
 For future updates of this document, visit our Product Documentation section on
 w w w . m y w 4 . c o m

Reference: APPCOMPOSER_QUICKSTART_041_EN
QUICK START TUTORIAL

http://www.myw4.com

Reference: APPCOMPOSER_QUICKSTART_041_EN
QUICK START TUTORIAL

© 2010 - 2011 W4. All rights reserved.

The possession of this document gives you a non-transferable, non-exclusive and personal right to use
it; no proprietary rights are transferred to you. You may use, copy, reproduce and distribute this
document provided:
1. That the above notice of copyright is mentioned on all copies and that this notice appears
 together with this authorisation,
2. That this document is used for informational purposes only and not for sale,
3. That this document is not modified in any way.

All product and brand names are the property of their respective owners.

The information in this document may be modified without prior notice.

C
on

te
nt

s

A p p l i c a t i o n C o m p o s e r Quick Start Tutorial 4

Overview 6

Step 1: Describing the data model 8

Step 2 (optional): Describing the navigation 18

Step 3 (optional): Fine-tuning the application 24

Step 4 (optional): Connecting the application to a MySQL database 30

Where to go from here? 34

5 Contents

C
ha

pt
er

 1

A p p l i c a t i o n C o m p o s e r Quick Start Tutorial 6

1 Overview
How to easily design a GUI, in rich, light, or fat client, and still not be familiar with the
underlying technologies? The answer is: By focusing on business and working with application
concepts. This approach is that of Application Suite, published by W4.

In this software suite, Application Composer and Application Engine provide a Model-Driven
environment for rationalizing the development of complex, scalable applications in an agile
way.

W4 website:
> www.w4.eu

In this section:
> Quick Start Tutorial, page 6
> Application Suite, page 7
> How it works, page 7

This tutorial is made up of the following steps:
> 2 Step 1: Describing the data model, page 8
> 3 Step 2 (optional): Describing the navigation, page 18
> 4 Step 3 (optional): Fine-tuning the application, page 24
> 5 Step 4 (optional): Connecting the application to a MySQL database, page 30
> 6 Where to go from here?, page 34

Quick Start Tutorial

In this tutorial you will design your first application with Application Composer rapidly - in less
than one hour - and with no previous technical skills.

http://www.w4.eu

7 Chapter 1 Overview

This tutorial will walk you through successive iterations to gradually reach an elaborate
application that will address all the features that can be expected from a personal video library
management application.

Application Suite

Application Composer is part of a comprehensive software package,
BUSINESS FIRST Application Composer, an application composition software suite.

BUSINESS FIRST Application Composer is segregated into two subgroups: Application Suite and
Process Suite.

Within Application Suite, Application Composer, which is the cornerstone of this tutorial, is the
graphic design workshop that takes care of modeling and GUI generation, and
Application Engine is in charge of running the resulting application.

Within Process Suite, Process Composer and Process Engine provide a comprehensive BPM
environment for designing and running business processes.

How it works

With Application Composer, the data model is at the heart of the developments and should
be implemented in the first place. By just configuring the model, the designer specifies which
views are displayed to the final user and how navigation is organized across the various
screens.

All the technical constraints such as data presentation (generating the views, getting and
displaying the data, preserving the consistency of the various application windows, etc) are
taken care of by the framework itself, and especially by Application Engine, which analyzes the
model to dynamically generate the application screens whenever they are required.

At this point the resulting application can already be executed, either in fat client, or in web
mode. Afterwards it will be iteratively fine-tuned by adding specific functional behaviors as
well as graphic resources (colors, images, fonts, etc) to obtain a comprehensive application
available in a variety of modes: DHTML/AJAX (web), Swing, SWT, Eclipse plug-in, etc.

C
ha

pt
er

 2

A p p l i c a t i o n C o m p o s e r Quick Start 8

2 Step 1: Describing the data model
To compose the application in this tutorial, we will be using Application Composer.
Application Composer is available either as a standalone desktop application, or as an Eclipse
plugin. With Application Composer you can describe an application and this is a fully codeless
process.

In this section:
> Creating the Videolibrary application, page 8
> Creating the class Category, page 10
> Creating the class Film, page 13
> Running the application in fat client (SWING viewer), page 15

N OT E To specify English as the language for the user interface, edit the
application_composer.ini file in the Studio folder of the setup directory (by
default: C:\Program Files\w4\ApplicationComposer\Studio) and uncomment
the following key: LY_LANGUAGE=en

Creating the Videolibrary application

In this tutorial you will design a basic application for managing a personal videolibrary.

When Application Composer starts, the main window is displayed. To the right-hand side is
the Class Hierarchy, which is empty so far.

9 Chapter 2 Step 1: Describing the data model

Fig 2.1 Application Composer right after startup

You will now create a new application.

0 TO CREA TE THE A PPLICATION

1 Select FileNew

The New : Application window is displayed.

2 Specify the identifier of the class: videolibrary.

This is an internal identifier. It is used by the designer.

3 Specify the name of the class: Videolibrary.

This name is external. It is visible by the final user.

The save directory can be changed as desired, although for this tutorial you can keep the
default value.

4 Specify the language: English.

A p p l i c a t i o n C o m p o s e r Quick Start 10

Fig 2.2 Creating the application

5 Click Validate.

The application has now been created. This initializes the tree structure in the Class
hierarchy:

Fig 2.3 The Class hierarchy after the application creation

6 At that point it can be a good idea to save your work: Click the Save button below the
menu bar, and remember to save your work at reasonable time intervals as you progress
with the application.

Creating the class Category

You will now create your first application class, which represents the categories of films in the
video library. Categories can be: comedy, drama, science-fiction, etc.

0 TO CREA TE THE C LASS C ATEGORY

1 In the Class hierarchy, click Create a class...

The Create a class window is displayed.

This window lets you specify the information related to the class to be created, however for
this tutorial, you can specify no further detail than its name.

11 Chapter 2 Step 1: Describing the data model

2 Specify the class name: Category.

Fig 2.4 Creating a class

3 Click Validate.

A new node is displayed in the Class hierarchy:

Fig 2.5 The Class hierarchy after the creation of the class category

Selecting a node in the Class hierarchy displays a preview of the related forms in the Visual
builder tab.

The form which is displayed in the central pane of the Visual builder is WYSIWYG: It is
similar to the one that will be displayed at runtime. It is contextual, firstly to the currently
selected class, and secondly to the given action.

If you select the Category class in the Class hierarchy, you will see that so far the form is
empty as the class has no attributes:

A p p l i c a t i o n C o m p o s e r Quick Start 12

Fig 2.6 Preview of the class in the Graphic builder

4 In the Standard types area of the Visual builder, to the left, add a simple text field for the
film genre, either via drag-and-drop, or by double-clicking:

Fig 2.7 Using the Visual builder to add a field

13 Chapter 2 Step 1: Describing the data model

5 Double-click the label of the field in the form then give the field a more eloquent name:
Genre.

6 Right-click the field then select Change frequent marks... from the context menu.

7 In the popup window, select the name mark:

Fig 2.8 Changing the marks for a field

8 Click Validate.

The Genre field will be used for displaying the categories in the various views.

Creating the class Film

Like you did for the category class, you will now create the second class in your application:
Film.

0 TO CREA TE THE C LASS FILM

1 The Category class is now the currently selected class in the Class hierarchy. Before creating
the Film class, select the second node in the Class hierarchy, which represents the
Videolibrary project.

Fig 2.9 Class hierarchy before the creation of the Film class

2 Create a new class.

3 Specify the name of the class: Film.

4 Click Validate.

A p p l i c a t i o n C o m p o s e r Quick Start 14

A film is described by a title, a category, and a release date:
 Title is a simple text field, like the one used when specifying the category.
 Genre is a simple relation to the previously defined Category class.
 Release date is a date field (DD/MM/YYYY format).

5 Create the Title field:

5.1 In the Class hierarchy, select the Film class.

5.2 From within the Standard types area of the Visual builder, add a simple text field.

5.3 Rename the field.

5.4 As the name of a film matches its title, add the name mark to the field.

6 Create the Genre field:

6.1 Add a simple relation field.

The Select target class window is displayed.

6.2 Select the Category class from the drop-down list then click Validate.

6.3 Rename the field.

6.4 As Genre is not a required attribute for defining a film, add the optional mark to the
field.

7 Create the Release date field:

7.1 Add a date field.

7.2 Rename the field.

7.3 As Release date is not a required attribute for defining a film, add the optional mark
to the field.

The class should now be as follows:

Fig 2.10 film creation form, in the ediitor and preview in the final application

N OT E You can change the characteristics of the business classes and their attributes from
within the Outline area (to the right-bottom of the main window), which is contextual
relative to which graphical object is currently selected in the form.
You can for instance change the image associated to the class. When the class (and
not its fields) is selected in the editor, double-click the Image field in the Outline area.
If no image is specified, a default image is used, which displays the first letter of the
class name in upper case (F for films, and C for categories).
You can see that this field is optional as it is displayed in normal style, in contrast to

15 Chapter 2 Step 1: Describing the data model

bold style.

The data model description of your videolibrary application is now completed. You application
is now fully operational.

Running the application in fat client (SWING viewer)

Before running the application, you will specify that the data that will be manipulated will
need to be saved when a user session comes to an end. This will allow for persistent, later
reusable data (films and categories). To this end, you will need to edit the application
properties.

Also, as you will run the application in SWING, you will need to specify the JDK in use in the
preferences.

0 TO SET THE PROPERTIES FOR ST EP 1

1 Click the Properties button, below the menu bar.

The Modify : Application : Videolibrary window is displayed.

2 Display the Environment tab.

3 Edit the LY_SAVE_FILES variable:

3.1 Click the Value column next to the LY_SAVE_FILES variable.

3.2 Substitute the current value by true then press ENTER on your keyboard.

3.3 Click Validate next to the LY_SAVE_FILES variable.

3.4 Validate the window.

A p p l i c a t i o n C o m p o s e r Quick Start 16

Fig 2.11 Updating the properties for data persistence

0 TO SET THE PREFERENCES FOR STEP 1

1 Click the Preferences button, below the menu bar.

The Preferences window is displayed.

2 Display the Java tab.

3 Specify the directory of the JDK to be used.

4 Click Validate.

0 TO RUN THE APPLICATIO N IN SWING

1 To run your business application with no effort, just select a graphic environment such as
the SWING viewer: Select RunDisplay SWING.

Fig 2.12 Running the application in SWING (1/2)

17 Chapter 2 Step 1: Describing the data model

The model is interpreted by the engine, which at this point is able to generate a default
view tree, based on your data model, and which will let you access the various screens for
managing your data. You can create categories and films.

Fig 2.13 Running the application in SWING (2/2)

From now on the services for viewing, creating, modifying, and deleting data can be used,
as can be the sorting and filtering services.

C
ha

pt
er

 3

A p p l i c a t i o n C o m p o s e r Quick Start 18

3 Step 2 (optional): Describing the
navigation
As discussed earlier, this step is not essential for rapidly obtaining an operational application.
However it is necessary for customizing the views and it can be useful to address this in the
context of this tutorial.

In this section:
> Actions and navigation tree, page 18
> Creating the compound action Films by genres, page 19

Actions and navigation tree

Let us now focus on the navigation tree definition. The Navigation tree tab lets you specify
how the application data will be displayed to the final user, and how the screen to screen
navigation will be organized. So far the tree has no actions in it. First you will just use the GUI
automatic generation button.

0 TO GENERATE TH E DEFAULT GU I

1 Display the Navigation tree.

2 Click Generate default GUI.

This option creates a root action, i.e. the first action that is run when Application Engine
starts the application, and by which you access the screens related to the various business
classes, which are displayed as tables.

The navigation tree generated in our example therefore has a main window via which you
can display the list of films and the list of categories:

19 Chapter 3 Step 2 (optional): Describing the navigation

Fig 3.1 Navigation tree

Selecting an action in the navigation tree displays a preview of the corresponding view in
the central pane.

Creating the compound action Films by genres

You will now compose an additional view to display the films by genres, for which you will
create a compound view made up of two basic views:

 A tree for viewing the categories, to the left (this is a new action to be created)

 A table for viewing the films matching the selected category, to the right (this is an existing
action that will be reused)

0 TO CREA TE THE C OMPOUND AC TION

1 In the Navigation tree, right-click the root node then select Create a compound action...
from the context menu.

The Create a compound action window is displayed.

2 Rename the action: Films by genres.

3 Create the first view (the tree of the categories):

3.1 In the Composition area, click Create an action.

The Create an action 1/2 window is displayed.

3.2 In the Characteristics area, select Tree.

3.3 In the Identification area, substitute the default name by Genres

3.4 Click Next.

The Create an action 2/2 window is displayed.

3.5 From the Target class drop-down list, select Category.

A p p l i c a t i o n C o m p o s e r Quick Start 20

Fig 3.2 Creating a tree action within a compound action

3.6 Click Validate.

Your first action is now created and is displayed in the right-hand side of the
Composition area:

21 Chapter 3 Step 2 (optional): Describing the navigation

Fig 3.3 First action of the compound action

4 For the second action, just reuse the Film action, which was automatically generated when
the default GUI was generated: Select the Films actions in the left area then click Select.

The second action is displayed in the right area:

Fig 3.4 Second action of the compound action

A p p l i c a t i o n C o m p o s e r Quick Start 22

Note that the context between the views can be specified. In our example, selecting a film
genre in the tree decides which films are displayed. Therefore you can leave the default
option The first action defines the context.

5 Click Validate.

The Navigation tree is refreshed and displays the newly created compound action:

Fig 3.5 The Navigation tree after the creation of the compound view

6 At this point you can run the application again, and you may take the opportunity to
display it in web mode: Select RunDisplay Web

Fig 3.6 Running the application in web mode

At runtime you can see that the main window now has a Film menu with two options: Film
(the automatically generated action) and Films by genre, the compound action, which you
have created.

N OT E To obtain separate entries, just associate distinct images to the actions.

After you have entered a set of data for both the films and the categories, you can use the
application like would any final user do, and you will see that selecting a genre in the left does
update the list of films displayed in the right. The result should be as follows:

23 Chapter 3 Step 2 (optional): Describing the navigation

Fig 3.7 Your videolibrary application in web mode

C
ha

pt
er

 4

A p p l i c a t i o n C o m p o s e r Quick Start 24

4 Step 3 (optional): Fine-tuning the
application
Although your application is fully operational, it is very basic at that point and it should be
fine-tuned, for which you will now design two specific behaviors in Java, one for conforming
to a business rule, and the other for fine-tuning a graphic behavior.

In this section:
> First behavior: Business rule for the film release date, page 25
> Second behavior: Fine-tuning the graphic representation for certain films, page 27

Before starting this step, you will need to review your Application Composer preferences, as
defining specific behaviors requires that a default text editor is specified, and also that
Application Composer is used by a profile other than beginner.

0 TO CONFIGURE THE PREFERENCES FOR STEP 3

1 Click the Preferences button.

2 In the General tab, select a profile other than beginner: standard, advanced or expert level.

3 Display the Java tab.

4 In the Editor field, specify the full path for the executable of the text editor to be used by
default.

5 Click Validate.

6 Restart Application Composer.

25 Chapter 4 Step 3 (optional): Fine-tuning the application

First behavior: Business rule for the film release date

Let us assume that you wish to restrict the films in your videolibrary to the films released in
the 20th century. Your first specific behavior will therefore check that the film release date
entered by the user is valid, i.e. it is earlier than January, 1st 2001.

When the actions, classes, and fields have been generated at step 1 those items have been
automatically given identifiers, which we have kept as is so far in order to save time. However
these can be adapted so that the items are easier to use.

0 TO CH ANGE THE IDENTIFIER OF CLA SS FILM

1 In the Class hierarchy, right-click the Film class then select Modify... from the context menu.

The Modify : Class : Film window is displayed.

2 Substitute the existing identifier by: film

3 Click Validate.

0 TO CH ANGE THE IDENTIFIER OF THE RELEASE DATE FIELD

1 In the Class hierarchy, select the Film class.

2 Display the Visual builder tab.

3 Right-click the Release date field then select Modify... from the context menu.

The Modifiy : Time attribute : Release date window is displayed.

4 Substitute the existing identifier by: film_date.

5 Click Validate.

0 TO A DD TH E DAT E CON TROL

1 In the Class hierarchy, right-click the Film class then select Class behavior... from the
context menu.

The Class behavior window is displayed:

Fig 4.1 Generating a behavior class

2 Click Validate.

A p p l i c a t i o n C o m p o s e r Quick Start 26

Validating the default options in the class behavior creation window automatically creates
a Java class - FilmClassBehavior.java - which is displayed in the editor configured in the
preferences.

In this class, you will override the controlNewValues() method. This method is invoked by
Application Engine when an object of the related application class (in this case: a film) is
created or modified. It also performs an overall control of the object data before the
creation or modification is validated.

Full documentation for the Java API and the methods that can be specialized can be found
in the W4 Documentation Browser.

3 To be able to use dates in Java, add the following instructions at the beginning of the file:

import java.util.Date;
import java.text.DateFormat;
import java.text.SimpleDateFormat;

4 To implement the control on the film release date, place the following code in the Java file,
instead of the autogenerated method skeleton:

public short controlNewValues(LySetController set, LyValueSet
newValues)
{

// Retrieve the date
LyValue val = newValues.getFieldValue("film_date");
if ((val != null) && (val.getValue() != null))
{

// Get the film date
Date filmDate = ((Date)val.getValue());

// Test if the film date is before 2001
DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Date limitDate = null;
try {limitDate = df.parse("2000-12-31");}
catch (Exception e){e.printStackTrace();}
if (filmDate.compareTo(limitDate) > 0)
{

// Display error message and return an error
set.showError("The release date is invalid!");
return STATUS_KO;

}
}
// Generic processing
return super.controlNewValues(set, newValues);

}

5 Save the Java file.

6 Compile the Java file:

6.1 In the Class hierarchy, select the Film class.

6.2 Display the Java behavior window: Select WindowsJava classes.

6.3 In the Java classes window, select the class videolibrary.behavior.FilmClassBehavior

6.4 Click Compile (or compile the corresponding Eclipse project).

27 Chapter 4 Step 3 (optional): Fine-tuning the application

The bullet in front of the library should switch from red to green, meaning the class
has been successfully compiled.

7 Restart the application using the viewer of your choice then check that the film release
date control is performed when creating or modifying a film. Now try to create a film with a
release date in the 21st century!

Second behavior: Fine-tuning the graphic representation for certain films

You will now use a second Java class for customizing your application. You will create an
action behavior for acting upon the presentation: In the film table you will highlight the films
released in the year 2000.

0 TO A DD TH E DAT E CON TROL

1 In the Navigation tree, right-click the class representing the list of films then select Action
behavior... from the context menu.

The Action behavior window is displayed.

2 For readability purposes, substitute the existing class name by: FilmTableBehavior

3 Click Validate.

Validating the default options in the action behavior creation window automatically creates
a Java class - FilmTableBehavior.java - which is displayed in the editor configured in the
preferences.

In this class, you will override the getRowColor(). This method is invoked by Application
Engine for specifying the color to be used when displaying a row in the table of the films.

4 To be able to use dates in Java, add the following instructions at the beginning of the file:

import java.util.Date;
import java.text.DateFormat;
import java.text.SimpleDateFormat;

5 To implement the change in a row color, place the following code in the Java file, instead
of the autogenerated method skeleton:

public String getRowColor(LySimpleTableController
tableController, LyObject object)
{

// Retrieve the film date
LyValue val = object.getFieldValue("film_date");
if ((val != null) && (val.getValue() != null))
{

Date filmDate = ((Date)val.getValue());

// Test if the film date is before 2001 and after 2000
DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Date limit1 = null, limit2 = null;
try

A p p l i c a t i o n C o m p o s e r Quick Start 28

{
limit1 = df.parse("2000-01-01");
limit2 = df.parse("2001-01-01");

}
catch (Exception e){e.printStackTrace();}

// Check the date to return adequate color
if (filmDate.compareTo(limit2) < 0 &&

filmDate.compareTo(limit1) >= 0)
return "yellow";

}
// Generic processing
return super.getRowColor(tableController, object);

}

6 Save the Java file.

7 Select the first node (node of the application) in the Class hierarchy.

8 Compile the Java file.

9 Restart the application using the viewer of your choice then check that the graphic
behavior specified for the table of films is applied when creating or modifying a film
released in 2000.

Fig 4.2 Action behavior: Highlighting certain films

29 Chapter 4 Step 3 (optional): Fine-tuning the application

C
ha

pt
er

 5

A p p l i c a t i o n C o m p o s e r Quick Start 30

5 Step 4 (optional): Connecting the
application to a MySQL database
So far the application has been used with flat files, i.e. the data has been saved in files stored
on your hard drive, separate from the application. However the data cannot be easily shared
with other people: So that it can be shared, the application’ data directory would need to be
copied across machines, at the expense of data consistency.

Using a database lets you maintain consistency across all client applications. You will now
create a database for the application, using MySQL.

In this tutorial we will assume that you have an operational MySQL database server. A
catalogue may exist in the database, although this is not required.

Application Composer requires the JDBC drivers of the databases to which it can connect. In
our example, we will need to get the JDBC connector for MySQL, which can be downloaded
at:
> http://dev.mysql.com/downloads/connector/j/

0 TO A DD TH E MYSQL DRIVER

1 Display the Java classes tab.

2 In the Libraries (Classpath) area, click Add an archive... to add a Java archive to the
libraries in use.

3 Select the Jar file of the MySQL connector.

http://dev.mysql.com/downloads/connector/j/

31 Chapter 5 Step 4 (optional): Connecting the application to a MySQL database

Fig 5.1 Adding the MySQL driver to the libraries (Java classpath)

4 Click Apply.

5 Select GenerateGenerate / Alter database.

The Generate / alter database window is displayed.

6 Specify the Database type field: mysql.

7 You will now create a database location. This is a configuration with all the details required
for a database connection.

7.1 Click Create RDBMS data next to the RDBMS location field.

The Create : DBMS data window is displayed.

7.2 Specify the identifier: videolibrary_db.

7.3 Specify the driver.

This is the entry Java class of the JDBC driver.

7.4 Specify the connection URL. This URL is dependent on the database and the JDBC
driver. Typically for MySQL, the URL is such as:
jdbc:mysql://[host]:[port]/[catalogue].

Fig 5.2 Creating the MySQL database

A p p l i c a t i o n C o m p o s e r Quick Start 32

7.5 If the catalogue specified at database creation does not exist yet, it will not be
possible to associate it to the specified user. Therefore it is necessary to specify the
identifier and password of the administrator user who will be in charge of creating
the new database along with the required tables. To be on the safe side, it can be a
good idea to require the overwriting of the previous entries in the database as well
as any previous links with other databases in Application Composer. This decision is
up to the user.

7.6 Click Validate.

8 Click Validate.

When the action has been validated, the database will be created and automatically used
by the application. Do not forget to create and assign a user with restricted permissions if
the database has been created by the administrator.

33 Chapter 5 Step 4 (optional): Connecting the application to a MySQL database

C
ha

pt
er

 6

A p p l i c a t i o n C o m p o s e r Quick Start 34

6 Where to go from here?
We have been developing a basic application for managing a personal videolibrary, which lets
you perform a variety of actions directly in a database, such as creating, editing and reviewing
objects, and also perform standard operations such as searching, sorting, filtering, printing,
etc. All this has been achieved by writing optional functional code: Performing a functional
control on the data (checking the film release date) and customizing the colors in a list
(highlighting the films released in 2000).

The first operational version, or prototype so to speak, uses just a few of the Application
Composer features. To achieve a real world application, you could connect the classes to
advanced data sources: LDAP directories, application servers, etc. and maybe add a JMS bus to
take advantage of real-time update.

You could also complement your model by adding new application classes (via UML import,
via XMI, or by peforming the discovery of an existing database), by adding new behaviors for
the data, and by adding more complex views (complex tables, map views, compound views,
Gantt diagrams, paginated tables, Excel import/export, PDF printing, etc).

Finally, you could customize your application according to the desired visual style guidelines,
images, colors, position constraints for the fields in the views, etc.

35 Chapter 6 Where to go from here?

Illu
st

ra
tio

ns

A p p l i c a t i o n C o m p o s e r Quick Start Tutorial 36

Application Composer right after startup 9

Creating the application 10

The Class hierarchy after the application creation 10

Creating a class 11

The Class hierarchy after the creation of the class category 11

Preview of the class in the Graphic builder 12

Using the Visual builder to add a field 12

Changing the marks for a field 13

Class hierarchy before the creation of the Film class 13

film creation form, in the ediitor and preview in the final application 14

Updating the properties for data persistence 16

Running the application in SWING (1/2) 16

Running the application in SWING (2/2) 17

Navigation tree 19

Creating a tree action within a compound action 20

First action of the compound action 21

Second action of the compound action 21

The Navigation tree after the creation of the compound view 22

Running the application in web mode 22

Your videolibrary application in web mode 23

Generating a behavior class 25

Action behavior: Highlighting certain films 28

Adding the MySQL driver to the libraries (Java classpath) 31

Creating the MySQL database 31

37 Illustrations

In
d

ex

A p p l i c a t i o n C o m p o s e r Quick Start Tutorial 38

A
Add an archive 30

Application Composer 7, 8

Application Engine 7

Application Suite 7

B
Behaviors 7

C
Change frequent marks 13

Class Hierarchy 8

Compile 26

Connect the application to a database 30

Create a class 10

Create a compound 19

Create RDBMS data 31

Create the application 8

D
Data model 7, 8

39 Index

G
Generate / Modify the database 31

Generate default GUI 18

J
Java behaviors 26

Java classes 30

JDK 16

L
LY_SAVE_FILES variable 15

M
Model-Driven 6

N
Navigation tree 18

O
Outline 14

P
Persistent data 15

Preferences 15

Process Composer 7

Process Engine 7

R
Run the application in fat client 15

Run the application in web mode 22

A p p l i c a t i o n C o m p o s e r Quick Start Tutorial 40

S
Save the application 10

Specific behaviors 24

SWING 16

SWING viewer 15

W
Web viewer 22

Window Action behavior 27

Window Class behavior 25

Window Create a class 10

Window Create a compound action 19

Window Generate / modify the database 31

Window New Application 9

41 Index

 w w w . w 4 . e u

Should you have any comment or suggestion related to this document, please contact

W4 Customer Support providing the document reference:

 Via the W4 SupportFlow case management tool on

 MyW4.com at http://support.myw4.com

 By email: support@w4.eu

 By telephone: +33 (0) 820 320 762

Reference: APPCOMPOSER_QUICKSTART_041_EN
QUICK START TUTORIAL

www.w4.eu
http://www.myw4.com/w4_support.aspx
http://www.myw4.com/w4_support.aspx

