
 For future updates of this document, visit our Product Documentation section on
 w w w . m y w 4 . c o m

Reference: APPCOMPOSER_USER_046_EN
USER GUIDE

http://www.myw4.com

Reference: APPCOMPOSER_USER_046_EN
USER GUIDE

© 2009-2011 W4. All rights reserved.

The possession of this document gives you a non-transferable, non-exclusive and personal right to use
it; no proprietary rights are transferred to you. You may use, copy, reproduce and distribute this
document provided:
1. That the above notice of copyright is mentioned on all copies and that this notice appears
 together with this authorisation,
2. That this document is used for informational purposes only and not for sale,
3. That this document is not modified in any way.

All product and brand names are the property of their respective owners.

The information in this document may be modified without prior notice.

C
on

te
nt

s

A p p l i c a t i o n C o m p o s e r User guide 4

First steps 10

Installing Application Composer 11

Starting Application Composer 11

Opening a preexisting application 11

Creating an application 12

Introducing the UI 13

Main tool bar 14

Class hierarchy 14

Navigation tree 15

Visual builder 16

Discovery 18

Java classes 18

Diagram 19

Other tabs 20

Preferences 21

Working with applications 24

Editing an application 25

Specifying an application behavior 27

Specifying a session behavior 28

Adding a specific main class 29

Adding a specific servlet class 30

Exporting an application 31

Importing an application 31

5 Contents

 XMI import 32

Generating application documentation 32

Managing applications 34

Managing application resources 35

Generating the final application 37

Generate database script 37

Generate / alter database 38

Generate Eclipse plugin 40

Running the final application 40

Working with projects 42

Creating a sub-project 42

Viewing details of a project or sub-project 43

Editing a project 44

Editing a sub-project 45

Creating filters for a project 46

Creating a simple project filter 47

Creating an extended project filter 48

Creating sort modes for a project 49

Setting comments for a project or sub-project 50

Saving a project 51

Working with application classes 52

Creating a class 53

Viewing details of a class 54

Creating a new view for a class 55

Editing a class 56

Removing a class 57

Specifying class extends 57

Sorting objects in a class 58

Specifying a cache policy for a class 58

Specifying help files for the class 59

A p p l i c a t i o n C o m p o s e r User guide 6

Adding specific marks for a class 60

Specifying application data 61

Generating the interface class 62

Specifying the class behavior 63

Setting physical binding for a class 64

Setting class controls 69

Setting class rules 70

Setting class labels 71

Setting class comments 74

Working with attributes 76

Creating a numeric attribute 80

Creating a text attribute 81

Creating a multiple choice attribute 82

Creating a time attribute 84

Creating a relation attribute 85

Creating a file attribute 87

Creating a table attribute 88

Creating a structure attribute 89

Creating a typed field attribute 90

Creating an attribute reference 91

Editing a numeric attribute 93

Editing a text attribute 93

Editing a multiple choice attribute 94

Editing a time attribute 95

Editing a relation attribute 96

Editing a file attribute 97

Editing a table attribute 98

Editing a structure attribute 99

Editing a typed field attribute 100

Editing an attribute reference 101

Setting the read-only control 101

Specifying allowed character sets 102

Encrypting a value 103

7 Contents

Adding a tooltip to a field 104

Setting physical binding for a relation attribute 104

Setting physical binding for a table attribute 111

Setting physical binding for other attribute types 113

Setting units 114

Converting an attribute type 119

Setting attribute marks 120

Adding specific marks to an attribute 124

Associating specific graphical components to an attribute 124

Adding specific data 126

Editing formatting constraints 127

Setting attribute controls 128

Setting attribute labels 129

Specifying a cache policy for an attribute 132

Setting attribute rules 133

Working with routes 136

Creating a route 137

Creating a reverse route 138

Creating a step 139

Working with actions 140

Creating a simple action 146

Creating a composite action 150

Creating a tab action 152

Creating a reference to an existing action 153

Creating child actions 154

Customizing the view for an action 155

Specifying apply conditions for the actions 156

Setting action marks 158

Specifying specific resources for an action 159

Setting specific parameters for an action 160

A p p l i c a t i o n C o m p o s e r User guide 8

Specifying an action behavior 161

Specifying an action builder 162

Specifying code for actions with no template 163

Managing Java classes and libraries 166

Java classes 166

Libraries 167

Managing data sources 170

Adding a data source 170

File location 171

RDBMS 172

LDAP 173

Generic data provider 174

Specifying an additional notification service 175

Working with Discovery 176

Specifying the drivers to be used 177

Discovering an SQL database 178

Discovering a Java file 179

Discovering a CSV file 181

Discovering a W4 model 183

Discovering an ECM system 184

Performing another discovery 184

Comparing structures 185

Cancelling the comparison 185

Updating the discovery 185

Exporting data to Application Composer 186

Viewing the columns compatible with the enumerate type 187

9 Contents

Importing a UML model 188

Supported versions and tools 189

Importing an XMI File 190

Transformation of the UML Model 192

Transformed UML Items 192

Overview of transformations 193

Most Frequent Errors 197

C
ha

pt
er

 1

A p p l i c a t i o n C o m p o s e r User guide 10

1 First steps
Application Composer is the graphical workshop for the creation of Application Engine
applications.

Application Composer reduces technical complexity and makes it easier and faster to design
Application Engine applications:

 Application Composer makes it possible to configure the applications with no previous
knowledge of XML.

 A keen knowledge of data description syntax is no longer required when starting to use
Application Engine.

 Application Composer provides multiple services, making development faster, such as
discovery, execution for different types of viewers, definition of resources, etc.

In this section, we will review the first steps when starting with Application Composer:
> 1.1 Installing Application Composer, page 11
> 1.2 Starting Application Composer, page 11
> 1.3 Opening a preexisting application, page 11
> 1.4 Creating an application, page 12

We will also introduce the user interface main components and review the preference options:
> 1.5 Introducing the UI, page 13
> 1.6 Preferences, page 21

11 Chapter 1 First steps

 1.1 Installing Application Composer

Windows

Start the installation wizard (file ApplicationComposer_X.X_Setup.exe in the
ApplicationComposer folder of the installation CD).

 1.2 Starting Application Composer

Windows

Double-click ApplicationComposer.exe in the Studio folder of your Application Composer setup
directory (default is C:\Program Files\W4 BUSINESS FIRST\ApplicationComposer\Studio).

[ALTERNATIVELY] You can use any Windows Start menu or desktop shortcuts, which you may
have created during setup.

[ALTERNATIVELY] From a DOS command prompt, navigate to the Studio folder of your
Application Composer setup directory and run application_composer.bat.

 1.3 Opening a preexisting application
0 TO OPEN A PREEXISTING APPLICATION

1 Select FileOpen.

The sub-menu that is displayed contains two sections: the top section lists the recent
applications, i.e. the applications you have already worked with using your copy of
Application Composer, while the Application... option can be used to open an application
that has never been edited with your copy of Application Composer.

2 To open a recent application, just select it in the sub-menu.

3 To open an application for the first time, select Application...

A p p l i c a t i o n C o m p o s e r User guide 12

The following window is displayed:

Fig 1.1 Opening an application

4 Browse to the appropriate application directory.

5 Click Validate.

 1.4 Creating an application
0 TO CREATE AN APPLICATION

1 Select FileNew.

The New : Application window is displayed:

Fig 1.2 Creating an application

2 Set the fields:

ID - The application’s Java identifier. This value will be the default package where the
application’s Java classes will be stored.

Title - The application’s name in the default language. This value will be displayed in the
generated application’s title bar.

Data folder - The target directory where your application files will be stored. The default
value for this field can be configured via the DEFAULT_APPLICATION_PATH resource in the
application_composer.ini file.

Default language - The application’s default language. Applications can handle multiple
languages.

For further information regarding language management:
> 2.11 Managing application resources, page 35

13 Chapter 1 First steps

3 Click Validate.

N OT E The icon flags context-sensitive help. To display the corresponding tip, hover over
the icon for a while. This icon is available in many of the Application Composer
windows.

 1.5 Introducing the UI
The user interface has permanent components such as the main tool bar and the class
hierarchy, and also a number of tabs, which can be displayed or hidden.

Fig 1.3 The user interface

For further information regarding the various user interface components:
> 1.5.1 Main tool bar, page 14
> 1.5.2 Class hierarchy, page 14
> 1.5.3 Navigation tree, page 15
> 1.5.4 Visual builder, page 16
> 1.5.5 Discovery, page 18
> 1.5.6 Java classes, page 18
> 1.5.7 Diagram, page 19
> 1.5.8 Other tabs, page 20

A p p l i c a t i o n C o m p o s e r User guide 14

 1.5.1 Main tool bar

The main tool bar is always available at the top of Application Composer's main window.

It includes the following items:

 Save
> 3.8 Saving a project, page 51
 Properties
> 2.1 Editing an application, page 25
 Documentation
> 2.9 Generating application documentation, page 32
 Generate
> 2.12 Generating the final application, page 37
 Console - To display the execution console

 Run
> 2.13 Running the final application, page 40
 Preferences
> 1.6 Preferences, page 21

 1.5.2 Class hierarchy

The Class hierarchy displays the current application as a tree view.

Fig 1.4 The class hierarchy

The root item is the application. The second and third levels are the project and the
application classes respectively.

In addition to application classes, a project may contain sub-projects, actions, fields, filters, and
sort definitions.

The class hierarchy tool bar has the following icons:

15 Chapter 1 First steps

 In the Edit area:
 Details - Opens the read-only form for the currently selected object.
> Reviewing application details, page 25
> 3.2 Viewing details of a project or sub-project, page 43
> 4.2 Viewing details of a class, page 54
 Create class - Creates an application class in the currently selected package or in the

parent package of the currently selected class.
> 4.1 Creating a class, page 53
 Modify - Opens the edit form for the currently selected object.
> 2.1 Editing an application, page 25
> 3.3 Editing a project, page 44
> 4.4 Editing a class, page 56
 Delete - Deletes the currently selected object.
> Removing an application, page 25
> 4.5 Removing a class, page 57

 In the Display area:
 Expand / Shrink tree : Displays or hides project items (sub-projects, classes, etc).
 Show / Hide inheritance hierarchy : If disabled, all classes are displayed at the

same level even though some classes extend some others.
 Show / Hide actions
 Show / Hide fields
 Show / Hide filters
 Show / Hide sorts

 1.5.3 Navigation tree

The Navigation tree displays a tree view of the actions that make up the application.

A p p l i c a t i o n C o m p o s e r User guide 16

Fig 1.5 The navigation tree

To display the navigation tree, select WindowsNavigation tree.

For further information regarding actions:
> 7 Working with actions, page 140

 1.5.4 Visual builder

The Visual builder is used to build and preview your application forms.

Using the visual builder you can drag and drop fields to the graphical representation of the
currently selected class.

17 Chapter 1 First steps

Fig 1.6 The visual builder

To display the visual builder, select WindowsVisual builder.

Form - To select the action for which you want to display a form preview.

Field - To select either a specific field in the form, or all the fields in the form.

To select more than one field, hold down the CTRL key then click in turn the appropriate fields
in the form preview.

create / createConsult / hidden / optional - To apply these marks to the selected field.

For futher information regarding marks:
> 5.30 Setting attribute marks, page 120

 Field settings - To display the edit form(s) for the selected field(s).

 Delete the field - To delete the selected field(s).

 Group - To organize the selected fields into a group.

 Tab - To organize the selected fields into a tab.

 Align left - To align the selected fields to the left.

 Center - To align the selected fields to the center.

 Align right - To align the selected fields to the right.

A p p l i c a t i o n C o m p o s e r User guide 18

 1.5.5 Discovery

Discovery is used to explore relational databases, Java files (Bean, EJB), CSV files, W4 procedure
models, or ECM systems, in order to extract their structure and implement their data as part of
an application.

Fig 1.7 Discovery

To display Discovery, select WindowsDiscovery.
> 10 Working with Discovery, page 176

 1.5.6 Java classes

The Java classes tab displays the Java classes (behaviors, builders) that have been defined for
an application class, for the currently selected project or application in the class hierarchy.

19 Chapter 1 First steps

Fig 1.8 The Java classes tab

To display this tab, select WindowsJava Classes.
> 8 Managing Java classes and libraries, page 166

 1.5.7 Diagram

The Diagram tab displays a UML representation of the currently selected logical class in the
class hierarchy.

Fig 1.9 The Diagram tab

A p p l i c a t i o n C o m p o s e r User guide 20

To display this tab, select WindowsDiagram.

 1.5.8 Other tabs

The following tabs can be displayed via the Windows menu:

 Classes - Displays all the Java classes in the application and allows you to manage the
CLASSPATH used for compilation.

> 8 Managing Java classes and libraries, page 166
 Attributes - Displays the available fields for the currently selected logical class, project, or

application.
> 5 Working with attributes, page 76
 Actions - Displays the available actions for the currently selected logical class, project, or

application.
> 7 Working with actions, page 140
 Routes - Displays the routes required to define the path used by the Application Engine

environment for cross-reference calculation.
> 6 Working with routes, page 136

The following resources tabs can also be displayed via the Windows menu:

 Strings

 Messages
 Files
 Images

 Colors
 Fonts
 Parameters

Resources are used by the generic code and potentially also by the application code when
generating the views. For example, resources define the strings such as action names or menu
names. They also define the fonts and the colors to be used when the Application Engine core
builds the views.
> 2.11 Managing application resources, page 35

21 Chapter 1 First steps

 1.6 Preferences
Preferences manage the general properties of both Application Composer, and the external
applications it uses.

Preference options fall into the following tabs:
> General, page 21
> Java, page 22
> Tomcat, page 22
> Model discovery, page 22
> Ant, page 23
> String generation, page 23
> Business First, page 23

General

Installation dir - The directory where Application Engine sources are located.

Internet browser - The access path to the web browser’s executable file. This path is used
when running an application in web mode.

Level - To select your preferred profile:

 Beginner - To build a basic application using flat files.

 Standard - To implement routes, Java behaviors, and specific data sources.

 Advanced - To implement specific views, structure attributes, user actions, advanced
class-related features (inheritance, rules, etc), advanced action-related features (specific
marks, etc), and advanced field-related features (units, etc).

 Expert - To implement advanced configuration features (XML import, dynamic labels, etc).

Use spaces instead of tabs

Number of spaces for one tab

Automatic calculation of IDs - To have Application Composer automatically specify the
identifiers for you when creating objects such as classes, attributes, options, actions, etc.
Default IDs are based upon the values specified in the Suffixes and Actions areas.

For instance, an attribute’s default ID is as follows:

<class><FIELD> (example: cityField)

where

 class stands for the name of the corresponding class

 FIELD is the value specified in the preferences’ General tab (Attributes field in the Suffixes
area)

Subsequent attributes in the class will be suffixed by an increment number:

A p p l i c a t i o n C o m p o s e r User guide 22

<class><FIELD>_<n> (example: cityField_1)

Java

Use an IDE - Specifies whether an IDE should be used. If so, specify its access path in the
Executable of the IDE field, and also its communication port.

JDK folder - The path to the JDK used by Application Engine to compile the Java classes.

Compiler - The compiler program’s command, when no IDE is used.

Editor - The access path to the editor’s executable file, when no IDE is used.

Copyright - The copyright to be specified when generating a Java class.

Tomcat

Ignore Xerces at deployment time - To specify whether Xerces will be ignored at
deployment time. To be used when there is a conflict between parsers.

URL - Full URL for running an application in web mode.

Override Tomcat configuration - Select this option if you want to make changes to either of
the Application folder, Executable folder, Start command or Stop command fields.

Tomcat folder - By default Application Composer uses the Tomcat instance embedded in the
Application Engine installation. Change as appropriate if you want to use another Tomcat
instance.

Application folder - The access path to the application server’s application directory.

Executable folder - The access path to the application server’s executable directory. This
directory is used to determine the start and stop commands.

Start command - Change as appropriate if you want to use a custom start command.

Stop command - Change as appropriate if you want to use a custom stop command.

Model discovery

Use a specific ECM model

Jar containing the ECM model

23 Chapter 1 First steps

Ant

Target for JAR generation

Target for WAR generation

Target for WAR update

Target for WebService WAR generation

Target for B1A directory tree generation

Target for B1A generation

String generation

Actions

Class

Attribute

Filter

Sort

Business First

Extension Bus application directory

C
ha

pt
er

 2

A p p l i c a t i o n C o m p o s e r User guide 24

2 Working with applications
Application creation has been covered in a previous section:
> 1.4 Creating an application, page 12

In this section we will cover the following topics:

 How to perform basic application-related actions:
> Reviewing application details, page 25
> Removing an application, page 25
> 2.1 Editing an application, page 25
 How to add a specific Java class for an application’s or a user session’s behavior:
> 2.2 Specifying an application behavior, page 27
> 2.3 Specifying a session behavior, page 28
 How to add a specific Main class to be used either at application startup (fat client), or by

the servlet container:
> 2.4 Adding a specific main class, page 29
> 2.5 Adding a specific servlet class, page 30
 How to use import and export features:
> 2.6 Exporting an application, page 31
> 2.7 Importing an application, page 31
> 2.8 XMI import, page 32
 How to generate application documentation:
> 2.9 Generating application documentation, page 32
 How to manage the applications and the resources they are using:
> 2.10 Managing applications, page 34
> 2.11 Managing application resources, page 35
 How to generate and run the final application:
> 2.12 Generating the final application, page 37
> 2.13 Running the final application, page 40

25 Chapter 2 Working with applications

Reviewing application details

The Details option in the class hierarchy displays the current application’s read-only form.

For further information regarding the fields in this application read-only form:
> 2.1 Editing an application, page 25

Removing an application

The Delete option in the class hierarchy removes the current application.

 2.1 Editing an application
The Modify option in the class hierarchy displays the current application’s edit form:

Fig 2.1 Editing an application, General tab

A p p l i c a t i o n C o m p o s e r User guide 26

Data folder

Languages available for this application - The languages supported by the application, in
addition to the default language. Apcation Composer manages one property file per
language.

Default language

Application behavior - [optional] The Java class that overloads the application’s global
behavior (LyApplicationBehavior).

For further information regarding application behaviors:
> 2.2 Specifying an application behavior, page 27

Session behavior - [optional] The Java class that overloads the user session’s behavior
(LySessionBehavior).

For further information regarding session behaviors:
> 2.3 Specifying a session behavior, page 28

Main Class - [fat client, optional] The Java class to be executed at application startup. Since
Application Composer has a default main class (leon.app.LyMain), this parameter is
optional.

Servlet Class - [thin client, optional] The Java class to be used as the main Servlet. Since
Application Composer has a default servlet class (leon.view.web.LyServlet), this
parameter is optional.

Root action - The action to be executed at application startup, as specified in the Navigation
tree.

Sources - Specifies whether the application is going to be linked to the Real Data source of
the application (i.e. the data source specified at application level), or to Local Data (i.e. flat
files managed by Application Composer).

N OT E When it is imported, an Application Engine application may use its own data source
(for example a RDBMS).

Execution console - Specifies whether the execution console should be displayed when
running an Application Composer application.

Trace level - [optional] Specifies what types of warning and error messages should be sent to
the standard output, or to a log file, if specified, when running an application.

27 Chapter 2 Working with applications

Fig 2.2 Editing an application, Environment tab

Environment variables - You can modify the environment in which the application will be
executed (initialization parameter).

Default skin

Web configuration file

Struts configuration file

Specific Ant build file

 2.2 Specifying an application behavior
Right-click the application in the class hierarchy then select Application behavior... from the
context menu to add a specific Java class for the application’s behavior
(LyApplicationBehavior).

Fig 2.3 Specifying an application behavior

A p p l i c a t i o n C o m p o s e r User guide 28

Existing JAVA file - To specify a preexisting Java file for the application behavior. The
appropriate file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the application behavior. The
appropriate class should be selected via the Class field.

New JAVA file - To have Application Composer create a new Java file for the behavior.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class package. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.behavior. The behavior directory is
created at the application’s root level.

Name of class - The class name, by default: IdentifierApplicationBehavior with the application
identifier’s first letter in uppercase.

Copyright - The class comment. By default, the value of the LY_DEFAULT_COPYRIGHT
resource set in the application_composer.ini file.

 2.3 Specifying a session behavior
Right-click the application in the class hierarchy then select Session behavior... from the
context menu to add a specific Java class for the user session’s behavior
(LySessionBehavior).

Fig 2.4 Specifying a session behavior

Existing JAVA file - To specify a preexisting Java file for the session behavior. The appropriate
file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the session behavior. The appropriate
file should be selected via the Class field.

New JAVA file - To have Application Composer create a new Java file for the behavior.

29 Chapter 2 Working with applications

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.behavior. The behavior directory is
created at the application’s root level.

Name of class - The class name, by default: IdentifierSessionBehavior with the session
identifier’s firt letter in uppercase.

Copyright - The class comment. By default, the value of the LY_DEFAULT_COPYRIGHT
resource set in the application_composer.ini file.

 2.4 Adding a specific main class
You use this feature when you want to use a specific main class at application startup (fat
client).

The default class is leon.app.LyMain.

Right-click the application in the class hierarchy then select Main specific class... from the
context menu.

Fig 2.5 Adding a specific main class

Existing JAVA file - To specify a preexisting Java file for the specific main class. The
appropriate file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the specific main class. The appropriate
class should be selected via the Class field.

New JAVA file - To have Application Composer create a new file for the specific main class.

Application Composer is going to generate the Java class in the application directory and
create the appropriate directories for the class package. When the file has been generated, the
class is opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.

A p p l i c a t i o n C o m p o s e r User guide 30

Name of class - The class name, by default: IdentifierMain with the application identifier’s first
letter in uppercase.

Copyright - The class comment. By default: The value of the LY_DEFAULT_COPYRIGHT
resource set in the application_composer.ini file.

 2.5 Adding a specific servlet class
You use this feature when you want to add a specific servlet class to be used by the servlet
container.

This class extends leon.view.web.LyServlet, which is the default value.

Right-click the application in the class hierarchy then select Servlet specific class... from the
context menu.

Fig 2.6 Adding a specific servlet class

Existing JAVA file - To specify a preexisting Java file for the specific servlet class. The
appropriate file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the specific servlet class. The
appropriate file should be selected via the Class field.

New JAVA file - To have Application Composer create a new file for the servlet class.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class package. When the file has been generated, it is
opened with the text editor specified in the preferences.

Package - The class package, by default: <application id>.

Name of class - The class name, by default: IdentifierServelt with the application identifier’s
first letter in uppercase.

Copyright - The class comment. By default: The value of the LY_DEFAULT_COPYRIGHT
resource set in the application_composer.ini file.

31 Chapter 2 Working with applications

 2.6 Exporting an application
This feature allows you to generate a standalone application, i.e. an application that does not
need Application Composer to be run.

Select FileExport application to perform this action.

Fig 2.7 Exporting an application

Folder - Select the target folder.

Compile model - Specifies whether the application configuration is stored as a non-compiled
XML format (by default: No) or as a compiled Java format.

An application that uses a compiled meta-model starts faster than an application that does
not. Compilation dispenses with the meta-model parsing and uses the memory structure of
this meta-model directly.

However, a compiled meta-model cannot be edited directly in the application, although the
XML parameters can be edited.

Configuration management will be used for applications whose meta-model is not compiled.

 2.7 Importing an application
This is the reverse operation of the export action: Application Composer loads an application
in its memory structure so that it can be edited via the graphical interface.

Select FileImport application to perform this action.

A p p l i c a t i o n C o m p o s e r User guide 32

Fig 2.8 Importing an application

Please select... - To specify the access path to the application’s .ini file.

A progress bar is displayed during the import process.

PLEASE NOTE To avoid losing string translations, images and Java classes, the project
identifier should be the same as that of the application.
If not, follow these steps to restore any missing items:
- In the imported application’s target directory, rename the property files by
changing the project identifier for that of the application.
- Proceed in a similar way to rename the class packages.

 2.8 XMI import
This feature allows you to import an UML model previously exported in the XMI format via an
UML modeling tool.

Select FileXML import to perform this action.

For further information:
> 11 Importing a UML model, page 188

 2.9 Generating application documentation
Via the Documentation menu in the main tool bar you can have Application Composer
automatically generate the application’s documentation.

33 Chapter 2 Working with applications

Documentation  Generate - To generate an automated documentation based on the
current application.

PLEASE NOTE You should have specified a JDK in the preferences before you start
generating documentation.

Documentation  See model - To display the reference documentation for the classes,
fields, and actions that make up your application.

Fig 2.9 Viewing the generated documentation (1/2)

Documentation  See specific views - To display the documentation for the application’s
specific views.

Fig 2.10 Viewing the generated documentation (2/2)

A p p l i c a t i o n C o m p o s e r User guide 34

DocumentationSee specific Java classes - To display the application’s Javadoc.

DocumentationGeneration form - To specify:

 A documentation type: Combines a format (PDF, HTML) and a target audience (developer
or end user). There are three default documentation types:
 Developer, HTML
 End user, HTML
 End user, PDF

You can create custom documentation types.
 The language for the generated documentation

 Whether the documentation should contain screenshots of the application views.

Documentation  See existing documentation - To display the list of the previously
generated documentation sets.

Documentation  Documentation components - To specify which documentation
components should be added relative to the documentation template.

Fig 2.11 Documentation components

For instance you can specify a link to a specific page, a placeholder for a screenshot, etc.

DocumentationGenerate WebService Javadoc

 2.10 Managing applications
You can display the list of all the available applications.

To display the Application management window, select FileApplication management.

35 Chapter 2 Working with applications

Fig 2.12 Managing the applications

In the Application management window, you can:

 Details - View the details of an application

 Modify - Edit an application

 Delete - Remove an application

PLEASE NOTE The Delete action removes the application from the disk. Make sure you make
a backup of the application, e.g. via the Export application feature, prior to
using this action.

 2.11 Managing application resources
A resource is an application’s execution parameter. It is used by the generic code and where
appropriate by the application code when generating the views.

Resources define the strings such as action names, menu names, etc. They also define the
fonts and the colors to be used when the Application Engine core builds the views.

The resources that can be managed are as follows:

 Strings

 User messages (warnings, errors, etc)

 Files used by the application

 Images

 Colors

 Fonts

 Parameters

A p p l i c a t i o n C o m p o s e r User guide 36

Select Windows  Strings / Messages / Files / Images / Colors / Fonts / Properties to
display the resources.

Certain resources are parameters that can lead to specific behaviors (for example, the fact that
you can select several lines in a list view).

Resources are a key / value pairs that can be modified centrally.

Application resources depend on the language used when the application starts. There are as
many resource definitions as supported languages. Application Engine resources are defined
by default in English, Spanish and French.

Fig 2.13 Mnaging application resources

For each supported language, the application-specific resources are listed in the upper area,
whereas the Application Engine generic resources are listed in the lower area.

N OT E The names of the default Application Engine resource keys start with LY_

To edit the value of an Application Engine generic resource, e.g. to change a message, a
translated string, a color, etc, you just need to create a specific resource with the same key
identifier.

37 Chapter 2 Working with applications

 2.12 Generating the final application
Via the Generate menu you can specify a target format for the application to be generated.

GenerateJAR file - Generates the application’s Java archive.

Generate  WAR - Application - Generates the war file for the application’s web
deployment.

GenerateWAR - Web Services - Generates the application as a web service.

GenerateDeploy application to Extension Bus - Generates the application’s Java archive
to the <ExtensionBus_Home>/<InstanceName>/applications folder.

N OT E When is deployment to W4 Extension Bus required?
Prior to generating an application in Application Composer you may need to deploy it
to W4 Extension Bus. This is required when your process includes business data that
need to be evaluated, e.g. when business data is used as part of link conditions or in
variable mapping.

GenerateGenerate database script - Generates a file with all the SQL queries required to
create the database tables and columns required by the application.
> 2.12.1 Generate database script, page 37

GenerateGenerate / alter database - Creates the application’s database tables.
> 2.12.2 Generate / alter database, page 38

Generate Generate Eclipse plugin - To generate an Application Engine application as an
Eclipse plugin.
> 2.12.3 Generate Eclipse plugin, page 40

 2.12.1 Generate database script

This feature generates a file with all the SQL queries required to create the database tables
and columns for the application.

Select GenerateGenerate database script to perform this action.

The SQL generator uses the configuration of the physical link that is defined for the classes
and attributes.
> 4.14 Setting physical binding for a class, page 64

A p p l i c a t i o n C o m p o s e r User guide 38

Fig 2.14 Generating the database script

SQL script directory - The target directory for the script.

Database - Select the appropriate database type. Selecting the right value ensures the
generated SQL queries are compatible with the database in use.

SQL location - Select the appropriate data provider.

To create a data provider, click New RDBMS data.

For further information regarding data provider creation:
> 9.1 Adding a data source, page 170

Add drop tables in script

Generate bindings

Generate foreign keys constraints

 2.12.2 Generate / alter database

This feature not only generates the database creation script but also creates the application’s
database tables.

Select GenerateGenerate / alter database to perform this action.

39 Chapter 2 Working with applications

Fig 2.15 Generating the database

Database type - Select the appropriate database type. Selecting the right value ensures the
generated SQL queries are compatible with the database in use.

SQL location - Select the appropriate location for the database.

A location specifies the required data for the connection such as driver, connection URL, login
and password, etc.

To create a location, click New RDBMS data.

For further information regarding location creation:
> 9.1 Adding a data source, page 170

Save script in - The target directory for the generated script. If empty, the script is not saved.

Admin identifier - Password - To override the administration login specified for the currently
selected location.

Binding generation to the location

 None - No binding is performed. Select this option if bindings have already been defined.
Please note: Unbound items are not added to the database.

 Keep and add - Binds the application classes and fields with no binding to the current
location. Preexisting bindings are preserved.

 Override - All application classes and fields will be bound to the current location.
Preexisting bindings are overwriten.

Database
 Alter script only

 Alter database - Creates only the new tables and preserves any preexisting tables.

 Override base - Removes preexisting database and recreates the database from scratch.

A p p l i c a t i o n C o m p o s e r User guide 40

PLEASE NOT E Should you select the Override base option, all your data, including any
manual changes (triggers, etc) will be overriden.

Generate foreign keys constaints

 2.12.3 Generate Eclipse plugin

Application Engine applications can be executed as Eclipse plugins.

Fig 2.16 Generating an application as an Eclipse plugin

Folder - Select the target location to which the plugin zip file will be generated.

 2.13 Running the final application
The Run menu in the main tool bar allows you to run the application using one of the
available viewers (depending on your Application Engine license, some viewers may be not
available).

Run  Display SWING - To run the application in fat client mode, based on the SWING
library.

RunDisplay Web - Runs the application in thin client mode.

RunDisplay Web (JAR update)

Run  Choose a skin - To select a skin from the standard skins shipped with Application
Composer. The available skins in the list are those included in the application’s classpath.

41 Chapter 2 Working with applications

Run  Suspend application - To stop the currently running application. This option is
disabled when no application is running. Please note: Any data that may have been created
while the application was running will not be lost.

RunRun Ant Build

N OT E The available options depend on which viewers are installed with Application Engine
(See your License terms).

C
ha

pt
er

 3

A p p l i c a t i o n C o m p o s e r User guide 42

3 Working with projects
The project is the second-level node in the class hierarchy, just after the application. It is
automatically created at the same time as the application and its name is the same as the
application ID.

Projects store application classes and/or sub-projects. An application includes one project and
may have multiple sub-projects.

Projects allow you to better organize data and have no impact on the application execution.

In this section we will cover the following topics:

 How to perform basic project-related actions:
> 3.1 Creating a sub-project, page 42
> 3.2 Viewing details of a project or sub-project, page 43
> 3.3 Editing a project, page 44
> 3.8 Saving a project, page 51
 How to create filters, sort criteria and comments for a project:
> 3.5 Creating filters for a project, page 46
> 3.6 Creating sort modes for a project, page 49
> 3.7 Setting comments for a project or sub-project, page 50

 3.1 Creating a sub-project
0 TO PERFORM TH IS STEP

1 Right-click the project or the relevant sub-project in the class hierarchy.

2 Select Create Sub-project... from the context menu.

43 Chapter 3 Working with projects

 The Create Sub-Project window is displayed:

Fig 3.1 Creating a sub-project

3 Set the fields:

ID - The sub-project identifier.

Release - [Optional] This field can be used to specify the sub-project version.

Name - The sub-project name.

4 Click Validate.

 3.2 Viewing details of a project or sub-project
0 TO PERFORM TH IS STEP

1 Right-click the project or the relevant sub-project in the class hierarchy.

2 Select Details from the context menu.

3 The Details : Project window is displayed:

Fig 3.2 Viewing the details of a project

Root action - The project’s root action is the first action that is invoked when the
application starts.

A p p l i c a t i o n C o m p o s e r User guide 44

For further information regarding root actions:
> Specifying the root action, page 145
Project models

 3.3 Editing a project
0 TO PERFORM TH IS STEP

1 Right-click the relevant project in the class hierarchy.

2 Select Modify... from the context menu.

The Modify : Project window is displayed:

Fig 3.3 Editing a project

3 The following fields can be edited:
 ID
 Release
 Root action
 Name
 Help

For further information regarding root actions:
> Specifying the root action, page 145

4 Add one or more data models to the project:

4.1 In the Modify : Project window, click New to the right of the Configuration area.

The New : Data model window is displayed:

45 Chapter 3 Working with projects

Fig 3.4 Adding a data model to the project

4.2 Set the following fields:

Version of the data models - [Optional] This field is used to manage compatibility
models.

File model - The XML file with the model declarations.

Type - Either a data model or another model type.

XML export schema for data

4.3 Repeat these steps to add as many data models as needed.

4.4 Click Validate.

5 Back in the Modify : Project window, click Validate.

 3.4 Editing a sub-project
0 TO PERFORM TH IS STEP

1 Right-click the relevant sub-project in the class hierarchy.

2 Select Modify... from the context menu.

3 The following fields can be edited:
 ID
 Release
 Name
 Help

4 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 46

 3.5 Creating filters for a project
You can create simple and extended filters for a project.

A simple filter is an expression made up of an attribute, a filter condition, a value, and
sometimes a modifier.

An extended filter is a set of expressions and/or relation filters and/or predefined criteria linked
together by AND/ OR operators, e.g. Reservation state = 'pending' AND Departure date >
03/04/2010.

For further information regarding modifiers:
> Modifiers, page 46

For further information regarding relation filters:
> Relation filters, page 46

For further information regarding predefined criteria:
> Predefined criteria, page 46

In this section:
> 3.5.1 Creating a simple project filter, page 47
> 3.5.2 Creating an extended project filter, page 48

Modifiers

Not - Specifies the opposite of the selected value.

For example, specifying:
[State] [Equals to] [Cancelled]
would match all the workcases with a state other than Cancelled.

Case sensitive - Specifies an exact case-sensitive match.

Relation filters

Predefined criteria

47 Chapter 3 Working with projects

 3.5.1 Creating a simple project filter
0 TO PERFORM TH IS STEP

1 Right-click the relevant project in the class hierarchy.

2 Select Project filters... from the context menu.

The Project : Filters window is displayed:

Fig 3.5 Creating filters for a project

3 Select the target class in the drop-down list.

4 Click Create a simple filter... in the Project filters area.

The Create a simple filter window is displayed:

Fig 3.6 Creating a simple filter

5 Set the fields:

ID

Attribute - Select the appropriate attribute.

Condition - Select the appropriate condition.
The options available in this drop-down list depend on the type of the selected attribute.

Value - Type / Select the appropriate value.
The Value field depends on the type of the selected attribute.

Modifiers - Where appropriate, select a modifier.

6 Click Validate.

7 Back in the Project Filters window, click Validate.

A p p l i c a t i o n C o m p o s e r User guide 48

 3.5.2 Creating an extended project filter
0 TO PERFORM TH IS STEP

1 Right-click the relevant project in the class hierarchy.

2 Select Project filters... from the context menu.

The Project : Filters window is displayed.

3 Select the target class in the drop-down list.

4 Click Create an extended filter... in the Project filters area.

The Create an extended filter window is displayed:

Fig 3.7 Creating an extended project filter

5 Set up the operator.

By default the AND filter is selected. Where appropriate, click Change type to switch to
the OR operator.

6 If your extended filter has more than one level, add as many AND or OR operators as
required by clicking Add AND operator... or Add OR operator... in the Build
toolbar.

7 Below the operator(s), either:
 Add an elementary filtering expression
 Create a new filter on the objects referenced by the relationship
 Create a filter criterion implemented by an external Java class. This class will manage

the filter and will need to implement the leon.info.LyFilterElement interface. The
id attribute allows you to identify the filter criterion in order to reference it.

8 Click Validate.

9 Back in the Project Filters window, click Validate.

49 Chapter 3 Working with projects

 3.6 Creating sort modes for a project
0 TO PERFORM TH IS STEP

1 Right-click the relevant project in the class hierarchy.

2 Select Project sorts... from the context menu.

The Project : Sorts window is displayed:

Fig 3.8 Creating sort criteria for a project (1/3)

3 Select the target class in the drop-down list.

4 Click New in the Project Sorts area.

The New : Sort window is displayed:

Fig 3.9 Creating sort criteria for a project (2/3)

5 In the Criteria area, click New to define a sort criterion.

The New : Sort criterion window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 50

Fig 3.10 Creating sort criteria for a project (3/3)

6 Set the fields:

Attribute - Select the target attribute.

Descending

Grouped

Sort Java class - [Optional] Specify the Java class used to perform the sort mode.

7 Click Validate.

8 Back in the New : Sort window click Validate.

 3.7 Setting comments for a project or sub-project
0 TO PERFORM TH IS STEP

1 Right-click the relevant project or sub-project in the class hierarchy.

2 Select Set comments... from the context menu.

The Set comments : Project window is displayed:

Fig 3.11 Setting comments for a project

3 Set the fields:

Start of comment

End of comment

51 Chapter 3 Working with projects

N OT E Comments are added to the application’s description XML file and also to the
generated documentation.

4 Click Validate.

 3.8 Saving a project
The Save button in the main tool bar saves the current project.

It is recommended that you save your work at regular intervals in order to avoid losing
information should Application Composer shut down unexpectedly, or should there be a
system failure.

When opening an application in Application Composer, the latest data is loaded. The
application’s previous version is still available in the save directory (.bak files).

When closing Application Composer, users are prompted to save the data.

C
ha

pt
er

 4

A p p l i c a t i o n C o m p o s e r User guide 52

4 Working with application classes
In this chapter we will cover the following class-related topics:

 How to perform basic class-related actions:
> 4.1 Creating a class, page 53
> 4.2 Viewing details of a class, page 54
> 4.3 Creating a new view for a class, page 55
> 4.4 Editing a class, page 56
> 4.5 Removing a class, page 57
 How to implement advanced class-related features:
> 4.6 Specifying class extends, page 57
> 4.7 Sorting objects in a class, page 58
> 4.8 Specifying a cache policy for a class, page 58
> 4.9 Specifying help files for the class, page 59
> 4.10 Adding specific marks for a class, page 60
> 4.11 Specifying application data, page 61
> 4.12 Generating the interface class, page 62
> 4.13 Specifying the class behavior, page 63
> 4.14 Setting physical binding for a class, page 64
> 4.15 Setting class controls, page 69
> 4.16 Setting class rules, page 70
> 4.17 Setting class labels, page 71
> 4.18 Setting class comments, page 74

53 Chapter 4 Working with application classes

 4.1 Creating a class
0 TO PERFORM TH IS STEP

1 Right-click the relevant project in the class hierarchy then select Create class from the
context menu.

[Alternatively] Right-click any class in the class hierarchy then select Create class from
the context menu.

The New : Class window is displayed:

Fig 4.1 Creating a new class

2 Set the fields:

Inheritance - The reference of the class the current class extends, i.e. its super-class. A class
inherits the fields and actions in its super-class.

Model - The reference of the class used as model to build the new class. This attribute
allows you to describe a new class by extending an existing class.

ID - The class identifier. It must be unique.

Name - The class name.

 Create a new string

 Choose a string

Short name - The class short name, used when limited space is available for displaying the
full name.

Abstract class - To specify whether the class is abstract. An abstract class cannot be
instantiated.

Virtual class - To specify whether the class is virtual. A virtual class is used to modify the
presentation of an existing class that is specified by the extends attribute, so that it can be
used in a particular action.

Image - The icon that represents the class.

Group - The group to which the class belongs.

A p p l i c a t i o n C o m p o s e r User guide 54

3 To create an attribute for the class:

3.1 Set the fields in the Attributes tab:

Type - Select the appropriate attribute type.

ID - Review the value and change if appropriate.

Name - Specify the attribute name.

 Create a new string

 Choose a string

id - name - optional - local - Set the marks as appropriate.

 Attribute shortcut - To create a reference to an existing attribute.

 Validate current changes - To validate the changes made to an attribute.

 Cancel current changes - To discard the changes made to an attribute.

 Move up - To move an attribute up in the list.

 Move down - To move an attribute down in the list.

3.2 Click New at the end of the row.

4 Click Validate.

For further information relating to marks:
> 5.30 Setting attribute marks, page 120

For further information relating to attributes:
> 5 Working with attributes, page 76

 4.2 Viewing details of a class
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy.

2 Select the Details option from the context menu.

The Details : Class window is displayed:

55 Chapter 4 Working with application classes

Fig 4.2 Viewing the details of a class

In this form you can:

 Set the default sort mode:
> 4.7 Sorting objects in a class, page 58
 Specify a cache policy:
> 4.8 Specifying a cache policy for a class, page 58
 Specify help files:
> 4.9 Specifying help files for the class, page 59
 Generate the class interface:
> 4.12 Generating the interface class, page 62
 Specify the class behavior:
> 4.13 Specifying the class behavior, page 63
 Set physical binding:
> 4.14 Setting physical binding for a class, page 64
 Set rules:
> 4.16 Setting class rules, page 70

For further information regarding the fields in this form:
> 4.1 Creating a class, page 53

 4.3 Creating a new view for a class
You can create an application class that is a sub-set of a class. There is a logical link between
both classes and data is not duplicated.

A p p l i c a t i o n C o m p o s e r User guide 56

The target class displays the same data as the original application class but within a different
view (form, tables, etc).

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Create a new view for this
class from the context menu.

The Create a new view for this class window is displayed.

2 Set the fields.

For further information regarding the fields in this form:
> 4.1 Creating a class, page 53

3 Click Validate.

The new view mays contain only a part of the fields, or it my have a different layout, filter, etc.

 4.4 Editing a class
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Modify from the context
menu.

The Modify : Class window is displayed:

Fig 4.3 Modifying a class

2 Set the fields.

User data - [Optional] Specifies data that is purely applicative.

57 Chapter 4 Working with application classes

For further information on the fields in this form:
> 4.1 Creating a class, page 53

3 Click Validate.

 4.5 Removing a class
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Delete from the context
menu.

N OT E You cannot delete a class that has dependencies.

 4.6 Specifying class extends
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Specify extends from the
context menu.

The Specify extends window is displayed:

Fig 4.4 Specifying class extends

2 Set the fields:

Inheritance - Specify the class that is the parent of the current class.

Model

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 58

 4.7 Sorting objects in a class
You can specify a default sort mode that is applied if no sort mode has been selected by the
user in the list views (tables).

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Default sort... from the
context menu.

The Default sort window is displayed:

Fig 4.5 Sorting objects in a class

2 Set the fields:

Attribute - Select the appropriate field for the sort criterion.

Descending - When the option is selected, the sort is performed in decreasing order,
otherwise in increasing order.

Grouped

Sort Java class - The full name of the Java class used to perform the sort (comparison
between two values). This class should implement the
leon.info.infointerface.LyComparatorInterface interface.

3 Click Validate.

 4.8 Specifying a cache policy for a class
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Cache management...
from the context menu.

The Cache management window is displayed:

59 Chapter 4 Working with application classes

Fig 4.6 Specifying a cache policy

2 Set the fields:

Type of cache
 All the objects are kept in memory (FullCache) - An object is loaded only if it is

unknown, and it is never unloaded. This cache is efficient provided data volume is not
too large.

 Only used objects are kept in memory (Auto cache) - Only the objects used by the
application code or displayed in the views are stored in the memory. When closing the
view or when releasing the object list, the data is released from memory.

 No object is kept in memory (No Cache) - The data provider is accessed whenever
necessary.

Specific cache policy - To specify a preexisting class for the cache. The appropriate class
should be selected via the Java class field. The class should extend the
leon.data.LyCache class.

Java class - The class name. Change as appropriate.

User data - This field can be used to configure a specific cache (number of managed
objects, refresh delay, name of local cache, etc).

Generic marks
 Local class - The class is not linked to the data provider (local means that this class does

not exist in the database). Therefore, the cache is always a full Cache. There is no call to
the physical link.

 Load at start time - Specifies whether data is loaded as soon as the application starts,
or the first time the user invokes it.

3 Click Validate.

 4.9 Specifying help files for the class
An icon such as is displayed next to the fields for which help files have been specified.
Clicking this icon displays the specified HTML document in the default Web browser.

A p p l i c a t i o n C o m p o s e r User guide 60

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Define help files... from
the context menu.

The Define help files window is displayed:

Fig 4.7 Specifying help files for the class

2 Set the fields:

Help file

3 Click Validate.

 4.10 Adding specific marks for a class
Specific marks are not used by the Application Engine code but can be used in the specific
Java code of the application.

0 TO CREA TE A SPECIFIC MARK

1 Right-click the relevant class in the class hierarchy then select Specific marks... from
the context menu.

The Specific marks window is displayed:

Fig 4.8 Specifying specific marks for the class

61 Chapter 4 Working with application classes

2 Type the name of the mark.

3 Click Add.

4 Click Validate.

0 TO APPLY A SPECIFIC MARK

1 Right-click the relevant class in the class hierarchy then select Specific marks... from
the context menu.

The Specific marks window is displayed.

2 Select the check box of the appropriate specific mark.

3 Click Validate.

 4.11 Specifying application data
You can have the class manage data intended for the specific application code.

Specific data is specified as key/value pairs and, just as with specific marks, using specific data
is up to application developers.

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Application data... from
the context menu.

The Application data window is displayed:

Fig 4.9 Specifying application data

2 Click New...

The New : Data window is displayed:

3 Set the fields:

Name - Name of the data item.

A p p l i c a t i o n C o m p o s e r User guide 62

Value - Value of the data item.

4 Click Validate.

5 Back in the Application data window, click Apply.

 4.12 Generating the interface class
You can generate an optional Java class to have fewer abstract accessors to the application
data.

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Interface class... from
the context menu.

The Interface class window is displayed:

Fig 4.10 Generating the class interface

2 Set the fields:

Existing Java file - To specify a preexisting existing Java class. The appropriate file should
be selected via the Existing implementation field.

New Java file - To have Application Composer create a new Java class.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. When the file has been generated, it
is opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.src. The src directory will be
created to the root of the application.

Name of class - The class name, by default: Identifier with the class identifier’s first letter in
uppercase.

Copyright - The class comment, with the value of the LY_DEFAULT_COPYRIGHT resource
set in the application_composer.ini file as the default value.

3 Click Validate.

63 Chapter 4 Working with application classes

 4.13 Specifying the class behavior
The class behavior is a Java class that extends leon.app.behavior.LyClassBehavior. In
this class you can specify specific behaviors for the various forms (create, edit, read-only, etc).

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Class behavior... from
the context menu.

The Class behavior window is displayed:

Fig 4.11 Specifying the class behavior

2 Set the fields:

Existing Java file - To specify a preexisting Java file. The appropriate file should be
selected via the Existing implementation field.

Existing Class file - To specify a preexisting class. The appropriate file should be selected
via the Class field.

New Java file - To have Application Composer create a new Java file.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. However you can change some
parameters before generation via the next fields. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.behavior. The behavior directory
will be created to the root of the application.

Name of class - The class name, by default: IdentifierClassBehavior, with the class identifier’s
first letter in uppercase.

Copyright - The class comment, with the value of the LY_DEFAULT_COPYRIGHT resource
set in the application_composer.ini file as the default value.

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 64

 4.14 Setting physical binding for a class
This section describes how to configure the link between the application class and the data
provider (RDBMS, LDAP active directory, etc).

N OT E The data provider must be previously configured for the application.

To configure the data provider:
> 9 Managing data sources, page 170

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Set physical binding...
from the context menu.

The Set physical binding window is displayed:

Fig 4.12 Modifying the link to the physical layer of the class

2 Select the appropriate binding type :
 Simple binding - The most common binding, to be used e.g. when the application class

is a database table.
 Union of physical classes - To be used e.g. when the application class is associated

with several database tables.
 LDAP connection - Link to an LDAP active directory.

3 The remaining steps are dependent upon the previously selected binding type.
 Simple binding

> Creating simple bindings, page 65
 Union of physical classes

> Creating union bindings, page 66
 LDAP connection

> Creating LDAP bindings, page 67

4 Click Validate.

65 Chapter 4 Working with application classes

Creating simple bindings

0 TO PERFORM TH IS STEP

1 Set the fields in the first screen of the simple binding wizard:

Fig 4.13 Modifying the link to the physical layer of the class, simple binding (1/2)

Physical class ID - Enter the identifier of the class in the physical layer. This value depends
on the data provider type (e.g. table in a relational database, etc).

Data provider - Select the previously created data source.

For a RDBMS, this is the name of the database table.

Filter - Select a filter to limit how much data is loaded.

Alternatively, you can create either a simple, or an extended filter.

2 Click Next.

The second screen of the simple binding wizard is displayed:

Fig 4.14 Modifying the link to the physical layer of the class, simple binding (2/2)

This screen lists the application class fields as a table, in which each row represents a class
attribute. The table columns are as follows:

3 Set the fields:

Attribute - The attribute identifier.

A p p l i c a t i o n C o m p o s e r User guide 66

Binding - The modifiable values correspond to the physical value of the field.

Default value - The default value, which can be changed, specified for the field.

PK - Specifies whether the attribute is the primary key or the unique identifier for its
physical representation, in the data provider.

L - To specify whether the attribute is local (i.e. if it does not have any physical
representation in a data provider).

C - To specify whether the field data should be loaded automatically (field is loaded upon
load request if the fields to be loaded are not specified).

Physical type - There are three options:
 Default
 BLOB
 CLOB

4 Click Validate.

Creating union bindings

Using bindings of physical classes allows you to join two application classes together. Each
class has its own physical link (simple or binding), which allows you to manage several data
providers.

0 TO PERFORM TH IS STEP

1 Set the fields in the first screen of the union binding wizard:

Fig 4.15 Modifying the link to the physical layer of the class, union of physical classes(1/2)

Data provider # 1, Data provider # 2 - To select the data providers. They are either a
simple binding, or a binding of physical classes.

Alternatively you can create either a simple binding, or a union binding.

Common attributes - Binding between classes is performed by specifying one or more
equivalent fields for both classes.

2 Click Next.

67 Chapter 4 Working with application classes

The second screen of the union binding wizard is displayed:

Fig 4.16 Modifying the link to the physical layer of the class, union of physical classes(2/2)

This screen lists the application class fields as a table, in which each row represents a class
attribute. The table columns are as follows:

3 Set the fields:

Attribute - The attribute identifier.

Binding - The modifiable values correspond to the physical value of the field.

Class binding - Name of the physical class to which the physical field belongs.

Default value - The default value, which can be changed, specified for the field.

PK - Specifies whether the attribute is the primary key or the unique identifier for its
physical representation, in the data provider.

L - To specify whether the attribute is local (i.e. if it does not have any physical
representation in a data provider).

C - To specify whether the field data should be loaded automatically (field is loaded upon
load request if the fields to be loaded are not specified).

4 Click Validate.

Creating LDAP bindings

This is a soecial case of simple binding to be used when the data source is an LDAP active
directory.

0 TO PERFORM TH IS STEP

1 Set the fields in the first screen of the LDAP binding wizard:

A p p l i c a t i o n C o m p o s e r User guide 68

Fig 4.17 Modifying the link to the physical layer of the class, LDAP connection

Physical class ID - The identifier of the class in the LDAP active directory.

Data provider - Select the appropriate LDAP active directory.

Alternatively you can specify a new LDAP directory.

Full distinguished name format - The full distinguished name for the class (without the
FDN of the base object declared in the connector).

Filter - [Optional] Select a filter.

Alternatively you can create either a simple filter, or an extended filter.

2 Click Next.

The second screen of the LDAP binding wizard is displayed.

3 Set the fields:

Attribute - The attribute identifier.

Binding - The modifiable values correspond to the physical value of the field.

PK - Specifies whether the attribute is the primary key or the unique identifier for its
physical representation, in the data provider.

L - To specify whether the attribute is local (i.e. if it does not have any physical
representation in a data provider).

C - To specify whether the field data should be loaded automatically (field is loaded upon
load request if the fields to be loaded are not specified).

4 Click Validate.

69 Chapter 4 Working with application classes

 4.15 Setting class controls
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Set controls... from the
context menu.

The Set controls window is displayed:

Fig 4.18 Modifying the controls for the class (1/4)

2 Click New.

The New : Control window is displayed:

Fig 4.19 Modifying the controls for the class (3/4)

3 Set the fields:

Existing JAVA file - To specify a preexisting Java file for the class control. The appropriate
file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the control. The appropriate class
should be selected via the Class field.

New JAVA file - To have Application Composer create a new file for the control.

Application Composer is going to generate the Java class in the application directory and
create the appropriate directories for the class package. When the file has been generated,
the class is opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.data. The data directory will be
created to the root of the application.

A p p l i c a t i o n C o m p o s e r User guide 70

Name of the class - The class name, by default: IdentifierFormControl with the class
identifier’s first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the studio_composer.ini file as the default value.

4 Click Validate.

5 Back in the Set controls window, click Validate.

 4.16 Setting class rules
0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Set rules... from the
context menu.

The Set rules window is displayed:

Fig 4.20 Setting class rules (1/2)

2 Click New.

The New : Rules window is displayed:

Fig 4.21 Setting class rules (2/2)

71 Chapter 4 Working with application classes

3 Set the fields:

Target attribute - Specifies the field to which the rule applies.

Role trigger

Priority - Priority level of the rules (relative to other rules).

Operation
 SET_ENABLED - Enables/disables the field and clears its value.
 SET_EDITABLE - Makes the field editable/not editable.
 SET_OPTIONAL - Makes the field optional/mandatory.
 CLEAR - Empties the field (no reverse rule).
 RESET - Returns the field to its original value (no reverse rule).
 SET_VALUE - Assigns to the field the value specified for the Value field (no reverse

rule).
 SHOW - Displays the field to the user, i.e. displays the tab in which the field is located

(no reverse rule).
 SET_VISIBLE - Displays/Hides the field.
 SET_LABEL - Assigns to the field the label that is specified for the Label field (no

reverse rule).

Value - The value to be specified with the SET_VALUE operation.

Label - The value to be specified with the SET_LABEL operation.

Filter - To set a filter for the control data.

Alternatively, you can create either a simple, or an extended filter.

4 Click Validate.

 4.17 Setting class labels
A dynamic label is a label calculated at runtime. It contains a value that is a String with both
fixed and variable parts, as well as parameters allowing, at runtime, to replace these variable
parts by data of dynamic nature that depends on the use context. This label can change when
the data to which it applies, is modified.

0 TO PERFORM TH IS STEP

1 Right-click the relevant class in the class hierarchy then select Set labels... from the
context menu.

The Set labels window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 72

Fig 4.22 Setting class labels (1/2)

2 Click New.

The New : Dynamic label window is displayed:

Fig 4.23 Setting class labels (2/2)

3 Set the fields:

Label value - The value of the label (or the corresponding entry in the dictionary). It should
contain variable parts such as {i}, as with standard management of Java messages. The
number of variable parts should match the number of access paths to be specified in the
lower part of the form.

ID - The ID’s visible name of the class instance. This label takes precedence over the
combination of fields with the id mark. This label should be defined only with fields with
the id mark.

73 Chapter 4 Working with application classes

NAME - The instance name of the class or the name of the fields. This label takes
precedence over the combination of fields with the name mark and also over the NAME
item.

GRAMMATICAL - The label displayed in the tooltips. This label takes precedence over the
tooltip item.

SEMANTIC - Roll-over label displayed over the help line to the bottom of the forms.

VALUE - Presentation label for the field value.

SHORT_VALUE - Short presentation label for the field value.

USER - Application label.

4 To create an access path to a field value:
> Access path to the field value, page 73

5 Click Validate.

Access path to the field value

0 TO PERFORM TH IS STEP

1 In the New : Dynamic label window, click New.

The New : Access path window is displayed:

Fig 4.24 Creating an access path

2 Set the fields:

ID - The access path identifier.

Source class of access path - Source class of the access path, for an absolute access path.

Target class of access path - Target class of the access path. If not specified the current
class will be used.

A p p l i c a t i o n C o m p o s e r User guide 74

Target class of field ID - Final item of the access path. If not specified, the access path is
equivalent to a route.

Displayed label for target field - Dynamic label to use for the target field.

3 To create steps for the access path:

3.1 Click New in the Path area.

The Add step window is displayed:

Fig 4.25 Creating a step

3.2 Set the fields:

To the target class - The target class of the step is the destination.

From the target class - The target class of the step is the origin.

Target class - Target class of the step.

Using relation - Relation field to link the source class to the target class.

3.3 Click Validate.

4 Back in the New : Access path window, click Validate.

 4.18 Setting class comments
0 TO PERFORM TH IS STEP

1 Right-click the relevant project or sub-project in the class hierarchy then select Set
comments... from the context menu.

The Set comments : Project window is displayed.

2 Set the fields:

Start of comment

End of comment

N OT E Comments are added to the application’s description XML file and also to the
generated documentation.

75 Chapter 4 Working with application classes

3 Click Validate.

C
ha

pt
er

 5

A p p l i c a t i o n C o m p o s e r User guide 76

5 Working with attributes
The Attributes area displays the attributes of the currently selected class or project in the Class
hierarchy.

In this section we will cover the following topics:

 General purpose topics:
> The Attributes tab, page 77
> Creating an attribute: Overview, page 78
> Editing an attribute: Overview, page 79
> Viewing attribute details, page 79

 How to create an attribute:
> 5.1 Creating a numeric attribute, page 80
> 5.2 Creating a text attribute, page 81
> 5.3 Creating a multiple choice attribute, page 82
> 5.4 Creating a time attribute, page 84
> 5.5 Creating a relation attribute, page 85
> 5.6 Creating a file attribute, page 87
> 5.7 Creating a table attribute, page 88
> 5.8 Creating a structure attribute, page 89
> 5.9 Creating a typed field attribute, page 90
> 5.10 Creating an attribute reference, page 91
> Creating an import attribute, page 92

 How to edit an attribute:
> 5.11 Editing a numeric attribute, page 93
> 5.12 Editing a text attribute, page 93
> 5.13 Editing a multiple choice attribute, page 94
> 5.14 Editing a time attribute, page 95
> 5.15 Editing a relation attribute, page 96
> 5.16 Editing a file attribute, page 97
> 5.17 Editing a table attribute, page 98
> 5.18 Editing a structure attribute, page 99
> 5.19 Editing a typed field attribute, page 100
> 5.20 Editing an attribute reference, page 101

77 Chapter 5 Working with attributes

 How to implement attribute-related advanced features:
> 5.21 Setting the read-only control, page 101
> 5.22 Specifying allowed character sets, page 102
> 5.23 Encrypting a value, page 103
> 5.24 Adding a tooltip to a field, page 104
> 5.25 Setting physical binding for a relation attribute, page 104
> 5.26 Setting physical binding for a table attribute, page 111
> 5.27 Setting physical binding for other attribute types, page 113
> 5.28 Setting units, page 114
> 5.29 Converting an attribute type, page 119
> 5.30 Setting attribute marks, page 120
> 5.31 Adding specific marks to an attribute, page 124
> 5.32 Associating specific graphical components to an attribute, page 124
> 5.33 Adding specific data, page 126
> 5.34 Editing formatting constraints, page 127
> 5.35 Setting attribute controls, page 128
> 5.36 Setting attribute labels, page 129
> 5.37 Specifying a cache policy for an attribute, page 132
> 5.38 Setting attribute rules, page 133

The Attributes tab

To display the Attributes tab, select WindowAttributes.

Fig 5.1 The Attributes tab

N OT E Attribute background colors:
 Yellow: Attribute reference
 Grey: The attribute extends the main class
 Purple: Imported attribute

Attributes can be specified at package level, typically so that they can be shared by several
classes. Since they are organized into packages, no class is given priority over other classes.

The # column is the field index in the application class. The attributes are sorted by default
according to this fields. However you can click the column headers to apply another sort

A p p l i c a t i o n C o m p o s e r User guide 78

mode. If the attributes are managed by a package, and not by an application class, this order
doesn’t make sense and the column is no longer displayed.

Creating an attribute: Overview

Attributes are created either from within the class create form, or via the Attributes tab.

0 TO CREA TE AN ATTRIBUTE VIA THE CLA SS CREATE FORM

1 In the Source attributes area of the class create form, select the appropriate attribute type in
the Type drop-down list.

2 Edit the ID, as appropriate.

3 Specify the name.

4 Click New at the end of the row.

0 TO CREA TE AN ATTRIBUTE VIA THE ATTRIBUTES TAB

1 In the Attributes tab toolbar, click the relevant icon:

 Numeric attribute

 Text attribute

 Multiple choice attribute

 Time attribute

 Relation attribute

 File attribute

 Table attribute

 Structure attribute

 Typed field attribute

 Attribute reference

 Import attribute

2 Set the fields in the attribute’s create form.

PLEASE NOTE When you create an attribute via the Attributes tab, make sure the appropriate
class or project is selected in the Class hierarchy.

The attribute’s create form varies depending on the type of the attribute to be created.
However, most of them share the following fields:

ID - The attribute’s unique identifier, used by the application code. It is never displayed to the
end user but is used to identify this attribute and its values in the application’s Java code.

79 Chapter 5 Working with attributes

Name - The name that is displayed in the application to identify this attribute in the various
application views (form, lists, etc).

Short name - [Optional] To use a shorter alternative to the name in the views where the
available space is limited. It can be used for example in a column instead of the name, and the
full name can be displayed as a tooltip when you hover over the column header for a while.

Tab - To include the attribute in a tab.

Group - To include the attribute in a group.

N OT E
 Create a new string
 Choose a string

Editing an attribute: Overview

Attributes are edited by making changes to their properties via their edit forms.

You can display an attribute’s edit form in several ways:

 Double-click the attribute in the Attributes tab.

 Click the field icon in the first column of the Attributes tab.

 Right-click the attribute in the Attributes tab then select Modify... from the context
menu.

 Select the attribute in the Attributes tab then click Modify... in the tool bar.

 Click Modify... in the attribute’s read-only form.

Viewing attribute details

You can display the read-only form of the currently selected attribute by clicking the
Details icon in the Attributes tab tool bar.

A number of actions are available in the attribute’s read-only form, depending on the attribute
type. The following actions however are shared by all the attributes:

 Modify... - Displays the current attribute’s edit form.

 Previous - Displays the previous attribute’s edit form.

 Next - Displays the next attribute’s edit form.

A p p l i c a t i o n C o m p o s e r User guide 80

 5.1 Creating a numeric attribute
The create form for a numeric attribute is as follows:

Fig 5.2 Creating a numeric attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Type - The type of the numeric value:

 Integer

 Short
 Long
 Float

 Double

Minimum - Maximum - To specify the allowed range of values.

Precision - To specify the precision used to compare two values for this number. If the
difference between the values is lower than the precision, the values are considered as being
equal.

No increment - Specifies the increment step to be used when the end user clicks the spin
buttons in the forms.

Number of decimals - To specify how many decimals are expected for real values (float /
double).

Default value - To specify a defaut value for fields with the not null mark.

Modulo - When this option is selected, any value outside the range between the Minimum
and Maximum values is increased or decreased to fall inside the range of values: the difference
between the maximum and the minimum value is subtracted from the input value while the
result does not fall within the range of values.

81 Chapter 5 Working with attributes

Formula - Specifies that the field value is obtained via a simple calculation formula based on
other fields’ values. The expected value is a mathematical formula with brackets containing
basic calculation operators (+, -, *, /) and numeric field identifiers.

Example:

 For VAT amount: netInvoice * 0.196 (where netInvoice is the invoice tax-free amount)

 For Tax inclusive amount: netInvoice + invoiceVAT (where invoiceVAT is the tax amount)

Functions - When data is displayed in a table, specify whether the sum or average should be
displayed at the bottom of the column.

Format - To specify the format for the displayed data. The syntax is specified in the
.text.NumberFormat Java class.

 5.2 Creating a text attribute
The create form for a text attribute is as follows:

Fig 5.3 Creating a text attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Multiple - To specify that the text field takes up several lines. When this option is not selected,
the field is single line.

Type

A p p l i c a t i o n C o m p o s e r User guide 82

Number of rows - To specify how many rows a multiple field should take up. This attribute is
optional. This property does not set a maximum for the characters that may be entered.

Number of columns - To specify how many columns a multiple field should take up. This
attribute is optional. This property does not set a maximum for the characters that may be
entered.

Minimum number of characters - Maximum number of characters - To set a minimum /
maximum for the characters that can be entered.

Default value - To set a default value for the fields in the form, or for optional attributes with
the notNull mark.

For further information regarding optional, not null marks:
> 5.30 Setting attribute marks, page 120

Format - To ensure that the value matches a particular format. There are two alternatives:

 Regular expressions - More efficient (although more complex to define).

 Application Engine format - A simple alternative for text formatting. The expected format
is a string made up of non editable areas and editable numeric parts. The numeric parts are
defined by an interval of integer values. They can be used to authorize only inputs of
numbers whose values fall within the interval corresponding to their position. In fat client,
the format is managed by a graphical component to ensure the input is correct. The
numeric values are included in square brackets [min - max] and the non modifiable text
inside the brackets is kept as is.

Formula

 5.3 Creating a multiple choice attribute
The create form for a multiple choice attribute is as follows:

83 Chapter 5 Working with attributes

Fig 5.4 Creating a multiple choice attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Type of choice - To change the representation mode and the type of the supported values.
Types are either Enumerate (a number of option buttons) or Boolean (two check boxes).

Multiple choice - To specify whether several options can be specified for the enumerate
value. If this option is selected, the field will be represented in the form of check boxes,
otherwise in the form of radio buttons.

Invert values (Boolean) - To switch between the true/false values.

Option sorting criteria - To display the options according to the specified order.

Number of columns - To specify the number of options displayed for each line of the form. If
this value is not specified, default formatting applies.

Mode

 Classical - To display the field as a series of check boxes.

 Dictionary - To display the field as a drop-down list in which the various options are
organized into subsections.

Contextual field - To filter the options for a field according to another enumerated attribute.

Options - Possible values for the enumeration.

Value - Storage value for the current option in the data source. This value is used by the
connector(s) but is never displayed to the end user.

V (Default value) - If selected, specifies that the current option is enabled by default. With a
multiple field, several options can be enabled by default.

A p p l i c a t i o n C o m p o s e r User guide 84

U (Option for the unknown values) - To specify that the current option is used to represent
all the unknown values. This avoids errors with obsolete or incorrect values when data is being
loaded.

I (Inactive) - If selected, specifies that the option cannot be selected by the end user. With this
mode, data is obtained from the data provider but the option is not available in edit mode.

T (Column in editable table) - With multiple choices, specifies whether the option is
displayed as a column or not in an editable table.

Rules can be added to the options via the Rules icon in the Options area tool bar.

Rules are triggered when selecting/deselecting the specified option or when a filter that did
not previously function now does, or else when a filter does not function anymore but
previously did.

For further information regarding rules:
> 4.16 Setting class rules, page 70

When several options are created, their order can be changed via the Move up and
Move down icons in the Options area tool bar.

Formula

 5.4 Creating a time attribute
The create form for a time attribute is as follows:

Fig 5.5 Creating a time attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

85 Chapter 5 Working with attributes

Type - To specify precision and content for the time attribute:

 Date and hours

 Date, hours and minutes
 Date
 Time

 Hours and minutes

Default current date - To specify that the field defaults to the current date.

Specific default date - To specify a default date other than the current date.

Display format - The syntax for the time attributes is the one specified by the
java.text.SimpleDateFormat class. The default format for English language is:
MM/dd/yyyy HH/mm/ss.

Formula

 5.5 Creating a relation attribute
The create form for a relation attribute is as follows:

Fig 5.6 Creating a relational attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

A p p l i c a t i o n C o m p o s e r User guide 86

Extended relation - Specifies the relation extended by the current relation. A relation can
only extend another relation that is specified in a parent class.

Type - Specifies the type of relation and how it will be displayed in the form. The type
determines on the one hand which graphical objects, and which values are suggested, and on
the other hand the dependencies between the object containing the relation and the target
object(s).

 Association (default type) - Specifies a simple relation between two classes. With an
association, no dependency is managed.

 Composition - With a composition, the taget object is included in the form of the source
object. Target objects are deleted if the object that points to them is deleted.

 Parent -

 Dependency -

Depending on the type of relation and whether or not the Multiple option is enabled, the
available graphical representations in edit mode are as follows:

 Simple association

 Multiple association

 Simple composition relation

 Multiple composition relation

Multiple - To make it possible to select several objects in the relation.

Target classes - Indicates in which class(es) the objects to which the relationship points
should be searched.

Default value - To specify an initial value in the forms or for the relations with the notNull
mark. You can specify an object identifier or a variable of $USER type specified for the session.

Minimum number of objects - Maximum number of objects - When the relation is multiple,
you cannot specify a minimum or a maximum number of objects that can be selected.

Number of rows - For a multiple relation, specifies the height of the object selection area.

Abstract relation - Specifies whether the relation is abstract or not. An abstract relation
cannot have a value and should be extended.

Ordered relation - Specifies whether their is a particular direction for the object selection and
whether it should be kept. Please note: With relational databases, it is usual to use join tables
that are not ordered and this option will only work if the data provider preserves the order of
the data.

Tool bar - To specify that no tool bar linked to the relation input field should be dipslayed in
create / edit forms.

Ignore context - To specify that the relation should ignore the context of the current form. By
default, when creating or modifying an application object, if a context is available for the view,
only the objects related to the view are available for the relation.

Contextual relation attribute - To specify that the context for this field is determined by the
value of another relation in the form.

87 Chapter 5 Working with attributes

Representation of the relation
 Default

[Simple association] A combo box
[Multiple association] Two list boxes with the available values, and the currently selected
values
[Simple composition] The form of the target data item is included in the form of the main
data item
[Multiple composition] A table

 As a table
[Simple relation] Not applicable
[Multiple relation] Same display as with a multiple composition relation

 As a link
[Simple relation] A link to the data item
[Multiple relation] A list of links

 As a form
[Simple relation] Same display as with a simple composition relation
[Multiple relation] Not applicable

Direction - To specify how the relation can be used to calculate contexts between the objects.
This parameter is used for the calculation of cross-references. By default all the relations are
used for a calculation in both directions. You can specify in which case the relation should be
considered.

 Both directions - Never ignored (default choice).

 None - Always ignored.

 Upward direction - Ignored for reverse calculations.

 Backward direction - Ignored for direct calculations.

Attribute indicating the class - To specify that the class to which the relation applies is
determined by the value of another field (an enumeration whose option names are the names
of the available application classes).

Formula

 5.6 Creating a file attribute
A file attribute specifies the access path to a file.

The create form for a file attribute is as follows:

A p p l i c a t i o n C o m p o s e r User guide 88

Fig 5.7 Creating a file attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Type - To specify the type of data that is pointed to by the file attribute:

 None (file with no type)
 Image (image file displayed in R/O views)
 URL (values considered as URLs)

 Directory (the value points to directory)

Height - To specify the height for the preview area in the forms when a preview is available.

Width - To specify the width for the preview area in the forms when a preview is available.

Default value - To specify a default file.

Folder - The root folder for file selection.

Authorized extensions - The allowed extensions for file selection (e.g: *.doc).

Formula

 5.7 Creating a table attribute
The create form for a table attribute is as follows:

89 Chapter 5 Working with attributes

Fig 5.8 Creating a table attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Formula

Field contained in the table - The field that makes up the table. You can have the table
contain several fields by selecting a structure attribute.

Minimum number of rows - Maximum number of rows - To specify the minimum/maximum
number of values required in the table.

Number of rows visible - To specify the number of rows to be displayed. This number does
not need to be equal to the previous values.

 5.8 Creating a structure attribute
A structure can be seen as a hidden composition relation to an internal class. In other words, it
can be used to organize several fields into one.

The create form for a structure attribute is as follows:

A p p l i c a t i o n C o m p o s e r User guide 90

Fig 5.9 Creating a structure attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Reference of the inherited structure - Parent structure.

Abstract structure - Specifies whether the structure is abstract. An abstract structure cannot
be instantiated.

Formula

Fields of the structure - List of the fields in the structure.

 5.9 Creating a typed field attribute
A typed field attribute allows you to define a field based on a model. The result is the same as
using the model attribute when defining each of the field types.

A typed field has the same type as the field referenced by the type attribute.

The create form for a typed field attribute is as follows:

91 Chapter 5 Working with attributes

Fig 5.10 Creating a typed field attribute

For a description of the properties shared by all the attribute types:
> Creating an attribute: Overview, page 78

Type of fields - The model for the typed field.

Real class type - This attribute is used only with relations and structures to specify the real
types of the supported relation classes or structures. Mainly used when extending abstract
classes or abstract structures in order to specify the concrete types.

Calculated typed field - A calculated field will be declared as local when generating the
default persistence model.

Reference unit of the typed field - To select the unit of the typed field from the type units.

Formula

 5.10 Creating an attribute reference
You can create a pointer to an existing attribute. As a result, the target attribute becomes a
shared attribute. No attribute is created.

Reference attributes are displayed on a yellow background in the Attributes tab.

The create form for an attribute reference is as follows:

A p p l i c a t i o n C o m p o s e r User guide 92

Fig 5.11 Creating a reference to an attribute

To create the reference, select the apropriate attribute then click Validate.

Creating an import attribute

An import attribute is a local attribute that is automatically calculated via a relation. It is
automatically updated by Application Engine.

The create form for an import attribute is as follows:

Fig 5.12 Creating an import attribute

ID - The attribute identifier.

Source relation - The relation that points to the classes containing the field to be imported.

Target class - The class targeted by the relation and containing the field to be imported.

Target attribute - The identifier of the field to be imported into the class(es) targeted by the
relation.

Filter on target class
> 3.5 Creating filters for a project, page 46

93 Chapter 5 Working with attributes

 5.11 Editing a numeric attribute
The edit form for a numeric attribute is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.1 Creating a numeric attribute, page 80

Available actions from within the edit form

 Details - To display the attribute’s read-only form:
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Set number unit - To specify one or more units for the attribute.
> 5.28 Setting units, page 114

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.12 Editing a text attribute
The edit form of a text attribute is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.2 Creating a text attribute, page 81

A p p l i c a t i o n C o m p o s e r User guide 94

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Set text unit - To set one or more units for the attribute.
> 5.28 Setting units, page 114

 Define allowed characters - To set restrictions on which characters are allowed for the
attribute.
> 5.22 Specifying allowed character sets, page 102

 Encryption Java class - To encrypt the attribute value.
> 5.23 Encrypting a value, page 103

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.13 Editing a multiple choice attribute
The edit form of an enumeration attribute is similar to the creation form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.3 Creating a multiple choice attribute, page 82

95 Chapter 5 Working with attributes

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.14 Editing a time attribute
The edit form of a time attribute is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.4 Creating a time attribute, page 84

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

A p p l i c a t i o n C o m p o s e r User guide 96

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Set date unit - To set one or more units for the attribute.
> 5.28 Setting units, page 114

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.15 Editing a relation attribute
The edit form of a relation attribute is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.5 Creating a relation attribute, page 85

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.25 Setting physical binding for a relation attribute, page 104

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

97 Chapter 5 Working with attributes

 5.16 Editing a file attribute
The edit form of a file is similar to that of the create form.

Fig 5.13 Modifying a file attribute

For information on how to display this form:
> Editing an attribute: Overview, page 79

The fields that are specific to the edit form are as follows:

Loading manager - The full name of a Java class in charge of managing attachments.

In thin client, the attached file can be stored on the server. If the value is not specified, the
sending of attachments is disabled. You can set the field to default to specify the default
manager (i.e. leon.view.web.LyFileAttachmentHandler). Alternatively you specify a
specific manager.

Loading folder - The directory used to store the files on the server side.

Name of the Java attribute - The name of the corresponding Java field, when using interface
class generation.

 Generate - To automatically set the Name of the Java attribute field. The field identifier
is used by default.

For further information regarding the other fields in the form:
> 5.6 Creating a file attribute, page 87

A p p l i c a t i o n C o m p o s e r User guide 98

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.17 Editing a table attribute
The edit form of a table is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

The fields that are specific to the edit form are as follows:

Name of the Java attribute - Name of the corresponding Java field, when using interface
classes generation.

 Generate - To automatically set the Name of the Java attribute field. The field identifier
is used by default.

For further information regarding the other fields in the form:
> 5.7 Creating a table attribute, page 88

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

99 Chapter 5 Working with attributes

 Tooltip - To set a tooltip for the attribute.
> 5.26 Setting physical binding for a table attribute, page 111

 Set physical binding - To set physical binding for the attribute.
> 5.26 Setting physical binding for a table attribute, page 111

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.18 Editing a structure attribute
A structure attribute’s edit form is similar to the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.8 Creating a structure attribute, page 89

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set labels - To set one or more dynamic labels for the attribute.
> 5.36 Setting attribute labels, page 129

A p p l i c a t i o n C o m p o s e r User guide 100

 Cache management - To set a cache policy for the attribute.
> 5.37 Specifying a cache policy for an attribute, page 132

 Set structure unit - To set one or more units for the attribute.
> 5.28 Setting units, page 114

 Set structure rules - To set one or more rules for the attribute.
> 5.38 Setting attribute rules, page 133

 Class behavior -
> 4.13 Specifying the class behavior, page 63

 Interface class / Static identifier -

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.19 Editing a typed field attribute
The edit form of a typed field attribute is similar to that of the create form.

For information on how to display this form:
> Editing an attribute: Overview, page 79

For further information regarding the fields in the form:
> 5.9 Creating a typed field attribute, page 90

Available actions from within the edit form

 Details - To display the attribute’s read-only form.
> Viewing attribute details, page 79

 Tooltip - To set a tooltip for the attribute.
> 5.24 Adding a tooltip to a field, page 104

 Set physical binding - To set physical binding for the attribute.
> 5.27 Setting physical binding for other attribute types, page 113

 Set controls - To set one or more controls for the attribute.
> 5.35 Setting attribute controls, page 128

 Set number unit - To set one or more units for the attribute.
> 5.28 Setting units, page 114

101 Chapter 5 Working with attributes

 Previous - To display the previous attribute’s edit form.

 Next - To display the next attribute’s edit form.

 5.20 Editing an attribute reference
The edit form of a reference attribute is similar to that of the create form.

For further information regarding the fields in the form:
> 5.10 Creating an attribute reference, page 91

 5.21 Setting the read-only control
The Set R/O control icon in the attribute modification form tool bar allows you to define
the write protection level.

A field with a read-only control cannot be modified.

Write protection - Determines additional parameters for the protection. If the field is not
specified, the priority level of the control will be empty and the type will be ALL.

Priority of the Control - Priority level of the control.

Type of the control - There are two types of control.

 ALL - The field cannot be modified, whatever the origin of the modification may be.

 USER - The field cannot be modified by the user (through the MMI or by code when
processing is started). However, this field can be modified externally that is, when receiving
a message.

A p p l i c a t i o n C o m p o s e r User guide 102

 5.22 Specifying allowed character sets
You can set restrictions on which characters are allowed in the fields. In fat client mode,
unauthorized characters cannot be entered while in thin client mode they are rejected when
the value is controlled.

If the text field has more than one character set, the character entered should be allowed by
at least one of them.

0 TO PERFORM TH IS STEP

1 Click Define allowed characters... in the edit form toolbar.

The Define allowed characters window is displayed:

Fig 5.14 Modifying the allowed character set (1/2)

2 Click New to create a character set.

The New : Authorized fonts window is displayed:

Fig 5.15 Modifying the allowed character set (2/2)

3 Set the field:

Authorized character values - A regular expression that specifies the allowed characters.

4 Click Validate.

5 Back in the Define allowed characters window, create as many character sets as required.

Use the icons to decide which available character sets should be allowed:

 - To select a character set

 - To select all the character sets

 - To unselect a character set

 - To unselect all the character sets

6 Click Validate.

103 Chapter 5 Working with attributes

 5.23 Encrypting a value
The value users enter in a text field can be encrypted.

0 TO PERFORM TH IS STEP

1 Click Encryption Java class... in the edit form toolbar.

The Encryption Java class window is displayed:

Fig 5.16 Associating an encryption to a text

2 Set the fields:

Existing JAVA file - To specify a preexisting Java file for encryption. The appropriate file
should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for encryption. The appropriate file
should be selected via the Class field.

New JAVA file - To have Application Composer create a new Java file for encryption.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. However you can change some
parameters before generation via the next fields. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.security. The security directory
will be created to the root of the application.

Name of the class - The class name, by default: IdentifierEncoder with the application
identifier’s first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the application_composer.ini file as the default value.

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 104

 5.24 Adding a tooltip to a field
Tooltips can be added to the fields. Tooltips are displayed when you hover over a field’s help
icon for a while.

0 TO PERFORM TH IS STEP

1 Click Tooltips... in the edit form tool bar.

The Tooltips window is displayed:

Fig 5.17 Adding a tooltip to a field

2 Set the fields:

Tooltip - The character string to be displayed when hovering over the field’s help icon.

 Create a new string

 Choose a string

3 Click Validate.

 5.25 Setting physical binding for a relation attribute
0 TO PERFORM TH IS STEP

1 Click Set physical binding... in the edit form tool bar.

The Set physical binding window is displayed:

105 Chapter 5 Working with attributes

Fig 5.18 Setting the physical link for a relation

2 In the Data binding mode area, select the appropriate data binding mode in the Definition
of data access drop-down list.

Direct binding - The field is directly linked to a physical field (e.g. a column in a database
table).

Calculation by access path - To reference the value of a target object field from a source
object through steps defined by relationships.

Calculation by daemon - Daemons are Java objects that allow you to be notified when
events concerning logical objects are triggered. There are three types of daemon.
 Invert relation daemon - To represent the reverse simple relation by a direct multiple

relation.
 Joint daemon - To manage a relation via a join.
 Calculation by route - To represent a direct relation (multiple or not) via several direct

relations. A route is specified to access the physical field.

3 The subsequent actions to be performed depend on what option has been selected in the
Definition of data access drop-down list.

3.1 Direct binding - In the Bindings area, select the appropriate binding in the Physical
binding drop-down list.

Alternatively click Select by name next to the drop-down list to select the
appropriate binding via an autocomplete text field.

You can also create new bindings:
 Simple attribute binding
> Creating simple attribute bindings, page 106
 Multiple attribute binding
> Creating multiple attribute bindings, page 107
 LDAP directory attribute binding
> Creating LDAP directory attribute bindings, page 107
3.2 Calculation by access path - In the Computation area, select the appropriate access

path in the Compute thru access path drop-down list.

Alternatively, you can create new access paths:
> Creating access paths, page 131
3.3 Calculation by daemon

 Reverse relation daemon
> Creating reverse relation daemons, page 108

A p p l i c a t i o n C o m p o s e r User guide 106

 Joint relation daemon
> Creating join relation daemons, page 108

 Route daemon
> Creating route daemons, page 109

4 Click Validate.

Creating simple attribute bindings

0 TO PERFORM TH IS STEP

1 In the Bindings area of the Set physical binding window, click next to the icon.

2 Click New : Simple attribute binding.

The New : Simple attribute binding window is displayed:

Fig 5.19 Creating simple attribute bindings

3 Set the fields:

Binding - The identifier of the physical field.

Class binding - The identifier of the physical class.
> 4.14 Setting physical binding for a class, page 64
Default value - The default value, which can be the value inserted in the database.

Primary key - Specifies whether the field has a primary key in the physical layer or not.

Java class for type - The full name of the Java class that specifies the type to be used for
the field’s physical values.

Java class for encoding - The full name of the Java class to be used for the
encoding/decoding of the field’s physical values.

Physical (peer) type (RDBMS only) - [Relational databases] Specifies whether data is
stored as binary or character large objects. Use Default if database tables are not created
using BLOB or CLOB. Only applies to text or file logical fields.

4 Click Validate to go back to the Set physical binding window.

107 Chapter 5 Working with attributes

Creating multiple attribute bindings

When using a relational database, the identifier of a table (the key) is often made up of several
fields. If so, several foreign keys are imported so that records can refer one another.

0 TO PERFORM TH IS STEP

1 In the Bindings area of the Set physical binding window, click next to the icon.

2 Click New : Multiple attribute binding.

The New : Multiple attribute binding window is displayed:

Fig 5.20 Creating multiple attribute bindings

3 Create as many simple bindings as required.
> Creating simple attribute bindings, page 106

4 Click Validate to go back to the Set physical binding window.

Creating LDAP directory attribute bindings

0 TO PERFORM TH IS STEP

1 In the Bindings area of the Set physical binding window, click next to the icon.

2 Click New : LDAP attribute binding.

The New : LDAP attribute binding window is displayed:

Fig 5.21 Creating LDAP directory attribute bindings

3 Set the fields:

Binding

A p p l i c a t i o n C o m p o s e r User guide 108

Parent

4 Click Validate to go back to the Set physical binding window.

Creating reverse relation daemons

This action is only available with reverse relation daemons. It creates a reverse relation
daemon from the Source relation.

0 TO PERFORM TH IS STEP

1 In the Set physical binding window, click Add a reverse relation daemon.

The New : Inverted daemon window is displayed:

Fig 5.22 Creating reverse relation daemons

2 Set the fields:

Source relation

3 Click Validate to go back to the Set physical binding window.

The value that has been set for the source relation is displayed in the Compute thru
access path field.

Creating join relation daemons

0 TO PERFORM TH IS STEP

1 In the Set physical binding window, click Add a joint relation daemon.

The New : Joint daemon window is displayed:

109 Chapter 5 Working with attributes

Fig 5.23 Creating join relation daemons (1/2)

2 Set the fields:

Logical - To specify a logical join class.

Physical - To specify a join database table.

Joint class - Logical join table.

Source relation - Relation of the logical join class used as source for the join.

Target relation - Relation of the logical join class used as target for the join.

Fig 5.24 Creating join relation daemons (2/2)

Joint table physical binding

Binding on physical keys of the 1st class to join

Binding on physical keys of the 2nd class to join

3 Click Validate to go back to the Set physical binding window.

Creating route daemons

0 TO PERFORM TH IS STEP

1 In the Set physical binding window, click Add a route daemon.

The Add a route daemon window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 110

Fig 5.25 Creating route daemons (1/2)

2 Create as many routes and reverse routes as required.

2.1 Click next to the icon.

2.2 Choose to create either a route, or a reverse route.

The route creation window is displayed:

Fig 5.26 Creating route daemons (2/2)

2.3 Set the fields:

ID - Application Composer automatically sets the identifier as follows:
routeFrom<name of source class>To<name of target class>. Change as appropriate

Target class - To select the target class.

Hidden route - To specify whether the route should be hidden, i.e. the route should
not used for cross-reference calculation. Hidden routes are specified in the data
model. They are used via programming only.

2.4 Click Validate to go back to the Add a route daemon window.

2.5 Repeat the steps above to create as many routes as required.

3 Close the Add a route daemon window to go back to the Set physical binding window.

The routes that have been created are displayed in the Computation area, in the
Calculation by route field.

111 Chapter 5 Working with attributes

 5.26 Setting physical binding for a table attribute
0 TO PERFORM TH IS STEP

1 Click Set physical binding... in the edit form tool bar.

The Set physical binding window is displayed:

Fig 5.27 Setting the physical binding of a table attribute

2 Select the appropriate data binding mode in the Type of binding field:

Physical binding

Daemon binding

Calculation by access path

3 The subsequent actions to be performed depend on what option has been selected in the
Type of binding field.

3.1 Physical binding - In the Bindings area, select the appropriate binding in the
Physical binding drop-down list.

Alternatively click Select by name next to the drop-down list to select the
appropriate binding via an autocomplete text field.

You can also create new bindings:
 Simple attribute binding
> Creating simple attribute bindings, page 106
 LDAP directory attribute binding
> Creating LDAP directory attribute bindings, page 107
3.2 Daemon binding - In the Table daemon area, select the appropriate daemon in the

Table daemon drop-down list.

Alternatively you can create new daemons:
> Creating table daemons, page 112
3.3 Calculation by access path - In the Computation area, select the appropriate access

path in the Compute thru access path drop-down list.

Alternatively, you can create new access paths:
> Creating access paths, page 131

4 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 112

Creating table daemons

0 TO PERFORM TH IS STEP

1 In the Table daemon area of the Set physical binding window, click New.

The New : Array daemon window is displayed:

Fig 5.28 Creating table daemons

2 You can set the fields in the Field bindings area by:
 Selecting the appropriate value from the drop-down list
 Clicking Select by name next to the drop-down list to select the appropriate value

via an autocomplete text field.
 Creating simple attribute bindings:
> Creating simple attribute bindings, page 106
 Creating multiple attribute bindings (for the Foreign key field only):
> Creating multiple attribute bindings, page 107
Class binding that contains the array values - The name of the table containing the
values of the table field.

Foreign key - The foreign key allowing the identification of the original object that
contains the table field.

Value - The name of the physical field containing the value.

Index - The name of the physical field containing the index of the value in the table.

Primary key - By default, the key is made up of the foreign key and the index of the value
in the table.

3 Click Validate to go back to the Set physical binding window.

113 Chapter 5 Working with attributes

 5.27 Setting physical binding for other attribute
types

0 TO PERFORM TH IS STEP

1 Click Set physical binding... in the edit form tool bar.

The Set physical binding window is displayed:

Fig 5.29 Setting the physical binding for other attribute types

2 Select the appropriate data binding mode in the Definition of data access field:

Direct binding

Calculation by access path

3 The subsequent actions to be performed depend on what option has been selected in the
Definition of data access field.

3.1 Direct binding - In the Bindings area, select the appropriate binding in the Physical
binding drop-down list.

Alternatively click Select by name next to the drop-down list to select the
appropriate binding via an autocomplete text field.

You can also create new bindings:
 Simple attribute binding
> Creating simple attribute bindings, page 106
 LDAP directory attribute binding
> Creating LDAP directory attribute bindings, page 107
3.2 Calculation by access path - In the Computation area, select the appropriate access

path in the Compute thru access path drop-down list.

Alternatively, you can create new access paths:
> Creating access paths, page 131

4 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 114

 5.28 Setting units
You can specify units for the date field, number, text and structure attributes.

0 TO PERFORM TH IS STEP

1 Click Set [...] Unit... in the edit form tool bar.

The Set [...] unit window is displayed:

Fig 5.30 Setting units

2 Select the appropriate option in the Unit type field.

3 The subsequent actions to be performed depend on what option has been selected in the
Unit type field.

3.1 Simple unit

Unit - To select an existing unit.

Alternatively click New to create a new unit.
> Creating simple units, page 115

You can also click Modify to edit the currently selected unit.

3.2 Unit list

List of units - To select an existing unit list.

Alternatively click New to create a new unit list.
> Creating simple units, page 115

You can also click Modify to edit the currently selected unit list.

Unit - To select an existing unit unit.

Alternatively click New to create a new unit.
> Creating simple units, page 115

You can also click Modify to edit the currently selected unit.

4 Click Validate.

115 Chapter 5 Working with attributes

Creating simple units

0 TO PERFORM TH IS STEP

1 In the Set [...] unit window, click New next to the Unit field.

The New : Unit attribute window is displayed:

Fig 5.31 Creating simple units (1/3)

2 Set the fields:

Identifier - The unit identifier.

Name - The visible name.

Short name - The alternative name to be used when graphical components have limited
available space.

Name of the Java class for the conversions - The full name of the Java class in charge of
converting the unit into the reference unit and vice-versa. This class takes precedence over
the class specified in the unit list. It must implement the
leon.info.infointerface.LyConverterInterface interface.

Multiplying factor for the numerical conversions - When there is no conversion class,
conversion for the numeric fields is performed automatically as soon as the desired unit is
selected.

Shift used for the numerical conversions - The value that is added (or subtracted, if the
value is negative) to convert the original value.

Example: To convert a value in degrees Fahrenheit into one in degrees Centigrade, the
multiplying factor is 0,55555 and the shift is -32

Unit used for the printing - Possible values are Yes, No or No selection. By default, the
reference unit is used, otherwise, the first unit in the unit list with this property is used.

Unit format - Select t he format that the entered value should match. A format can be
associated either with a field of type text, date, or number, or with a unit.

Alternatively, you can create a new format.
> Creating formats, page 116

3 Click Validate.

The following message is displayed:

A p p l i c a t i o n C o m p o s e r User guide 116

Fig 5.32 Creating simple units (2/3)

Clicking Yes displays the creation form for the conversion class:

Fig 5.33 Creating simple units (3/3)

4 Set the fields:

Existing JAVA file - To select a preexisting Java file.

Existing CLASS file - To select a preexisting class file.

New JAVA file - To have Application Composer create a new Java file for the conversion.

Application Composer is going to generate the Java file in the application directory and
create the relevant directories for the class packages. When the file has been generated, it
is opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <id of the application>.data. The data directory
will be created to the root of the application.

Name of the class - The class name, by default: <IdentifierUnit>ClassUnit with the
application identifier’s first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the application_composer.ini file as the default value.

5 Click Validate.

Creating formats

0 TO PERFORM TH IS STEP

1 In the New : Unit attribute window, click New next to the Unit format field.

117 Chapter 5 Working with attributes

The New : Format window is displayed:

Fig 5.34 Creating formats

2 Set the fields:

Format value - A string containing fixed areas and editable numerical parts, character
ranges or lists of choice. When the format is associated with a unit, the value is entered via
a text field, editable or not, with or without input format. If so, the input format varies
depending on the selected unit.

Editable - Specifies whether the text field can be edited or not.

Length (number of chars) - The width of the text field.

Java class used for the formatting - The full name of the Java class used for value
formatting. This class must implement the interface
leon.info.infointerface.LyFormatterInterface. This class is in charge of
formating the entered value into a valid value.

3 Click Validate to go back to the New : Unit attribute window.

Creating unit lists

You can specify unit lists if there are several units for the date, number, text and structure
attributes.

0 TO PERFORM TH IS STEP

1 In the Set [...] unit window, click New next to the List of units field.

The New : List of units window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 118

Fig 5.35 Creating unit lists (1/2)

2 Set the fields:

ID - The unit list identifier.

Name of the list of units - The list name.

Conversion done at edit time - Specifies whether or not conversion should be performed
at input time.

Name of the Java class for the conversions - Select the Java class in charge of converting
the selected unit into the field reference unit. This class must implement the interface
leon.info.infointerface.LyConverterInterface that contains the methods used
to convert the reference unit into the desired unit and vice-versa.

Alternatively click Select by name next to the drop-down list to select the appropriate
class via an autocomplete text field.

Units: The units included in the list.

Use the icons to decide which available units should be used:

 - To select a unit

 - To select all the units

 - To unselect a unit

 - To unselect all the units

Alternatively click New to create a new unit.
> Creating simple units, page 115
You can also click Modify to edit the currently selected unit.

3 Click Validate.

The following message is displayed:

Fig 5.36 Creating unit lists (2/2)

119 Chapter 5 Working with attributes

Clicking Yes displays the Generate Java class for the conversions form.

For further information on how to set the fields in this form, please refer to the
corresponding steps in:
> Creating simple units, page 115

 5.29 Converting an attribute type
You can change the type of an attribute, for example a text identifier can be converted into a
numeric identifier.

0 TO PERFORM TH IS STEP

1 Right-click the attribute in the Attributes tab then select Convert attribute type... in
the context menu option.

The Convert attribute type window is displayed:

Fig 5.37 Converting an attribute type

2 Select the target type.

3 Click Validate.

The attribute’s edit form is displayed so that you can review its parameters.

A p p l i c a t i o n C o m p o s e r User guide 120

 5.30 Setting attribute marks
Marks are predefined properties that can be applied to the attributes to specify how they
should be processed in the application.

Marks fall into two categories:

 Most frequent marks
> Most frequent marks, page 120
 Other predefined marks
> Other predefined marks, page 122

In addition to the predefined marks, you can create custom marks:
> 5.31 Adding specific marks to an attribute, page 124

0 TO PERFORM TH IS STEP

1 Right-click the attribute in the Attributes tab then select either Change frequent marks,
or the Change marks in the context menu option.

The Change frequent marks / Change marks window is displayed.

2 Select / clear the appropriate marks.

3 Click Validate.

Most frequent marks

Fig 5.38 Setting most frequent marks

name - To specify that the attribute is part of (or is) the objects’ visible names in the particular
application class. Unlike the identifier, the name can be modified by the application and
doesn’t have to be unique. While the identifier represents the object internally, the name is
displayed to the user when an action relates to the object (title bar, confirmation or error
messages, label in the relations, etc). If there is no name mark, the identifier is displayed
instead to the user.

create - To specify that the field is displayed to the user in a creation form (by default, the
user is not prompted to enter data).

121 Chapter 5 Working with attributes

set - To specify that the field is displayed to the user in a modification form (by default the
user is not allowed to modify data). Similar to the create attribute, but one does not
necessarily modify the same fields. In particular, an identifier field (id) cannot have the set
mark.

main - Shortcut equivalent to setting the table, sort, filter and find marks.

consult - To specify that the field is read-only in a create or edit form. This mark cannot be
used with the create and set marks because their association does not make sense (a field
cannot be both modifiable and read-only at the same time). It is equivalent to setting both the
setConsult and the createConsult marks.

PLEASE NOTE The consult mark does not mean available in the read-only forms. By default,
all the fields are available in read-only mode, except for the fields with the
secret mark.

id - To specify the the attribute is part of (or is) the objects’ identifier in the particular
application class. Several attributes can have this mark. Being identifier implies that the field
cannot be modified (set='true' is not a compatible mark) and that the combination of all the
identifier fields of the object is unique for all of the concerned application class. An identifier
field is the equivalent at application level to a primary key in a database. At least one field in
the application class must have the id mark.

optional - To specify that the field is not mandatory and that the user can leave it blank. An
optional field is displayed with a non-bold label in the forms while mandatory field labels are
in bold. Not to be confused with the notNull mark which is on data provider side. An optional
and notNull field for example is a field that can be specified by the user, and if no value is
provided, the default value in the data model will be used instead.

local - To specify that the field is not obtained from a data provider but is calculated by the
application.

A p p l i c a t i o n C o m p o s e r User guide 122

Other predefined marks

Fig 5.39 Setting attribute mark

table - To specify that the field value should be displayed in the list views (tables).

sort - To specify that the list view can be sorted according to the field. Clicking the column
header allows you to change the sort criterion, and in fat client mode a menu entry is
available in the View / Sort menu to apply this sort mode.

filter - To specify that the views can be filtered according to the field. The attribute will be
available in the filter creation form. When no class field has the filter mark, the filter option is
disabled and removed from the user interface for this class.

find - To specify that you can search for this attribute in a list view. The attribute will be
available in the search creation form. When no class field has the find mark, the search option
is disabled in the user interface for this class.

secret - To specify that the field value should never be displayed to the user. By default, all the
fields are displayed in read-only forms EXCEPT for the fields with the secret=true mark, which
are hidden. In the create / edit forms, the value input for the fields with the secret mark is
hidden.

notNull - To specify that the field is required in create / edit forms. The field value is either
provided by the application, or calculated via a default value. Not to be confused with the
optional mark. The notNull mark does not mean that the field is required in a form. It just
means that if the user does not provide a value, the default value will be used instead.

123 Chapter 5 Working with attributes

private - To specify that the field value is not duplicated for example when an action is
copied.

unique - To specify that the field value is unique therefore no object of the same application
class can have the same value for this field. For example, a user's login is unique.

status - To specify that an icon should be displayed in the views to represent the field status.

createConsult - To specify that the field is read-only in a create form. In creation mode, this
makes sense with a field whose value is calculated. This mark cannot be used together with
the create mark because their association does not make sense (a field cannot be modifiable
in read-only mode and in creation mode at the same time).

setConsult - To specify that the field is read-only in an edit form. This mark cannot be used
together with the set mark because their association does not make sense (a field cannot be
both modifiable and read-only at the same time).

needPost - To specify that the modification of the field necessarily leads to the related form in
the web display being submitted (POST) so as to perform a particular input control or with the
aim of forcing the update of other fields in the same form. The generic cases (forms, rules, etc.)
are managed automatically.

chart - To specify that the field is available in the statistic creation wizard.

readOnly - To specify that the field is read-only in a create / edit form. The field value is taken
into account when the form is validated even if the field remains not editable.

disable - To specify that the field is displayed as inactive in a create / edit form. The field value
is not taken into account when the form is validated, if the field remains disabled at this time.

hidden - To specify that the field is not displayed in read-only forms if the selected marks are
not specified.

load - Indicates that the loading of the field is forced during load requests that do not specify
the required fields.

ProviderValue - To specify that the field value is provided by a data provider.

appId - To create a secondary key whose uniqueness will also be checked. The secondary
identifier of an object is the concatenation of the values corresponding to the fields with this
mark, delimited by a character (a comma ',' by default).

complexTable - To specify that the field belongs to a complex table.

A p p l i c a t i o n C o m p o s e r User guide 124

 5.31 Adding specific marks to an attribute
In addition to the frequent marks and other predefined marks, you can create your own
specifc marks and assign them to attributes.

Example: In a particular form, you want to display certain fields that share the same mark.

Specific marks are not used by the Application Engine code but can be used in the
application’s specific Java code.

0 TO PERFORM TH IS STEP

1 Right-click the attribute in the Attributes tab then select Specific marks in the context
menu option.

The Specific marks window is displayed:

Fig 5.40 Creating a specific mark

2 Select / clear the appropriate marks.

3 Type a name for the specific mark.

4 Click Add.

5 Click Validate.

 5.32 Associating specific graphical components to
an attribute
You can specify which graphical component will be used to represent a particular field.

Various components can be specified depending on whether the field is in read-only, edit or
filter mode. Alternatively you can specify a generic component that is suitable for all modes.

0 TO PERFORM TH IS STEP

1 Click Specific graphical component in the Attributes tab toolbar.

The Specific graphical component window is displayed:

125 Chapter 5 Working with attributes

Fig 5.41 Using specific graphical components for the attributes (1/2)

2 Click Generate graphical component.

The following window is displayed:

Fig 5.42 Using specific graphical components for the attributes (2/2)

3 Set the fields:

Bean - Specify for which purpose the component will be used (read-only, edit, filter, or
general purpose).

Class source
 Existing Java file - To specify the Java file of an existing component.
 Existing CLASS file - To specify the Java class of an existing component.
 New Java file - Select this option if there is no preexisting component for the attribute.

Application Composer is going to generate a Java file for the component. When the file has
been generated, it is opened in the text editor that has been specified in the preferences.

Displays - Select the appropriate viewer.

Package - Name of the corresponding package, by default: <application id>.bean.

Name of the class - Name of the generated class, by default: <field id>AllBean.

Copyright - Text to be included at the beginning of the Java file.

In the Specific graphical component window, you can:
 Edit the currently selected Java class

A p p l i c a t i o n C o m p o s e r User guide 126

 Remove the currently selected Java class
 Add specific data to the currently selected graphical component

> 5.33 Adding specific data, page 126
 Compile the currently selected Java class

4 Click Validate.

 5.33 Adding specific data
You can have the class manage data intended for the specific application code.

Specific data is specified as key/value pairs and, just as with specific marks, using specific data
is up to application developers.

0 TO PERFORM TH IS STEP

1 Right-click the attribute in the Attributes tab then select the Application data context
menu option.

The Application data window is displayed:

Fig 5.43 Adding specific data

2 Click New...

The New : Data window is displayed:

3 Set the fields:

Name - Name of the data item.

Value - Value of the data item.

4 Click Validate.

5 Back in the Application data window, click Apply.

127 Chapter 5 Working with attributes

 5.34 Editing formatting constraints
You can set position constraint for the fields in the forms.

The Java equivalent to this functionality would be GridBagConstraint, associated to
GridBagLayout.

0 TO PERFORM TH IS STEP

1 Right-click the attribute in the Attributes tab then select the Edit field display constraint
context menu option.

The Modify : Formatting constraints window is displayed:

Fig 5.44 Editing formatting constraints

2 Set the fields:

Last component in the row or column - Specifies whether a line break should be added
immediately after the component in the form.

Horizontal alignment - Vertical alignment - Specifies the align mode for the component,
within the space that is allocated to it. If the default mode is selected, the align mode is
determined by the form.

Number of columns - A form can be seen as a grid upon which labels and component
take up a number of cells. If the number of columns is specified, the component or the
label takes up the specified number of horizontal cells.

Column weight - If free space is available horizontally, this weight in percentage or in
barycentric indicates how much free space should be allocated to the component.

Number of rows - A form can be seen as a grid upon which labels and component take up
a number of cells. If the number of rows is specified, the component or the label takes up
the specified number of vertical cells.

Row weight - If free space is available vertically, this weight in percentage or in barycentric
indicates how much free space should be allocated to the component.

Filling mode - Specifies the component position in the form cell if the component size
does not match the cell size. The complete mode attempts to change the component size
so that it takes up all the cell space.

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 128

 5.35 Setting attribute controls
0 TO PERFORM TH IS STEP

1 Click Set controls... in the edit form toolbar.

The Set controls window is displayed:

Fig 5.45 Setting attribute controls (1/2)

2 Click New...

The New : Control window is displayed:

Fig 5.46 Setting attribute controls (2/2)

3 Set the fields:

Existing JAVA file - To specify a preexisting Java file for the application control. The
appropriate file should be selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class for the control. The appropriate class
should be selected via the Class field.

New JAVA file - To have Application Composer create a new file for the control.

Application Composer is going to generate the Java class in the application directory and
create the appropriate directories for the class package. When the file has been generated,
the class is opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.data. The data directory will be
created to the root of the application.

129 Chapter 5 Working with attributes

Name of the class - The class name, by default: IdentifierFieldControl with the identifier’s
first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the studio_composer.ini file as the efault value.

4 Click Validate.

5 Back in the Set controls window, click Validate.

 5.36 Setting attribute labels
A dynamic label is a label calculated at runtime. It contains a value that is a String with both
fixed and variable parts, as well as parameters allowing, at runtime, to replace these variable
parts by data of dynamic nature that depends on the use context. This label can change when
the data to which it applies, is modified.

0 TO PERFORM TH IS STEP

1 Click Set labels... in the edit form toolbar.

The Set labels window is displayed:

Fig 5.47 Setting attribute labels (1/2)

2 Click New...

The New : Dynamic label window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 130

Fig 5.48 Setting attribute labels (2/2)

3 Set the fields:

Label value - The value of the label (or the corresponding entry in the dictionary). It should
contain variable parts such as {i}, as with standard management of Java messages. The
number of variable parts should match the number of access paths to be specified in the
lower part of the form.

ID - The ID’s visible name of the class instance. This label takes precedence over the
combination of fields with the id mark. This label should be defined only with fields with
the id mark.

NAME - The instance name of the class or the name of the fields. This label takes
precedence over the combination of fields with the name mark and also over the NAME
item.

GRAMMATICAL - The label displayed in the tooltips. This label takes precedence over the
tooltip item.

SEMANTIC - Roll-over label displayed over the help line to the bottom of the forms.

VALUE - Presentation label for the field value.

SHORT_VALUE - Short presentation label for the field value.

USER - Application label.

4 To create an access path to a field value:
> Creating access paths, page 131

5 Click Validate.

131 Chapter 5 Working with attributes

Creating access paths

0 TO PERFORM TH IS STEP

1 In the New : Dynamic label window, click New.

The New : Access path window is displayed:

Fig 5.49 Creating an access path

2 Set the fields:

ID - The access path identifier.

Source class of access path - Source class of the access path, for an absolute access path.

Target class of access path - Target class of the access path. If not specified the current
class will be used.

Target class of field ID - Final item of the access path. If not specified, the access path is
equivalent to a route.

Displayed label for target field - Dynamic label to use for the target field.

3 To create steps for the access path:

3.1 Click New in the Path area.

The Add step window is displayed:

Fig 5.50 Creating a step

A p p l i c a t i o n C o m p o s e r User guide 132

3.2 Set the fields:

To the target class - The target class of the step is the destination.

From the target class - The target class of the step is the origin.

Target class - Target class of the step.

Using relation - Relation field to link the source class to the target class.

3.3 Click Validate.

4 Back in the New : Access path window, click Validate.

 5.37 Specifying a cache policy for an attribute
0 TO PERFORM TH IS STEP

1 Click Cache management... in the edit form toolbar.

The Cache management window is displayed:

Fig 5.51 Specifying a cache policy

2 Set the fields:

All the objects are kept in memory (FullCache) - An object is loaded only if it is unknown,
and it is never unloaded. This cache is efficient provided data volume is not too large.

Only used objects are kept in memory (Auto cache) - Only the objects used by the
application code or displayed in the views are stored in the memory. When closing the
view or when releasing the object list, the data is released from the memory.

No object is kept in memory (No Cache) - The data provider is accessed whenever
necessary.

Specific cache policy - To specify a preexisting class for the cache. The appropriate class
should be selected via the Java class field. The class should extend the
leon.data.LyCache class.

Java class - The class name. Change as appropriate.

133 Chapter 5 Working with attributes

User data - This field can be used to configure a specific cache (number of managed
objects, refresh delay, name of local cache, etc).

Generic marks
 Local class - The class is not linked to the data provider (local means that this class does

not exist in the database). Therefore, the cache is always a full cache. There is no call to
the physical link.

 Load at start time - Specifies whether data is loaded as soon as the application starts,
or the first time the user invokes it.

Cache policy associated with the structure

3 Click Validate.

 5.38 Setting attribute rules
0 TO PERFORM TH IS STEP

1 Click Set [...] rules... in the edit form toolbar.

The Set [...] rules window is displayed:

Fig 5.52 Setting attribute rules (1/2)

2 Click New.

The New : Rules window is displayed:

A p p l i c a t i o n C o m p o s e r User guide 134

Fig 5.53 Setting attribute rules (2/2)

3 Set the fields:

Target attribute - Specifies the field to which the rule applies.

Role trigger

Priority - Priority level (relative to other rules).

Operation
 SET_ENABLED - Enables/disables the field and clears its value.
 SET_EDITABLE - Makes the field editable/not editable.
 SET_OPTIONAL - Makes the field optional/mandatory.
 CLEAR - Empties the field (no reverse rule).
 RESET - Returns the field to its original value (no reverse rule).
 SET_VALUE - Assigns to the field the value specified for the Value field (no reverse

rule).
 SHOW - Displays the field to the user, i.e. displays the tab in which the field is located

(no reverse rule).
 SET_VISIBLE - Displays/Hides the field.
 SET_LABEL - Assigns to the field the label that is specified for the Label field (no

reverse rule).

Value - The value to be specified with the SET_VALUE operation.

Label - The value to be specified with the SET_LABEL operation.

Alternatively, click New to create a new label.

For further information on how to create a label:
> 5.36 Setting attribute labels, page 129
Filter - To set a filter for the control data.

4 Click Validate.

5 Back in the Set [...] rules window, click Validate.

135 Chapter 5 Working with attributes

C
ha

pt
er

 6

A p p l i c a t i o n C o m p o s e r User guide 136

6 Working with routes
Routes are context-sensitive relations between application classes.

A route is used to set up a link between two application classes to obtain a target class object
based on the source object context.

In this chapter we will cover the following topics:
> Viewing details of a route, page 137
> Deleting a route, page 137
> Making a route bi-directional, page 137
> Applying a filter to a step, page 137
> 6.1 Creating a route, page 137
> 6.2 Creating a reverse route, page 138
> 6.3 Creating a step, page 139

To display the Routes tab, select WindowsRoutes.

Fig 6.1 The Routes tab

The lower area provides a graphical representation of the route steps and allows you to check
whether the route is complete.

137 Chapter 6 Working with routes

Viewing details of a route

The Details icon in the Routes tab tool bar displays the details of the currently selected
route.

Deleting a route

The Delete icon in the Routes tab tool bar deletes the currently selected route.

Making a route bi-directional

A route only applies to one direction. The Make the route bidirectional icon in the Routes
tab tool bar allows you to make a route valid in the opposite direction i.e. from the target class
to the current class.

Applying a filter to a step

The steps to follow are similar to those for creating a project filter:
> 3.5 Creating filters for a project, page 46

 6.1 Creating a route
0 TO PERFORM TH IS STEP

1 Click New in the Routes tab tool bar.

The New : routes window is displayed.

A p p l i c a t i o n C o m p o s e r User guide 138

Fig 6.2 Creating a route

2 Set the fields:

ID - Application Composer automatically sets the fields to: routeFrom<original class
name>To<target class name>. Change as appropriate.

Target class - To specify the target class for the route.

Hidden route - To specify whether the route is hidden, i.e. the route is not used for
cross-reference calculation. This option is used to specify routes in the meta-model, and to
be used via programming only.

3 Click Validate.

 6.2 Creating a reverse route
A route is reversed if the calculation starts from the target class, or from the current class. The
form is the same as the create form of a non-reverse route.
> 6.1 Creating a route, page 137

0 TO PERFORM TH IS STEP

1 Click Create a reverse route in the Routes tab tool bar.

The Create a reverse route window is displayed.

2 Set the fields.
> 6.1 Creating a route, page 137

3 Click Validate.

139 Chapter 6 Working with routes

 6.3 Creating a step
0 TO PERFORM TH IS STEP

1 Select the route in the table view of the Routes tab.

The route is displayed in the lower area.

The dotted line means the route is not fully specified.

2 Click Add step...

The Add step window is displayed:

Fig 6.3 Creating a step

3 Set the fields:

Direction - The step direction: To the target class or From the target class.

Target class - The step target.

Using relations - The list of the relation fields used to link the target class to the original
class.

4 Click Validate.

C
ha

pt
er

 7

A p p l i c a t i o n C o m p o s e r User guide 140

7 Working with actions
Actions are listed in both the Navigation tree and the Actions tab.

Whereas the Actions tab displays the actions associated with logical classes, the navigation
tree displays the actions associated with the application’s sequence of actions.

As opposed to the Navigation tree, which lets you add an action at a specific location, the
Actions tab lets you create actions at the class, project or application level.

In this chapter we will cover the following topics:

 How to create actions:
> 7.1 Creating a simple action, page 146
> 7.2 Creating a composite action, page 150
> 7.3 Creating a tab action, page 152
> 7.4 Creating a reference to an existing action, page 153
> 7.5 Creating child actions, page 154
 How to perform basic actions:
> Viewing details of an action, page 142
> Editing an action, page 142
> Removing an action, page 143
> Specifying tooltips for an action, page 143
> Specifying keyboard shortcuts for an action, page 143
> Changing action order, page 143
> Copying the target action, page 143
> Generating the default actions, page 144
> Setting the default action, page 144
> Adding specific marks for an action, page 144
> Specifying application data for an action, page 145
> Specifying the root action, page 145
> Specifying an XML view of the action, page 145
> Previewing an action, page 145

141 Chapter 7 Working with actions

 How to implement advanced action-related features:
> 7.6 Customizing the view for an action, page 155
> 7.7 Specifying apply conditions for the actions, page 156
> 7.8 Setting action marks, page 158
> 7.9 Specifying specific resources for an action, page 159
> 7.10 Setting specific parameters for an action, page 160
> 7.11 Specifying an action behavior, page 161
> 7.12 Specifying an action builder, page 162
> 7.13 Specifying code for actions with no template, page 163

To display the Navigation tree, select WindowsNavigation tree.

Fig 7.1 The navigation tree

To display the Actions area, select WindowsData modelActions.

A p p l i c a t i o n C o m p o s e r User guide 142

Fig 7.2 The Actions tab

N OT E Action background colors:
 Blue: A default Application Engine action, i.e. a reference to a generic Application
Engine action
 Yellow: A reference to a specific application action
 White: A local action

Viewing details of an action

You can view the details of a preexisting action via Details, either in the Navigation tree
tool bar, or in the Actions tab tool bar.

Editing an action

You can edit a preexisting action via Modify, either in the Navigation tree tool bar, or in
the Actions tab tool bar.

143 Chapter 7 Working with actions

Removing an action

You can remove an action and its child actions via Delete, either in the Navigation tree
tool bar, or in the Actions tab tool bar.

Specifying tooltips for an action

You can add a tooltip to be displayed when the user hovers over an action for a while, via the
Tooltips... context menu option, either in the Navigation tree, or in the Actions tab.

Specifying keyboard shortcuts for an action

You can specify a keyboard combination such as CTRL + <KEY> to run the action, via the
Keyboard shortcut... context menu option, either in the Navigation tree, or in the Actions

tab.

Changing action order

You can change the order of the actions in the application class via Move up and
Move down either in the Navigation tree tool bar, or in the Actions tab tool bar.

Copying the target action

If the action is a generic Application Composer action or if the selected action is a link to an
action shared by several application classes (displayed on a yellow background) you can make
a local copy of the target action, via Copy referenced action either in the Navigation tree
tool bar, or in the Actions tab tool bar.

The generic actions and the shared actions targeted by links are defined only once in the
application: All the application classes using them point to the same action. If you want to
modify a shared action for an application class, you can request a local copy of the target

A p p l i c a t i o n C o m p o s e r User guide 144

action by using this feature. This creates a local action with the same properties as the target
action. However it is not shared and can be modified.

Generating the default actions

You can generate the default actions for your application via Generate default GUI either
in the Navigation tree tool bar, or in the Actions tab tool bar.

For generation to run successfully, make sure that the classes have been defined and that
each class has an identifier field.

The MMI generator produces a dashboard as the root action. It contains a table action for each
application class.

Setting the default action

You can set the mark default=true for an action, via the Set the default action... context
menu option, either in the Navigation tree, or in the Actions tab.

This triggers the action when you double-click the class containing this action.

Adding specific marks for an action

You can add specific marks to an action, via the Specific marks... context menu option,
either in the Navigation tree, or in the Actions tab.

Specific marks are not used by the Application Engine code but can be used in the
application’s specific Java code.

The approach is similar as when adding specific marks to a class:
> 4.10 Adding specific marks for a class, page 60

145 Chapter 7 Working with actions

Specifying application data for an action

You can add to the action data that is intended for the application’s specific code, via the
Application data... context menu option, either in the Navigation tree, or in the Actions tab.

Application data is specified as key/value pairs and, just as with specific marks, using
application data is up to application developers.

The approach is similar as when specifying application data for a class:
> 4.11 Specifying application data, page 61

Specifying the root action

You can specify the application’s root action, via the Define a root action... context menu
option, either in the Navigation tree, or in the Actions tab.

The root action is the first action to be executed at Application Engine startup. it is usually a
login action, a dashboard-type view, etc.

Specifying an XML view of the action

You can specify an XML view as a substitute for the builder, via the Action view... context
menu option, either in the Navigation tree, or in the Actions tab.

This allows you to define the form and the specific content of the view.

Application Composer automatically generates the XML file of the default action view.

Previewing an action

You can preview an action, via the Preview context menu option, either in the Navigation
tree, or in the Actions tab.

This displays a preview of the action with no data.

A p p l i c a t i o n C o m p o s e r User guide 146

 7.1 Creating a simple action
0 TO PERFORM TH IS STEP

1 Click Create an action either the Navigation tree tool bar, or the Actions tab tool bar.

The first screen of the Create an action wizard is displayed:

Fig 7.3 Creating a simple action

2 Set the fields:

Action type
 Generic - To select one of the Application Engine's generic actions.
 Other - To select a user action that will be used as a template.
 Dashboard
 Table
 Tree
 Map
 Login
 Components

Template - The action template.

ID - The action identifier. Its default value depends on the selected type.

Name - The action name.

Short name - The action alias.

3 Click Next.

The second screen of the Create an action wizard is displayed.

147 Chapter 7 Working with actions

This screen depends on the action type. Please refer to the appropriate section:
> Creating a simple action (generic / other / component), page 147
> Creating a simple action (dashboard), page 147
> Creating a simple action (table), page 148
> Creating a simple action (tree), page 148
> Creating a simple action (map), page 149
> Creating a simple action (login), page 149

Creating a simple action (generic / other / component)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

2 Click Validate.

Creating a simple action (dashboard)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Open actions in the same view

Action displayed...

Use expand bars

Expand bars opened

Open actions in tab

Make a snapshot
 ALL
 MINIMUM
 NO
 NONE
 SKIP

2 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 148

Creating a simple action (table)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Target class

Attribute marks

Status field mark

Class filter

Filter

Sort

Column width

Number of objects per page

Target sub attribute

Show filter...

Make a snapshot
 ALL
 MINIMUM
 NO
 NONE
 SKIP
DHTML mode

_allowedNavigation

2 Click Validate.

Creating a simple action (tree)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Target class

Filter

Make a snapshot
 ALL

149 Chapter 7 Working with actions

 MINIMUM
 NO
 NONE
 SKIP
_discoverOnclick

2 Click Validate.

Creating a simple action (map)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Target class

XML file to describe background objects

Make a snapshot
 ALL
 MINIMUM
 NO
 NONE
 SKIP

2 Click Validate.

Creating a simple action (login)

0 TO PERFORM TH IS STEP

1 In the second screen of the Create an action wizard, set the fields:

Group - The group the action belongs to.

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Login class

Login attribute

Password attribute

Maximum login retry

Allow users creation

A p p l i c a t i o n C o m p o s e r User guide 150

Allow session reconnection

Display with SSO mode
 Always
 IF_NOT_LOGGED

Make a snapshot
 ALL
 MINIMUM
 NO
 NONE
 SKIP

2 Click Validate.

 7.2 Creating a composite action
A compound action displays two actions simultaneously.

As an action in the compound action can itself be a compound action, you can display
multiple views with more than two actions.

0 TO PERFORM TH IS STEP

1 Click Create a compound action either the Navigation tree tool bar, or the Actions tab
tool bar.

The Create a compound action window is displayed:

151 Chapter 7 Working with actions

Fig 7.4 Creating a composite action

2 Set the fields.

ID

Name

Short name

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Group - The group the action belongs to.

Actions

Context between the views
 The first action defines the context - If you select this option, the second view will

depend on the object selected in the first one.
 The second action defines the context - If you select this option, the first view will

depend on the object selected in the second one.
 No context - If you select this option, both actions are fully independent of one another.

Action(s) defining the context for another view - To specify which actions are contextual
(context-dependent).

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 152

 7.3 Creating a tab action
A tab action is represented by a view made up of several tabs, where each tab provides a
specific action.

0 TO PERFORM TH IS STEP

1 Click Create a tab action either the Navigation tree tool bar, or the Actions tab tool
bar.

The Create a tab action window is displayed:

Fig 7.5 Creating a tab action

2 Set the fields:

ID

Name

Short name

Image - The icon representing the action. Click to browse for the appropriate image.

Menu - The menu within which the action will be available.

Group - The group the action belongs to.

Type of actions
 tabs
 Wizard
Actions - Select which actions should be displayed in the various tabs.

Action(s) defining the context for another view - To specify which actions are
context-dependent. By default, all of them are context-dependent. If no action is
context-dependent, set the field to -1.

153 Chapter 7 Working with actions

3 Click Validate.

 7.4 Creating a reference to an existing action
You can add a link to an action that is already specified either in the application, or as part of
the generic actions.

Action references are displayed on a yellow background in the Actions tab.

0 TO PERFORM TH IS STEP

1 Click Create action shortcut either the Navigation tree tool bar, or the Actions tab tool
bar.

The Create an action reference window is displayed:

Fig 7.6 Creating a reference on an existing action

2 Select the target action.

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 154

 7.5 Creating child actions
The Child actions option in the context-sensitive menu (navigation tree) or in the Actions tab
tool bar allows you to create child actions for the selected action. A table of the actions opens,
similar to the one for the class actions, where the tool bar is similar to the one for the
navigation tree.

0 TO PERFORM TH IS STEP

1 Click Child actions either the Navigation tree tool bar, or the Actions tab tool bar.

The Children actions window is displayed:

Fig 7.7 Creating child actions

2 Create the child actions.

You can create:
 Simple actions
> 7.1 Creating a simple action, page 146
 Compound actions
> 7.2 Creating a composite action, page 150
 Tab actions
> 7.3 Creating a tab action, page 152
 Action references
> 7.4 Creating a reference to an existing action, page 153

155 Chapter 7 Working with actions

 7.6 Customizing the view for an action
When invoked, some actions generate a view (e.g. a form, a main view, etc), which can be
customized.

0 TO PERFORM TH IS STEP

1 Click View structure... either the Navigation tree tool bar, or the Actions tab tool bar.

The View structure window is displayed:

Fig 7.8 Customizing the view for an action

2 Set the fields:

Action view properties

 noToolbar - To specify that the view should have no tool bar.

 noTitlebar - To specify that the view should have no title bar.

 noCommands - To specify that the view should have no command bar. The command bar
can be removed only from the views where it does not have any input validation role (e.g.
a read-only view).

 noTabs - To specify that the view should have no tab if some fields have been set to be
displayed in tabs.

 noMenuBar - To specify that the view should have no context-sensitive menus (popup
menu).

 noMenu -

 noMessages - To specify that the view should have no message bar. This is only relevant
for the views of type Frame.

A p p l i c a t i o n C o m p o s e r User guide 156

 frameView - To specify that the view should be of type Frame (main view). Otherwise, the
view is of type Dialog (secondary view). This is only relevant for the upper level actions.

 modal - To specify that the view is modal, i.e. the view must be completed for the
application to continue. This is only relevant for the viewers of type fat client (AWT, SWING,
SWT), for the views of type dialog (secondary views) and for the upper level actions.

 noDecoration -

Window position - To specify the position of the view when it is displayed. If x remains
empty, the view will be centered horizontally (and centered vertically if y remains empty).

Window size - To specify the size of the view. If the width remains empty or equal to zero, the
view will take up all the available width of the screen (and all the available height of the
screen if the height remains empty or equal to zero).

Position (available only for composite actions) - The position of the views that make up the
action. If horizontal position is selected, the views will be placed one next to the other. If
vertical position is selected they will be placed one above the other.

Sizes (available only for composite actions) - The proportion (as a percentage) of the space
taken up by each of the views. For example 40 60 means that the first view takes up 40% of
the total space available in the composite view and the second 60%.

Action target area - The area in which the action will be executed. This is only relevant for
the Eclipse plugin viewer.

 7.7 Specifying apply conditions for the actions
You can specify the conditions that should be met for the action to be allowed (minimum or
maximum number of selected objects, context, filter, etc).

0 TO PERFORM TH IS STEP

1 Click Apply conditions... either the Navigation tree tool bar, or the Actions tab tool
bar.

The View structure window is displayed:

157 Chapter 7 Working with actions

Fig 7.9 Specifying apply conditions for the actions

2 Set the fields:

The fields Condition to enable action, Target objects in the view for the action,
Minimum and Maximum are bound together in the following way:

If you first select the option Independent of the objects selected in the view you can
choose between:
 None
 All

If you first select the option Dependent of the objects selected in the view without
constraint you can choose between:
 Selected objects
 Selected objects or all if the list is empty

If you first select the option Dependent of the objects selected in the view with a minimum
number of selected objects, specify the minimum number of selected objects in the
Minimum field.

If you first select the option Dependent of the objects selected in the view with a
limited number of selected objects, specify the minimum and the maximum number of
selected objects in the Minimum and Maximum fields.

In the Availability area, you can specify the following:
 Action filter class - The class to which the filter applies.
 Filter - The filter to determine the objects for which the action can be triggered.

3 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 158

 7.8 Setting action marks
0 TO PERFORM TH IS STEP

1 Right-click the appropriate action either in the Navigation tree, or in the Actions tab then
select Set marks... from the context menu.

The Set marks window is displayed:

Fig 7.10 Setting action marks

2 Set the fields:

default - When you double-click an object in a view, the action that is run is by default the
read-only action. However you can choose another action, by applying the default mark to
it.

tool - To specify that the action can be displayed as an icon on the tool bar. The default
value is false.

form - To specify that the action can be displayed as an icon in forms with a tool bar
(read-only, edit).

transverse - To specify that the action can be used as a transverse action, i.e. as an action
associated with a relation, and which is available via the create/edit forms.

hidden - To specify that the action is not visible for the user and therefore is not available
in the views that are displayed to the user.

dialog - To specify that the action opens up a dialog. Therefore, the action label should be
followed by ellipses (…).

status - To specify the action that is invoked when selecting the status icon of an object in
a table. If no action has this mark, the default action in the view is started.

noContext

webservice

3 Click Validate.

159 Chapter 7 Working with actions

 7.9 Specifying specific resources for an action
You can customize the application’s look and behavior. Resources are specified for the whole
application via the WindowsResources menu.

Resources can also be modified for a particular action.

0 TO PERFORM TH IS STEP

1 Click Specific resources... either the Navigation tree tool bar, or the Actions tab tool
bar.

The Specifc resources window is displayed:

Fig 7.11 Specifying specific resources for an action

2 Click New... in the toolbar.

The New : Specific resources window is displayed:

Fig 7.12 Specifying specific resources for an action

3 Set the fields:

Key

Type

Value

Overriden property

4 Click Validate.

A p p l i c a t i o n C o m p o s e r User guide 160

5 Back in the Specifc resources window, click Validate.

 7.10 Setting specific parameters for an action
0 TO PERFORM TH IS STEP

1 Right-click the appropriate action either in the Navigation tree, or in the Actions tab then
select Specific parameters... from the context menu.

The Specific parameters window is displayed:

Fig 7.13 Setting specific parameters for an action (1/2)

2 Click New... in the toolbar.

The New : Parameter declaration window is displayed:

Fig 7.14 Setting specific parameters for an action (2/2)

3 Set the fields:

Name

Type

Required

161 Chapter 7 Working with actions

Value domain

Value - Click to specify the parameter value.

4 Click Validate.

5 Back in the Specifc parameters window, click Validate.

 7.11 Specifying an action behavior
You can specify a behavior for the non generic actions or for the generic actions with
particular application code.

0 TO PERFORM TH IS STEP

1 Right-click the appropriate action in the Navigation tree then select Action behavior...
from the context menu.

Alternatively, click Action behavior... in the Actions tab tool bar.

The Action behavior window is displayed:

Fig 7.15 Specifying an action behavior

2 Set the fields:

Existing JAVA file - To specify a preexisting existing Java file. The appropriate file should
be selected via the Existing implementation field

Existing CLASS file - To specify a preexisting class. The appropriate file should be selected
via the Class field

New JAVA file - To have Application Composer create a new Java file.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. However you can change some
parameters before generation via the next fields. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

A p p l i c a t i o n C o m p o s e r User guide 162

Package - The class package: By default: <application id>.behavior. The behavior directory
will be created to the root of the application.

Name of the class - The class name, by default: IdentifierActionBehavior with the
application identifier’s first letterin uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the application_composer.ini file as the default value.

 7.12 Specifying an action builder
0 TO PERFORM TH IS STEP

1 Right-click the appropriate action in the Navigation tree then select Action builder... from
the context menu.

Alternatively, click Action builder... in the Actions tab tool bar.

The Action builder window is displayed:

Fig 7.16 Specifying an action builder

2 Set the fields:

Existing JAVA file - To specify a preexisting Java file. The appropriate file should be
selected via the Existing implementation field.

Existing CLASS file - To specify a preexisting class. The appropriate file should be selected
via the Class field.

New JAVA file - To have Application Composer create a new Java file.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. However you can change some
parameters before generation via the next fields. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.builder. The builder directory is
created to the root of the application.

163 Chapter 7 Working with actions

Name of the class - The class name, by default: IdentifierActionBuilder with the application
identifier’s first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT
set in the application_composer.ini file as the default value.

 7.13 Specifying code for actions with no template
For the actions with no template, you can specify the Java class containing the code for the
action’s invocation method.

This class must implement the interface LyProcessActionInterface.

0 TO PERFORM TH IS STEP

1 Right-click the appropriate action (an action created with the Other type) either in the
Navigation tree, or in the Actions tab then select Action behaviorAction process
from the context menu.

The Action process window is displayed:

Fig 7.17 Specifying the code for an action with no template

2 Set the fields:

Existing JAVA file - To specify a preexisting Java file. The appropriate file should be selected
via the Existing implementation field.

Existing CLASS file - To specify a preexisting class. The appropriate file should be selected via
the Class field.

New JAVA file - To have Application Composer create a new Java file.

Application Composer is going to generate the Java class in the application directory and
create the relevant directories for the class packages. However you can change some

A p p l i c a t i o n C o m p o s e r User guide 164

parameters before generation via the next fields. When the file has been generated, it is
opened in the text editor that has been specified in the preferences.

Package - The class package, by default: <application id>.builder. The builder directory will be
created to the root of the application.

Name of the class - The class name, by default: IdentifierActionProcessor with the application
identifier’s first letter in uppercase.

Copyright - The class comment, with the value of the resource LY_DEFAULT_COPYRIGHT set
in the application_composer.ini file as the default value.

165 Chapter 7 Working with actions

C
ha

pt
er

 8

A p p l i c a t i o n C o m p o s e r User guide 166

8 Managing Java classes and libraries
The Java classes tab displays all the Java classes in the application and allows you to manage
the CLASSPATH used for compilation.

The Libraries tab lists the access paths to the libraries and Java sources (CLASSPATH). You can
modify the order and the content of the CLASSPATH from this tab.

 8.1 Java classes
To display the Java classes tab, select WindowsJava classes.

167 Chapter 8 Managing Java classes and libraries

Fig 8.1 The Java classes tab

N OT E Libraries that cannot be found are displayed on a pink background.

 The possible actions are as follows:

 Edit a Java class - To review / edit the source code in the text editor specified in the
preferences.

 Compile - To compile the class.

 Delete - To remove the selected Java class(es). Please note: The corresponding .java
files are removed from the disk.

 Add a Java class - To add an external Java class that contains application code
required by the application.

The status icons specifies whether the class needs to be compiled or not.

 A red bullet flags a Java class that has not been compiled yet.

 An orange bullet flags a Java class that has been modified since last compilation and that
needs to be compiled again.

 A green bullet flags a compiled version that is up-to-date.

 8.2 Libraries
The Libraries tab can be used to manage the CLASSPATH used for compilation.

A p p l i c a t i o n C o m p o s e r User guide 168

The Libraries tab displays the paths to the libraries and Java sources that are required to run
the application. It can be used to edit the application’s classpath.

To display the Libraries tab, select WindowsJava classes.

Fig 8.2 The Libraries tab

N OT E A red bullet flags a library that could not be found at the specified location.

The possible actions are as follows:

 Add an archive - To add a .jar library to the CLASSPATH.

 Add a directory - To add a directory to the CLASSPATH.

 Delete - To delete the currently selected library/libraries.

 Move up - Move down - To reorganize the list order. Order is significant when
generating the classpath, especially for the addson (patches), which include corrections.
You should specify addsOnXX.jar files before XX.jar files.

169 Chapter 8 Managing Java classes and libraries

C
ha

pt
er

 9

A p p l i c a t i o n C o m p o s e r User guide 170

9 Managing data sources
Application Composer allows you to configure connections to data providers referred to as
locations in Application Engine. For example a location can be a connection to a database via
a JDBC driver, a connection to flat files, etc.

 9.1 Adding a data source
0 TO A DD A DAT A SOURCE

1 Select FileData sources...

The Configure data sources window is displayed:

Fig 9.1 Adding a data source (1/2)

This window lists the available data sources and connectors.

2 Click Create...

A sub tool bar is displayed to let you select the appropriate data source type:

171 Chapter 9 Managing data sources

Fig 9.2 Adding a data source (2/2)

The possible data source types are as follows:
 RDBMS: Relational database
> 9.1.2 RDBMS, page 172
 LDAP: Active directory
> 9.1.3 LDAP, page 173
 File location: Flat files
> 9.1.1 File location, page 171
 Generic: Generic data source used to define, for example, a link to a specific data source
> 9.1.4 Generic data provider, page 174

 9.1.1 File location

A file data source can be used for application development phases, for demo or prototypes, or
in some cases for standalone applications.

Fig 9.3 Adding a data source - file location

URL - The access path to the directory containing the files to be saved.

File format - The possible formats are as follows:

 XML - XML flat files.

 INFO - Flat files in Ithe NFO format (Application Engine's default format). Data is stored in
rows with separators.

 CVS - File of type CSV (format of type Excel) with separators.

Field separator - The code of the character to be used to delimit the fields. The character
corresponding to the current code is displayed to the right of the edit area.

A p p l i c a t i o n C o m p o s e r User guide 172

Data separator - The code of the character to be used to delimit data.

Notifier (message service) - The notification service is a software bus (basing on a MOM:
Message Oriented Middleware) that makes it possible to send notifications when objects are
created, deleted and modified between several applications running on different machines.
The notification service invokes JMS to send and receive messages.

 9.1.2 RDBMS

An RDBMS data source is a JDBC connector to a relational database. The databases that are
currently supported by Application Engine are: Microsoft Access, MySQL, Oracle, Polyhedra,
Microsoft SQL Server, Sybase, Instant DB and PostgreSQL.

For other databases, Application Engine uses standard SQL.

Fig 9.4 Adding a data source - RDBMS

Driver - The Java class of the JDBC driver.

URL - The URL to be provided to the JDBC driver.

Database name - User - Password - Database, user and password to be used to open a
database connection.

Java Class - This item is optional. By default, the RDBMS data source uses standard SQL. As
some databases require some changes to the SQL queries, you can specify the Java classes to
be used.

N OT E For the databases supported by Application Engine, this parameter should not be set.

173 Chapter 9 Managing data sources

Connection count - Number of connections that are simultaneously opened by the
application to the database. If the value is greater than one, Application Engine can manage a
pool of connections to the database.

Multiple values separator - In theory, a relational database cannot manage multiple values
for the relations directly. The usual way to proceed is via a join table, which is supported by
Application Engine. For simple cases, you can also store the multiple values in a field in the
database by using a separator to separate the values. Using a join table is however strongly
recommended.

Use Discovery - To use a discovery to know the type of data stored in the RDBMS. If this
option is enabled, Application Engine will first retrieve the metadata and use the types
internally.

Trim blanks in value - Some databases sometimes store values with a blank character at the
beginning or at the end. This may interfere with string comparisons and/or filtering in the
applications. Enabling this option ensures that these blank characters are deleted when data is
retrieved from the database.

Notifier (Message service)
> 9.2 Specifying an additional notification service, page 175

 9.1.3 LDAP

LDAP directory data source.

Fig 9.5 Adding a data source - LDAP

URL - The address/port of the LDAP server used for connection.

User - The user name for connecting to the directory.

Password - The password for connecting to the directory.

A p p l i c a t i o n C o m p o s e r User guide 174

Root object - The identifier of the base object for accessing the data in the directory.

Listen events - To specify whether the application should listen for directory events.

Notifier (Message service)
> 9.2 Specifying an additional notification service, page 175

 9.1.4 Generic data provider

Fig 9.6 Adding a data source - Generic data

Java Class - To specify the name of the Java class that extends leon.peer.LyData
Provider and that is the data provider to be used.

Data - To specify the parameters for configuring the connector.

Persistence - To specify whether the connector whose updates manage data persistency,
should be used or not.

Notifier (Message service)
> 9.2 Specifying an additional notification service, page 175

175 Chapter 9 Managing data sources

 9.2 Specifying an additional notification service
You can configure an additional notification service.

Notification allows you to address the restrictions of some connector types that fail to notify
the applications when data is updated. Typically, when data is updated in a relational
database by a client application, the other client applications are not notified.

To remedy this problem, the notification service sends events such as create/edit/delete,
potentially along with the modified values.

The available implementation for this software bus uses a JMS connector.

Fig 9.7 Creating an additional notification service

Property file - The property file that contains the parameters for configuring the notification
service.

Java class - The name of the Java class that extends leon.notifier.LyEventNotifier and
that is the notification service to use. The JMS value is an alias for the generic JMS notification
bus leon.notifier.jms.LyJmsNotifier

C
ha

pt
er

 1
0

A p p l i c a t i o n C o m p o s e r User guide 176

10 Working with Discovery
Discovery is used to explore relational databases, Java files (Bean, EJB), CSV files, W4 procedure
models, or ECM systems, in order to extract their structure and implement their data as part of
an application.

In this chapter we will cover the following topics:
> 10.1 Specifying the drivers to be used, page 177
> 10.2 Discovering an SQL database, page 178
> 10.3 Discovering a Java file, page 179
> 10.5 Discovering a W4 model, page 183
> 10.6 Discovering an ECM system, page 184
> 10.7 Performing another discovery, page 184
> 10.8 Comparing structures, page 185
> 10.9 Cancelling the comparison, page 185
> 10.10 Updating the discovery, page 185
> 10.11 Exporting data to Application Composer, page 186
> 10.12 Viewing the columns compatible with the enumerate type, page 187

To display Discovery, select WindowsDiscovery.

177 Chapter 10 Working with Discovery

Fig 10.1 Discovery

The navigation tree, to the left, displays a hierarchical view of the discovery’s target.

The list view, to the right, provides details of the currently selected object in the navigation
tree.

 10.1 Specifying the drivers to be used
The List of drivers icon in the Discovery toolbar displays the JDBC driver used to connect
to the database.

Fig 10.2 Viewing the list of available drivers

All the drivers specified for the application are displayed in this window.

A p p l i c a t i o n C o m p o s e r User guide 178

Via this window you can:

 Details - View the details of the currently selected driver

 New - Specify a new driver for use

 Modify - Change the details of the currently selected driver

 Delete - Remove the currently selected driver from the list of drivers to use

To add a new driver, the following fields must be specified:

 Driver class name - The name of the driver’s Java class: It is used as the identifier. Only one
database has this name.

 URL format - It is used as a prefix for the new connections to this type of databases (is
automatically displayed in the connection URL after selecting the driver). This field is not
mandatory.

Fig 10.3 Adding a new driver

PLEASE NOTE The driver’s Java class must be declared in the application’s CLASSPATH. If
database connection fails (driver not found), you just need to add the library
to the Application Composer application’s CLASSPATH.

For further information regarding libraries:
> 8.2 Libraries, page 167

 10.2 Discovering an SQL database
The SQL base structure discovery icon in the Discovery toolbar allows you to discover
the structure of an SQL database.

179 Chapter 10 Working with Discovery

Fig 10.4 Discovering an SQL database

Project name - The name of the Application Engine project.

Database name - The name of the database. It is used as an identifier. Only one database
should have this name.

JDBC drivers - The JDBC driver used to connect to the database. All the drivers specified for
the application are displayed in a drop-down list.

Connection URL - The URL to connect to the database. The format of this URL depends on
which driver is selected.

User - Password - A user name with permissions to connect to the database, along with the
corresponding password. These fields may be optional depending on the type of database.

When the form has been validated, the application attempts to connect to the database. If
connection is successful, the metadata is extracted and the corresponding objects are created.

When extraction is completed, Discovery displays a list of columns identified by the system as
potentially suitable for conversion to an Application Engine enumeration type. You then need
to validate the columns for which the enumeration type is justified.

For detailed information about this feature:
> 10.12 Viewing the columns compatible with the enumerate type, page 187

 10.3 Discovering a Java file
The Java files structure discovery icon in the Discovery toolbar allows you to explore
compiled Java files in order to extract their data.

You may need to open a communication between any modeling tool and Discovery by using
Java classes. Most of the modeling tools allow to generate Java classes based on an Object
Oriented Model (OOM):

A p p l i c a t i o n C o m p o s e r User guide 180

Fig 10.5 Object Oriented Model

The introspection mechanism used to identify the tables and the columns works as follows:

 Tables represent the JAVA classes that are found.

 Columns represent the public attributes of the class.

 A property is specified for the columns and attribute types of the class. A conversion is
applied between the attribute’s JAVA type and the type of the column in Discovery.

181 Chapter 10 Working with Discovery

Table 10.1: Java attribute type and matching column type in Discovery

Fig 10.6 Discovering a Java file

Directory - The directory where the compiled files are located.

 10.4 Discovering a CSV file
The CSV discovery icon in the Discovery toolbar allows you to explore compiled Java files
in order to extract their data.

TYPE OF THE JAVA ATTRIBUTE TYPE OF THE COLUMN IN DISCOVERY (TYPE SQL)

java.lang.String, java.lang.StringBuffer VARCHAR

java.lang.Character CHAR

java.lang.Integer INTEGER

java.lang.Short SMALLINT

java.lang.Long BIGINT

java.lang.Double, java.lang.Number DOUBLE

java.lang.Float FLOAT

java.lang.Byte, java.lang.Boolean BYTE

java.lang.Date DATE

A p p l i c a t i o n C o m p o s e r User guide 182

Fig 10.7 Discovering a CSV file (1/2)

Project name

Files

Header line number

Line space...

Column separator

Date format

Add tables to discovery

Delete tables already in discovery

Fig 10.8 Discovering a CSV file (2/2)

Update database schema

Physical data source id

183 Chapter 10 Working with Discovery

Database name

JDBC drivers

Connection URL

User

Password

Import data contained in CSV files

Alter script only

 10.5 Discovering a W4 model
The Discover a W4 Suite model icon in the Discovery toolbar allows you to create an
Application Engine metamodel based on a W4 process. All the W4 process activities will be
converted to Application Engine application forms.

Fig 10.9 Discovering a W4 model

Name - This name will be assigned to the top level directory of the discovery process in the
Discovery tree view.

Model procedure prefixes - Type the name or prefix of the W4 procedure to be discovered
and click on the icon to validate.
Repeat this step if more than one procedure is to be discovered.

Login - Password - An authorized login and password for accessing the W4 Engine server
where the W4 model is stored.

Server name - The W4 Engine server where W4 Extension Bus resides (defaults to localhost).

A p p l i c a t i o n C o m p o s e r User guide 184

Instance name - The W4 Engine instance of the server where the W4 model is stored.

Port number - RMI port for W4 Extension Bus connection (defaults to 7507).

 10.6 Discovering an ECM system
The ECM discovery icon in the Discovery toolbar allows you to browse the contents of
ECM systems connected to W4 Extension Bus, to import ECM objects into metamodels.

Fig 10.10 Discovering an ECM system

Name - This name will be assigned to the top level directory of the discovery process in the
Discovery tree view.

Login - Password - An authorized login and password to access the ECM system.

Server - The server where W4 Extension Bus resides (defaults to localhost).

Port - RMI port for W4 Extension Bus connection (defaults to 7507).

 10.7 Performing another discovery
The Rediscover icon in the Discovery toolbar allows you to synchronize the metamodel
with the process when changes have been made to the process.

This feature can be used only for an existing database in the application. The parameters may
be updated, or you can validate the form if no change is required.

185 Chapter 10 Working with Discovery

The re-connection should be used when the user wishes to fully recreate the database tables.
All the database tables are removed and recreated via an automatic reconnection to the
database, as for a normal connection. After this operation, the state of the database in
Discovery is identical to that of the actual database.

 10.8 Comparing structures
The Show differences with real structure icon in the Discovery toolbar allows you to
compare the version of the database in Discovery with the actual state of the database at the
time when the action is running, in order to validate the changes or to ignore them, as
appropriate. For example, if only the changes relating to a particular table are relevant, you
can update this table alone.

 10.9 Cancelling the comparison
The Hide differences with real structure icon in the Discovery toolbar allows you to go
back to the original presentation of the database objects. The objects present in the database
and missing in Discovery are deleted. The changes made to certain objects are not validated
and the objects that no longer exist in the actual database are maintained. The state
preceding the comparison action is therefore restored.

 10.10 Updating the discovery
The Update discovery from real structure action is the logical continuation of the
comparison action. The update function works only for objects whose state is different from
Identical to the real database, the comparison function must therefore be executed
beforehand.

A p p l i c a t i o n C o m p o s e r User guide 186

This allows you to look at the differences between the databases, and update only part of the
database (one or several tables or columns). With a full database update, only the detected
changes are considered.

 10.11 Exporting data to Application Composer
The Create / Update the business model icon in the Discovery toolbar allows you to
export data from Discovery to Application Composer.

Following the data export, the objects in the application can be modified and new objects can
be created. However, no object in Application Composer can be deleted. Furthermore,
modifications are made only to the attributes that can be specified by the information
contained in the Discovery objects. As a result, the customizations made by the user to these
objects are not corrupted.

A summary informs the user of the changes made. It gives a view on the created objects, the
attributes of the objects that have been modified and their new value.

The list of the tables exported from Discovery is displayed as a class in the Application
Composer application.

The columns exported from Discovery are displayed as class attributes.

During the export, a list of Application Engine generic actions is added by default to each
created class.

The reverse operation is performed when opening Discovery from Application Composer. This
allows you to update the objects of Discovery according to the changes made in Application
Composer and as a result, to maintain consistency between the objects of both applications.

In any case, when opening the Discovery application, the object comparison function with the
actual database is performed ensuring that any differences are highlighted at once when the
application is opened.

187 Chapter 10 Working with Discovery

 10.12 Viewing the columns compatible with the
enumerate type
The Update discovery from real structure icon in the Discovery toolbar is used to
identify the columns whose characteristics indicate that they may be of Application Engine
enumeration type, in order to compensate the lack of enumeration type in some RDBMS. The
following criteria are considered to select the columns:

 The column status: A primary or foreign key cannot be of type enumeration.

 The column size: A text column of size 252 will probably not be of type enumeration.

 The total number of records in the corresponding table: If a table has only few records, all
its columns will be detected as being of enumerate type as there are few different values.

 The number of different values taken up by the column in these records.

A pre-selection of the columns is displayed in a list.

To set the column type to enumerate click or to restore the original type click . The first
action converts the Application Engine type into a CHOICE type.

Values - The values available for this field of enumerate type.

C
ha

pt
er

 1
1

A p p l i c a t i o n C o m p o s e r User guide 188

11 Importing a UML model
UML import allows you to load a diagram of UML (Unified Modeling Language) classes into
Application Composer. Application Engine's data model is built based on the UML model.
Using this feature you can obtain a default MMI based on your data model simply and quickly.

In this chapter we will cover the following topics:
> 11.1 Supported versions and tools, page 189
> 11.2 Importing an XMI File, page 190
> 11.3 Transformation of the UML Model, page 192
> 11.4 Most Frequent Errors, page 197

The import is performed via a file in XMI format (XML Metadata Interchange). This format is
the standard exchange format for UML models. For further information regarding these OMG
(Object Management Group) standards, you may visit the following Web sites:

 OMG:
http://www.omg.org/

 XMI:
http://www.omg.org/technology/documents/formal/xmi.htm

 UML:
http://www.uml.org/

Some options are available to obtain a prototype more quickly. They allow you to limit the
number of manual changes required following an import.
> 11.2 Importing an XMI File, page 190

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.uml.org/

189 Chapter 11 Importing a UML model

 11.1 Supported versions and tools

UML and XMI Versions

The UML versions supported so far are versions 1.3 and 1.4.

The XMI versions supported so far are versions 1.0, 1.1, 1.2. The specifications of the version
XMI 1.0 being ambiguous on several points, they may have been interpreted in different ways
by the different modeling tools. As a result some errors may occur when reading XMI 1.0 files.

Modeling tools

The modeling tools with best support are those using and/or supported by the libraries of the
MetaData Repository (MDR) by NetBeans.

http://mdr.netbeans.org/

They should allow you to export models in UML version 1.3 or 1.4, in XMI format 1.1 or 1.2.

Below are some sample tools (there are many others):

 Poseidon for UML by Gentleware:
gentleware.com

 A free version intended for non-commercial use is available.

 Enterprise Architect by Sparx Systems:
http://www.sparxsystems.com/

 Together Developer by Borland:
http://www.borland.com/fr/products/together/index.html

 The IBM Rational Rose products:
http://www-306.ibm.com/software/info/ecatalog/fr_FR/category/SW710.html

Any tool that produces XMI files that conform to the specifications is compatible.

To export UML models into XMI, some tools offer a variety of options. You should choose a
UML version 1.4 and an XMI version 1.1 or 1.2 whenever possible. Choose to exclude the
information on the diagram and any other item specific to the tool.

Finding version and tool information in the file

The XMI version is always specified in the root tag of the file.

http://mdr.netbeans.org/
http://mdr.netbeans.org/
http://www.gentleware.com
http://www.sparxsystems.com/
http://www.borland.com/fr/products/together/index.html
http://www-306.ibm.com/software/info/ecatalog/fr_FR/category/SW710.html

A p p l i c a t i o n C o m p o s e r User guide 190

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2'>
...
</XMI>

The UML version is not always specified in the XMI file. If it is present, then it is described in
the meta model information.

<XMI xmi.version = 'X.Y'>
<XMI.header>
...
<XMI.metamodel xmi.name="UML" xmi.version="1.4"/>
</XMI.header>
...
</XMI>

The name of the tool used to export the UML model to XMI format is specified as follows:

<XMI xmi.version = 'X.Y'>
<XMI.header>
<XMI.documentation>
<XMI.exporter>Netbeans XMI Writer</XMI.exporter>
<XMI.exporterVersion>1.0</XMI.exporterVersion>
</XMI.documentation>
...
</XMI.header>
...
</XMI>

 11.2 Importing an XMI File

PLEASE NOTE Importing a new model overwrites all previous data.

Select FileXMI import to perform this action.

191 Chapter 11 Importing a UML model

Fig 11.1 Importing an XMI File

XMI file containing the UML model - The file containing the XMI model. The file extension
should be either.xmi or .xml.

UML version - The version of the UML model contained in the XMI file. The version 1.4 is
selected by default because this is the most common version. The icon on the right allows you
to search automatically for the UML version in the file.

Log level for traces - This option allows you to define the desired trace level during the
importation.

 all - All the traces.

 warning - Recoverable errors.

 info - Processing information.

 trace - Calls to methods and call stacks.

 error - Errors.

Unknown tags from XMI file processing - This option allows you to specify how the tags
that are not recognized when the file is read should be processed. There are two possible
options:

 Ignore - The unknown tag is ignored and a warning is written to the trace, indicating its
name.

 Throw an exception: An error is displayed to the user and the import is stopped.

Create a field for unique class identification - This option allows you to create a field
identifier in all the classes, thus enabling you to avoid setting it manually. The presence of
such a field is necessary in the Application Engine classes.

Create template actions for each class - This option allows you to create the basic actions in
all the classes: Consult, Create, Duplicate, Modify, Delete and Print.

A p p l i c a t i o n C o m p o s e r User guide 192

 11.3 Transformation of the UML Model
As Application Engine's data model has a class structure, we will take a look at the UML class
diagrams. The other diagrams are not transformed.

 11.3.1 Transformed UML Items

The following table shows how the items of a UML model that can be present in a class
diagram, are transformed. A dash means that the item is not transformed.

193 Chapter 11 Importing a UML model

Table 11.1: Mapping table between UML items and Application Engine items

A UML model contains all the information regarding existing diagrams. The items originating
from diagram types other than class diagrams are ignored during transformation.

 11.3.2 Overview of transformations

Model, packages, classes, attributes and operations

As the models are a particular type of package, they are transformed as such.

UML ITEM APPLICATION ENGINE ITEM

Association
One or two relation fields depending on the
the association ends, simple or multiple
relations depending on multiplicity.

Attribute
Text, number, date, typed or table field
depending on the type and on attribute
multiplicity.

Class
Class, structure field or choice field depending
on the stereotype or the references to the
class.

Dependency Relation field

Generalization Class inheritance

Interface _

Method _

Model Project

Operation Action

Package Project

Parameter _

DataType Structure or enumeration field

Object _

Parameterized class Class (transformation identical to a normal
class)

A p p l i c a t i o n C o m p o s e r User guide 194

The UML packages are transformed into Application Engine projects. The tree structure of the
packages is reflected in the project tree.

As a rule the UML classes are transformed into Application Engine classes and their
organization into packages is preserved. In some cases a class can be transformed into a field
of the root project:

 When the class is of <<enumeration>> stereotype, it is transformed into a choice field and
the enumeration literals into choice options.

 When the class is of <<type>> or <<dataType>> stereotype or when this is the type of at
least one attribute of the model, it is transformed into a structure field, its attributes being
transformed into fields of the structure.

The attributes are transformed according to their type and to their multiplicity. If no
multiplicity is defined, we consider that it is equal to 1..1. The following table summarizes the
transformation according to the type and to the multiplicity.

Table 11.2: UML Transformation of attributes according to their type and multiplicity

If the lower limit of the multiplicity of an attribute is equal to 0 then, it will have the optional
mark.

The operations are transformed into actions of the class in which they are defined. The
methods and the parameters of the operations are not taken into account.

Generalizations

Generalizations are transformed into inheritances.

TYPE | MULTIPLICITY UPPER LIMIT = 1 UPPER LIMIT > 1 OR INFINITE

STRING, CHAR Text field Table field made up of items of
type text

BYTE, DOUBLE, FLOAT, INT,
INTEGER, LONG, REAL,

SHORT
Number field Table field made up of items of

type number

DATE Date field Table field made up of items of
type date

BOOLEAN
Typed field, whose type is a choice
field defined in the root fields.

Table field made up of items of
type typed field

A CLASS OF THE MODEL,
AN ENUMERATION OR A

DATA TYPE

Typed field, whose type is the root
field derived from the type
transformation.

Table field made up of items of
type typed field

UNKNOWN Text field Table field made up of items of
type text

195 Chapter 11 Importing a UML model

Import of models with multiples extends is not supported: An error is returned to the user and
the import is stopped.

Fig 11.2 Generalization: Multiple inheritances are forbidden

We recommend caution with inheritances between classes coming from different packages.
When reading the data model, inheritances are resolved in their definition order. A class
cannot extend a class that is defined after it in the model.

Below is an example of a UML model that, once transformed, will not be read correctly.

Fig 11.3 Inheritance that is not supported by Application Engine

To specify that class C extends class A, package_1 must be defined first. If we also specify that
B extends D, it will be impossible to read the data model. At this point in time, when

A p p l i c a t i o n C o m p o s e r User guide 196

Application Engine reads that class B extends D, D is still unknown. By specifying package_2
first, the same error type occurs because class A is unknown when reading the inheritance of
class C.

Associations

An association is transformed into a relation field. The navigability indicates both the original
class of the field and its target class. A double direction relation is translated into two relation
fields. The type of aggregation (i.e. aggregation, composition or none) indicates the type of
relation (i.e. association or composition).

The multiplicity provides additional information: An interval whose lower limit is equal to 0
gives the optional mark to the field. An interval whose upper limit is greater than 1 indicates
that the relation is multiple.

The associations in UML can link together at least two Classifiers. We transform only the binary
associations between two Classes.

Particular cases - The associations of reflexive compositions are not supported in Application
Engine, we transform them into relations of type Association.

Fig 11.4 Particular case of association that cannot be modeled in Application Engine

The Associations between a class A and a class B, whose end points do not have a navigability
type defined (AssociationEnds), are interpreted as follows:

Fig 11.5 Interpretation of the associations whose navigability is null

197 Chapter 11 Importing a UML model

The associations in the figure below are not transformed because they do not make sense in a
UML description.

Fig 11.6 Not pertinent UML association

Dependencies

Dependencies are transformed into relation fields from the client to the provider.

Only the dependencies between two classes are transformed.

 11.4 Most Frequent Errors
In this section, we will deal with the most frequent errors. For any other unexplained error,
please contact W4 Support. Provide the trace file and the XMI file, or an example of XMI file
corresponding to the generated error.

1. Libraries are not located in the right place

In this section $APPENGINE$ is the access path to where Application Engine is located.

The libraries required by the XMI import module are located in the $APPENGINE$/install/mdr
and $APPENGINE$/leon/tools/studio/lib/uml directories.

The java.lang.ClassNotFoundException and java.lang.NoClassDefFoundError exceptions
indicate that some libraries are not bound. Make sure that the libraries umlloader.jar,
uml14loader.jar, uml13loader.jar, uml14.jar and uml13.jar are located in the directory
$APPENGINE$/leon/tools/studio/lib/uml and that the libraries jmi.jar, jmiutils.jar, mdrapi.jar,
mof.jar, nbmdr.jar and openide-util.jar are in the $APPENGINE$/install/mdr directory.

A p p l i c a t i o n C o m p o s e r User guide 198

2. The XMI file is malformed

a. Structural malformation

When the XMI file is malformed, the following exceptions are thrown.

javax.jmi.xmi.MalformedXMIException
org.netbeans.lib.jmi.util.DebugException

The associated error message offers a good indication of the source of the malformation.

For further information regarding the source of the exception, see the console or the trace file
available at $APPENGINE$/xmi_import.log.

The following message is an example of malformation.

java.lang.NumberFormatException: For input string: "*"

This generally occurs during the definition of the multiplicity where * is left for the particular
infinite value. You just need to replace the * by -1, -1 being the representation of this
particular infinite value.

b. Malformation due to the processing option of unknown tags

If the processing of unknown tags is defined as throw an exception then, the exception will be
thrown as soon as the first unknown tag is read. The exceptions that can appear are the same
as those previously mentioned. The name of the unknown tag will be indicated in the
message of the source of the error. Below is an example of a message where the UML:Diagram
tag is unknown.

org.netbeans.lib.jmi.util.DebugException: Name cannot be resolved:
UML:Diagram

Unknown tags are those that are not defined in the metamodel of the UML language available
on the Web site of the OMG:

http://www.omg.org/docs/ad/01-02-15.xml

This metamodel is described in the MOF language and exported in XMI.

3. An error occurs at read time

If an error occurs at read time, an exception of the following type is thrown.

http://www.omg.org/docs/ad/01-02-15.xml

199 Chapter 11 Importing a UML model

leon.tools.studio.xmi.MLUmlReadingException

Some information and recommendations are often associated to the exception and are
included in the error message that is displayed.

4. An error occurs during transformation

If an error occurs during transformation, an exception of the following type is thrown.

leon.tools.studio.xmi.MLUmlTransformationException

Such errors may occur if the model does not correspond to our modeling recommendations,
notably regarding multiple inheritances.

Illu
st

ra
tio

ns

A p p l i c a t i o n C o m p o s e r User guide 200

Opening an application 12

Creating an application 12

The user interface 13

The class hierarchy 14

The navigation tree 16

The visual builder 17

Discovery 18

The Java classes tab 19

The Diagram tab 19

Editing an application, General tab 25

Editing an application, Environment tab 27

Specifying an application behavior 27

Specifying a session behavior 28

Adding a specific main class 29

Adding a specific servlet class 30

Exporting an application 31

Importing an application 32

Viewing the generated documentation (1/2) 33

Viewing the generated documentation (2/2) 33

Documentation components 34

Managing the applications 35

Mnaging application resources 36

Generating the database script 38

Generating the database 39

201 Illustrations

Generating an application as an Eclipse plugin 40

Creating a sub-project 43

Viewing the details of a project 43

Editing a project 44

Adding a data model to the project 45

Creating filters for a project 47

Creating a simple filter 47

Creating an extended project filter 48

Creating sort criteria for a project (1/3) 49

Creating sort criteria for a project (2/3) 49

Creating sort criteria for a project (3/3) 50

Setting comments for a project 50

Creating a new class 53

Viewing the details of a class 55

Modifying a class 56

Specifying class extends 57

Sorting objects in a class 58

Specifying a cache policy 59

Specifying help files for the class 60

Specifying specific marks for the class 60

Specifying application data 61

Generating the class interface 62

Specifying the class behavior 63

Modifying the link to the physical layer of the class 64

Modifying the link to the physical layer of the class, simple binding (1/2) 65

Modifying the link to the physical layer of the class, simple binding (2/2) 65

Modifying the link to the physical layer of the class, union of physical classes(1/2) 66

Modifying the link to the physical layer of the class, union of physical classes(2/2) 67

Modifying the link to the physical layer of the class, LDAP connection 68

Modifying the controls for the class (1/4) 69

Modifying the controls for the class (3/4) 69

Setting class rules (1/2) 70

Setting class rules (2/2) 70

Setting class labels (1/2) 72

Setting class labels (2/2) 72

A p p l i c a t i o n C o m p o s e r User guide 202

Creating an access path 73

Creating a step 74

The Attributes tab 77

Creating a numeric attribute 80

Creating a text attribute 81

Creating a multiple choice attribute 83

Creating a time attribute 84

Creating a relational attribute 85

Creating a file attribute 88

Creating a table attribute 89

Creating a structure attribute 90

Creating a typed field attribute 91

Creating a reference to an attribute 92

Creating an import attribute 92

Modifying a file attribute 97

Modifying the allowed character set (1/2) 102

Modifying the allowed character set (2/2) 102

Associating an encryption to a text 103

Adding a tooltip to a field 104

Setting the physical link for a relation 105

Creating simple attribute bindings 106

Creating multiple attribute bindings 107

Creating LDAP directory attribute bindings 107

Creating reverse relation daemons 108

Creating join relation daemons (1/2) 109

Creating join relation daemons (2/2) 109

Creating route daemons (1/2) 110

Creating route daemons (2/2) 110

Setting the physical binding of a table attribute 111

Creating table daemons 112

Setting the physical binding for other attribute types 113

Setting units 114

Creating simple units (1/3) 115

Creating simple units (2/3) 116

Creating simple units (3/3) 116

203 Illustrations

Creating formats 117

Creating unit lists (1/2) 118

Creating unit lists (2/2) 118

Converting an attribute type 119

Setting most frequent marks 120

Setting attribute mark 122

Creating a specific mark 124

Using specific graphical components for the attributes (1/2) 125

Using specific graphical components for the attributes (2/2) 125

Adding specific data 126

Editing formatting constraints 127

Setting attribute controls (1/2) 128

Setting attribute controls (2/2) 128

Setting attribute labels (1/2) 129

Setting attribute labels (2/2) 130

Creating an access path 131

Creating a step 131

Specifying a cache policy 132

Setting attribute rules (1/2) 133

Setting attribute rules (2/2) 134

The Routes tab 136

Creating a route 138

Creating a step 139

The navigation tree 141

The Actions tab 142

Creating a simple action 146

Creating a composite action 151

Creating a tab action 152

Creating a reference on an existing action 153

Creating child actions 154

Customizing the view for an action 155

Specifying apply conditions for the actions 157

Setting action marks 158

Specifying specific resources for an action 159

Specifying specific resources for an action 159

A p p l i c a t i o n C o m p o s e r User guide 204

Setting specific parameters for an action (1/2) 160

Setting specific parameters for an action (2/2) 160

Specifying an action behavior 161

Specifying an action builder 162

Specifying the code for an action with no template 163

The Java classes tab 167

The Libraries tab 168

Adding a data source (1/2) 170

Adding a data source (2/2) 171

Adding a data source - file location 171

Adding a data source - RDBMS 172

Adding a data source - LDAP 173

Adding a data source - Generic data 174

Creating an additional notification service 175

Discovery 177

Viewing the list of available drivers 177

Adding a new driver 178

Discovering an SQL database 179

Object Oriented Model 180

Discovering a Java file 181

Discovering a CSV file (1/2) 182

Discovering a CSV file (2/2) 182

Discovering a W4 model 183

Discovering an ECM system 184

Importing an XMI File 191

Generalization: Multiple inheritances are forbidden 195

Inheritance that is not supported by Application Engine 195

Particular case of association that cannot be modeled in Application Engine 196

Interpretation of the associations whose navigability is null 196

Not pertinent UML association 197

205 Illustrations

In
d

ex

A p p l i c a t i o n C o m p o s e r User guide 206

A
action 145

Action behavior 161

Action builder 162

Action, add specific marks 144

Action, add tooltip 143

Action, copy target action 143

Action, create composite action 150

Action, create reference 153

Action, create simple action 146

Action, create tab action 152

Action, customize view 155

Action, generate default action 144

Action, modify 142

Action, preview 145

Action, remove 143

Action, set marks 158

Action, specify apply conditions 156

Action, specify keyboard shortcut 143

Action, specify specific parameters 160

Action, specify specific resources 159

Action, view details 142

Action, XML view 145

Actions tab 20

Actions, change order 143

Allowed character set 102

Application behavior 27

Application data 61

Application, create 12

Application, edit 25

Application, export 31

207 Index

Application, generate 37

Application, import 31

Application, open 11

Application, remove 25

Application, run 40

Application, view details 25

Applications, manage list of 34

Attribute reference, create 91

Attribute shortcut, create 91

Attribute, add specific data 126

Attribute, add specific marks 124

Attribute, convert type 119

Attribute, modify controls 128

Attribute, modify labels 129

Attribute, modify rules 133

Attribute, set marks 120

Attribute, view details 79

Attributes tab 20

B
Bi-directional route 137

C
Cache 58, 132

Child action, create 154

Class behavior 63

Class hierarchy 13, 14

Class, add specific marks 60

Class, create 53

Class, create new view 55

Class, edit 56

Class, help files 59

Class, modify controls 69

Class, modify label 74

Class, modify labels 71

Class, modify rules 70

Class, remove 57

Class, sort objects 58

Class, specify extends 57

Class, view details 54

Classes tab 20

Comments, modify for class 74

A p p l i c a t i o n C o m p o s e r User guide 208

Comments, set for project 50

Composite action, create 150

Context-sensitive help on fields 13

Controls, modify for attribute 128

Controls, modify for class 69

Creating access paths, page 99 111

D
Data descriptive grammar 10

Data source, create 170

Data sources 170

Database script, generate 37

Database, alter 38

Database, generate 38

Default action, set 144

Discovery 10, 18, 176

Discovery, CSV file 181

Discovery, ECM system 184

Discovery, Java file 179

Discovery, SQL database 178

Discovery, W4 model 183

Documentation, generate 32

E
Eclipse plugin, generate application as 40

ECM system 18, 176

Encryption Java class 103

F
File attribute, create 87

File attribute, edit 97

File location 171

Filter modifier, Case sensitive 46

Filter modifier, Not 46

Filter, create for project 46

Filter, create for step 137

Formatting constraints 127

209 Index

G
Generic location 174

I
Import attribute, create 92

Inheritance 57

Interface class, generate 62

J
Java classes 166

Java classes tab 18

Java classes, compile 167

K
Keyboard shortcuts, specify for action 143

L
Labels, modify for attribute 129

Labels, modify for class 71

LDAP location 173

Libraries 166, 167

Location, create 170

Locations 170

M
Main toolbar 14

Marks, set for action 158

Marks, set for attribute 120

Multiple choice attribute, create 82

Multiple choice attribute, edit 94

N
Navigation tree 15

A p p l i c a t i o n C o m p o s e r User guide 210

Numeric attribute, create 80

Numeric attribute, edit 93

P
Physical binding 64

Preferences 21

Project, create filters 46

Project, create sort mode 49

Project, edit 44

Project, save 51

Project, set comments 50

Project, view details 43

R
RDBMS location 172

Read-only control 101

Reference attribute, modify 101

Relation attribute, create 85

Relation attribute, edit 96

Resources 35

Reverse route, create 138

Root action 145

Route, create 137

Route, delete 137

Route, view details 137

Routes tab 20

Rules, modify for attribute 133

Rules, modify for class 70

S
Session behavior 28

Setting physical binding for a table attribute, page 85 99

Simple action, create 146

Sort criteria, create for class objects 58

Sort mode, create for project 49

Specific data, add to attribute 126

Specific graphical components 124

Specific main class 29

Specific marks, add to action 144

Specific marks, add to attribute 124

211 Index

Specific marks, add to class 60

Specific servlet class 30

Step, create filter 137

Step, create for route 139

Structure attribute, create 89

Structure attribute, edit 99

Sub-project, create 42

Sub-project, edit 45

T
Tab action, create 152

Table attribute, create 88

Table attribute, edit 98

Text attribute, create 81

Text attribute, edit 93

Time attribute, create 84

Time attribute, edit 95

Tooltip, add to action 143

Tooltip, add to field 104

Typed field attribute, create 90

Typed field attribute, edit 100

U
UML model, import 188

Units, specify 114

User interface 13

V
Visual builder 16

W
W4 procedure model 18, 176

X
XMI 190

XMI File, import 190

A p p l i c a t i o n C o m p o s e r User guide 212

XMI import 32

213 Index

 w w w . w 4 . e u

Should you have any comment or suggestion related to this document, please contact

W4 Customer Support providing the document reference:

 Via the W4 SupportFlow case management tool on

 MyW4.com at http://support.myw4.com

 By email: support@w4.eu

 By telephone: +33 (0) 820 320 762

Reference: APPCOMPOSER_USER_046_EN
USER GUIDE

www.w4.eu
http://www.myw4.com/w4_support.aspx
http://www.myw4.com/w4_support.aspx

