
Actor-based Concurrency in
Newspeak

A Project Report by

Nikolay Botev

May 2012

Agenda

• Problem

• Solution

– Theoretical Foundations

– Practical Implementation

• Demo

• Questions

Problem

• “Highly concurrent systems are more power
efficient

– Dynamic power is proportional to V2fC

– Increasing frequency (f) also increases supply
voltage (V): more than linear effect

– Increasing cores increases capacitance (C) but has
only a linear effect” (emphasis mine)

Source: Slide 6 of [13] (Katherine Yelick)

Problem

• “Hidden concurrency burns power

– Speculation, dynamic dependence checking, etc.

– Push parallelism discovery to software (compilers
and application programmers) to save power”
(emphasis mine)

Source: Slide 6 of [13]

Problem

• The Datacenter as a Computer

– “Slower CPUs are more power efficient; typically,
CPU power decreases by O(k2) when CPU
frequency decreases by k.”

– “[…] although hardware costs may diminish,
software development costs may increase […],”

– “[…] developers may have to spend a substantial
amount of effort to optimize the code […]”
(underline mine)

Solution – Theory

• The Actor Model

– Carl Hewitt (1970s)

• A Theoretical Model of Computation

– Alternative to: Turing Machine, von Neumann

• Unbounded Non-determinism

Solution – Theory

• The Actor Model

– “An Actor is a computational entity that, in
response to a message it receives, can
concurrently:

• send messages to other Actors;

• create new Actors;

• designate how to handle the next message it receives.”
Source: [9]

Solution – Practice

Factorial in Newspeak

factorial: n <Integer> ^ <Integer> = (
 (n <= 1)
 ifTrue: [^1]
 ifFalse: [^(factorial: (n - 1)) * n]
)

Solution – Practice

Factorial in Newspeak (asynchronous)

factorial: n <Integer> ^ <Promise[Integer]> = (
 (n <= 1)
 ifTrue: [^1]
 ifFalse: [^(factorial: (n - 1)) <-: * n]
)

Solution – Practice

Using the factorial

| math f |
math:: actors createActor: Math mixin.
f:: math <-: factorial: 42.
f whenResolved: [
 Transcript show: 'Factorial of 42 is ', f.
].

What is a Newspeak Actor?

Conventional Single-threaded Program

Stack

Heap

main(…)

foo(…)

bar(…)

baz(…)

…

What is a Newspeak Actor?

Conventional Multi-threaded Program

Shared Heap

Stack

thread(…)

foo(…)

bar(…)

baz(…)

…

Stack

thread(…)

foo(…)

bar(…)

baz(…)

…

Stack

main(…)

foo(…)

bar(…)

baz(…)

…

Threads

What is a Newspeak Actor?

Newspeak Actor

Stack

foo(…)

bar(…)

baz(…)

…
Heap

Queue raz(…) taz(…) …

What is a Newspeak Actor?

Newspeak Program

Stack

Heap

Queue

Stack

Heap

Queue

Stack

Heap

Queue

Actors

…

Actor Communication

Immediate-send

account deposit: 100 withDescription: ‘paycheck’.

Actor Communication

Eventual-send

 account <-: deposit: 100 withDescription: ‘paycheck’.

Actor Communication

Far References

Actor Communication

Far References

Mads says, r1 <-: x: n1.

Actor Communication

Far References – Pass-by-Value

Mads says, r1 <-: x: n1.

Promise Pipelining

promise:: math <-: factorial: 4.

Reference States

Source: [13] (modified without permission)

Summary

• Create an actor via createActor:

• Send a message to an actor via <-:

– Composable thanks to Promise pipelining

• Await a Promise via whenResolved:catch:

– Bridges concurrent and sequential computation

Key Qualities of Actors

• Simple,

• Lightweight,

• Automatic.

No.

Need.

To pool.

No pools, please!

The alternative is
liberating!

Distinctions from E

• Actor creation based on mixins

• Asynchronous control structures

• Actor mirrors

• Reference states

Conclusion

Newspeak 4 Actors:

A small first step towards

“iAdaptive Concurrency” [9]

Demo

Questions

Thank You!

