Actor-based Concurrency in
Newspeak

A Project Report by
Nikolay Botev
May 2012

Agenda

Problem

Solution
— Theoretical Foundations
— Practical Implementation

Demo
Questions

Problem

* “Highly concurrent systems are more power
efficient
— Dynamic power is proportional to V3fC

— Increasing frequency (f) also increases supply
voltage (V): more than linear effect

— Increasing cores increases capacitance (C) but has
only a linear effect” (emphasis mine)

Source: Slide 6 of [13] (Katherine Yelick)

Problem

* “Hidden concurrency burns power
— Speculation, dynamic dependence checking, etc.

— Push parallelism discovery to software (compilers
and application programmers) to save power”
(emphasis mine)

Source: Slide 6 of [13]

Problem

 The Datacenter as a Computer

— “Slower CPUs are more power efficient; typically,
CPU power decreases by O(k?) when CPU
frequency decreases by k.”

— “[...] although hardware costs may diminish,
software development costs may increase [...],”

— “[...] developers may have to spend a substantial
amount of effort to optimize the code [...]”
(underline mine)

Solution — Theory

e The Actor Model
— Carl Hewitt (1970s)

* A Theoretical Model of Computation

— Alternative to: Turing Machine, von Neumann

e Unbounded Non-determinism

Solution — Theory

e The Actor Model

— “An Actor is a computational entity that, in
response to a message It receives, can
concurrently:

* send messages to other Actors;
* create new Actors;

» designate how to handle the next message it receives.”
Source: [9]

Solution — Practice

Factorial in Newspeak

factorial: n <Integer> " <Integer> = (
(n<=1)
ifTrue: [A1]
ifFalse: [AM(factorial: (n-1)) * n]

Solution — Practice

Factorial in Newspeak (asynchronous)

factorial: n <Integer> " <Promise[Integer]> = (
(n<=1)
ifTrue: [A1]
ifFalse: [Mfactorial: (n- 1)) <-: *n]

Solution — Practice

Using the factorial

| math f |
math:: actors createActor: Math mixin.

f:: math <-: factorial: 42.

f whenResolved: [
Transcript show: 'Factorial of 42 is ', 1.

.

What is a Newspeak Actor?

Conventional Single-threaded Program

Stack

Heap

baz(...)

bar(...)

foo(...)
main(...)

What is a Newspeak Actor?

Conventional Multi-threaded Program

Stack [

Threads — baz(...) Shared Heap

bar(...)

foo(...)
main(...)

What is a Newspeak Actor?

Newspeak Actor

Stack

Heap

baz(...)

bar(...)

foo(...)

= raz(...) taz(...) " Queue

What is a Newspeak Actor?

Newspeak Program

—

Stack Stack

Actors —

Stack

Actor Communication

Immediate-send

account deposit: 100 withDescription: ‘paycheck’.

Activation Heap
Stack "paycheck"

100 Q

O account
account deposit: o)
withDescription: =S¥
self <current
method> solf &F
<next message> Message Queue

‘V'

A
w |

Actor Communication

Eventual-send

account <-: deposit: 100 withDescription: ‘paycheck’.

Activation Heap
Stack "paycheck"

100 Q

O account

self <current
method>

account <-: deposit:
Vv withDescription:

A
w |

<next message> Message Queue

Actor Communication

Far References

Actor 1 Actor 2
Mads JrT .@
|

n cl
Frame 2 Frame 2
Activation Activat
Frame 1 Frame 1

Actor Communication

Far References

Mads says, rl1 <-: x: nl.

Actor 1 Actor 2
= @
_rZ/

Activation Activatio

Frame 2 Frame 2

Activation Activat

Frame 1 Frame 1

Message 1 Message 2 Message 1 Message 2 X ‘

Actor Communication

Far References — Pass-by-Value

Mads says, rl1 <-: x: nl.

Actor 1 Actor 2

Activation Activat
Frame 2 Frame 2
Activation Activat
Frame 1 Frame 1

Promise Pipelining

math <-: factorial: 4.

P(f(4))

P(f(2))

?

*

4

1

*

2

Reference States

UNRESOLVED RESOLVED
e ™ s
EVENTUAL _
d ~
(Iocaf promise)
resolve
m————
E{AT—CROSSING
b }
M | A
broken

\. v \

Source: [13] (modified without permission)

Summary

* Create an actor via createActor:
* Send a message to an actor via <-:
— Composable thanks to Promise pipelining

* Await a Promise via whenResolved:catch:
— Bridges concurrent and sequential computation

Key Qualities of Actors

* Simple, No.

* Lightweight, ‘ Need.

* Automatic. To pool.

Distinctions from E

Actor creation based on mixins
Asynchronous control structures
Actor mirrors

Reference states

Conclusion

Newspeak 4 Actors

A small first step towards

“iAdaptive Concurrency” [9]

Demo

Questions

Thank You!

