given in the list
below:

• pulse This method of stimulation applies a single pulse of excitation to the
model. This comes in the form of many artificial cells spiking once at the
same time . These artificial cells are connected to a subset of ’real’ model
neurons. The number of model neurons they connect to, and the number,
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strength, and kinetics of synapses they make on each one, can be altered
and is editable at the level of cell type.

• spontaneous This method of stimulation applies random, Poisson-distributed
spiking activity in the artificial cells. It creates enough artificial cells for
there to be independent stimulation of each ’real’ cell in the network (or
just those that are supposed to receive stimulation). . This form of stim-
ulation is tonic in that it continues for the length of the simulation and
has constant parameters throughout the simulation. As with the pulse
method, the number, strength, and kinetics of the synapses onto the real
model cells can be set per cell type.

• spontburst This method of stimulation is similar to the spontaneous method,
except that it allows the stimulation to occur in set intervals throughout
the stimulation. This means that the stimulation can last for a specified
duration of time, and then be turned off for a specified duration of time
before turning back on again. This pattern is repeated for the length of the
simulation. This method of stimulation is useful for imposing an outside
rhythm onto the model network.

• thetaspont

• ripple

• singlecell

• vector This method of stimulation allows precise control over the spike times
of the artificial cell. For each artificial cell, there is a vector of spike
times. The vector data is loaded in from . It can be produced by another
MATLAB script, for example the virtual rat environment. The data is
organized by the gid of the cell, with each column giving the spike times.

• ecca3sintrain This method is similar to spontaneous, except that the in-
put patterns from the artificial cells are not random, Poisson-distributed
spikes. Well, they are, but they are modulated by a gate, a sin-wave gate,
so that selected times at the peak of the gate are more likely to produce
a spike than those at the trough. Therefore, this pattern results in some
level of spiking throughout the simulation, but the probability of spikes
waxes and wanes with the modulating sine wave. There are two frequen-
cies specified in this regime, the frequency of the modulation gate and the
frequency of the spikes, which is the maximum frequency that you would
see at the peak of the modulation gate.

- how they work with the connectivity options

Outputs

- gives examples of some outputs: spikeraster, numcons, voltage traces, input
synapses for traced cells, runreceipt with times
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RunOrganizer GUI
Process Overview

Purpose of the GUI The RunOrganizer is meant to organize the simula-
tions and assist in designing and running new simulations. It reinforces the
following process: design a simulation by setting the parameters, then execute
the simulation, then save the results, then analyze the results. And make the
simulation results easy to get back to if necessary, and the simulation easy to
repeat by tracking everything about it: the parameters used, the system run
on, the version of the code, the particular connection and synapse sets. The
RunOrganizer documents all of this, automating as much as possible so that
you can spend more time thinking about designing and interpreting the model,
and less time thinking about running it and storing files.

How the GUI works with Mercurial The RunOrganizer pulls in list of all
available versions, allows you to specify one. Then, when you go to execute the
code, it updates the current Mercurial version to the one you specified, both on
your host computer and on the remote machine, if you are submitting the run to
a remote machine. To update the code requires executing a specific Mercurial
command:

hg update -C -r 1

where 1 is the version to which you would like to update. The -C command
forces the files in the working directory to be updated to the specified version,
even if there were uncommitted changes in the working directory. It also re-
compiles the mechanisms, calling nrnivmodl, as well as specifying the synapse
definitions using the cell templates from the updated Mercurial version.

Note that it is possible to submit a new job with a specific Mercurial version
to a batch queue while another job with a different Mercurial version is running
or also waiting in the queue. This is undesirable as the Mercurial version will get
updated to that specified by the job submitted most recently. The RunOrganizer
has two safeguards in place to address this possibility. First, whenever a job is
about to be submitted to a batch system, the RunOrganizer queries the queue
list, pulls in the job names of any jobs waiting , and then compares the Mercurial
version of those jobs to the one specified in the job to be submitted. If they are
different, the RunOrganizer notifies you. Second, in the event that the version
is updated and a previously submitted job is run with the wrong version, the
use of that version will be documented in the run receipt. The version that
was actually used will be noted in the RunOrganizer once the finished run is
uploaded.

To ready the remote machine to give the names of the runs waiting to be
executed in the form the RunOrganizer wants, create a file on the remote ma-
chine that defines a new command called testq. So the name of the file should
be testq and the contents of the file should read (all one line):
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qstat -j ‘qstat -s p -u case | grep ’case’ | cut -f1 -d ’ ’ | tr ’\n’ ’,’ ‘
| grep job_name | cut -f2 -d: | tr -d ’ ’

where case is replaced with the your username for the remote machine.
The RunOrganizer works in concert with a few other tools. These tools

include the AutoRig, which allows clamping of cells to characterize ion channels,
single cells, and synapses, SynData, which displays and allows easy updating of
files defining the synapse kinetics of all synapses within the model, ConnData
which displays and allows easy updating of files defining all the connections
(numbers and weights) between cells of the model.

Figure 3: Screenshot of the RunOrganizer tool.

Walk thru GUI

A walk through the RunOrganizer

the list of runs All of the runs stored in the RunOrganizer can be viewed
within the list view. The list view lists all of the runs, row by row, and dis-
plays several parameters associated with the runs. The parameters displayed
in the list view can be customized, as described below in the ’Customizing the
RunOrganizer’ section.
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the drop down to change the view The runs displayed in the list view
can be filtered. The dropdown just above the list view gives options for various
views:

• All Shows all runs stored in the RunOrganizer

• Not Ran Shows all runs that have been designed but have no execution date
(have not been uploaded)

• Ran Shows all runs with an execution date (that have been uploaded)

• Ran Without Error Shows all runs with an execution date that do not
have an error message (or, do have all the sumnumout fields?)

• Errored Out Shows all runs with a value in the error field

• Find Error Shows all runs that have an execution date, i.e., have been run,
but do not have sumnumout values so that there must have been an error
along the way. This view is useful for finding runs that need to have their
error message updated but do not have that yet. The error updating is a
manual process, as described later in the section on errors.

• Similar to Selection Name This view takes the name of the run currently
selected, removes the characters after the last underscore, and find other
runs that start with that same name. This takes advantage of the naming
scheme for runs, where similar runs can be designed that have the same
root name but different number suffixes after the underscore.

• Group A, B, C This view allows you to specify which of all the groups the
run results should (or should not) be a member of.

• Error A, B, C This view allows you to specify which of all the errors the
run results should (or should not be a member of.

• Custom Filter Create your own custom filter based on a single parame-
ter. Enter the name of the parameter, the value to search for (or avoid),
whether the parameter type is a string or a number, and optionally the
type of search to do (= to find that value, avoid that value, etc).

the form view of the current run, which displays more parameters

the list of available analyses

the list of saved figures
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the menubar The menu bar contains a number of options: Under the File
menu:

• New Repository Track simulation runs in a new repository. Upon choosing
this command, you will be prompted to pick the folder of the repository. If
a Mercurial repository has not yet been established, you will be prompted
to initialize one there.

• Open Saves the current data and then allows you to do one of three things:
1) open a different model directory 2) append archived or backed-up runs
to the current dataset or 3) view an archived or backed up dataset on its
own.

• Export Data Export the data in a tab-delimited format, which can be read
by Excel.

• Backup Backup the RunArray and settings to a mat file, then open the
folder of the file

• Archive Archive the selected RunArray records and settings to a mat file

• Quit

Under the Settings menu:

• Parameter List

• Error List This opens up a table of all the error values and allows you to
edit them or add new ones. Note that, in general, existing error options
should not be changed if they have already been used.

• Outputs

• Machines This allows you to add more remote machines, specifying how
to connect to them and the requirements to submit jobs to the queues
available on those machines (such as maximum run time and maximum
number of cores)

• General

Under the Meta Data menu:

• Parameters

• Performance

• Compare Runs This allows the user to compare two or three runs side by
side, looking at some of the most commonly used outputs (spikeraster, fft).
It also shows which parameters each run had in common and their values,
as well as which parameters varied between runs and their parameters.

Under the Runs menu:
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• Batch Upload Runs

• Upload One Run Will upload the results of the currently selected run (over-
write if already loaded? fix subfolder issue). If the run was designed to be
executed on another machine, it will log onto that machine and copy the
run over if it exists.

• Design Run Blanks out the form view field values and makes them all ed-
itable so you can enter new run parameters in there, adds a Save button
so you can save the run and see it in the run list.

• Copy Run Creates a fresh run record with all the same values as the selected
one; it leaves the fields editable so you can change whatever you want
before saving.

• Edit Run Displays an existing run in the form view and makes the fields
editable so you can change parameters. Only works with runs that have
not been executed yet (or sent for execution?)

• Delete Run Deletes a run from the RunOrganizer, even if it has already
been executed. Will ask for confirmation before deleting

• Execute Run Sets up the run (updates the repository to the specified ver-
sion, recompiles the mechanisms, reprints the synapse info), then enters
the execution command at the command prompt. If the machine is speci-
fied as a remote machine, the repository on the remote machine is readied
(and the cell files copied over), a job script command file is produced and
copied over, and then the jobscript is submitted to the batch queue.

• Get Job Output File

• Execute Run Range Instead of executing the selected run, it allows you to
specify one parameter to vary and the values to use. Then, it creates a
series of runs with similar names to the selected run, with all the param-
eters the same to the selected run except the one to vary. It then submits
all of those runs to be executed.

• Debug Commands Rather than executing a run, this command sets up ev-
erything in preparation to be executed, but then writes out to the MAT-
LAB desktop the commands to enter at the command line to set up de-
bugging for the run. This is used for gdb for a serial run. For debugging
in parallel...

Under the Help menu:

• RunOrganizer Help Opens the instruction manual for the model and RunOr-
ganizer

• About RunOrganizer Shows a dialog box that gives the version number
and contact information
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Design a run or copy a run First, create a new “run”, which is a new record
that corresponds to a particular simulation run. This causes the form fields to
blank out and become editable. Specify the values wanted for each parameter.
For those not specified, some default values will be used. The defaults are set in
the parameters.hoc file. Once the values have all been specified, then click the
Save button to add this run as a record in the RunOrganizer database. The run
will appear in the list of runs that have not yet been executed. Runs that are
not executed have blanks for several of the spaces, including the execution date,
the runtime, and the total numbers of cells and spikes, etc. While specifying
the run parameters, you also specified some execution parameters, such as the
machine on which to run the simulation and how many processors to use.

Execute a run Once it is time to execute the run, choose the Execute run
command from the Tools menu. What happens next will depend on what you
entered in the Machine field of the run record. If you chose localhost, then
the run will begin executing on your machine, using a command set by ... If
you chose a remote machine, the RunOrganizer will set up the run on that
machine by updating the model code there and recompiling the mechanisms
(actually it will do this for the local machine too) and updating the synapses.
Then, it will create a job script on the remote machine and submit it to the
batch queue. As the syntax used by each remote machine may differ, each
machine has its own custom m-file that you should configure to ensure the
commands are correct. Some sample m-files have been included for various
machines (Stampede, Trestles, gateway??). Creating a new jobscript file is
discussed in the appendix.

Upload a finished run The RunOrganizer does not stay in touch with the
machine after job submission. Therefore, it is up to you to keep track of when
the job finishes. After it is completed, use the RunOrganizer to retrieve the
results. Oh, and the remote machine must have a directory set up just like the
local one, with the same mercurial repository. So when you then click on the
record in the RunOrganizer and say Upload run, the RunOrganizer will use
the machine value that you entered, log onto that machine, and copy the folder
with that runname onto your local machine. It will then read in some of the
values from the run receipt and another output file with total counts (of cells
and spikes, etc) and display those values in the fields in the run list and on the
form view. It will update the values specified in the design with those actually
used during the execution. In general, these values should always be the same.
However, there are a few cases in which errors (not exactly, but irregularities)
may cause different values to be used during execution. In that case, the values
actually used should be displayed in the RunOrganizer, which is accomplished
by overwriting the specified values with those reported in the run receipt.

Analyze a finished run When an uploaded run is selected in the RunOrga-
nizer, the list of available analyses at the bottom right section of the RunOrga-
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nizer will be populated. Only the types of analyses available for that particular
run will be shown. The resulting figures can be displayed on the screen as fig
files or can be saved as a image files for later use. Once an analysis file has been
saved, it is recorded in the list on the bottom left of the screen. That way you
can keep track of which runs which figures came from. The files always include
the runname in them. The files are saved in the results folder for that runname.
The various outputs available are discussed in a later section, along with how
to add new output types to the list that you have created yourself.

The data of the RunOrganizer

The SimRun class The data in the RunOrganizer is organized such that
each run is its own record. The data of each run is stored in its own instance of
the SimRun class. MATLAB has extensive documentation on classes, to which
the reader is referred for more detail about classes. The SimRun class is a handle
class (as opposed to a value class), which is useful for defining unique objects,
in this case, unique simulation runs. Within the class definition file are all the
properties of the class. Methods for the class are also defined and include three
functions:

• SimRun an initialization function

• loadexecdata a function that saves a bunch of execution-related properties
into the SimRun instance, as well as does some updating with directory
names: the local folder where the results will now be stored is saved in
the ModelDirectory field, while the folder on the remote machine where
the run was executed is listed in the RemoteDirectory field.

The SimRun class can be edited to meet your needs, as discussed later.
It should be stored in its own folder, with the name of @SimRun, within the
RunOrganizer folder. The definition file is reloaded each time you create the
first instance of that class. If you edit the SimRun class definition but leave
the RunOrganizer GUI open, instances of the previous class definition will still
exist and so the class definition will not be updated. To update it, first close
the RunOrganizer. Then enter clear all at the command line to remove the
global variable RunArray, which holds instances of the SimRun class. Then
relaunch the RunOrganizer.

Key fields in the SimRun class (that should never be removed) are:

• RunName The name of the run, this field uniquely identifies the run and is
set by the user when first creating the SimRun instance. Its value should
only be changed during the design phase. After the run is submitted, it
should not be changed. However .... But, under no circumstances can it be
changed after the executed run is uploaded back into the RunOrganizer.

• ExecutionDate This is the date and time that the run began executing. Its
value is pulled from the run receipt, which writes out the date and time
at the beginning of the code.
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• DesignDate This is the date and time that the SimRun instance was first
created, by saving data in the RunOrganizer.

• DesignedBy This field lists the username logged into the computer when the
SimRun instance was first created.

• Errors This field is blank, set by the user at a later time point, from a drop
down list.

• Groups This field is a text field that can contain multiple group names, one
for each group the run is a member of. The user can manually add the
run to various groups. The groups field is useful for searching various runs
and displaying subsets of runs.

• ExecutedBy This is the name of the user who was logged in on the machine
where this run was executed at the time of execution.

• ModelDirectory This field gives the directory where the model results are
stored. Prior to uploading the results to the local computer, this field
will contain the directory of the remote computer. After the results have
been transferred to the local computer, this field is updated to the local
computer and another field contains the path for the remote directory
(RemoteDirectory)

The RunArray The RunArray is an array of SimRun instances. This
array stores all of the data from all of the runs. Each run has its own number
within this array. However, that number can change if runs are deleted from
the RunOrganizer (and hence the RunArray). Therefore, only the runname field
uniquely and stably defines the run.

Backing up data

Reloading backed up data

Customize GUI

Change the SimRun class The definition of the SimRun class is in an m-
file called SimRun.m within the @SimRun folder. You shouldn’t need to update
this file directly. Instead, within the RunOrganizer under Settings menu, choose
Parameter List. Update the parameters there. Then, click the ’Print’ button to
generate a new SimRun file with the proper properties. After updating the file,
you must clear all instances of the SimRun class before the new class definition
will load. To do that, close the RunOrganizer. Then enter ’clear all’ at the
command line. Then, reload the RunOrganizer.

Change the fields displayed Within the Parameter List tool ... the list
option, the form option. the file option sets what appears in the Parameters.hoc
file...
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How to create new views New view filters can be defined for the list view.
To do this, first add the name of the new list view to the drop down. Then,
define the filter criteria of the new view. To edit the drop down, first close the
RunOrganizer. Then enter ’guide’ at the command line. Choose the RunOr-
ganizer.fig file. A figure of the RunOrganizer will appear. Within that fig-
ure, right-click the list view drop down and choose ’Property Inspector’. In
the box that pops up, scroll down to the ’String’ property. Click the icon
next to the word ’String’ to open up the list of views. Add your own. Then
click ’OK’. Next, save the RunOrganizer.fig. Now the drop down has been
updated. Next, you must add the code to the script file for the RunOrga-
nizer. Open the RunOrganizer.m file. Within the list_view_Callback func-
tion, there is a switch statement that contains a case for each value in the
view drop down. Add a new case statement for the new view name. It must
be spelled and capitalized exactly in the same way as the value you added to
the drop down. Then, add a call to searchRuns that filters the runs according
to the criteria of interest. The syntax for the searchRuns function is as follows
searchRuns(fieldname,fieldvalue,isnumber,searchstyle). For example,
if you want to search for all runs with a Scale smaller than 500, you would enter
the following: idx=searchRuns(’Scale’,500,1,’<’). This tells MATLAB to
search through the Scale property of each simulation record, and find those
with a value less than 500. Since the field we are searching, Scale, is a number,
enter 1 as the third argument. If the field were a string, you would enter 0 there
instead.

How to connect to new remote machines To connect to new remote
machines, you must do two things. First, add the machine to the list by going
to Settings > Machines. Make sure the update the queue information for the
machine as well. Second, add a new jobscript m-file for that machine, so that
it prints out the correct style of jobscript to be submitted to the batch queue
when runs are submitted. This stuff may be covered in a different section...

How to edit SimRun data directly Each SimRun record is stored in an
array of SimRun records, called the RunArray. The RunArray is a global vari-
able within the RunOrganizer. Therefore, it can be accessed from the MATLAB
workspace by simply making it a global variable in there as well. At the com-
mand line, enter:
» global RunArray

Then, the RunArray variable is available in the desktop. Enter RunArray at the
command line to see a list of all the properties of the SimRun class. Or, enter
RunArray(num) where num is the number of a SimRun of your choice to see the
specific property values of that SimRun. You can also edit property values from
here. Make sure to save the RunArray or do something in the RunOrganizer
that will trigger a save event, such as batch uploading runs, uploading a single
run, deleting a run, saving a newly designed run, submitting a run, setting an
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error value on a run, setting the comments on a run, or setting the groups a
run is in, so that your changes are saved. To save the RunArray directly (not
recommended... just do something in RunOrganizer). To access the most re-
cently created SimRun, use the end indexing trick in MATLAB; just enter »
RunArray(end) to access it. To access a particular run, select that run in the
list view, then choose the ’workspace variables’ output. The ind variable gives
the index into the RunArray for that particular run. Note that backing up and
restoring data from back up are covered in a separate section.

How to edit other settings save data/MyOrganizer.mat myoutputs savedfigs
machines myerrors groups

Error List To add new entries to the list of possible errors, click the
Settings menu and choose Error List. A window will pop up, listing all the
errors currently available in the RunOrganizer. To add a new error, click the Add
Line button. Then, in the blank line in the table, add the error category, phrase,
and description. Once finished, click the Save button to store the new error list.
Then close the error list window. The RunOrganizer will automatically update
with the new error list.

Machine List The RunOrganizer can submit jobs to and pull results from
remote supercomputers if data is provided about how to connect to the remote
machine. To add a new remote machine to the list of possible machines, click the
Settings menu and choose Machines. A window will appear that lists all the
remote machines currently stored in the RunOrganizer. Add the information
about the new machine and then click the Save button. Then, the new machine
should appear as an option in the drop down list above the second table. Choose
that machine from the list. Then, add the data about the possible queues
available for that machine, including the maximum run time and maximum
numbers of cores that can be requested. Click the Save button again. Next,
you will need to add a jobscript file that specifies how to create a job script to
submit to the machine when you want to run a simulation on it.

Groups List

Outputs List The possible outputs that can be produced from the results
can also be changed. However, this is covered in the next section which discusses
outputs in detail.

Outputs

- how the naming of the outputs work - producing figures or image files - how
only the possible outputs for that run are shown

There is a MATLAB structure that saves information about the possible
outputs. It includes fields that populate the list of outputs in the RunOrganizer,

31



fields with conditions for runs that must be satisfied for an output type to
be produced, and the output file to execute. When adding a new output to
the RunOrganizer, you must put the file in the outputtypes folder within the
RunOrganizer directory and also add an entry to the MATLAB struct. Then,
the next time the RunOrganizer is launched, that output will be available for
the runs that meet its conditions.

- lists some of the outputs available and explains them
• Spike Raster

• Axonal Dist. This output can only be computed when the positions of each
cell have been calculated and the detailed list of connections (including
the gid of every presynaptic and postsynaptic cell for each connection) is
available . When those two conditions are met, this analysis is listed as
an option in the output list of the RunOrganizer. This file computes the
distance between each pair of connections. It then graphs the distribution
of the distances as a function of presynaptic cell type, to give the effective
axonal distribution of that type.

• Conn. Matrix This output is available as long as at least a summary of
the total connections between each type of cell is available (numcons.dat),
which is printed out if the PrintConnsSummary is set to 1. It gives the
total number of connections between every combination of presynaptic cell
type and postsynaptic cell type.

• Histogram This output just requires the spikeraster (and like the other out-
puts, a list of gid ranges per cell type). It analyzes the power of oscillations
in the model. It takes an argument in the form of an oscillation period. It
takes the FFT of each cell type spiking activity in the model and reports
the power and frequency of the dominant frequency as well as the power
of the oscillation at the frequency of interest. It not only displays the FFT
spectrum but also the histogram of spiking activity double plotted over
two periods of the frequency of interest, per cell type. It also shows an
image of experimental results for theta oscillations that can be used for
comparison.

• Traces This output is available as long as there are single cell voltage traces
for each cell type in the model (at least one per cell type) . Then, this
function displays an intracellular voltage trace from one cell instance for
each type .

• Cell Ranges This output is always available as long as the output files cell-
type.dat and spikeraster.dat are available; they are automatically printed
with each successful run. This output prints a table to the MATLAB
desktop. For each cell type in the model, the table gives index of the
cell type, the gid range of the cell type, the number of cells, the number
of cells that didn’t spike during the simulation, as well as the minimum,
maximum, and standard deviation for spikes per cell of that type, as well
as all spikes by all cells of that type.
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• Spikes This output type requires a spikeraster figure to be showing. Upon
selecting this output, a cursor will appear on the spikeraster for you to
click twice, once marking the beginning of a duration of interest and once
marking the end. For each cell type in the model, it will show the number
of spikes made by that type and the number of cells of that type that
contributed to the spiking during that time. Then it also gives the gids of
the first and last cells to spike during that time.

• Relative Timing This output type requires a spikeraster figure to be show-
ing. It measures the relative starting time of each cell type if a pattern of
pulses is visible in the spikeraster. Once this output is selected, a dialog
box will appear for you to enter the number of pulses in the spikeraster
that you want to analyze. Then a cursor will appear over the spikeraster
for you to select the pulses. Both the start and the end of each pulse
must be defined by clicking. After all pulses have been defined, then the
program will compute the average lag time of each type of cell to start
the pulse, relative to the pyramidal cell starting the pulse. . Since not all
cell types necessarily participate in each pulse, it is noted when a certain
cell type misses some pulses. The standard deviation of the start time is
also plotted. Within the MATLAB desktop, further results are reported.
If a certain subset of cells is participating in the pulse each time, that can
be determined from the table in the desktop, where it gives the number
of cells participating in (all? then why is there a std) all pulses.

• FFT For each cell type, the FFT of the spiking activity of all cells of that
type is calculated and plotted. The power and frequency of the peak
overall are noted, as well as the peak within the theta range of 4 − 12 Hz

• Cell Inputs This gives a connection matrix (convergence only) for a single
cell. It is only available for those cells for which detailed outputs were
obtained (the traced cells for which the detailed connection file was written
out)

• Trace Stats For those cell instances whose voltages were traced during the
simulation, the traces are averaged and presented here, one per cell type.
The average, plus or minus the standard deviation, and the maximum and
minimum voltages for each time point are graphed.

• Workspace Variables This option sends several variables to the MATLAB
desktop workspace so that you can manipulate them ad hoc. The variables
sent include: a spikeraster (times and gids of spiking cells), a cells struct
that contains the names, technical names, numbers, and gid ranges of all
cell types, a numcons matrix that gives the host processor, the pre and
postsynaptic cell type (indices correspond to those given in the cells struct)
and the number of connections between those types on that processor, and
an ind variable that gives the RunArray index of the run, and a copy of
the SimRun record called myrun.
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• ppstim vectors This view ...

• Conv. Div. This view produces an output similar to the connection matrix,
except with more data. It gives the total number of connections between
each combination of presynaptic and postsynaptic cell type, as well as the
weight of the connections, the divergence of each presynaptic cell type
and the convergence onto each postsynaptic cell type. It also includes the
number of each cell type where relevant.

• Trace Inputs Pick a gid out of those that have the intracellular trace and
get two graphs. One is more of a summary. It gives the intracellular
voltage trace and histograms of the total excitatory inputs and total in-
hibitory inputs. It also gives the convergence onto the cell, in terms of
connections, synapses per connection, and spikes per each cell type, as
well as the kinetics and weight of each synapse type. A second figure gives
the histogram of inputs for each presynaptic cell type, plotted over the
intracellular voltage trace.

• Single Cell Spike Train The single cell spike train output is available for
those cells that have an intracellular voltage trace . It plots their spike
train and also performs an FFT on the spiking activity and, if available,
the membrane potential trace.

- Lists outputs produced from that simulation on the left side

Create New Outputs

- How to create new output scripts, where to save them, how to update the
output struct and add conditions

Error tracking

Error tracking is also important. The RunOrganizer allows tracking of simula-
tions that ended in error. One of the most noticable symptoms of an error is
that the output files from the simulation are not produced. This becomes ap-
parent when the RunOrganizer is uploading an executed run. The run receipt
is usually still printed out, so the execution date of the run is still filled out.
This means that the run still shows up in the ’Executed Runs’ view, though
there are no results for it. For runs like these, they can be easily spotted using
the view ’Find Errors’, which displays runs that have an Execution Date but no
information about total spikes or total number of connections and cells. When
a run is selected, there is a dropdown list of errors that can be picked from to
describe what went wrong. New errors can be added to the list, as described
in section ??. An error can be picked from this list and it will be added to the
SimRun record. There are various categories of error, RunTime, Programming
... The possible errors are:

RunTime
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• Error type

Programming Time

• Error type

Sometimes errors can occur even before the run receipt is written out. In this
case, the run appears as though it hasn’t been executed, because no execution
data is uploaded. For these runs,

AutoRig

The AutoRig tool (Fig. 4) simulates ephys done to characterize cells and chan-
nels. It allows you to compare model and experimental data by producing
analogous data from the model.

Figure 4: Screenshot of the AutoRig tool.
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- purpose of the tool - works with code versioning in that it tells you which
version it is using. It also records the version used in the runreceipt associated
with each AutoRig run. Additionally, it prints out any changes made to the
code in the separate version status and version difference files.

At the top of the AutoRig, push the button to specify the model directory,
which will then display in the field next to the button, along with the current
Mercurial version of that repository. Below that field, there is a field for entering
in the command to run NEURON programs locally. Write the execution line
exactly as if you were submitting a file called test.hoc to be executed. The
AutoRig program will then substitute in the necessary commands to run its own
NEURON code.

With each execution of the AutoRig, the results will be written out into a
separate results file. Within that file, a run receipt will also be written that
gives the code version and the parameters used in the run.

Below these fields is a table listing all the channels. To the right of the table
are checkboxes to specify which types of outputs to produce for the channels of
interest. The channels of interest are specified by entering values in the table
for their Gmax and Eion columns. The Gmax of the channel is the maximum
conductance possible for that channel. In model code, it is sometimes called
gbar and in text it is sometimes called g. This is in units of mho/cm2. Then
Eion gives the reversal potential of the current through this ion channel in
mV. Once these values are entered, then if an ion channel simulation type is
checked, anything checked will be run for this channel type. The ion channels
are characterized by inserting them into a blank soma. The parameters used to
characterize the soma are initially set to:

• Soma Diameter 16.8 µm

• Ra 210 ohm*cm

• cm 1 uF/cm2

• Celsius 37o

They can be easily changed by going to the Settings menu and choosing Ion
Channel Settings, then updating them in the dialog box that appears.

Channels - lists all channels in model (mod files beginning with ch_) - useful
for ion specific and nonspecific channels - running channel graphs: act/inact,
IV curve

• IV curve This shows how the current through the channel depends on the
voltage across the membrane.

• Act./Inact. This shows how the levels of activation and inactivation of the
channel depend on the voltage
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- the logic used to produce the graphs (bio logic)
- what about the model code is necessary for this to work: In order for

this section of the AutoRig to work right, there are a number of requirements
for code syntax. The channel definition mod file names must begin with ch_.
Other mod files that do not define channels must not use that prefix. Further,
the suffix defined within the mod file must correspond to the channel name.
For example, a sodium channel defined in the file ch_Nav.mod must have the
SUFFIX set to ch_Nav. Further, within the channel definition, the maximum
conductance must be a RANGE variable with the name of gmax. There must be a
range variable called myi which calculates the total current from that mechanism
.

More things to discuss about channels: 1. Defining ions 2. alpha and beta
parameters 3. initialization and step-wise equations 4. Making values within
NMODL available to hoc (and recording in hoc) 5. Specific tutorials available
for these NMODL code examples on our website 6. Further information is
available in the NEURON book (and other peoples’ online tutorials)

Single Cell Recordings - lists all cells in model, taking the list from the files
within the cells folder of the model repository, those files that begin with the
prefix class_.

- The cell can be current clamped to a variety of values for a set length of
time. The membrane potential of the cell will be recorded, as will the currents
through all the ion channel mechanisms present in the cell. These traces will be
displayed in a figure resembling experimental results.

- what about the model code is necessary for this to work

Morphology

cell mech dists This option graphs the values of each subcellular mecha-
nism as a function of location within the cell. For each cell selected, a separate
figure is created for the axon, soma, and dendritic groups (apical or basal).
Within that figure(s), the value of each mechanism is graphed as a function of
distance from the 0 end of the soma. This includes the values of cm, Ra, and
the g_max values of any channels as well.

3D

cell numbers

Paired Cell Recordings The connections between cells can be characterized
using paired cell recordings. In the model, this means triggering the synapse
associated with a particular presynaptic cell and measuring the response in the
postsynaptic cell. The AutoRig can do both PSP (current clamp) and PSC
(voltage clamp) measurements for paired recordings. It generally measures the
recording at the soma of the postsynaptic cell. It allows you to specify the
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clamp conditions, the reversal potential of the synapse and, in the case of voltage
clamp, the junction potential as well.

The AutoRig allows you to specify the number of synapses per connection,
the weight and kinetics of each synapse type. This is done by specifying the
ConnData (weight, number of synapses) and SynData (kinetics) sets used to
set up the paired connection that you will measure. To form the connection,
the AutoRig will randomly choose the specified number of synapses from the
available synapses for that cell type (the possible locations of which are speci-
fied in the postsynaptic cell template). The AutoRig will perform 10 different
paired recordings with 10 different connection configurations, meaning 10 dif-
ferent combinations of synaptic connections.

To use the paired recording section, you first specify the ConnData set to
use. This will cause the list of available pairs to be populated. You can record
multiple pairs at once, but they must all have the same reversal and junction
potential. Even pairs from artificial cells to real cells can be recorded.

The average kinetics and amplitude of the 10 connection configurations will
be calulated and displayed along with the graph of the postsynaptic response,
along with the reversal potential and junction potential and holding potential
(or current) used.

For this part of the model to work, the code must have ConnDatas, Syn-
Datas, and must use a synapse definition file that has an ’e’ range variable that
can be set to the reversal potential of the synapse.

Our model uses a two-state kinetic scheme for all of its synapses; the scheme
has a time constant to specify the rise kinetics of the synaptic conductance
and another time constant to specify the decay time frame of the conductance.
The weight, set in the ConnData and used by the model within the connection
formation process, is in µS and sets the maximum conductance of the synapse.
The output of the synapse is the current in nA. The kinetics and weight are set
on a per-synapse level, so it is important to view the overall kinetics and weight
of the combined effect of all synapses to make sure that is what matches the
experimental data. The synapses summate.

SynData

The synapse kinetics for all possible connections are specified in the cell defini-
tion file for the postsynaptic cell. However, we found that it can occasionally be
convenient to view the synapse kinetics for multiple postsynaptic cells at once,
and to edit them apart from the rest of the cell definition. Therefore, we also
store the synapse kinetics in a separate file. The synapses folder contains files
of synapse data. Each file defines all the synapse kinetics parameters for all
connections in the model; different files contain different sets of synapse data.
The synapse data from these files can be displayed in the SynData GUI. Within
the GUI, files can be displayed, altered, and saved. Additionally, files can be
’printed’. Printing a file means inserting the relevant code for those synapse
kinetics into each cell definition file.

Explain the cells and cellframes folders here. How the cells folder is
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ignored by Mercurial, but it contains the files used by the model to define the
cells. All changes should be made to the cellframes files, which are tracked
by Mercurial. After making changes to those files (or updating the Mercurial
version), then the synapses should be printed again, even if the synapse set
didn’t change. This will refresh the definition within the cells folder.

Figure 5: Screenshot of the SynData tool.

Buttons

• Overwrite File Upon clicking this button, any changes made in the table
are written to the current file (the file displayed in the drop down list).

• Reload File Upon clicking this file, the table is refreshed with the data
currently in the file, so any changes made to the table without saving the
file are lost.

• Save New File When this button is clicked, a new file is created with the
values currently in the table.

• Print When this button is clicked, code is generated that defines the synapses
for each postsynaptic cell and it is inserted into the synapse definition
function (proc?) of the cell definition template for each postsynaptic cell
type.

• View Mat This displays a table of all possible presynaptic and postsynaptic
cell types. The cells give the total number of synapses defined for each
combination.
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• Post cell This is a dropdown list that specifies which postsynaptic cell is
currently being displayed. Only the synapses for which that cell type is
postsynaptic are displayed. All cells within the model should be listed in
this dropdown list. (all cells with the class file in the cells folder?)

• Pre cell This dropdown list includes all possible cell types in the model. If
you want to add a synapse for a particular presynaptic cell type, you can
select that type here and then press the Add button

• Add This button will add a new entry to the current table for the selected
presynaptic cell type. It saves you the time of typing in the presynaptic
cell type and also ensures that the cell type is spelled correctly.

ConnData

The numcons_gui GUI (Fig. 6) allows you to view and specify connectivity
sets, which define the number and strength of connections between all the cells
of the model. For each possible presynaptic and postsynaptic cell type, the total
number of connections between all cells of those types is specified, as well as
the synapse strength (maximum synaptic conductance) in µS. At the top of the
table are buttons to specify the connection sets. There is a drop down list of
all existing connection set files (conndata_[num].dat files). When you pick a
particular connection file, it loads into the table. It also updates the caption
below the drop down, which displays the descriptive comment associated with
that connection set. There are the following buttons as well:

• Overwrite File Upon clicking this button, any changes made in the table
are written to the current file (the file displayed in the drop down list).

• Reload File Upon clicking this file, the table is refreshed with the data
currently in the file, so any changes made to the table without saving the
file are lost.

• Save New File When this button is clicked, a new file is created with the
values currently in the table

• Add Cell Types . If the file currently displayed doesn’t include all cell
types (i.e., some cell types have been added since then), this button will
append the previously excluded cell types to the table.
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Figure 6: Screenshot of the ConnData tool.
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2 Results
2.1 Subcellular Mechanisms
2.1.1 Ion Channel Graphs

2.2 Cells
2.2.1 Distribution of Ion Channels in Cells

2.2.2 Cell Morphology

2.2.3 Single Cell Traces

2.2.4 Single Cell fI curves

2.2.5 Table of Single Cell Properties

2.2.6 Graph of Cell Numbers

2.3 Connections
2.3.1 Paired Cell Recordings

2.4 Network Structural
2.4.1 Graph of Cell Numbers

2.4.2 ConvDiv Table

2.4.3 3D Model Pic

2.4.4 Axonal Divergence

2.5 Network Functional
2.5.1 Activity Inputs to a particular cell

2.5.2 Record a cell

2.5.3 Spike Raster for levels of sprouting and sclerosis

3 Discussion
a. Summarize how this will be useful, can generate figures for use in publications
b. Publically available tools i. AutoRig on SimToolsDB (or link to MATLAB
Central - compiled and m-scripts) ii. NEURON and NMODL code on ModelDB
iii. Tutorials on lab website c. Next steps i. Produce this in another format,
perhaps Python? ii. Users can customize the AutoRig to produce additional
validation ’experiments’ such as: .... (ion channel dependence on pH, etc) iii.
Be mindful of structure of NEURON models that you produce
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