
Maximum Subarray Problem 2D

Dmitri Gribenko <gribozavr@gmail.com>
Alexander Zinenko <ftynse@gmail.com>

National Technical University of Ukraine “Kiev Polytechnic Institute”

November 2011

Code description
We implemented an adaptive solution that uses Takaoka algorithm [1] to recursively divide a

large problem into smaller problems that can be solved in parallel. Small problems (N,M < 256)
are handled with Kadane 2D algorithm (described in [2]) which is faster for small inputs.

At the heart of Takaoka algorithm lies a modified matrix multiplication algorithm that consti-
tutes the biggest part of the execution time, thus being a good candidate for optimization:

• we derived a block variant of this algorithm to improve cache hit ratio (approx. 13% time
reduction);

• we fused this algorithm with the next step thus reducing memory writes (approx. 47% time
reduction);

• we vectorized the algorithm with SSE2 and SSE4.2 (approx. 51% time reduction);
• we implemented 32 and 64-bit variants of the algorithm (32-bit variant could be used when

upper bound on the sum — the sum of all positive array elements — is less than INT32_MAX),
but 32-bit variant performance turned out to be comparable to the 64-bit variant.

Takaoka algorithm was parallelized with tbb::parallel_invoke. On a 4-core Intel i5-750
CPU the speedup was 3.6 – 3.8, but on a 80-core MTL machine speedup was around 5 and
many cores were not loaded at all. Tracing has shown that Takaoka algorithm’s natural task
parallelism didn’t create enough subtasks for all cores. After we parallelized matrix multiplication
with tbb::parallel_for speedup increased to around 78.

Figure 1 shows speedup that was measured on a 40-core MTL worker node. Speedup is close
to linear.

References
[1] Tadao Takaoka. 2002. Efficient Algorithms for the Maximum Subarray Problem by Distance

Matrix Multiplication. Electronic Notes in Theoretical Computer Science 61.

[2] Kyoko Fukuda and Tadao Takaoka. 2007. Analysis of air pollution (PM10) and respiratory
morbidity rate using K-maximum sub-array (2-D) algorithm. In Proceedings of the 2007
ACM symposium on Applied computing (SAC ’07). ACM, New York, NY, USA, 153-157.
DOI=10.1145/1244002.1244041 http://doi.acm.org/10.1145/1244002.1244041

1



0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Sp
ee

du
p

Number of cores

Linear (perfect)
Tests from Acceler8 Russian contest forum

Single 5000×5000 test

Figure 1: Measured speedup for different inputs on a 40-core machine

2


