abstractions at scale

our experiences at twitter

marius a. eriksen
@marius
QConSF, November 2010

Sunday, November 14, 2010




twitter

real-time information network
/OM tweets/day (800/s)

150M
70K A

USEIS

P| calls/s

Results for #qcon 0.38 seconds

codeish: #QCon is Not Just for Architects! http://bit.ly/agbBbb (expand) #in
about 1 hour ago via Tweetie for Mac - Reply - View Tweet

AzulSystems: #AzulSystems Gil Tene speaking at #QCon SF Nov 3 @2:05 and on
panel Nov 4 @10:35 http://tinyurl.com/2fl8a58 (expand) Don't miss it!
1 day ago via HootSuite - Reply - View Tweet

geeters: RT @beckynagel: Read why #QCon is @johnkwaters' favorite #tech
conference (and it's not just for #architects, he promises!): hitp:/bit.ly/9WkrSn

1 day ago via web - Reply - View Tweet

MattMorollo: #QCon -- It's Not Just for Architects! (well done Mr Floyd M)
hitp.//adtmag.com/blogs/watersworks/list/blog-list.aspx
2 days ago via web - Reply - View Tweet

':" 4 (expand)

Sunday, November 14, 2010



agenda

scale & scalability

the role of abstraction

good abstractions, bad abstractions
apbstractions & scale

examples

“jlust right” APIs

conclusions

Sunday, November 14, 2010



scale & scalability

“Scalability is a desirable property of a system, a
network, or a process, which indicates its ability to

either handle growing amounts of work In a
graceful manner or to be readily enlarged”

(Wikipedia)

Sunday, November 14, 2010



scale & scalability (cont’d)

only “horizontal” scaling allows unbounded
growin

not entirely true: eg. due to network effects
NOt a panacea

“vertical” scaling is often desirable & required
contain costs

curtall network effects

Sunday, November 14, 2010



scale & scalability (cont’d)

the target architecture is the datacenter
network Is a critical component
deeper storage hierarchy
higher performance variance
complex faillure modes

out our programming models don’t account
for these resource & fallure models explicitly

Sunday, November 14, 2010



abstraction

“freedom from representational qualities”

the chief purpose of abstraction is to manage
complexity & provide composabillity

N software, abstraction is manifested through
common interfaces

explicit semantics

implicit “contracts”

Sunday, November 14, 2010




abstraction (cont’d)

as systems become more complex, abstraction
becomes increasingly important

especially as number of engineers grow

modern systems are highly complex and are
highly abstracted

Sunday, November 14, 2010



type systems

[static] type systems can encode some of the
contracts for us

giving us static guarantees

academia is pushing the envelope here with
dependent types

they also compose

the line between type & program becomes
blurred

Sunday, November 14, 2010



good abstraction? your CPU

X80-064 Is a spec
you don't care If it’'s provided by AMD or Intel

excepting a few compiler & OS authors, most of
you don’t think about

pipelining
out of order & speculative execution

obranch prediction

cache coherency

etc...




good ...? your memory hierarchy

you don't interface with it directly
purist view: addressable memory cells

reality: has scary-good optimizations for
common access patterns. highly optimized.

you don’t think (often) about:

cache locality
TLB effects
MMU ops scheduling




bad abstraction? ia64

(at least initially) compilers couldn’t live up to it

hardware promise was delegated to the
compiler

compilers failed to reliably produce sufficiently
fast code

abstraction was broken

good for certain scientific computing domains

Sunday, November 14, 2010




a lens

scaling issues occur when abstractions become
leaky

RDBMS fails to perform sophisticated queries
on highly normalized data

yvour GC thrashes after a certain allocation
volume

OS thread scheduling becomes unviable after
N x 1000 threads are created

Sunday, November 14, 2010



911 threads

threads offer a familiar and linear model of execution

scheduling overhead becomes important after a
certain amount of parallelism

stack allocation can become troublesome
fails to be explicit about latency, backpressure
alternative: asynchronous programming

makes gqueuing, latency explicit

allows SEDA-style control

a compromise”? LW

Sunday, November 14, 2010



11 sequence abstractions

produces concise, beautiful, composable code

tralt Places extends Seq[Place]

places.chunks(5000).map(_.tolList).parForeach { chunk =>

access patterns aren’t propagated down the
stack

missed optimizations

Sunday, November 14, 2010



1 RDBMS

are [by definition] generic
encourage normalized data storage

very powerful data model

ittle need to know access patterns a priori
provide general (magical) querying mechanics

obag of tricks: query planning, table statistics,
covering indices

Sunday, November 14, 2010



1 RDBMS

at scale, the most viable strategy is: What You
Serve Is What You Store (WYSIWYS)

or at least very close

this brings about a whole host of new problems
data (in)consistency
multiple indices

“re-normalization”

Sunday, November 14, 2010



1 RDBMS

at-scale, querying is highly predictable, most of
the time:

don’t need fancy query planning
don’t need statistics

in fact, we know a-priori how to efficiently query
the underlying datastructures

wish: don’t give me a query engine, give me
primitives!

maybe there’s a “just right” AP| here

Sunday, November 14, 2010



11 in-memory representations

having tight control over representation is often
crucial to resource utilization

space vs. time] memory bandwidth is
orecious, GPU is plentiful

cache locality can often make an enormous
difference — even to the point of less code Is
better than more efficient code(!)

at odds with modern GC’d languages automatic
memory management & layout

Sunday, November 14, 2010



11 in-memory representations

optimize memory layout
pack data
compression
varint, difference, zigzag, etc.

L1:main memory latency = 1:200 (!)

example: geometry of Canada ~ jts normalized,
vs. WKB

wkb is = 600 KB, JTS representation = 2-3MB




11 garbage collection

we love garbage collection

attempts 1o encoade common patterns:
generational hypothesis

not always quite right

the application almost always has some idea
about object lifetime & semantics

poroposal: talk to each other!

backpressure, thresholding, application-guided
GC

Sunday, November 14, 2010




11 virtual memory

“You’re Doing it Wrong”
Poul-Henning Kamp, ACM Queue, June 2010

"... Varnish does not ignore the fact that memory is virtual;
it actively exploits it”

Sunday, November 14, 2010



11 virtual memory

maybe he is doing it wrong?

varnish uses data structures designed to
anticipate virtual memory layout & behavior

translates application semantics (eg. LRU)

INnstead, you could have direct control over those
resources

Sunday, November 14, 2010



“just right” abstractions

high level abstractions are absolutely necessary
to deal with today’s complex systems

but providing good albstractions is hard
what are the “just right” abstractions®?
exploit common patterns

give enough degrees of freedom to the
underlying platform

usually target a narrow(er) domain

retain high level interfaces

Sunday, November 14, 2010




11 mapreduce

def map(datum):
words = {}
for word in parse_words(datum):
word[word] += 1
for (word, count) in words.items():
output(word, count)

def reduce(key, values):
output(key, mean(values))

much freedom is given to the scheduler

exploits data locality (predictably)




11 shared-nothing web apps

def handle(request):
return Response(
“hello ’s!” % request.get_user())

eg: google’s app engine, django, rails, etc




9] bigtable

very simple data model

obut composable — effectively every other
database squeezes (more) sophisticated data
models down to 1 dimensional storage(s)

explicit memory hierarchy (pinning column
families to memory)

orovides load balancer/scheduler much freedom

only magic: compactions. challenge: resource
isolation.

Sunday, November 14, 2010




1 LWT

lwt a1 = Lwt_lib.getaddrinfo
"localhost" "8080"
[Unix.AI_FAMILY Unix.PF_INET;
Unix.AI_SOCKTYPE Unix.SOCK_STREAM] 1n

lwt (input, output) =
match a1 with
| [1 -> fail Not_found
| @ :: _ -> Lwt_io.open_connection
a.Unix.al_addr 1n

Lwt_1o.write output "GET / HTTP/1.1\r\n\r\n" >>
Lwt_1o.read 1nput

Sunday, November 14, 2010




theme

provide a programming model that provide a
narrow (but flexible) interface to resources

mapreduce
shared-nothing web apps

provide a programming model that make
resources explicit

bigtable
LWT

Sunday, November 14, 2010



meta pattern(s)

addressing separation of concerns:

(asynchronous) execution policy vs.
(synchronous) application logic

data locality vs. data operations
data model vs. data distribution

data locality vs. data model

Sunday, November 14, 2010



the future?

database systems
search systems

... Or any online query system?

some academic work already in this area:

OPIS (distributed arrows w/ combinators)
ypnos (grid compiler)

skywriting (scripted dataflow)

Sunday, November 14, 2010



conclusions

we need high level albstractions
they are simply necessary
allows us to develop faster and safer
many high level abstractions aren’t “just right”

can lbecome highly inoptimal (often orders of
magnitudes can be reclaimed)

some systems do provide good compromises
makes resources explicit

the future Is exciting!

Sunday, November 14, 2010



that’s 1t!

follow me: @marius

marius@twitter.com

Sunday, November 14, 2010


mailto:marius@twitter.com
mailto:marius@twitter.com

